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Abstract: We present a Rayleigh-Mie-Raman LIDAR system in operation at  

Clermont-Ferrand (France) since 2008. The system provides continuous vertical 

tropospheric profiles of aerosols, cirrus optical properties and water vapour mixing ratio. 

Located in proximity to the high altitude Puy de Dôme station, labelled as the GAW global 

station PUY since August 2014, it is a useful tool to describe the boundary layer dynamics 

and hence interpret in situ measurements. This LIDAR has been upgraded with specific 

hardware/software developments and laboratory calibrations in order to improve the 

quality of the profiles, calibrate the depolarization ratio, and increase the automation of 
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operation. As a result, we provide a climatological water vapour profile analysis for the 

2009–2013 period, showing an annual cycle with a winter minimum and a summer 

maximum, consistent with in-situ observations at the PUY station. An overview of a 

preliminary climatology of cirrus clouds frequency shows that in 2014, more than 30% of 

days present cirrus events. Finally, the backscatter coefficient profile observed on  

27 September 2014 shows the capacity of the system to detect cirrus clouds at 13 km 

altitude, in presence of aerosols below the 5 km altitude. 

Keywords: atmospheric remote sensing measurements; LIDAR; automation; water vapour; 

aerosols and cirrus vertical profiles 

 

1. Introduction 

Since the beginning of the 20th century, the increase of anthropogenic atmospheric emissions has 

induced an evolution of the atmospheric composition which needs to be surveyed and understood, in 

order to improve climate projections [1]. The satellites provide observations at a global scale, but with 

a low spatial resolution. They may be completed by in situ and remote sensing observations from 

ground based stations in order to allow the study of dynamical and physico-chemical processes in all 

their complexity. To fulfil this objective, these observations have to be organized in networks. At a 

worldwide level, some measurements stations are selected to contribute to the Global Atmospheric 

Watch (GAW) program of the World Meteorological Organization (WMO). These stations provide 

reliable data on the physical properties and chemical composition of the atmosphere and contribute to 

the survey of climate. At the European level, infrastructures such as the Aerosols, Clouds, and Trace 

gases Research InfraStructure (ACTRIS) network and its component European Aerosol Research 

LIDAR Network (EARLINET) [2]), or the GCOS Reference Upper Air Network (GRUAN) [3] 

allowed researchers to homogenize long time series of observations and to implement standard 

operating procedures of measurements. At the French level, observations are organized around actions 

of the National Centre for Scientific Research (CNRS), Universities and other ministerial/regional 

structures. Recent initiatives have the same objective for research and measurements of atmospheric 

water (ROSEA), aerosols (ORAURE) and gases (GREAT GASES). 

In addition to the data quality control, instrumental monitoring, measurement and data processing 

procedures, it is important to develop a synergy between in situ and remote sensing measurements, in 

order to comprehend atmospheric processes in their entirety and complexity. The atmospheric site 

PUY is labelled as a GAW global station since August 2014 (and was a GAW regional station before), 

located around Clermont-Ferrand, a city of 150,000 inhabitants, near the centre of France, at the 

foothills of the “Chaîne des Puys” mountain ridge. It hosts in-situ and remote sensing instruments, 

deployed in three sites at different altitudes, distant from less than 15 km far away from each other. 

The Puy de Dôme station (1465 m above sea level) is more than 50% of the time in clouds [4]. Hence, 

it is dedicated to cloud and aerosol in-situ observations [5]. A second site located at Opme (680 m) 

hosts a VHF radar used to document the dynamics and the origin of the air masses. A third site located 

at the university campus at Clermont-Ferrand (410 m) hosts some passive remote sensing instruments, 
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X band and micro rain radars [6] and a LIDAR system since 2008. This LIDAR is dedicated to the 

observation of aerosols, cirrus clouds and water vapour and takes part of the GAW Aerosol LIDAR 

Observation Network (GALION), ACTRIS, ORAURE and ROSEA networks. It has been used to 

provide, combined with in situ measurements, optical and physical characterization of the volcanic ash 

of the Eyjafjallajökull eruption in April–May 2010 [7]. The objective of this paper is to provide a 

detailed description of the LIDAR system, the scientific and technical motivations for improvements 

and the modifications made on the system. Then, description of the data processing, examples of 

atmospheric profiles and overview of the database are provided. 

2. Description of the LIDAR 

2.1. Principle of the LIDAR 

The Light Detection and Ranging (LIDAR) is an active remote sensing instrument developed for 

the first time in the sixties. Its first applications were in meteorology, where it was used to measure 

cloud heights [8]. This instrument consists in a laser emitting pulses of light at a given wavelength 

vertically into the atmosphere and a telescope collecting the light backscattered by the air molecules 

and particles of the atmosphere. The time elapsed between the emission of a pulse and the reception of 

the backscattered light allows the calculation of the altitude of the particles and molecules that 

backscattered the light. Two types of atmospheric scattering can occur: elastic scattering with no 

wavelength change and inelastic scattering with wavelength modification. For the elastic scattering, 

when the particles are much smaller than the wavelength of the light, typically for molecules, the 

Rayleigh scattering theory applies. On the other hand, when the particles have the same size as the 

wavelength of the light, typically for aerosols and cloud particles, the Mie scattering theory applies for 

spherical particles. For inelastic scattering, also called Raman scattering, the wavelength shift is 

characteristic of each molecule and depends mainly of its vibrational-rotational energy. The Raman 

scattering is many order of magnitude lower than the elastic scattering [9]. The light collected by the 

telescope must be separated according to the wavelengths by optical devices and then recorded. After 

processing, depending on the wavelengths emitted and the wavelengths detected, the LIDAR can allow 

to retrieve wind, temperature, chemical composition (water vapour, ozone, ...) and particles properties 

profiles (aerosol and cirrus cloud extinction). 

2.2. Description of the Original System 

The CO-PDD LIDAR is a Rayleigh-Mie and Raman LIDAR dedicated to aerosols, cirrus  

and water vapour measurements. It was designed by Gordien Strato and built by Raymetrics [10] in 

2007. It uses a Quantel CFR-400 [11] laser to emit pulses of about 7 ns at 355 nm. The energy per 

pulse is about 60 mJ, with a repetition rate of 10 Hz. Thanks to a Galilean telescope that expands ten 

times the beam diameter (50 mm), the divergence of the laser beam is 0.14 mrad. Only the third 

harmonic (355 nm) is transmitted in the atmosphere for eye safety reason. The fundamental (1064 nm) 

and second (532 nm) harmonics are filtered with two beam splitters that are also used for the laser 

alignment with the receiving telescope. The emitted beam is polarized linearly. 
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The receiving telescope is a 400 mm Cassegrain telescope with a 4 m focal length. A field stops set 

from 1 mm to 4 mm permits to change the telescope field of view from 0.25 to 1 mrad. The biggest 

field of view is used for lowest troposphere measurements while a smaller field of view is used for 

cirrus measurement for instance. A lens located 150 mm behind the focus of the telescope collimates 

the light at the entrance of the receiving box. The optical part of the LIDAR is deployed outside, on the 

roof, allowing the opportunity to tilt the LIDAR in the Puy de Dôme direction (Figure 1). 

 

Figure 1. Optical part of the LIDAR on the roof of Clermont-Ferrand University. 

The receiving box is dedicated to the splitting of the receiving laser light in 4 different channels: 

- 1 elastic channel with the same polarization as the laser one, called p 

- 1 elastic channel with a cross polarization, called s 

- 1 inelastic channel for nitrogen Raman scattering at 387 nm 

- 1 inelastic channel for water vapour Raman scattering at 408 nm. 

Figure 2 shows the current receiving box of the LIDAR. After passing through a half-wave plate, 

the 355 nm is transmitted to the left and the longer wavelengths are reflected downward by a first 

beam splitter. The parallel and cross polarization are separated by a polarization beam splitter cube, 

while the Raman channels are separated with a second dichroïc beam splitter. The features of this box 

will be explained in more details in the Sections 4.1 and 4.2. 
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Figure 2. Inside of the receiving box. The input light comes from the right side.  

ND means neutral density, BS: beam splitter, PBS: polarization beam splitter cube and IF: 

interference filter. 

Four Licel photomultiplier modules based on R7400 Hamamatsu’s PMT tubes receive the optical 

signal from each channel. Those signals are transmitted to a Licel transient recorder with 7 m long 

shielded 50 Ω Lemo cables. This electronical part of the LIDAR is installed into an air conditioned 

room on the floor below the optical part of the LIDAR.  

For each elastic channel, the Licel transient recorder allows acquiring simultaneously in analogue 

and photo-counting mode. For each inelastic channel, the transient recorder can only acquire in  

photo-counting mode. The acquisition software is based on a Raymetrics labview program. We 

implemented some improvements on this software in order to: 

- manage automatically the measurements (Section 5.1) 

- display and publish real-time quick looks (Section 5.2) 

- manage scanning capability (Section 3.2). 

The raw vertical resolution of the output data is 7.5 m and the raw minimum time resolution is 10 s, 

corresponding to the accumulation of signals from 100 laser shots. Depending on the parameter 

studied (aerosols, cirrus clouds or water vapour), the vertical and temporal resolution can be degraded 

to increase the signal to noise ratio. Except for measurements dedicated to the study of the cirrus 

clouds heterogeneities where the raw data resolution is kept, data are usually acquired at 1-min time 

resolution (600 shots). Due to the biaxial configuration of the LIDAR system (the telescope optical 

axis and the laser beam axis are separated from 300 mm) , the laser beam overlaps completely the field 

of view of the telescope at a distance measured about 1000 m above the LIDAR, with the 4 mm field 

stop. An overlap correction must be applied to process the measurement data when the overlap is not 

full. Many methods exist to estimate this overlap function as ray tracing calculation or horizontal 
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LIDAR measurements assuming that the atmosphere is homogeneous and that the alignment of the 

system remains the same horizontally and vertically (no deformation of the telescope).  

Figure 3 presents the overlap function calculated theoretically [12] and estimated with horizontal 

measurements (with the 4 mm field stop). The theoretical and the measured function are in agreement. 

Thus it seems that the telescope is not deformed when the LIDAR is measuring horizontally. 

 

Figure 3. (Left): Measured (blue) and theoretical (red) overlap function; (Right): range 

and background corrected LIDAR signal (green). Same signal corrected with measured 

(blue) and with theoretical overlap function (red). The dash line represents the altitude 

where less than 20% of the signal is measured (z20). The continuous line represents the 

altitude where more than 99% of the signal is measured (z99). 

In the next section the efforts made in order to improve automatic measurements capabilities  

will be presented. 

3. Hardware Developments 

3.1. Thermal and Protections Improvements 

The optical part of the LIDAR has been upgraded with a window in order to protect it against 

precipitations and to allow operation in any weather conditions. The glass used for the window must 

transmit in UVA range and must be an amorphous material, in order to not modify the polarization 

properties of the emitted and received light. In addition, there is a cost issue due to the quite large 

dimension of the optical component (850 × 850 mm) and because it is an annex component, not 

essential to carry out a LIDAR measurement. A borosilicate glass named BOROFLOAT®33 and 

manufactured by the Schott Company met these criteria. The transmittance in the UV range is about 
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90%. No anti-reflection (AR) coating is present on the glass for economical reason (an AR coating 

would have been necessary for the 3 wavelengths received by the telescope: 355 nm, 387 nm and 408 nm). 

Consequently, a loss of 8% can be added due to the reflections on the both surfaces. Despite of these 

losses, the global transmission remains acceptable regarding the strength of the signals received by the 

PMTs. This window is glued on a 900 mm square aluminium frame that covers the enclosure of the 

LIDAR. This cover is also a bit tilted (about 1°) to avoid light return into the laser.  

A first issue is the induced depolarization due to mechanical stressed applied on the glass. We 

noticed that the sag of the window does not affect the polarization of the light. On the contrary the 

stress of the aluminium frame on the glass (due to the thermal dilatation) has to be taken into account. 

The coefficient of linear thermal expansion (CTE) of the Borofloat®33 is 3.25 × 10−6 K−1 while it is  

24 × 10−6 K−1 for aluminium. For instance, a decrease of 20 °C on a 900 mm square will contract the 

aluminium frame by 0.432 mm while the glass will be contracted by 0.0585 mm. If the glass is fixed 

on the frame with a polyurethane glue, the frame will apply on the glass a sufficient stress to induce 

birefringence in this material, and then a depolarization of the light depending on the temperature, 

which cannot be acceptable for the LIDAR depolarization ratio measurement. It means that the glass 

must not be stressed by the frame, and that can be obtained by using a silicon glue which remains 

elastic even during long period. The Figure 4 shows how much inappropriate glue can influence the 

ratio between the parallel (p) and cross (s) channels. On the contrary one cannot detect any significant 

bias between p and s channels when using elastic glue or a mounting without any stress on the 

window. The agreement between the 2 curves of the Figure 4b is indeed quite good, the small 

differences can be explained by the atmospheric variability during the delay of about 3 min between 

the two measurements. 

A second issue, not really depending on the window, is the solar radiation hitting the inner of the 

telescope tube during spring and summertime. Such radiations induce a differential heating between 

the top and the bottom of the tube, and then a misalignment of the telescope. This misalignment can be 

so severe that the LIDAR signal can be completely lost for all channels. Thus it is also necessary to 

protect the telescope with a sun shield. This sun shield consists of a cylinder of 600 mm high with a 

500 mm diameter. When the LIDAR is oriented to the zenith, the axe of this tube corresponds to the 

telescope one. A hole that fits with the laser beam axes allows the laser to be emitted in the 

atmosphere. The cover was manufactured with polypropylene in order not to disturb the X-band radar 

located 4 m from the LIDAR. It has also been closed with two Borofloat®33 windows: one for the 

telescope and the other for the laser beam. Unfortunately the CTE of the polypropylene is 150 × 10−6 K−1 

implying that the expansion of the tube diameter should be 1.5 mm for a 20 °C variation. As a result 

the expansion is bigger than the expansion of the cover with the aluminium frame. As a precaution, 

this circular window was not glued like the others, and was solely lied on a gasket and fixed with  

4 iron knees. Thus, the cover can expand without stressing the window. 

Thanks to this protecting cover, the optics of the LIDAR can then be thermoregulated. Instead of 

installing an air conditioner on the enclosure, we decided to take advantage of the air conditioned room 

where the electronic part is installed, so a fan was fixed in the room just above the cooling unit in order 

to insufflate the air of the room inside the optical part enclosure, through an insulated hose. 
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Figure 4. (a) Ratio between the s and p channels, with (dotted red) and without (black) the 

window when it was glued with an inappropriate glue; (b) Ratio between the s and p 

channels, with (dotted red) and without (black) window in the new cover design with 

silicon glue. 

Two thermostats in the enclosure allow stopping the fan when regulation is not necessary. This 

thermal regulation has several advantages: 
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- This system is not expensive and its implementation is quite easy. 

- There is no electromagnetic disturbance on the signal due to an added cooling unit. 

- The enclosure is a bit pressurized, and the incoming air flux is filtered. Thus the optical part is 

preserved from outside dust. 

- It is a reverse air conditioning since the air flux is cooler in summer and warmer in winter, than 

the outside air (during winter the air conditioner of the room is stopped, so the LIDAR enclosure 

takes advantage of the room heating). 

- The air flux is powerful enough to defrost the window. 

- It provides better stability conditions for the laser power. 

3.2. Scanning System 

One interesting feature of the LIDAR was the possibility to incline it until it reaches the top of the 

Puy de Dôme volcano, where the PUY atmospheric station is located. At the origin, the LIDAR could 

be manually tilted thanks to a manual reduction gear. Due to a relative inaccuracy of this method 

regarding the tilt angle, we implemented a motorized scanning system based on an 8.5 Nm stepper 

motor, and that uses the reduction gear. The multiplication factor of the gear is 60 and the motor is set 

to give a 0.06° resolution per step. A photo-sensor was mounted on the frame of the moving parts of 

the LIDAR in order to give the home position, corresponding to the zenithal direction, a software 

command allows to move the LIDAR to this home position. The reproducibility of the angle positions 

was tested by tilting the LIDAR down to the PDD direction. When the laser beam touches the horizon, 

one can see a peak appearing at about 11.8 km due to the backscattering of the soil of the mountain. So 

this signal always appears at the same angle with an accuracy of 0.1°. Despite the opportunities 

provided by this system, scanning measurements can have some drawbacks: 

- Scanning measurements needs to open the enclosure of the optical LIDAR part, which means 

that the LIDAR is not protected any more against precipitations and dust. It cannot be  

thermo-regulated as well. 

- The alignment of the LIDAR could be sensitive to the telescope angle when tilted, so the 

overlap function could change. 

- Scanning can take much more time than single vertical profiles. So it may not be adapted for the 

measurement of a fast event (e.g., quick variations of the boundary layer height). 

The software for scanning management was integrated into the Raymetrics acquisition code, in 

which the user can choose the starting and ending times, the step angle, and the direction of the scan 

(i.e., upward or downward). Between each scan direction, the acquisition is stopped in order to get one 

measurement file per angle measurement. The angle is also recorded automatically in the header of the 

file. The principle of the acquisition software will be described in more details in Section 5. 
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4. Optical Developments 

4.1. Depolarisation Calibration Device 

The original LIDAR had the capability to characterize the depolarizing properties of particles from 

the combination of the p and s elastic channels. Calibration of the depolarization ratio requires to the 

knowledge of the depolarization ratio in a range free of aerosols. However, the presence of very 

depolarizing particles, even at very low concentrations, can induce a significant bias compared to the 

assumed molecular depolarization ratio [13]. For this reason we implemented the depolarization 

calibration device based on a −45°/+45° calibration procedure. A half-wave plate mounted in a 

motorized rotative stage allows a very high angular accuracy. This half-wave plate is placed in front of 

all optical components that can have some diattenuation, and particularly the first dichroic beam 

splitter as shown in the Figure 2. Two polariser plates were added as well in front of the p and s PMTs 

in order to get rid of the cross-talk, as explained in Section 4.2. 

By rotating the half-wave plate, it is possible to correct the laser polarization axe offset according to 

the receiving optics polarization axe [14]. Hence calibration measurements can be carried out by 

rotating the half-wave plate from this position to ±22.5° (i.e., a rotation of ±45° for polarisation). 

Considering that: δ*(θ)=PR(θ)PT(θ) (1)

where PR(θ) and PT(θ) are the received signals on the reflected and transmitted channels respectively 

by the PBS cube (in this case the transmitted is the parallel polarization and the reflected is the cross 

one), when the polarization axe is tilted at an angle θ by the half-wave plate. Then the volume 

depolarisation ratio is: δ= δ*(0°)ඥδ*(+45°)∙δ*(−45°) (2)

If the transmission properties of the optics of the receiving box are known, depending on the 

polarization, it is possible to get the relative amplification factor V* V*= TPRS ∙ටδ*(+45°)∙δ*(−45°) (3)

where TP and RS are respectively the global transmission coefficient of the parallel signal, and the 

global “reflectance” of the cross signal (“reflectance” is incorrect since only the PBS cube reflects this 

signal in fact). The method used to get those results is detailed in the appendix. The TP/RS ratios can be 

determined by swapping the p and s photomultipliers while the polarisation is rotated by 90° with the 

half-wave plate, which swaps the p and s signal: TPRS = PT(90°)PR(0°) = PT(0°)PR(90°) (4)

Another way to calibrate the depolarization ratio is to characterize the transmission of the whole 

receiving box for each channel, which has been achieved with the collaboration of the Institut Pascal  

at Clermont-Ferrand. 
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4.2. Optical Box Characterization  

In order to calibrate the depolarization ratio, it is necessary to know the transmission on the parallel 

and perpendicular channels of the optical box. It is also important to check the quality of each device 

from the optical box to understand the limits of capability of this LIDAR system. For this purpose, we 

used optical spectroscopy measurements available at the Institut Pascal. In this setup, a xenon lamp 

with a polarizer is used for the excitation. This configuration allows transmission measurements with 

linear parallel or perpendicular polarized light. Then the light is focused on the slit of a 1 m focal 

length monochromator (FHR 1000), used to separate spatially the incident wavelengths, and an  

UV-enhanced CCD camera records the signal. 

Before July 2013, i.e., before the implementation of the calibration’s device, the transmission at 

354.8 nm was of about 1.16% on the parallel channel (in dotted purple line on Figure 5) and 6.37% on 

the perpendicular channel (in dotted green line on Figure 5) without taking into account the presence 

of identical coloured filters in front of the photomultipliers. With the attenuation of the coloured filters, 

the transmission at 354.8 nm was of about 0.93% on the parallel channel and 5.16% on the 

perpendicular channel. Thus the total backscatter signal P due to the presence of molecules and 

particles in the atmosphere, could be calculated using the Equation (5): P	=	PT	+	݂PR with ݂ =	 0.935.16=0.181  (5)

where PT and PR are the received signals on the parallel polarization (index T for transmitted) and 

cross polarization (index R for reflected) channels respectively and f is the coefficient taking into 

account the differential optical attenuation between both channels. However the signals received on the 

two photomultipliers are not completely pure in terms of polarization. On the parallel channel, less 

than 0.02% of the (parallel and cross) light received is cross-polarized (in dotted red line in the  

Figure 5) while on the cross-polarized channel, about 0.63% of the light received is parallel polarized 

(in dotted blue line in the Figure 5). This phenomenon called “cross-talk” means that the beam splitter 

cube is not perfect and a small amount of parallel polarized light is reflected on the photomultipliers 

instead of being transmitted. As in the atmosphere the parallel polarized light signal is most of the time 

stronger than the cross polarized light signal (about two orders of magnitude for molecular 

backscattering), this “cross-talk” must be avoided to deduce a reliable volume depolarization. To avoid 

this cross-talk, a polariser plate has been added in front of each photomultiplier to remove the stray 

light on 3 April 2013. On the Figure 5, the signals are greater without the polariser plates (dashed 

lines) than with the polariser plates (solid lines) that is expected because those polariser plates 

attenuate quite a lot of light at 355 nm. Thus, those polariser plates replace the coloured filter in order 

to keep an equivalent attenuation. With these polariser plates, the cross-talk decreases from 0.63% to 

0.03% on the cross-polarized channel (respectively dashed and solid blue lines). The half-wave plate 

located in front of the whole optical box insures a good alignment of the beam splitter cube with the 

laser polarization plane. The half-wave plate induces a small added attenuation (transmission lower for 

the dashed lines than the dotted lines) because it is an uncoated component, in order to transmit the 

three useful wavelengths (i.e., 355 nm, 387 nm and 408 nm). To summarize, the factor f is 0.181  

(or 0.179 with cross-talk taken into account) before the calibration of the depolarization (with the 

neutral density filter in front of the parallel channel taken into account). The factor f becomes 0.229 (or 
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0.226 with cross-talk taken into account) without the polariser plates but with the half-wave plate and 

0.229 (or 0.228 with cross-talk taking into account) with the polariser plates and the half-wave plate. 

 

Figure 5. Transmission of the whole optical box in different configurations for the 

Rayleigh channels: Solid lines: half-wave plate and polarizer plates presents, dotted lines: 

without polarizer plates and half-wave plate, dashed lines: without polarizer plates but with 

half-wave plate present. 

One important point was underlined by these tests. As shown on the Figure 5, the transmission of 

the optical box depends strongly on the wavelength. A variation of ±0.1 nm (from 354.7 nm to  

354.9 nm) induces a change in the transmission for the parallel channel from 0.39% down to 0.34% 

which represents a relative variation in transmission of 14% for the configuration with the polariser 

plates and the half-wave plate for example. Likewise, for the perpendicular channel, the transmission 

varies from 1.84% down to 1.41% which represents a relative variation of 26%. This has a strong 

impact on the factor f which can vary from 0.214 up to 0.241 that represents a relative uncertainty of 

12% not acceptable for the calculation of the volume depolarization ratio. As temperature variation in 

the system can induce such kind of shift in wavelength, it is crucial to understand the origin of this 

variation. By studying the transmission of each optical device of the box individually, the beam splitter 1 

shown on the Figure 2 is involved. This beam splitter transmits the elastic signals at 355 nm and 

reflects the Raman signals. At 354.8 ± 0.1 nm the transmission of the parallel component is  

87.2% ± 0.6% while the transmission of the perpendicular component is 27.9% ± 2.3% (Figure 6). As 

in the atmosphere, the perpendicular component is quite weak, it is crucial to have a strong 

transmission for this component with no dependence in wavelength (i.e., temperature). In addition, the 

beam splitter transmits about 17% of the parallel component at 408 nm which is the water vapour 

signal (Figure 6). This signal is thus not transmitted on the Raman 408 nm photomultiplier. As the  

408 nm signal is quite weak in the atmosphere, this feature reduces again the signal to noise ratio and 

prevent measurements above 10 km. To resolve these problems, a new design of the optical box is 
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planned in the future with the change of the actual beam splitter for a low pass beam splitter and the 

swap between elastic and inelastic channels. 

 

Figure 6. Transmission of the beam splitter 1 according to the wavelength. 

Concerning the Raman channels, the Edge filter in Figure 2 has a transmission of about 79% for the 

nitrogen and 85% for the water vapour. The global transmission on the Raman channels is shown on 

Figure 7. For nitrogen, the maximum transmission is around 387.7 nm with about 4.3% and for water 

vapour, the maximum transmission is around 407.3 nm with 3.8% for parallel polarized light. The full 

width at half maximum is 1.7 nm for nitrogen and 0.8 nm for water vapour. Thus the transmissions at 

the wavelengths due to the vibrational state transition of the molecules (386.8 nm for N2 and  

407.663 nm for H2O) are quite low: 1.7% for nitrogen and about 2.9% for water vapour. Even if the 

transmission windows seem not well centred on 386.8 nm for N2 and 407.663 nm for H2O, this could 

be due to a misalignment of the optical box during the tests. More precisely, it could be due to a 

misalignment of the beam splitters 2 and 3 in the optical box or to a small variation of the 45° 

incidence angle on the beam splitter 1 because of experimental difficulties to measure transmission of 

a set of optics. However, it underlines the requirement of a very accurate alignment of all the devices 

in the optical box. For this, the fixation of the beam splitters with two screws could be not sufficient. 

Another point to notice is a weak transmission observed in the purple (maximum of 0.044% at  

413 nm) on the water vapour channel and in the blue (maximum of 0.052% at 448.9 nm) for the 

nitrogen channel (not shown). Even if these transmissions are respectively more than 64% and 33% 

weaker than the transmission at 407.663 nm (for H2O) and 386.8 nm (for N2), the Raman signals in the 

atmosphere are very weak and can be polluted by the solar radiation during the day (whose maximum 

is in the blue) and to a lesser extent, the moon radiation (whose maximum is in the red) during the 

night. This feature added to the solar light received in the Raman lines could explain the noise 

observed during the daytime Raman measurements which prevent retrieving water vapour content. 
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Figure 7. Transmission of the whole optical box for the Raman channels: nitrogen in red 

and water vapour in blue. 

5. Software Developments 

5.1. The Automatic Measurement Management Software 

The principle of the Licel/Raymetrics labview acquisition software is based on a state-machine with 

events management. We implemented a complementary module for the automatic and for the  

scanning management. 

For the aerosols and water vapour measurements, a file with the different channels profiles is 

recorded each minute. Instead of entering in a state where a new acquisition restarts, the program 

enters in a state where the behaviour of the signals is analysed in order to determine the next state  

(e.g., suspending or continuing the measurements). The maximum peaks of both parallel and cross 

analogue channels are compared with three different thresholds. The first one is used to check if the 

backscattered signals are powerful enough. The second and the third are used to check if the parallel 

and perpendicular (respectively) signals are too powerful. Figure 8 shows the scheme of the actions the 

program will carry out depending on the comparison of the analogue signals with the thresholds. Here 

is a description of each case: 

- Weak signal: this situation could occur when some frost or condensation occults the signal; 

- Aerosols: normal conditions for continuous measurements (not only for aerosols but for water 

vapour as well); 

- Clouds: in that case, low clouds occultation makes aerosols and water vapour processing impossible; 

- Overload: one (or even both) signal is too strong, so it could damage a PMT. 

When the program suspends the measurements, it actually stops the laser firing, so the acquisition, 

which is triggered by the laser, is suspended as well. A string flag is written in the header of the files to 

discriminate usable profiles (e.g., “aerosols”, “clouds”, “overload”). Such an algorithm to suspend the 

measurements is quite simple, but it is sufficient for the low clouds files segregation. However the 

efficiency becomes much weaker in case of rain, due to the fact that raindrops do not backscatter the 

signal as strongly as cloud particles. Moreover, the droplets on the protective window can also 
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attenuate the emitted and the received signal. It means that during a rain event, the thresholds do not 

match any more the management schedule and the LIDAR will keep on acquiring measurements while 

they should be suspended. One could overcome this issue by adding a more advanced processing that 

could, for instance, analyse the exponential decreasing shape of the signal beyond a detected peak 

signal. An analysis of the signal to noise ratio could be another method. Whatever the chosen means, 

such a processing should not be applied in the frame of the acquisition state-machine, because it could 

delay the start of the next acquisition profile. So this processing must be done in parallel to the 

acquisition. The principle will be described in the Section 5.2. 

 

Figure 8. Management of the measurement conditions. 

The last point regarding the automatic measurement management is the capability to start and stop 

automatically the Raman channels depending on day or night time. The 355 nm cross channel is the 

most daylight sensitive elastic channel in photo-counting mode, because the cross signal is not so 

attenuated as the parallel one in front of the PMT. So the background noise variations are strong 

enough to set a threshold between day and night. Then, inside the same state as for low clouds 

conditions management, the program switches on the power supplying of the Raman PMTs and the 

Raman channels recording when the background noise of the 355 nm photo-counting cross channel 

becomes below this threshold at sun set. The program carries out the contrary at sunrise. 

5.2. Display and Publication of Temporal Serials in Real Time 

The acquisition state-machine should carry out a minimum of processing tasks in order not to slow 

down the acquisition recording speed. However, it is always possible to use the acquisition software in 

parallel for processing, displaying, and publishing data, while the LIDAR computer waits for new 

recording from the Licel transient recorder. This is done by using a producer-consumer pattern where 

the producer loop is the acquisition state-machine and the consumer is a synchronized loop  

that runs in parallel. When a new recorded set is ready (i.e., a new data file), this second loop processes 
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the data, adds a new profile to a daily temporal serial and uploads it to an OPGC website page [15] in 

real time. 

At the present time, a level 1 processing is applied and the volume depolarization ratio and the 

result of a Wavelet Covariance Transform (WCT) technique for boundary layer visualization are 

published [16]. A climatology of the boundary layer height determined with the WCT algorithm in 

described in [17]. 

5.3. Aerosols and Cirrus Properties Retrieval 

For aerosols and cirrus measurements, the corrections on the signal were implemented in 

accordance to the ones achieved by the ACTRIS/EARLINET recommendations. The different steps 

are (with a focus on the original method to get the dark measurement data): 

- Discrimination of usable and unusable files (thanks to the string flag described above) 

- Data reduction of the spatial resolution (e.g., from 7.5 m resolution to 15 m) 

- Search of the closest dark measurements (DM) files that match the measurements setup (i.e., 

high voltage of the PMTs and amplitude range for analog modes). A DM is a measurement 

occulting totally the receiving light. Even without incoming light, the analog channels profiles 

are not completely flat. So the DM purpose is to suppress the contribution of the electronic in 

the lidar analog profiles the search of the closest DM is based on a recursive algorithm. The 

starting point of the search is the dataset of measurement. Then the program looks backward for 

the first DM file detected (thanks to the header flag). If the analog parallel channel set-up does 

not match the DM’s one, the search restarts forward from the last starting point, and so on. After 

a matching set-up is found for the parallel channel, the search restarts for the cross channel. It 

means that the dark measurement data can come from a different file between the p and the s 

channel, if necessary. The most important thing is to get the DM closest to the measurements. 

However, this recursive algorithm to find the best DM may be replaced by another one based on 

a state-machine and oriented object programming. 

- Temporal averaging of the dataset 

- DM correction on the analog channels 

- Dead time correction on the photocounting channels 

- Trigger delay correction 

- Background noise correction 

- Savitsky-Golay smoothing 

- Gluing between analog and photocounting  

- Range correction by the square of the distance 

In the case of aerosols measurements, it is still possible to apply an overlap correction and also to 

calculate at this point the depolarization ratio δv as described by Equation (2). Then, by using a 

radiosounding profile, a Rayleigh fit [18] is carried out to determine the reference altitude for the 

Fernald-Klett inversion [19] to retrieve the aerosols backscattering coefficient profiles [20]. A Raman 

algorithm for the extinction retrieval has already been tested (Section 6.4) and is under implementation 

for routine processing, based on [21]. 
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5.4. Water Vapour Retrieval 

The water vapour mixing ratio is the ratio of the mass of water vapour to the mass of dry air in a 

given volume of the atmosphere. In the troposphere, nitrogen is almost in a constant proportion of dry 

air. Then, the water vapour mixing ratio can be derived from the ratio between the H2O and the N2 

Raman backscattered signals (respectively SH2O and SN2), using the following expression [22]: q(z) =	C.Γ(z)∙ SH2OSN2  (6)

where C is the calibration coefficient and Γ(z) is the atmospheric differential transmission. 

The estimation of the calibration coefficient is a crucial issue which is still pending, particularly  

in NDACC community [23,24]. Though an absolute calibration of the entire LIDAR system is 

theoretically possible [25], external water vapour measurement (radiosonde or GPS), or model profiles 

are commonly used to calculate the calibration coefficient because some instrumental parameters such 

as laser emission stability, transmission of optical parts, or electronic efficiency of PMTs are difficult 

to precisely evaluate. Concerning the estimation of the calibration coefficient of the water vapour 

channel of the Clermont-Ferrand system, the use of the vertical columns obtained from GPS measurements 

performed at the Puy de Dôme and Cezeaux have been evaluated but the GPS station of Puy de Dôme 

is distant from 12 km and the GPS station from Cezeaux is collocated with the LIDAR but provides 

the total column of water vapour over the altitude of the site (410 m) when the bottom limit of LIDAR 

profiles is around 1500 m (Figure 3). In addition, there is no collocated radiosonde measurement 

available for this site. Consequently, the calibration procedure has been performed normalizing by 

water vapour mixing ratio from the ECMWF ERA-Interim reanalysis between 3 and 5 km height. 

Another important issue is the choice of integration time for the calculation of water vapour mixing 

ratio profiles. The system provides files every one minute. However, since Raman returns are weaker 

than Rayleigh-Mie returns, it is necessary to integrate enough time to obtain a vertical profile covering 

a significant part of the troposphere. Water vapour having a large variability and being governed by 

processes leading to a succession of independent situation that should not be averaged, the choice of 

the integration time is a compromise between the accuracy and vertical range of the profile and the 

temporal variability of water vapour behaviour. In addition to the calculation of one profile for the 

whole night, we used the methodology presented in [9] to extract automatically quasi-stationary 

periods and obtain one or several independent water vapour profiles during each acquisition night. 

Examples of water vapour profiles will be presented in the Section 6.2. 

6. Overview of the Dataset, Examples of Measurements and Climatology 

6.1. Scientific Motivations 

Water vapour has long been recognized as one of the most important trace gases in the atmosphere. 

The measurements of water vapour profiles are important for understanding and forecast of the 

moisture convection, horizontal transport and stratosphere-troposphere exchanges. Water vapour can 

also be used as a tracer of cloud formation and rainfall event [26]. In addition, the radiative effects of 
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water vapour are of prime importance for the global climate [27]. Accurate measurements of water 

vapour in the upper troposphere and lower stratosphere are still difficult to perform from space given 

its very low concentration, its large variability and vertical decrease and stratification [28].  

Upper tropospheric clouds, such as cirrus, have also been identified as one important regulator of 

the radiance balance of the Earth atmosphere system [29]. The net radiative effect depends on the 

competition between greenhouse and albedo effects that are linked to the microphysics, the height, the 

temperature and the water vapour density. 

Atmospheric aerosols are produced by many sources and have  also a significant impact on human 

health and climate. Since aerosols are mainly emitted close to the surface, their vertical distribution is a 

good indicator of the atmospheric boundary layer vertical extension that can be assimilated to the first 

aerosol mixing layer. The dynamics of the boundary layer extracted from the LIDAR located in 

Clermont-Ferrand is used to interpret in-situ measurements performed at the PUY station. 

Moreover, thanks to its ability to characterize aerosol layers that travel at high altitudes and hence 

that cannot be easily sampled by in situ instrumentation, LIDAR measurements are also a key data for 

analyzing special aerosol events such as Saharan dusts, volcanic and biomass burning plumes, which 

influence significantly atmospheric properties [17,30,31]. 

At last, aerosol measurements from a LIDAR research network also permit to complete aerosol 

forecasting by forcing modelisation exercise through data assimilation techniques [32].  

The CO-PDD LIDAR allowing to estimate and survey on a routine basis water vapour and cirrus 

clouds vertical distributions, we provide in the following sections an overview of the database, 

examples of profiles and preliminary climatological distributions obtained since 2008. 

6.2. Dataset 

The first tests of Rayleigh-Mie channels were performed in 2008, while Raman channels were 

tested in 2009. Figure 9 is a histogram showing the monthly percentage of time operation, considering 

only valid measurement files, i.e., with no test or other kind of files. During the period 2009–2010, due 

to the manual operation, the system was operating around 10% of the time. The increase to around 

30%–50% of the number of measurements per month after 2011 is due to the systematic measurements 

start. Since 2013 and thanks to the system automation, a better regularity of the measurements is achieved. 

The number of measurements per month will be limited only by the bad weather conditions. The gap of 

four months (from October 2013 to January 2014) is due to a maintenance operation of the laser. 

Regarding more specifically night time Raman water vapour measurements, the number of nights 

during which a profile reaching at least 4 km was improved year after year, reaching more than  

100 night-time profiles in 2013 (Figure 10), and 200 night time profiles during 2009–2013.  

Based on the methodology regarding the integration time period described in Section 5.4, around  

900 independent profiles have been obtained over this period. This database allowed us to establish 

water vapour climatological profile for this site, presented in the Section 6.2. 
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Figure 9. Monthly percentage of time measurement operation of the LIDAR, after 

removing flagged files as weak signal, low level cloud, tests. 

 

Figure 10. (a) Dataset histogram of whole night water vapour LIDAR profiles between 

June 2009 and September 2014. The vertical upper limit of the profiles are given by 

colours (blue: <5 km; red: 6–8 km; yellow: >9 km); (b) Monthly repartition of profiles. 

Since 2008, available LIDAR channels permit to retrieve the depolarization ratio and thus, cirrus 

covering over Clermont-Ferrand. The selected range in this latitude, in order to classify days into 

cirrus event, is taken between 5 km and 15 km above ground level. Figure 11 is a histogram showing 

the monthly number of day presenting cirrus signal, clear condition, technical test or undefined day. 
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Clear conditions are selected from clear sky between 5 km and 15 km and excluding heterogeneous 

atmosphere under 5 km. Undefined day are most of the time noisy measurements or absence of 

measurement between 5 km and 15 km due to the presence of thick low clouds (below  

5 km) that attenuate the signal. In Figure 11, the number of measurements is again increased since 

2013 with the system automation allowing more night time and weekend measurements. We note an 

increase of undefined days after 2013, because more measurements are performed in low clouds 

conditions since they are carried out continuously. More and more cirrus signals are retrieved and 

permit to study cirrus properties with a large dataset. In 2014, more than 30% of days present cirrus 

events. Even if the presence of cirrus clouds seems to increase with time, a detailed study is needed 

before drawing such a conclusion. Indeed, the number of measurement hours varies from day to day, 

depending on the weather conditions (rain, low clouds) and some days classified as cirrus event could 

have presence of cirrus clouds during all the day as for only few hours. 

 

Figure 11. Monthly number of day presenting cirrus signal (blue), clear conditions (cyan), 

technical test (black) and undefined cases (red) from the 7 years LIDAR dataset. 

6.3. Water Vapour Measurement Profiles 

Two examples of water vapour LIDAR profiles are given in Figure 12. The profile obtained on the  

10 March 2011 reaches 8 km (630 min integration time) and the profile obtained on the 9 September 

2013 reaches 6.5 km (57 min integration time). These two profiles have been chosen because a water 

vapour profile from FORMOSAT-3/COSMIC coincident in time and space are available. 

FORMOSAT-3/COSMIC (F3C) is a joint Taiwan/US science mission launched in April 2006, for 

weather, climate, space weather and geodetic research [33]. Biases in COSMIC sounding data  

are considered to be relatively small and therefore, are expected to be stable in time and space. 

COSMIC-FORMOSAT 3 water vapour profiles are retrieved using the GPS radio occultation 

technique, and applying a one-dimensional variational method that makes use of the ECMWF low 

resolution analysis data as a guess of atmospheric water vapour [34]. The ECMWF ERA-Interim water 
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vapour profiles used for the LIDAR calibration and the radiosounding profiles performed at Nimes 

(240 km away from Clermont Ferrand) are also presented in Figure 12. 

Figure 12. (a) Water vapour vertical profiles obtained with LIDAR (blue curve) at 

Clermont-Ferrand from the 9 March 2011, 18.41 UT to the 10 March 2011, 5.17 UT. The 

profile is superimposed with a radiosounding profile performed at Nimes (240 km far from 

the LIDAR) on the 10 March 2011, 0 UT (black dotted line), with a profile obtained from 

satellite FORMOSAT-3/COSMIC (red curve) on the 10 March 2011, 4 UT at 45.6131°N, 

3.6278E, i.e., 43 km far from the LIDAR and with the profile obtained from the ECMWF 

ERA-Interim reanalysis (black curve one circle by vertical level) on the 10 March 2011,  

0 UT, at 45.75°N, 3°E; (b) LIDAR profile obtained from the 9 September 2013, 19.15 UT 

to 22.42 UT; radiosounding profile performed at Nimes on the 10 September 2013, 0 UT; 

FORMOSAT-3/COSMIC profile on the 9 September 2013, 15 UT at 44.1115°N, 

2.8356°E, i.e., 185 km far from the LIDAR and ECMWF ERA-Interim reanalysis on the 

10 September 2013, 0 UT, at 45.75°N, 3°E. 

These two examples display a very good agreement between the four profiles. It has to be noted that 

around 15 case studies with a spatial and temporal co-location mismatch within 300 km/12 h. Because 

of the important variability of water vapour in time and space, the agreement is not always as good as 

in the two examples presented here. The vertical upper limit of the LIDAR profiles can be better than 

the one obtained on the 10 March 2011 profile, and can reach 11 km. A statistical analysis of spatial 

and temporal co-location mismatch between FORMOSAT-3/COSMIC and the Italian LIDAR Potenza 

EArlinet Raman LIDAR (PEARL) in 2008 is presented in [32]. The authors concluded on a good 

performance of COSMIC in the identification of the vertical gradients of the water vapour field, even 
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though the average difference between the Raman LIDAR and the COSMIC profiles suggests that 

caution should be taken in using COSMIC data as an absolute or reference measurement of water 

vapour, in particular in the low and middle troposphere. The climatological seasonal water vapour 

profiles presented in the Figure 13 show median values at 2 km varying from less than 2 g/kg in 

winter, to more than 5 g/kg in summer. The water vapour mixing ratio decreases rapidly with height. 

The variability is lower in winter over the whole troposphere than in the other seasons.  

 

Figure 13. Boxplots of the seasonal profiles of water vapour mixing ratio at  

Clermont-Ferrand (2009–2013) (a) March–April–May; (b) June–July–August;  

(c) September–October–November; (d) December–January–February. 

Very few climatologies of water vapour LIDAR profiles on comparable sites have been published, 

but except local or regional specificities of each site, water vapour distributions observed at  

Clermont-Ferrand seem in agreement with other measurements previously done at Potenza, Italy [35], 

Oklahoma, USA [36] California, USA [37], Observatoire de Haute Provence, France [9], or Reunion 

Island [38]. 

6.4. Aerosols and Cirrus Cloud Optical Properties Example 

Aerosols backscattering coefficient profiles are retrieved using Fernald-Klett inversion [19,20]. The 

inversion is applied on range corrected signal (Pr² signal) using a specific LIDAR ratio (LR). For 

cirrus clouds, the lidar ratio used is of 20 sr according to the lidar ratios usually measured at 355 nm at 

mid-latitudes [39,40]. For Boundary Layer and forest fire smoke aerosols, the lidar ratios used are of 

58 sr and 46 sr respectively, according the multi air mass study of [41]. In order to separate cirrus and 

aerosol signals, the boundary layer aerosol LIDAR ratio is applied up to 3 km, the forest fire smoke 
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LIDAR ratio between 3 km and 8 km and the cirrus LIDAR ratio above. A more accurate method to 

retrieve the LIDAR ratio consist in using Raman LIDAR channel and is currently in development on 

the Clermont-Ferrand LIDAR system.  

A special day presenting aerosol event from American fires and cirrus observations is presented on 

the Figure 14, focusing on three specific times observations on 27 September 2014, at 5:20 UT,  

5:30 UT and 18:10 UT, respectively (Figure 14). Each profile corresponds to 10 minutes integration 

time with a vertical resolution of 15 m. The Rayleigh fit is applied between 13,500 and 15,100 m, 

between 7000 and 10,000 m and between 6000 and 6500 m, respectively, corresponding to the 

molecular reference signal. The aerosol layer is observed between 4 and 5 km with a backscatter 

coefficient of 5 × 10−6 m−1 and the cirrus event around 13 km with a more significant signal  

(3.5 × 10−5 m−1). Both corrected signals and backscatter coefficients showing close aerosol layer 

measurements at 5:20 UT and 5:30 UT. At 18:10 UT, the aerosol signal decreases due to the plume 

dilution (from 5 × 10−6 m−1 to 2 × 10−6 m−1). A cirrus event appears only on the first profile, at  

5:20 UT, in parallel with the aerosol event. An algorithm to retrieve cirrus clouds scattering ratio and 

depolarization ratio is under development. 

 

Figure 14. Lidar profiles obtained during the 27 September 2014 at 5:20 UT (blue),  

5:30 UT (red) and 19:00 UT (black) presenting cirrus and forest fire aerosol layer 

respectively around 13 km and 4 km: (a) Pr² range corrected signal, (b) LIDAR Ratio and 

(c) backscatter coefficient. 
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Based on the equations described in [42] the retrieval of the aerosol extinction coefficient and the 

LIDAR ratio with Nitrogen Raman channel was also developed for night-time measurements. In the 

frame of the EARLINET network this algorithm was compared with other algorithms within the 

network. A LIDAR signal was simulated from a given backscatter coefficient and LIDAR ratio 

profiles. The method and the results are described in [43]. The algorithm developed was tested on the 

same data set and the results are presented in the Figure 15. This algorithm is now under 

implementation for routine processing. 

 

Figure 15. (Left): Initial (red) and retrieved (blue) extinction coefficient profile;  

(Right): Initial (red) and retrieved (black elastic, blue Raman) backscatter coefficient profile. 

7. Conclusions 

In this paper we provide a detailed description of the Rayleigh-Mie Raman LIDAR system of 

Clermont-Ferrand and of the technical motivations for improvements and modifications made on the 

system. The automation of measurements allows routine continuous measurements with a limited 

manpower. This methodology can be applied to other LIDAR systems. First measurements of water 

vapour, cirrus and aerosols profiles demonstrate that this system provides new capabilities in response 

to the increasing needs for the cycles of these atmospheric components and processes to be studied and 

survey in a framework of climate evolution.  

The continuation of routine measurements in the long term is very important for climate issue and 

we plan to ensure it. Some additional improvements of the system and data processing are also 

planned. For example, the improvement of Raman channels could allow us to retrieve aerosol/cirrus 

profiles without assumption on the LIDAR ratio. The use of independent observation data such as GPS 

water vapour columns is also envisaged. Finally, the aerosol, cirrus and water vapour profiles on a 

routine basis open many scientific perspectives in the volcanic plumes characterization, cirrus and 

water vapour radiative impact and short time variations domains. 
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Appendix: Determination of the Volume Depolarisation Ratio 

The principle for determining the volume depolarisation ratio δν is explained in [13,14]. The laser 

polarisation offset angle φ is corrected with the half-wave plate. The method consists in comparing the 

acquired reflected signals PR (−45° + φ) and PR (45° + φ) (respectively the acquired transmitted signals 

PT (−45° + φ) with PT (+45° + φ)), then this angle is adjusted in order to equalize PR(±45° + φ) 

(respectively PT(±45° + φ)) which means that φ = 0. In this configuration, the volume depolarisation 

ratio is given by: δv= PS(0°)PP(0°) (A1)

where Pp is the incident signal coming from the atmosphere, with a parallel polarisation plane to the 

incident plane of the PBS cube, and Ps is the incident signal with a cross polarisation plane to the 

incident plane of the PBS cube. This means that the acquired signals PR and PT can be written as: PR(θ)=VR∙RS∙PS(θ) PT(θ)=VT∙TP∙PP(θ) (A2)

where VR (respectively VT) corresponds to the global transmission factor for the signal reflected 

(respectively transmitted) after the PBS cube (i.e., transmissions of the optic component after the PBS 

cube, quantum efficiency of the PMT and amplification on the acquisition channel), Tp and Rs are 
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respectively the global transmission coefficient of the parallel signal, and the global transmission of 

the cross signal, between the half-wave plate and the PBS cube. We consider as well that Rp = Ts = 0 

thanks to the polariser plates in front of the PMTs, which suppress the cross-talk of the PBS cube.  

At ± 45°, we have Ps(±45°) = Pp(±45°). So: δ*(±45°)=PR(±45°)PT(±45°) =VR∙RSVT∙TP  (A3)

which depends only on the transmission characteristics of the system. 

The ± sign means that the geometric average of the + 45° and −45° is used, so: δ*(±45°)=ටδ*(+45°)∙δ*(−45°) (A4)

The volume depolarisation ratio is obtained by replacing Ps and Pp in Equation (A1) by PR and PT 

from Equation (A2): δv = PRPT ∙ TP∙VTRS∙VR = δ*(0°)δ*(±45°) (A5)

which corresponds to the Equation (2). The relative transmission factor V*, which is the ratio VR/VT, 

is given by the Equations (A3) and (A4). 
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