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The identification of biological parameters governing dynamics of Genetic Regulatory Networks (GRN) poses a problem of combinatorial explosion, since the possibilities of parameter instantiation are numerous even for small networks. In this paper, we propose to adapt LTL model checking algorithms to infer biological parameters from biological properties given as LTL formulas. In order to reduce the combinatorial explosion, we represent all the dynamics with one parametric model, so that all GRN dynamics simply result from all eligible parameter instantiations. LTL model checking algorithms are adapted by postponing the parameter instantiation as far as possible. Our approach is implemented within the SPuTNIk tool.

Introduction

Gene expression is a biological process where proteins are synthesized from genes. These proteins can regulate the synthesis of other proteins provided that their concentrations are sufficient. A collection of regulatory inter-dependencies between genes/proteins is called a Genetic Regulatory Network (GRN). In this paper we consider a discrete-state formalism, the René Thomas' formalism [START_REF] Barnat | On parameter synthesis by parallel model checking[END_REF][START_REF] Bernot | Application of formal methods to biological regulatory networks: extending Thomas' asynchronous logical approach with temporal logic[END_REF][START_REF] Corblin | A declarative constraint-based method for analyzing discrete genetic regulatory networks[END_REF][START_REF] Thieffry | Formalisation of regulatory networks : a logical method and its automation[END_REF][START_REF] Thieffry | Dynamical behaviour of biological regulatory networks -II. immunity control in bacteriophage lambda[END_REF], according to which the amounts of proteins in a GRN are discrete abstractions of continuous concentrations. Hence the overall evolution of protein concentration along time, called the dynamics of the network, is captured by a discrete-state transition system. Given a René Thomas GRN model, the main interest is in analyzing the possible dynamics that may be associated to it. However, from the dynamics point of view, a GRN on its own is an underspecified type of representation: it represents the dependencies between a set of genes, but it does not describe what effect the combination of all such dependencies has on a given state of the network, hence on its evolution. The mapping of a GRN model to a specific dynamic (i.e. a transition system) is achieved by considering an instantiation of so-called biological parameters, i.e., a specification of the combined effect that all activated regulators have on a given state of the network.

Since the number of possible instantiations of biological parameters is a double exponential function of the GRN size (in terms of number of genes and of interactions), the analysis of the possible dynamics associated to a GRN model is a complex task. In this paper we consider the application of formal methods, namely model checking [START_REF] Baier | Principles of Model Checking[END_REF], as a means to reason about the possible dynamics associated to a GRN specification. In particular we tackle the following problem: given a relevant behavior of interest, formally expressed in terms of a temporal logic property, say ϕ, we want to be able to automatically identify the biological parameters instances which give rise to dynamics complying with ϕ.

Related work. Model checking techniques have been widely advocated in several works to verify whether a given discrete Thomas model fulfills some relevant biological temporal properties. In [START_REF] Bernot | Application of formal methods to biological regulatory networks: extending Thomas' asynchronous logical approach with temporal logic[END_REF] Bernot et al. expressed biological knowledge with Computation Tree Logic (CTL) formulas [START_REF] Baier | Principles of Model Checking[END_REF]. To exhaustively search the parameters' space, the set of all possible dynamics is generated and a CTL model checking procedure is iterated, one dynamics after the other. This approach is implemented in the SMBioNet tool [START_REF] Richard | SMBioNet User manual[END_REF] and has been illustrated in [START_REF] Filopon | Epigenetic acquisition of inducibility of type III cytotoxicity in P. aeruginosa[END_REF]. In [START_REF] Khalis | The SMBioNet method for discovering models of gene regulatory networks[END_REF], the approach has been extended to cope with the formation of complexes from proteins which allows modelers to express relationships between biological parameters leading to a reduced set of dynamics to be investigated. This work prefigures the interest of using constraints on the parameters. [START_REF] Klarner | Parameter identification and model ranking of thomas networks[END_REF][START_REF] Barnat | On parameter synthesis by parallel model checking[END_REF] define an approach based on an encoding technique to share computations between different dynamics. Sets of dynamics are encoded by a binary vector, one bit (or color) per dynamics, and LTL model checking algorithms [START_REF] Baier | Principles of Model Checking[END_REF] are extended with Boolean operations on vectors. In [START_REF] Corblin | A declarative constraint-based method for analyzing discrete genetic regulatory networks[END_REF][START_REF] Corblin | Applications of a formal approach to decipher discrete genetic networks[END_REF], the tool GNBox uses Constraint Logic Programming (CLP) techniques to identify parameters. GRN dynamics and biological knowledge are described by declarative rules and constraints on parameters, then target behaviors are expressed as some kind of finite paths that models have to verify. [START_REF] Fromentin | Analysing gene regulatory networks by both constraint programming and model-checking[END_REF] also uses CLP techniques to adapt CTL model checking, but the encoding introduces a lot of fresh logical variables that hamper to scale up the method.

Our contribution. We propose a new approach that is based on a parametric model, called Parametric GRN (PGRN). This allows us to encompass all the dynamics of a GRN in a unique representation, biological parameters being processed as symbols, and to implement an efficient (on-the-fly) searching of (a symbolic representation of) the parameter's space. Similarly to [START_REF] Klarner | Parameter identification and model ranking of thomas networks[END_REF], our approach is based on LTL model checking. While in, [START_REF] Klarner | Parameter identification and model ranking of thomas networks[END_REF], LTL model checking algorithms are optimized for the particular case of time series, that are sequences of states made of one expression level per gene, observed one by one, we follow the same creed as the one advocated in [START_REF] Corblin | A declarative constraint-based method for analyzing discrete genetic regulatory networks[END_REF][START_REF] Corblin | Applications of a formal approach to decipher discrete genetic networks[END_REF]: model sets are handled through some logical language both to avoid combinatorial explosion and to take benefit of constraint solving techniques. A preliminary version of our approach has been described in [START_REF] Mateus | Symbolic modeling of genetic regulatory networks[END_REF]. In the present version, algorithms combining symbolic execution and constraint solving techniques have been reengineered and tuned to be more efficient and cope with GRN features. Thereby, we consider the full LTL language while [START_REF] Klarner | Parameter identification and model ranking of thomas networks[END_REF] essentially focuses on time series and [START_REF] Corblin | A declarative constraint-based method for analyzing discrete genetic regulatory networks[END_REF][START_REF] Corblin | Applications of a formal approach to decipher discrete genetic networks[END_REF] focuses on properties carrying on finite paths.

Paper organization. We reformulate the logical description of Thomas' modeling framework in section 2, and explain how we encode the set of dynamics of a GRN with Parametric GRN in section 3. Section 4 presents our adaptation of LTL model checking algorithms with symbolic execution techniques. In section 5, we briefly discuss the validity of our approach with our dedicated tool SPuTNIk. Finally, section 6 contains some concluding remarks.

Genetic Regulatory Networks

A Genetic Regulatory Network (GRN) is a collection of regulatory inter-dependencies between genes to represent the mechanism of gene expression, i.e. the biological process by means of which proteins are synthesized. Two kinds of interactions exist: activation or inhibition depending on whether the protein expressed from the source gene can enhance or reduce the expression of the target gene. Moreover, an interaction is effective only if the concentration of the source protein is sufficient, in other words if its level of expression is above a given threshold. From the modeling point of view, a gene g is assimilated to the protein it synthesizes. In particular, it inherits the protein's level of expression, denoted x g , which, in this context, is abstractly represented by a non-negative integer ranging from 0 (absence of protein or very low concentration level) to a maximal value m g . A GRN is classically represented by an interaction graph.

Definition 1 (Interaction graph

). An n-order interaction graph (IG) is a labeled directed graph Γ = (G, I) where G is a finite set of gene nodes, n = |G| and I ⊆ G × {+, -} × N + × G is the set of interactions. Given (g 1 , s, t, g 2 ) ∈ I, s indicates the effect of g 1 over g 2 (sign "+" for activation and "-" for inhibition) and t denotes the threshold of the interaction. Moreover, the following properties hold: i) ∀(g 1 , g 2 ) ∈ G 2 , there exists at most one interaction (g 1 , s, t, g 2 ) ∈ I; ii) ∀(g 1 , s, t, g 2 ) ∈ I, t > 1 ⇒ ∃(g 1 , s , t , g 3 ) ∈ I, t = t -1.

The threshold t of an interaction (g 1 , s, t, g 2 ) ∈ I indicates the minimal level that g 1 needs to be at in order to affect the expression of g 2 . The condition on thresholds states that for any gene g 1 every intermediate threshold level must appear on at least an interaction arc originating in g 1 . Since an interaction graph may contain at most one interaction between two genes, then for an interaction (g 1 , s, t, g 2 ) ∈ I, we denote s(g 1 , g 2 ) its sign, and t(g 1 , g 2 ) its threshold. m g = max{t | ∃(g, s, t, g ) ∈ I} is 3 the maximal level of expression of gene g, and G -(g) ⊆ G is the set of regulators of g (i.e. G -(g) = {g |∃(g , s, t, g) ∈ I}).

A dynamics of a GRN corresponds to an evolution over time of the levels of expression of all genes, The state space describes the states that may be observed during such a possible evolution.

Definition 2 (State space of an interaction graph). For Γ = (G, I) an interaction graph we define X = g∈G X g the state space underlying Γ , where X g = {0, ..., m g } is the set of possible levels of expression for gene g.

Example 1 (Interaction graph and state space). Figure 1 presents a two-genes interaction graph Γ 0 where gene α is both an activator of β and of itself (selfactivator) while β is an inhibitor of α. In particular α activates the expression of β whenever its level of expression is at least 1, while when its level of expression is at least 2 it activates both itself and β. The thresholds of Γ 0 induce the following sets of levels for the two genes, X α = {0, 1, 2} and X β = {0, 1}, hence the state space X = {(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1)}.

α β [+, 2] [+, 1] [-, 1]
Fig. 1: Γ 0 : an example of a two-genes interaction graph.

xα x β (0, 0) (1, 0) (2, 0) (0, 1) (1, 1) (2, 1)
Fig. 2: Dynamics D K induced by the parameters mapping K

For Γ an interaction graph with state space X, we denote D = (X, →) a generic transition system4 called dymanics of Γ . With respect to D, Γ can be regarded as an underspecified formalism: from Γ , on its own, one cannot devise any concrete dynamics D. To obtain a dynamics for Γ we need to describe for each gene g the effect that any subset of its regulators ω ⊆ G -(g) would have on g. This is achieved by associating biological parameters with Γ . Definition 3 (Biological parameters). For g a gene of Γ = (G, I), the set of biological parameters of g is

K g = {K g (ω) | ω ⊆ 2 G -(g) } and the set of all biological parameters of Γ is K = ∪ g∈G K g .
An instantiation of biological parameters is defined by any mapping K : K → ∪ g∈G X g associating to any parameter K g (ω) a value in X g . Any instantiation K : K → ∪ g∈G X g defines a mapping K :

⊗ g∈G 2 G -(g) → X verifying ∀(ω g1 , . . . , ω gn ) ∈ ⊗ g∈G 2 G -(g) , K((ω g1 , . . . , ω gn )) = (K(K g1 (ω g1 )), . . . , K(K gn (ω gn ))) (with G = {g 1 , . . . , g n }).
In the sequel, for simplicity purpose, an instantiation K associating the value x to the parameter K g (ω) will be simply given by the equality K g (ω) = x. The biological parameters of an IG indicate the values the genes of the GRN tend towards when a certain n-tuple of regulators is activated. Thus to obtain the dynamics D K corresponding to parameters K we need to know what regulators are activated in a state x ∈ X. We say that a set of regulators ω ⊆ G -(g) of gene g is activated in state

x = (x 1 , . . . , x n ) ∈ X, denoted (x 1 , . . . , x n ) |= ω, iff g ∈ω x g ≥ t(g , g) ∧ g ∈G -(g)\ω x g < t(g , g)
, that is: if and only for every regulator g ∈ ω the corresponding component x g of state x is above the corresponding activation threshold (i.e., x g ≥ t(g , g)) while no other regulator of g does. In the remainder we denote ActR : X → ⊗ g∈G 2 G -(g) the function that maps each state x into the corresponding n-tuples of activated regulators for the n genes of a GRN. In the remainder, for x ∈ X, we denote x[x g ↑] (resp. x[x g ↓]) the state resulting from x by increasing (resp. decreasing) the x g component of one unit.

Definition 4 (dynamics induced by an instantiation of parameters).

For Γ = (G, I) an n-order IG, K : K → ∪ g∈G X g a set of biological parameters of Γ , we define D K = (X, → K ) the dynamics (transition system) of Γ induced by K. The transition relation → K ⊆ X ×X is minimally defined as follows:

∀x = (x 1 , . . . x n ) ∈ X let x * = (x * 1 , . . . , x * n ) = K • ActR((x 1 , . . . , x n )): -if x = x * then ∀i, 1 ≤ i ≤ n • if x i < x * i , then x → K x[x i ↑] (increment gene i) • if x i > x * i , then x → K x[x i ↓] (decrement gene i) -else if x = x * then x → K x (self-loop)
Then for each state x ∈ X we determine the corresponding attractor state x * (by application of the parameters mapping K to the regulators activated in x i.e., x * = K • ActR(x)). If the attractor state x * is different from x then for each different component x i = x * i we add either an increment or a decrement transition in → K . Conversely if x * = x we add a self-loop in → K .

Example 2 (Biological parameters and Dynamics). The subsets of regulators for the two genes of Γ 0 (Figure 1) are 2 G -(α) = {{}, {α}, {β}, {α, β}}, resp. 2 G -(β) = {{}, {α}} hence the biological parameters of Γ 0 are:

K = {K α ({}), K α ({α}), K α ({β}), K α ({α, β}), K β ({}), K β ({α})}.
According to |= the association between states of X and n-tuples of activated regulators is: (0, 0) |= ({}, {}), (0, 1) |= ({β}, {}), (1, 0) |= ({}, {α}), (1, 1) |= ({β}, {α}), (2, 0) |= ({α}, {α}), (2, 1) |= ({α, β}, {α}). As an example we consider the following mapping (instantiation) of the parameters for gene α and β into corresponding target levels: 2 shows the dynamics D K yielded by the parameters mapping K.

K α ({}) = 2, K α ({α}) = 2, K α ({β}) = 0, K α ({α, β}) = 2, K β ({}) = 0 and K β ({α}) = 1 yielding the combined mapping K = K α ×K β = {({}, {}) → (2, 0), ({{}, {α}) → (2, 1), . . . , ({α, β}, {α}) → (2, 1)} Figure
A parameters mapping K for an IG Γ yields a dynamics D K . However some mappings K may result into inconsistent dynamics. To rule out inconsistent dynamics, mapping must comply with the following constraints.

Definition 5 (Constraints for parameters mapping). Let

Γ = (G, I) be an IG. Definition constraint: ∀g ∈ G, ∀g ∈ G -(g), ∀ω ⊆ G -(g)\{g }: if s(g , g) = + then K g (ω) ≤ K g (ω∪{g }), if s(g , g) = -then K g (ω) ≥ K g (ω∪{g }). Observation constraint: ∀g ∈ G, ∀g ∈ G -(g), there exists ω ⊆ G -(g) \ {g }: if S(g , g) = + then K g (ω) < K g (ω ∪{g }), if s(g , g) = -then K g (ω) > K g (ω ∪{g }). Min/Max constraint: ∀g ∈ G, K g ({g |g ∈ G -(g), s(g , g) = -}) = 0 and K g ({g |g ∈ G -(g), s(g , g) = +}) = m g .
The Definition constraint (or Snoussi constraint [START_REF] Snoussi | Logical identification of all steady states: the concept of feedback loop characteristic states[END_REF]) states that if the level of expression of a gene g which activates (resp. inhibits) a gene g becomes greater than its threshold, then the expression level of g cannot decrease (resp. increase). The Observation constraint expresses how we identify regulators. If g is an activator (resp. inhibitor) of g, then there exists at least one dynamic state where the increase of the level of expression of g leads to an increase (resp. decrease) of the expression level of g. Finally, the Min/Max constraint states that in a dynamic state where all the activators (resp. inhibitors) of a gene are above the threshold and simultaneously none of the inhibitors (resp. activators) is, then the level of expression of the attractor of the gene is maximum (resp. minimum).

Example 3. The Constraints for IG Γ 0 (Figure 1) correspond to the following conditions:

K α ({α}) = 2, K α ({β}) = 0, K β ({}) = 0, K β ({α}) = 1, K α ({}) < 2 ∨ 0 < K α (α, β) and K α ({}) > 0 ∨ 2 > K α (α, β)
. Notice that amongst the 324 possible parameter mappings5 for Γ 0 , only 7 are consistent with the Constraints for Γ 0 .

Even if these constraints are well-founded, there are not always considered by biologists. In the sequel, by default, they will be considered and generically denoted as C I , but they can be relaxed on demand.

Modeling dynamics with Parametric GRN

In order to study all the dynamics simultaneously, we represent them all through a single (meta)model, called Parametric GRN (PGRN), i.e. a facility of transition systems parameterized by the biological parameters. Parametric GRN. A PGRN is a transition system associated with an interaction graph Γ = (G, I). It involves two families of symbols: the biological parameters

K = {K g (ω) | g ∈ G, ω ⊆ 2 G -(g)
} and the state variables G = {x g |g ∈ G}. Note that, according to the context, x g will denote either a state variable or a value representing a concentration level.

The main idea is to encode state evolution with transitions parameterized by parameters of K. A PGRN is composed of two states: T (transient) corresponding to configurations such that at least one gene can change its current level, and S (stable) corresponding to situations where no change is possible for any gene. A transition of a PGRN is characterized by a guard (a condition over parameters K and state variables of G) and an assignment (an application X → X expressing how states of a dynamics evolve). For example, transition T

(xα<2∧x β =0∧xα<Kα({})[xα↑]
-------------------→ T (see Fig. 3) indicates that for any (transient) state

x ∈ X such that x β = 0, x α < 2 and x α < K α ({}) then a transition corresponding to an increase of the level of α exists.

More precisely, for each gene g, there is a transition from T to T for each kind of variation (increase or decrease) of x g . For ω ⊆ G -(g) a subset of regulators of g, let us introduce the predicate P g (ω) : X → { , ⊥} defined by: ( g ∈ω x g ≥ t(g , g)) ∧ ( g ∈G -(g)\ω x g < t(g , g)). P g (ω) characterises the set of states in which regulators ω are the only effective ones on g. The transition associated to the increase of x g is conditioned by the guard Increase(g) = ∨ ω⊂G -(g) (P g (ω) ∧ x g < K g (ω)). Similarly, the transition associated to the decrease of x g is conditioned by the guard Decrease(g) = ∨ ω⊂G -(g) (P g (ω) ∧ x g > K g (ω)). Finally there is one transition from T to S when the expression level of all genes remains stable, i.e. if any gene g satisfies the condition Stable(g) = ∧ ω⊂G -(g) (P g (ω) ∧ x g = K g (ω)), and one last transition from S to S where the guard is always true.

Definition 6 (PGRN).

A PGRN associated to an interaction graph Γ = (G, I) is a pair P = (Q P , δ P ) with Q P = {T, S} the set of states and δ P a set of transitions. A transition of δ P is of the form (q P , g P , a P , q P ), also denoted

q P (g P )[a P ]
-----→ q P , with q P and q P states of Q P , g P a guard, i.e. a formula over K∪G and a P an assignment, i.e. an application X → X. More precisely, δ P is the set of all following transitions:

-(T, Increase(g), x g ↑, T ) with g in G, -(T, Decrease(g), x g ↓, T ) with g in G, -(T, ∧ g∈G Stable(g), id, S) where id is the identity assignment, -(S, , id, S) where indicates the guard always true.

Let us remark that unfolded versions of guards can be rather long and complex, but in the best cases they can be simplified by application of the initial constraints C I . Nevertheless, generally, the most complex guard is the one labeling the transition T → S since it corresponds to the conjunction of all Stable(g) conditions. On the other hand, once in S, the guard of the only possible transition (S → S) is simply true ( ). Moreover, transitions involving disjunctions in their guard can be split. Indeed, transition (T, g P ∨ g P , a P , T ) can be equivalently split in (T, g P , a P , T ) and (T, g P , a P , T ).

Example 4 (PGRN). Fig. 3 represents the PGRN associated with the interaction graph of Fig. 1. In relation with the different possible subsets ω, one can explicit the different guards: e.g.

Increase(β) ≡ (x α < 1∧x β < K β ({}))∨(x α ≥ 1∧x β < K β ({α}))
). The Initial constraints C I (cf. Def 5) can be used to simplify the guards: e.g. C I implies K β ({}) = 0 and K β ({}) = 1 and then Increase(β) ≡

(x α > 0 ∧ x β = 0). T S (xα < 2 ∧ x β = 0 ∧ xα < Kα({}))[xα ↑] (xα > 0 ∧ x β = 0)[x β ↑] (xα = 0 ∧ x β = 1)[x β ↓] (xα = 1 ∧ x β = 0 ∧ Kα({}) = 0) ∨ (xα = 1 ∧ x β = 1)∨ (xα = 2 ∧ x β = 1 ∧ Kα({α, β}) < 2)[xα ↓] (xα = 0 ∧ x β = 0 ∧ Kα({}) = 0)∨ (xα = 2 ∧ x β = 1 ∧ Kα({α, β}) = 2)[id]
[id]

Fig. 3: PGRN associated to the interaction graph in Figure 1.

Annotated dynamics. A PGRN characterizes a set of dynamics, one for each possible instantiation of biological parameters, that is, for any parameter mapping K : K → ∪ g∈G X g . For g P a transition guard of a PGRN, x ∈ X a state of the corresponding GRN, and K an instance of biological parameters, we denotes g P x,K the instance of g P obtained by substituting g P 's state variables and g P 's biological parameters with the corresponding state value of x, and parameter values of K. Similarly, we denote g P x the resulting substitution only of g P 's state variables (parameters in K remain symbolic).

Definition 7 (Annotated Dynamics). Let P = (Q P , δ P ) be a PGRN associated with an interaction graph Γ = (G, I), and let K : K → ∪ g∈G X g . The annotated dynamics associated to P and K is a pair

D K = (Q D , δ D )
where the set of states Q D ⊂ Q P × X and the set of transitions δ D ⊂ Q D × Q D are mutually defined by: ∀x ∈ X, (T, x) ∈ Q D and for all (q P , x) ∈ Q D and (q P , g P , a P , q P ) ∈ δ P s.t. g P x,K is evaluated to True, then (q P , a P (x)) ∈ Q D and ((q P , x), (q P , a P (x))) ∈ δ D .

Example 5 (Annotated Dynamics). Figure 4 presents one possible annotated dynamics for the PGRN represented in Figure 3, with the following instantiation of parameters:

K α ({}) = 2, K α ({α}) = 2, K α ({β}) = 0, K α ({α, β}) = 2, K β ({}) = 0 and K β ({α}) = 1. T, (0, 0) T, (1, 0) T, (2, 0) 
T, (0, 1) T, (1, 1) T, (2, 1) S, (2, 1) Fig. 4: A possible annotated dynamics for the PGRN in Figure 3.

By construction, for a given instantiation K : K → ∪ g∈G X g , the associated annotated dynamics D K corresponds to the dynamics D K of the underlying IG Γ induced by the instantiation K (cf Def 4). For a transition ((q P , x), (q P , a P (x))) in δ D , it suffices to give up the first component and keep the second one, x → a P (x), to retrieve a dynamics of Γ . Thus, the dynamics represented in Fig. 2 can be obtained from the annotated dynamics of Fig. 4. The first component (T or S) is somehow a technical artifact annotating the presence of a stable state when building sequences of consecutive states. Depending on the context, we will assimilate D K and D K or will work with the most appropriate of the two forms. Motivated by efficiency considerations, we will apply a specific treatment for states x already recognized as stable, that is, annotated by S.

Adapting LTL model-checking to PGRN

The classical approach of LTL model-checking [START_REF] Pnueli | The temporal logic of programs[END_REF] consists in confronting a model (e.g. a dynamics) against an LTL formula. To do so, the negation of the LTL formula is transformed into a Büchi automaton and the product between the automaton and the dynamics is computed. We then look for accepting paths in the product by checking the existence of reachable cycles containing at least an accepting state. Model checking is usually time consuming, and since the number of dynamics is large, this method is not applicable in our case. To avoid the combinatorial explosion, we want to check all the dynamics simultaneously, i.e. we check directly the PGRN. To do so, we first build the Parametric Product between the PGRN and the Büchi Automaton associated to the LTL formula ϕ. We then use symbolic execution technics in order to search for accepting cycles. As a result, we obtain a set of constraints C that a parameter instantiation K must fulfill such that the associated dynamics D K verifies ϕ.

Büchi Automaton and Parametric product Biological properties on a sequence of states can be expressed using LTL formulas built from a set of atomic propositions using the usual logical operators in { , ⊥, ¬, ∧, ∨} and the temporal operators X (for neXt time), G (Globally), F (Finally) and U (Until) [START_REF] Baier | Principles of Model Checking[END_REF]. Since we need to express biological knowledge on levels of expression of genes, atomic propositions are of the form x g c where x g denotes the level of expression of a gene g, ∈ {=, =, <, >, ≤, ≥} and c ∈ N. Any LTL formula ϕ can be translated into a Büchi automaton B(ϕ). Definition 8 (Büchi Automaton associated to an LTL formula). Let Γ be a GRN and ϕ an LTL formula over the levels of expression of genes of Γ . A Büchi Automaton associated to ϕ is a tuple

B(ϕ) = (Q B , q 0 B , A B , δ B ) where Q B is the set of states, q 0 B ∈ Q B is the initial state, A B ⊆ Q B is
the set of accepting states and δ B is the set of transitions. A transition of δ B is of the form (q B , g B , q B ) with q B and q B states of Q B and g B a non temporal formula over the levels of expressions of genes in Γ . Moreover, B(ϕ) is such that an infinite sequence of states provided with truth values for all atomic propositions (a path) verifies ϕ iff this path is accepted by B(ϕ), i.e. iff this path contains at least a so-called accepting state infinitely often.

Example 6 (LTL formula and associated Büchi automaton). The existence of a steady state (i.e. a state which is itself its only own successor) in (x α , x β ) = (2, 1) corresponds to the LTL formula G((x α = 2 ∧ x β = 1) → X(x α = 2 ∧ x β = 1)). Fig. 5 presents a Büchi Automaton associated to the negation of this formula.

s0 start s1 s2 s3 xα = 2 ∧ x β = 1 xα = 2 ∧ x β = 1 xα < 2 x β = 0 Fig. 5: B(¬ϕ) with ϕ ≡ G (x α = 2 ∧ x β = 1) ⇒ X(x α = 2 ∧ x β = 1) .
Definition 9 (Parametric Product). Let P = (Q P , δ P ) be a PGRN and

B(¬ϕ) = (Q B , q 0 B , A B , δ B ) a Büchi Automaton associated to the LTL formula ¬ϕ. The product Π = P ⊗ B(¬ϕ) is the tuple (Q Π , q 0 Π , A Π , δ Π ) with Q Π = Q P × Q B the set of vertices, q 0 Π = (T, q 0 B ) the initial vertex, A Π = Q P × A B the
set of accepting vertices, and δ Π the set of transitions. A transition of δ Π is of the form (q Π , g Π , a P , q Π ) with q Π = (q P , q B ), q Π = (q P , q B ), g Π = g P ∧ g B such that (q P , g P , a P , q P ) ∈ δ P , (q B , g B , q B ) ∈ δ B and g Π is satisfiable.

Example 7. The product of the PGRN in Fig. 3 and the Büchi Automaton in Fig. 5 is represented in Fig. 6. The product has been simplified by removing output transitions whose guard on expression levels is not satisfiable according to the guards and assignments of the input transitions of the same vertex; we also remove the transitions whose guard is not satisfiable according to the guards on parameters necessarily crossed (φ 21 and φ 22 here). Finally, we remove vertices which can not be reached and those belonging to a terminal cycle without accepting vertex.

Search for parametric accepting cycles The search for accepting cycles is based on symbolic execution techniques which are program analysis techniques.

The key point is the substitution of actual values by symbolic variables in order to symbolically perform computations. Each execution (or path) of the program associates to each variable a symbolic computation together with a path condition that expresses what are the conditions on input values to execute the given path. Symbolic execution techniques has been extended to symbolic transition systems [START_REF] Gaston | Symbolic execution techniques for test purpose definition[END_REF] by unfolding transition systems as symbolic trees. As symbolic execution is only applicable for finite paths, selection criteria are used to cut infinite paths when considering testing. In the sequel, we will take particular care to cut infinite paths in identifying situations of return on a node already encountered. Indeed such situations reveal the presence of cycles.

In the symbolic execution of the parametric product Π, the parameters K g (ω) are handled as symbolic variables (i.e. not evaluated), and Π is unfolded leading to the construction of several Symbolic Execution Trees (SET), one for any x ∈ X.

Definition 10 (Symbolic Execution Tree). Let Π = (Q Π , q 0 Π , A Π , δ Π ) be a parametric product. The Symbolic Execution Tree associated to Π and x ∈ X is a transition system (Q T , δ T ) where the set of nodes Q T and the set of transitions

Ts0 start Ts1 Ts3 Ss3 φ1[xα ↑] φ2 1 [xα ↓] φ2 2 [xα ↓] φ2 3 [xα ↓] φ3[x β ↓] φ4[x β ↑] φ2 1 [xα ↓] φ2 2 [xα ↓] φ1[xα ↑] φ2 1 [xα ↓] φ2 2 [xα ↓] φ2 3 [xα ↓] φ3[x β ↓] φ4[x β ↑] φ5[id]
[id]

Fig. 6: Parametric product P ⊗ B(¬ϕ) associated to the Parametric GRN in Figure 3 and the Büchi Automaton in Figure 5 (after simplification), with:

φ1 ≡ xα < 2 ∧ x β = 0 ∧ xα < Kα({}) φ3 ≡ xα = 0 ∧ x β = 1 φ2 1 ≡ xα = 2 ∧ x β = 1 ∧ Kα({α, β}) < 2 φ4 ≡ xα > 0 ∧ x β = 0 φ2 2 ≡ xα = 1 ∧ x β = 1 φ5 ≡ xα = 0 ∧ x β = 0 ∧ Kα({}) = 0. φ2 3 ≡ xα = 1 ∧ x β = 0 ∧ Kα({}) = 0 δ T ⊂ Q T × Q T are
mutually defined by: (q 0 Π , x, ) ∈ Q T and for all q T = (q Π , x, pc) ∈ Q T , for all (q Π , g Π , a P , q Π ) ∈ δ Π such that pc = pc ∧ g Π x = ⊥, then q T = (q Π , a P (x), pc ) ∈ Q T and (q T , q T ) ∈ δ T . If q Π ∈ A Π , then the node is said to be accepting.

For any node (q Π , x, pc) ∈ Q T with q Π = (q P , q B ) ∈ Q P × Q B , pc is the path condition in the form of a constraint over parameters in K. It defines the set of annotated dynamics D that can reach the state (q P , x) from the state in Q P × X associated to the ancestor of (q Π , x, pc). With the process described in the section 3, D itself allows the definition of the set of dynamics of the corresponding GRN which can reach all the states associated to nodes of the node path along the same sequence of traversed states. By construction, path conditions expressed over parameters increase along paths of SET and reduce the number of dynamics compatible with the path under construction.

Biological properties are expressed along infinite sequences, and thus, paths of the product and paths of SET are also infinite. But, by disregarding path conditions, the number of possible nodes in a SET is finite 6 . So, when we are building a new node (q Π , x, pc ) whereas it is descendant of a node (q Π , x, pc) (same vertex in Q Π and same value in X), we stop the analysis of the path; these two nodes are respectively called child node and return node. By construction, the path condition of the child node is included in the path condition of the return node, i.e. all parameter instantiations satisfying the child path condition also satisfy the return path condition.

Thus, by performing a mixed symbolic and numerical execution (parameters in K remain unchanged and state variables in X are evaluated), we can stop the execution procedure of the product Π so that each path of the resulting SET is finite and contains a cycle (starting at the return node and ending with the transition leading to the child node). If there exists an accepting node between the return node and the child node, the path condition is said accepting.

Once all finite SET are built, it remains to compute for which parameter instantiations there exist accepting paths. For that, it suffices to consider every accepting path conditions of the SET associated to Π. Each accepting path condition can be satisfied by (at least) one instantiation of parameters in K, it means that there exists a path in Π going infinitely often through the associated cycle, and thus passing infinitely often by an accepting state. And so there exists a path in the dynamics corresponding to this accepting path condition verifying ¬ϕ.

Thus, instantiations of parameters verifying the conjunction of the negation of every accepting path condition of the SET associated to Π correspond to the dynamics such that there is no path verifying ¬ϕ, in other words, all paths verify ϕ. Note that the obtained dynamics verify ϕ along all paths; if the model must verify ϕ only on at least one path, our approach remains adequate with a small adaptation: to do this, we have to get the disjunction of all accepting path conditions of the SET associated to the product P ⊗ B(ϕ).

Example 8. For the Product in Figure 6, there are two solutions after computation; the corresponding values of parameters are: K α ({}) = 1 or 2, K α ({α}) = 2, K α ({β}) = 0, K α ({α, β}) = 2, K β ({}) = 0 and K β ({α}) = 1. One of the corresponding dynamics (with K α ({}) = 2) is represented in Figure 2.

Algorithm of traversal of SET. Algorithm 1, based on a Depth First Search schema, gives an overview of how we practically compute the accepting path conditions. We use three global variables: the parametric product Π, the list of accepting path conditions acceptingP C, and the list nodesList of SET nodes which have already been analyzed.

Starting with a SET node, line 2 to line 4 test and compute its successors, as explained in the "Symbolic Execution Trees" part of section 4. Three tests are then performed successively. Firstly, if the path condition of the successor node is already known, it cannot provide additional information (the pc becomes more specific every depth call), and we stop the study of this successor (line 5). Secondly, line 7 tests if one of the ancestors of the successor is a return node (ancestor with the same vertex and state). If it is the case, then there is an infinite cycle between them and, if there is an accepting node in that cycle, then the successor node is an accepting return node, and its path condition is added to the list accepting P Cs (lines 8 to 9). Thirdly, if the successor is not a return node, we check (line 10) if the node corresponds to a node in nodesList with the same vertex, the same state and the same or a more general path condition.

else if (q Π , x , pc ) ∈ nodesList with pc ⊂ pc then // no 10 copy node: recall of DFS() DFS((q Π , x , pc ), ancestorsList); 11 nodesList.add((q Π , x , pc ));
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If it is not the case (no copy node), then the DFS function is recalled with the successor node in argument (line 11), which is then added to nodesList (line 12).

Transient and Stable. Nodes of the tree are of the form (q Π , x, pc) with q Π = (q P , q B ) ∈ Q P × Q B . According to the value of q P (either T or S, from the PGRN), we say that the node is either transient or stable. By construction of the PGRN, the target vertices of all transitions outgoing from a stable vertex are vertices of the same type, hence the appellation stable. Furthermore, the guards of the transitions between the stable vertices are always of the form g Π = g P ∧ g B with g P = , and the assignment of the transitions is a P = id (identity assignment). Thus a specific treatment can be provided for the stable nodes, briefly described in the sequel.

In the algorithm 1, the line 11 can be split in two calls, one for the current function and another for the specific treatment of stable nodes (called if the successor node is stable, called stable root in the sequel). In this case, the second argument of the function, the list of ancestors, is an empty list since none of the previous ancestors (all transient) can be a return node of a stable node. According to the characteristics of the transitions between stable vertices mentioned above, for the treatment of stable nodes there is no need to test if the path condition is already known (line 5, already tested with the corresponding stable root), there is no guard on parameters to symbolically verify and no substitution of levels of expression (lines 3 to 4), and there is no update of the state to do (line 6). Furthermore, if a node is accepting then all the explorations of the SET from the stable root can be stopped; indeed, its path condition is identical to all path conditions of the nodes which can be built from it.

Assessment

The methodology described above has been implemented in a prototype software tool called SPuTNIk. SPuTNIk is written in Java and relies on the Z3 constraint solver [START_REF] De | Z3: An efficient smt solver[END_REF] to check the satisfiability of path conditions during the traversal of SET and on the ltl2ba and LTL2BA4J libraries [START_REF] Gastin | Fast LTL to Büchi automata translation[END_REF][START_REF] Bodden | LTL2BA4J Software[END_REF] to generate a Büchi Automaton of minimal size from an LTL formula. To validate our approach with SPuTNIk, we have considered a common biological case study: the analysis of the genetic network that controls the life cycle of the λ phage virus [START_REF] Thieffry | Dynamical behaviour of biological regulatory networks -II. immunity control in bacteriophage lambda[END_REF]. The λ phage can infect the E. coli bacterium with two different outcomes: either it integrates the genome of the host through a process called lysogeny or it enters a lytic phase where it kills the residing cell to reproduce itself. We based our approach on the λ phage model studied in [START_REF] Klarner | Parameter identification and model ranking of thomas networks[END_REF] by Klarner et al. and composed of four genes, denoted cI, cII, cro and N, and ten interactions described Fig. 7.

cI cro cII N [3, -] [1, -] [ 3 , - ] [2, -] [2, +] [2, -] [2, -] [ 1 , - ] [1, +] [1, +]
Fig. 7: The interaction graph G λ for the λ phage.

Klarner et al. describe biological properties as time series: a sequence of specific states given in the form θ ≡ s 1 , * , s 2 , * , . . . , * , s n where s i is the i th observed state while * denotes a possibly empty sequence of unspecified states. Times series are equivalent to LTL formulas of the form φ ≡ s

1 ∧ F(s 2 ∧ F(• • • ∧ F(s n ) . . . )) (i.
e. only composed of ∧ and F operators). Moreover, the states of time series are fully determined, each level of expression corresponds to a single value. For example for G λ , each state is a quadruple (x cI , x cII , x cro , x N ) ∈ {0, 1, 2} × {0, 1} × {0, 1, 2, 3} × {0, 1}). Given a time series θ and an interaction graph, the goal of Klarner et al. is to find out all models which contain at least one path matching θ (i.e. passing through the states of θ in the correct order). In order to reproduce the same experiment than Klarner et al., we discard the Min/Max constraint for all genes (as it is not supported in [START_REF] Klarner | Parameter identification and model ranking of thomas networks[END_REF]), and we relax the Observation constraint for the specific case where cI is activator of itself (as done in [START_REF] Klarner | Parameter identification and model ranking of thomas networks[END_REF]). We then use SPuTNIk to find out the parameter instantiations corresponding to dynamics which are guaranteed to exhibit either a lytic or a lysogenic phenotype in compliance with series θ 1 and θ 2 (i.e. all models that contain at least one path that satisfies φ 1 and at least one that satisfies φ 2 ).

The obtained results are in accordance: amongst the 7 billions possible models, we obtain the same number (8759) of valid ones as in [START_REF] Klarner | Parameter identification and model ranking of thomas networks[END_REF]. But unlike Klarner et al. our method is not restricted to time series: we can consider any form of LTL formulas and there is no need to fully specify all the levels of expression. For example, it is known that a lytic λ phage can not become lysogenic in the future (and conversely). This knowledge cannot be expressed with time series, but it corresponds to the following LTL formulas: φ 3 ≡ G(lys 2 ⇒ ¬F(lyt 3 )) and φ 4 ≡ G(lyt 3 ⇒ ¬F(lys 2 )). By adding these formulas to the previous, we reduce the number of solutions to 2390.

Conclusion

In this paper we introduced a new methodology for reverse-engineering of genetic network models, based on adaptation of classical LTL model-checking with symbolic execution. In order to find dynamics consistent with biological knowledge, we use the whole extent of LTL to express biological knowledge in terms of constraints over time. Instead of checking each dynamics of the GRN, we propose a method which performs checking with a novel formalism, the Parametric GRN, a compact (symbolic) representation of all the dynamics associated to an interaction graph within a single structure. From the Parametric GRN and LTL formulas, our algorithm processes parameters, defining the dynamics, as symbols in order to avoid combinatorial explosion. The solutions are in the form of a set of constraints that the parameters must fulfill. Such analysis has been carried out through the SPuTNIk tool, a prototype software of the proposed method. We are working on a parallel version of SPuTNIk, based on the splitting of the Parametric Product into strongly connected components in order to detect the accepting cycles in each component.

  Klarner et al. distinguish the following states: init ≡ [0000], lyt 1 ≡ [0021], lyt 2 ≡ [0020], lyt 3 ≡ [0030], lys 1 ≡ [2101] and lys 2 ≡ [2000], belonging to time series θ 1 ≡ init, * , lyt 1 , * , lyt 2 , * , lyt 3 and θ 2 ≡ init, * , lys 1 , * , lys 2 , which correspond to evolution towards lytic and lysogenic phases. The equivalent LTL counterparts for θ 1 and θ 2 are respectively φ 1 ≡ init ∧ F(lyt 1 ∧ F(lyt 2 ∧ F(lyt 3 ∧ F(lyt 2 )))) and φ 2 ≡ init ∧ F(lys 1 ∧ F(lys 2 )).

A transition system (E, R) verifies that R is a binary relation on E × E.

The number of possible parameters instantiation is equal to g∈G (mg + 1) 2 |G -(g)| .

it is bounded by the product of all combinations of levels of expression, the number of vertices of the Büchi automaton and the number of vertices (2) of the PGRN.

Algorithm 1: Overview of DFS((q Π , x, pc), ancestorsList)