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Abstract. Tropospheric ammonia (NH3) is a threat to the en-
vironment and human health and is mainly emitted by agri-
culture. Ammonia volatilisation following application of ni-
trogen in the field accounts for more than 40 % of the total
NH3 emissions in France. This represents a major loss of ni-
trogen use efficiency which needs to be reduced by appropri-
ate agricultural practices. In this study we evaluate a novel
method to infer NH3 volatilisation from small agronomic
plots consisting of multiple treatments with repetition. The
method is based on the combination of a set of NH3 diffusion
sensors exposed for durations of 3 h to 1 week and a short-
range atmospheric dispersion model, used to retrieve the
emissions from each plot. The method is evaluated by mim-
icking NH3 emissions from an ensemble of nine plots with
a resistance analogue–compensation point–surface exchange
scheme over a yearly meteorological database separated into
28-day periods. A multifactorial simulation scheme is used
to test the effects of sensor numbers and heights, plot di-
mensions, source strengths, and background concentrations
on the quality of the inference method. We further demon-
strate by theoretical considerations in the case of an isolated
plot that inferring emissions with diffusion sensors integrat-
ing over daily periods will always lead to underestimations
due to correlations between emissions and atmospheric trans-
fer. We evaluated these underestimations as −8 %± 6 % of
the emissions for a typical western European climate. For
multiple plots, we find that this method would lead to me-
dian underestimations of −16 % with an interquartile [−8–
22 %] for two treatments differing by a factor of up to 20
and a control treatment with no emissions. We further evalu-

ate the methodology for varying background concentrations
and NH3 emissions patterns and demonstrate the low sensi-
tivity of the method to these factors. The method was also
tested in a real case and proved to provide sound evaluations
of NH3 losses from surface applied and incorporated slurry.
We hence showed that this novel method should be robust
and suitable for estimating NH3 emissions from agronomic
plots. We believe that the method could be further improved
by using Bayesian inference and inferring surface concentra-
tions rather than surface fluxes. Validating against controlled
source is also a remaining challenge.

1 Introduction

Tropospheric ammonia (NH3) is mainly emitted by agricul-
ture and has great environmental impacts (atmospheric pollu-
tion, eutrophication, reduction of biodiversity), which are in-
creasingly taken into account in European and international
regulations (Council, 1996, 2016; UNECE, 2012). Ammo-
nia losses also have great agronomic and economic impacts
for farmers, as they reduce nitrogen use efficiency. The vary-
ing prices of mineral fertilisers and concerns about environ-
mental and health threats demand improvements in the effi-
ciency of nitrogen utilisation, and especially in recycling ni-
trogen through organic fertilisation (Sutton et al., 2011). In-
deed, NH3 volatilisation during storage of manure and slurry
and following their field application is the main source of
NH3 in Europe (55 % of the emissions) while farm building
emissions represent 45 %. In France, crop farming represents
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35 % of the emissions and animal farming represents 65 %
(CITEPA, 2017; ECETOC, 1994; EUROSTAT, 2012; Faburé
et al., 2011). Reducing NH3 losses from this agricultural sec-
tor is therefore a major objective for applied research.

While NH3 emissions from farm buildings and storage
can be handled by engineering solutions, losses during or-
ganic fertilisation are much more dependent on the combi-
nation of application methods (splash plate, band spreading,
pressurised injection, open and close slot injection, trailing
hose, and trailing shoe), soil type and occupation, and en-
vironmental conditions (soil humidity, air temperature, wind
speed, solar radiation) (Sommer et al., 2003). For instance,
Sintermann et al. (2012) report NH3 losses following cat-
tle and pig slurry application in the field ranging from a
few percent to 50 % over large fields and up to 100 % over
medium fields. Evaluating ammonia losses from field fertili-
sation over a range of practices and soil and climatic condi-
tions is therefore key in evaluating the best application meth-
ods.

However, characterising these emissions at the field scale
requires complex experimental design and most of the time
also requires the use of large fields (Ferrara et al., 2016, 2012;
Flechard and Fowler, 1998; Loubet et al., 2012; Milford et
al., 2009; Sintermann et al., 2011b; Spirig et al., 2010; Sun
et al., 2015; Whitehead et al., 2008). Especially useful for
measuring ammonia losses are methods that can deal with
small- and medium-scale fields (20–50 m on the side) that
are commonly used in agronomic trials. Indirect estimation
methods (soil nitrogen balance or 15N balance) are not well
adapted to evaluate gaseous ammonia losses, mainly because
of the soil heterogeneity and also because the method relies
on evaluating small variations of large numbers (McGinn and
Janzen, 1998). Among existing methods for measuring NH3
emissions, the integrated horizontal flux method (Wilson and
Shum, 1992) is well adapted, but is a subject of debate in
its practical application since it seems to be systematically
biased towards higher estimates (Häni et al., 2016; Sinter-
mann et al., 2012). Alternatively, enclosure methods proved
to be not representative for a sticky compound such as ammo-
nia (Pacholski et al., 2006), but more concerning is the fact
that ammonia fluxes result from an air-surface equilibrium
which is disturbed by the confined environment offered by
the chamber. Inverse dispersion modelling approaches either
based on backward Lagrangian stochastic models (Flesch et
al., 1995) or Eulerian models (Kormann and Meixner, 2001;
Loubet et al., 2001) or based on the Philip equation (Philip,
1959) have been demonstrated to be adapted for estimating
NH3 volatilisation from strong sources (Loubet et al., 2010;
Sommer et al., 2005).

These approaches are well adapted to small or medium
fields (≤ 50× 50 m2) but typically require hourly NH3 con-
centration measurements. Long-term concentration measure-
ments of NH3 are now well handled by the use of short-path
passive samplers developed by Sutton et al. (2001), or ac-
tive denuders, which have both been used for concentration

monitoring for years (Tang et al., 2001, 2009). These active
denuders can be adapted for measuring fluxes based on con-
ditional sampling like the conditional time-averaged gradient
method (COTAG) (Famulari et al., 2010), which is a use-
ful method but only adapted for large fields (≥ 0.5 ha). The
passive samplers have also been shown to be adapted for in-
verse modelling estimations of NH3 sources for large fields
(Carozzi et al., 2013b; Ferrara et al., 2014).

In another field of research, solutions to the multiple
source inference problem, which consists of inferring mul-
tiple sources based on measured concentrations at multiple
points in space and time, have been developed especially
since 2008 (Crenna et al., 2008; Gao et al., 2008; Gericke
et al., 2011; Mukherjee et al., 2015; Vandré and Kaupen-
johann, 1998). They have chiefly been used over regional
scales (Flesch et al., 2009; Lushi and Stockie, 2010; Yee and
Flesch, 2010), and have been shown to be very dependent
on the source-sensor geometry (Crenna et al., 2008; Flesch
et al., 2009; Wang et al., 2013). Mukherjee et al. (2015)
highlighted the dependency of the inferred source on back-
ground concentration and plot disposition by means of an
inverse footprint approach. Yee et al. (2008) have shown
how to retrieve the number, location and intensity of mul-
tiple sources with dispersion models coupled with Bayesian
inference methods. Yee and Flesch (2010) have evaluated the
inversion and inference methods for determining four point
sources using several laser transects. Flesch et al. (2009) have
shown that source–receptor geometry is critical in determin-
ing whether a multiple-source inversion problem can provide
realistic solutions or not. Flesch et al. (2009) have moreover
shown that if the geometry is well chosen the accuracy of
the method for a 15 min integration time can reach 10 to
20 %. These studies have also shown that the multiple source
inference problems can be solved if not ill-conditioned (ill-
conditioning depends on the location of sources and concen-
tration sensors and is characterised by a conditioning number
κ).

In this study, we pose the following research questions:
can inverse dispersion modelling approaches be used for in-
ferring NH3 emissions from multiple small plots (agronomic
trials) using passive samplers, and to which degree of accu-
racy? The answer is given through the investigation of the op-
timal design in terms of field dimensions, plot location and
size, passive sampler locations, and their duration of expo-
sure. Throughout this study, agronomic trials are considered
to be multiple small adjacent fields with repetitions of treat-
ments. A typical trial would consist of three repetitions of
three treatments. Hence the double challenge that we face
in this study is to consider both (i) the multiple-source infer-
ence issue (adjacent small fields) and the (ii) time-integration
issue (using passive samplers).

To answer these questions, we use a four-step approach:
(1) the ammonia emissions are first modelled on each source
using prescribed NH3 emissions potential dynamics coupled
with a simple soil–vegetation–atmosphere exchange scheme

Biogeosciences, 15, 3439–3460, 2018 www.biogeosciences.net/15/3439/2018/



B. Loubet et al.: A new method for estimating ammonia volatilisation from multiple plots 3441

to mimic realistic seasonal, daily and hourly variations in
NH3 emissions. (2) These prescribed emissions are then
used to estimate the concentration at each target location us-
ing short-range atmospheric dispersion modelling over half-
hourly periods. (3) The obtained concentrations are then av-
eraged over several integration periods to simulate the be-
haviour of passive samplers. Finally, (4) the sources are eval-
uated by inference with dispersion modelling based on the
averaged concentrations.

Two dispersion models and several inference methodolo-
gies are evaluated. The effect of the size of the source, the
locations of targets, the dynamics and magnitude of each
source, the meteorological conditions, and the background
concentration variability are evaluated and discussed. The
feasibility of the method is finally evaluated over a real case
with two repetitions of three treatments (slurry spreading, in-
jection and a reference without fertilisation).

2 Materials and methods

At first we present the theoretical background of source in-
ference by optimisation for single and multiple sources with
time-averaging concentration sensors. Then the method used
to generate a realistic ammonia source is introduced before
the description of the dispersion models used for both gener-
ating the concentration fields and inferring back the sources.
The geometry of the sources, sensor locations and the me-
teorological data used for this analysis are then shown, and
finally the real test case used for evaluating the method is
detailed.

2.1 The theory of the source inference method

At first we will recall some important theoretical features of
the inverse dispersion modelling approach, which is actually
an inference method.

2.1.1 Case of a single area source and a single
concentration sampler

We first consider the case of a single area source with a single
concentration sampler (target). The source varies with time.
The method is based upon the general superimposition prin-
ciple (Thomson et al., 2007), which relates the concentration
at a given location C(x, t) to the source strength S(t) and the
background concentration Cbgd(t) using a transfer function
D(x, t), which has the dimensions of a transfer resistance
(s m−1).

C(x, t)=D(x, t)× S(t)+Cbgd(t) (1)

Here x denotes the location of the sensor and t the time.
The concentration and source units are in µgN-NH3 m−3 and
µgN-NH3 m−2 s−1, respectively. The superimposition prin-
ciple implies that the studied tracer must be conservative,

which is a reasonable hypothesis for NH3 whose reaction
time with acids in the atmosphere is below the transport time
for spatial scales below 1000 m (Nemitz et al., 2009). More-
over, in Eq. (1), we assume a spatially homogeneous area
source with strength S(t). The spatial homogeneity of the
source is less trivial for NH3 than other gas released in agri-
culture as the source itself depends on the concentration at
the surface. However, Loubet et al. (2010) have shown that
the heterogeneity of the source can be neglected as long as
the dimension of the source is larger than 20 m. Hence, this
study is limited to source areas with fetch larger than 20 m
and a spread of the concentration samplers over a domain
smaller than 1000 m. Moreover, it is interesting to note that
for infinitely spread fields, the transfer resistance is linearly
linked to the transfer matrix (see Supplement Sect. S1)

2.1.2 Effect of time-averaging sensors on source
inference for a single source

Since we consider time-averaging concentration samplers,
we develop the time-averaged equation of Eq. (1) over an
integration time period τ :

C(x)=D(x)× S+Cbgd, (2)

where the overbars denote a time average over the period
τ . Similar to turbulent flux calculations, the first part of the
right-hand side of Eq. (2) is decomposed using the Reynolds
decomposition of a random variable (Kaimal and Finnigan,
1994), giving

C(x)=D(x)× S+Cbgd+D′ (x)S′, (3)

where D(x)′S′ is the time covariance between D(x, t) and
S(t). If the averaged background concentration Cbgd is a
known quantity, Eq. (3) can be easily manipulated to give
an estimation of the averaged source strength S, the quantity
we want to infer:

S =
C (x)−Cbgd

D(x)
(I)

−
D′ (x)× S′

D(x)
(II)

. (4)

In the right-hand side of Eq. (4), (I) can be calculated from
measured Cbgd and C(x) and D(x), which is itself calcu-
lated with dispersion models. Conversely, (II) is a priori un-
known and depends on the correlation between the source
strength and the transfer function D(x)′S′. Hence, if (II) is
neglected, the inferred source S is biased. The relative bias
of the method is then

δS

S
=
D′ (x)S′

D(x)× S
. (5)

Hence we show in Eq. (5) that time averaging leads to a rel-
ative bias which can be quantified by the time covariance be-
tween the transfer function and the source strength. However,
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this quantity is by nature unknown since the dynamics of S(t)
is unknown. DeterminingD(x)′S′ requires knowledge of the
source dynamics, which can be obtained from measurements
with a micrometeorological method. It can alternatively be
approached by modelling using state-of-the-art ammonia ex-
change processes as we do here.

In addition to the bias, which is term (II) in Eq. (4), evalu-
ating term (I) is encompassed with errors related to the uncer-
tainties in Cbgd, C(x) andD(x). In particular, cases in which
D(x) is small may lead to large errors in inferring the source
term S. This is linked to the conditioning of the inverse prob-
lem and is discussed in Supplement Sect. S2.

2.1.3 Case of multiple sources and multiple
concentration samplers with time averaging

If we generalise the approach to multiple sources and mul-
tiple receptors, then the transfer function becomes a matrix
D(xi,Sj , t), which is the contribution of source Sj to con-
centration at a target located at xi . For reading purposes we
simplify the matrix notation to Di,j . Equation (3) then be-
comes

 C1
...

CM

=
 D1,1 · · · D1,M

...
. . .

...

DN,1 · · · DN,M

×
 S1

...

SM



+Cbgd+

 D′1,1 · · · D′1,M
...

. . .
...

D′N,1 · · · D′N,M

×
 S′1

...

S′M

, (6a)

which in condensed notation gives

C(xi)= Di,j ×Sj +Cbgd+D′i,j ×S
′

j . (6b)

If the number of targets is equal to the number of sources, the
problem can be solved by inversion of a linear system. If the
number of targets is larger than the number of sources, the
problem is a multiple linear regression type with unknowns
Sj andCbgd. The third term on the right-hand side of Eq. (6b)
is a bias which is a priori unknown and which we will evalu-
ate in this study.

2.1.4 Source inference methods

The inferred sources, Sinferred
i , were derived from Eqs. (3)

or (6) assuming the covariance term (last term on right-hand
side) was null. The method used to infer the source was either
a simple division (Eq. 3) or an optimisation of the linear sys-
tem using the linear model function lm in R (package stats,
R version 3.2.3), with either M = 1 (single source) or M = 9

(multiple sources): D1,1 · · · D1,M
...

. . .
...

DN,1 · · · DN,M

×
 Sinferred

1
...

Sinferred
M

=
 C1

...

CN


−Cbgd. (7)

The bias δSi was then evaluated as the difference between
the inferred sources Sinferred

i and the modelled sources Sobs
i

averaged over each period:

δSi = S
inferred
i −Sobs

i . (8)

As shown in Eqs. (3) and (6) the overall mean bias δSi con-
tains (i) a bias term due to the inference method which is
dependent mainly on the conditioning of the matrix Di,j (see
Supplement Sect. S2) and (ii) a bias term which is intrinsi-
cally linked to the covariance between Di,j and Sj (Eqs. 3
and 6). Thus, with Eq. (8) we evaluate the sum of the two
biases without distinction. In order to infer the sources, the
elements of the dispersion matrix Di,j need to be determined.
The next part details how these were estimated with a disper-
sion model.

2.2 The dispersion model used for determining the
transfer matrix Di,j

The elements of the transfer matrix Di,j =D(xi,Sj , t),
which is by definition the concentration at location xi and
time t generated by a source Sj of strength Sj (t)= 1, were
calculated using a dispersion model. The FIDES-3D model
(Loubet et al., 2010), based on the analytical solution of the
advection–diffusion equation of Philip (1959) was used for
that purpose. This model was first compared with a backward
Lagrangian stochastic dispersion model (bLS, the Wind-
Trax software, Thunder Beach Scientific, Nanaimo, Canada;
Flesch et al., 1995), and successively tuned to mimic the
bLS. The two models and how the FIDES model was tuned
are briefly described hereafter and detailed in Supplement
Sects. S3 and S4.

The FIDES model is based on the Philip (1959) solution of
the advection–diffusion equation, which assumes power law
profiles for the wind speed U(z) and the vertical diffusivity
Kz(z) at height z. This approach also assumes no chemical
reactions in the atmosphere and spatial horizontal homogene-
ity of roughness length (z0), wind speed (U ), and vertical and
lateral diffusivity (Kz and Ky). The dispersion model is de-
tailed in Huang (1979) and Loubet et al. (2010). The details
of the model and the way the transfer function D(xi,Sj , t)
was estimated are detailed in Supplement Sect. S2.

The Schmidt number, which is the ratio of momentum to
scalar vertical diffusivity Sc =Kmz/Kz, is key in disper-
sion modelling, as it determines the vertical diffusion rate
of scalars. Wilson (2015) demonstrated that bLS and disper-
sion models like FIDES give different values of Sc by con-
stitution. In order to assure consistency of the Philip (1959)
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approach with bLS models, considered as references in dis-
persion modelling, we chose to tune the Philip (1959) model
to get the same Sc number as in WindTrax as described
by Flesch et al. (1995). The details are given in Supple-
ment Sect. S4. The comparison showed that the tuned FIDES
model gives very similar concentrations to WindTrax at mea-
surement heights lower than 2 m above the source, although
slightly overestimated under stable and neutral conditions
and slightly underestimated under unstable conditions. The
correlation between the two models is however very high
(R2
≥∼ 0.96), meaning that using the tuned FIDES model

to characterise source inference performance will lead to re-
sults comparable to WindTrax. Moreover, since in this study
the same model is used for predicting and for inferring the
fluxes, the results are self-consistent.

2.3 Ammonia sources from simple SVAT modelling
and prescribed emissions potentials

In order to evaluate the bias introduced by time averag-
ing the concentrations when inferring single or multiple
sources (third term in Eqs. 3 and 6), we generated NH3 emis-
sions patterns mimicking the behaviour of real sources as
closely as possible. With that goal, we used the SurfAtm-
NH3 model developed by Personne et al. (2009) for two pur-
poses: (i) evaluating the turbulence parameters (the friction
velocity u∗ and the Monin Obukhov length L) from the me-
teorological datasets to parameterise the dispersion models,
and (ii) providing the surface temperature T (z0) and the sur-
face resistances in order to calculate ammonia emissions pat-
terns.

The SurfAtm-NH3 model is a one-dimensional, bidi-
rectional surface–vegetation–atmosphere transfer (SVAT)
model, which simulates the latent (LE) and sensible (H ) heat
fluxes, as well as the NH3 fluxes between the biogenic sur-
faces and the atmosphere. It is a resistance analogue model
separately treating the vegetation layer and the soil layer,
and coupling a slightly modified (Choudhury and Monteith,
1988) model of energy balance and the two-layer bidirec-
tional NH3 exchange model of Nemitz et al. (2000) with a
water balance model. Unless otherwise stated, the surface
was considered a bare soil with z0 = 5 mm, displacement
height (d)= 0 m, and leaf area index (LAI)= 0.

The ammonia emissions patterns were modelled using the
resistance approach and assuming atmospheric concentration
was zero, which is a reasonable assumption following ni-
trogen application and leads to patterns mimicking reality,
which is what we are seeking here:

F =
Cpground

Ra (zref)+RbNH3

. (9)

Here Ra (zref) is the aerodynamic resistance at the refer-
ence height zref = 3.17 m, and RbNH3 is the soil boundary
layer resistance for ammonia as described in Personne et
al. (2009). The ground surface compensation point concen-

tration (Cpground) was expressed as a function of 0, the ratio
of NH+4 to H+ concentrations in the soil liquid phase at the
surface, as in Loubet et al. (2012):

Cpground =Kh {T (z0)}×Kd {T (z0)}×0

= 0× 10−3.4362+0.0508 T (z0), (10)

whereKh andKd are the Henry and the dissociation constant
for NH3, respectively, and T (z0) is the soil surface tempera-
ture. Since we wanted to evaluate the correlation between the
transfer function Di,j and the source strength Sj , which is the
bias in the inference problem (Eq. 6), the NH3 volatilisation
was modelled to reproduce the variety of existing kinetics of
NH3 emissions from fields. With that goal, three 0 patterns
were simulated:

1. a constant 0 = 00, which would mimic background
NH3 emissions from soils;

2. an exponentially decreasing 0 = 00 exp(−4.6t/τ0),
which best represents NH3 emissions following slurry
application;

3. a Gaussian 0 = N(00,σ0), which would represent the
typical NH3 emissions following urea application.

Here 00 is the maximum 0 during the period, t is the time in
days, and τ0 is the duration of the emissions in days. The
factor 4.6 was chosen so that when t = τ0, 0 goes down
to 1 % of 00. The duration of the emissions was chosen to
be 4 weeks, τ0 = 28 days. The timescale of the exponential
decrease we used here was around 6 days, which is twice
as large as the one reported by Massad et al. (2010) for
slurry application (2.9 days). While these 0 patterns gave
the weekly trend of NH3 emissions, the daily patterns were
produced by the thermodynamical and turbulence drivers of
NH3 emissions, which were explicitly taken into account
through the compensation point (Eq. 10). To facilitate un-
derstanding, in most of the paper only the constant 0 was
considered, and the effect of modifying the source strength
was evaluated in a sensitivity study.

2.4 Spatial set-up of the sources and concentration
sensors

The sources (plots) were considered to be squares with width
xplot and aligned south–north. Two configurations were con-
sidered: (1) a single-source configuration and (2) a multiple-
source configuration, which mimics typical agronomic trials
with nine sources (plots) placed next to each other, with three
treatments of three repetitions each. Each treatment was as-
signed a value of 00 different from the others, while the three
repetitions of the same treatment were assigned the same
value of 0. The concentration sensor (receptors) locations,
xi , were set in the middle of each plot, at several heights zi .
(Fig. 1).

www.biogeosciences.net/15/3439/2018/ Biogeosciences, 15, 3439–3460, 2018
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Figure 1. General scheme of the source receptor locations for (a) a single source and (b) multiple sources. (c) “Optimum” plot layout used
for the multiple-source configuration.

A number of plot sizes (xplot = 25, 50, 100 and 200 m on
the side), and receptor heights (zi = 0.25, 0.5, 1 and 2 m),
were tested successively. Several source strengths and dy-
namics were also tested: 0 was first considered constant
with time (pattern 1) in all the plots, and the 00 values of
each of the three treatments were either chosen to be signif-
icantly different in strength (104, 105, 106), or of the same
order of magnitude (1000, 2000, 4000). Then the three 0
patterns (constant, exponential and Gaussian) were randomly
assigned to the treatments for each simulation period. The
ammonia background concentration, Cbgd, was considered
constant and equal to 1 ppb except when studying the sen-
sitivity of the inference method to the background concen-
tration, where it was set as unknown. Throughout this study,
an “optimum” block configuration was considered (shown
in Fig. 1c), which avoided trivial configurations like aligned
blocks and maximised the mean distance between blocks as
in a Latin-square design.

2.5 Simulation details

2.5.1 Meteorological data and fertiliser application
periods

A range of meteorological conditions were simulated based
on the half-hourly meteorological data of the FR-Gri ICOS
site in 2008. In total 13 periods of 28 days were considered,
which spanned the whole year except the last 2 days of the
year. Each period consisted of 1344 half-hourly data.

2.5.2 Concentration sensor integration periods

In order to evaluate the influence of the concentration av-
eraging period on the source inference, several integration
periods τ were tested: 0.5 (no integration), 3, 6, 12, 24, 48
and 168 h (7 days). In practice the concentrations were com-
puted at each sensor location using Eq. (6) over 0.5 h: at that
timescale, which corresponds to the spectral gap, the covari-
ance term is assumed to be negligible (Van der Hoven, 1957).
Then the averaged concentrations were computed for all in-
tegration periods.

2.5.3 Sensitivity to inferential method scenarios

Several scenarios were considered and summarised in Ta-
ble 1.

1. The background concentration Cbgd was either sup-
posed known and fixed to the prescribed values (C1–C4)
or was inferred (C5–C7).

2. The three repetitions of each treatment were either sup-
posed to have the same source strength (C2, C4, C5,
C6) or they were inferred independently (C1, C3, C7).
In C2, C4, C5 and C6, Si = Sm for all i and m values
belonging to the same treatment. In practice a new dis-
persion matrix was calculated by averaging together all
columns belonging to the same treatment (matrix di-
mension N × 3). Three strength values of S were in-
ferred to be tested.

3. Either one concentration sensor at each source location
(zi) was considered (C1, C2, C5) or two sensors po-
sitioned at two heights were considered (C3, C4, C6,
C7). All the measurement heights and their combina-
tions were considered.

2.6 Statistical indicators

For each run the mean bias (BIAS) and the normalised mean
bias (NBIAS) were calculated as BIASi = 1

Nτ

∑
τ

δcumSi ,

NBIASi = BIASi

/(
1
Nτ

∑
τ

cumSobs
i

)
, where Nτ is the

number of the time-averaged samples over each 28-day pe-
riod and cumSi and cumSobs

i are the inferred and observed
cumulated fluxes over the same period. The medians and in-
terquartiles of these statistical indicators were then calculated
over the 13 periods of 28 days for 2008.

2.7 Real experimental test case

In order to evaluate the feasibility of the method we ap-
plied it to a real test case (Fig. 2). The trial was located
at La Chapelle Saint-Sauveur in France (47◦26′44.1′′ N,
0◦58′50.7′′W) and performed from 5 to 26 April 2011. Soil
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Table 1. Scenarios tested for inferring the sources and background concentration.

Strategy Number of Plots∗ have same source Background Note
sensors strength in a given treatment concentration

C1 1 No Known Each block is considered independently
C2 1 Yes Known Each block is considered equal
C3 2 No Known Identical to C1 except for the number of sensors
C4 2 Yes Known Identical to C2 except for the number of sensors
C5 1 Yes Unknown Identical to C2 except for the background concentration estimation
C6 2 Yes Unknown Identical to C4 except for the background concentration estimation
C7 2 No Unknown Identical to C3 except for the background concentration estimation

∗ Each treatment has three plots (repetitions).

texture was loamy with a pH in water of 6.2 and a bulk den-
sity of 1.4 t m−3 in the first 15 cm. The experimental unit was
composed by six squared subplots 20 m wide with two rep-
etitions of three treatments: (1) surface application of cat-
tle slurry, (2) surface application and incorporation of the
same slurry, and (3) no application. Slurry pH was 7.5 with
a dry matter (DM) content of 6.05 % and C : N ratio of 10.4
and it contained 38.4 g N kg−1 (DM) as total nitrogen and
13.2 gN-NH4 kg−1 (DM) as ammoniacal nitrogen. Slurry
was applied on 5 April 2011 at a rate of 49 m3 ha−1, which
led to 114 kg N ha−1 and 39 kgN-NH4 ha−1. The application
was identical between the two repetitions with a small stan-
dard deviation (< 0.2 kg N ha−1). The incorporation was per-
formed in two subplots 1 h after the end of the slurry spread-
ing with a disc harrower at a depth of 0.10 m. The soil hu-
midity between 0 and 5 cm depth was homogeneous over
the blocks and decreased from 20± 1 to 17± 1 % w/w be-
tween the start and the end of the experiment. Meteorolog-
ical data were measured at less than 50 m from the central
plots (Fig. 2). Air temperature, relative humidity, global solar
radiation, wind velocity and direction were recorded every
30 min at 2 m height. The turbulence parameters (u∗ and L),
input of the dispersion models, were evaluated with a sim-
ple energy balance model of Holtslag and Van Ulden (1983)
assuming a Bowen ratio of 0.5 and a deep soil temperature
equal to the averaged ambient temperature. Ammonia con-
centration was measured with diffusive samplers (ALPHA),
(Sutton et al., 2001; Tang et al., 2001, 2009), which were
placed at the centre of each subplot at two heights (0.32 and
0.87 m from the ground) as well as next to the assay at three
locations (5 m away from the plots) at 3 m height. The AL-
PHA samplers were set in place just after slurry application
and incorporation (between 14:20 and 14:50 LT) and left ex-
posed subsequently for 3, 22, 23, 23, 71 h (3 days) and 359 h
(15 days), hence spanning 21 days. The diffusive samplers
were prepared prior to the experiment, stored at 4◦ C in a re-
frigerator and analysed by colorimetry. Since no background
concentrations were measured at a reasonable distance from
the field, the background concentration was assumed as the
minimum over the whole period of the concentrations mea-
sured on the 3 m height masts.

Figure 2. Scheme of the real experimental test case performed on
six subplots with three treatments and two repetitions. Cattle slurry
was either applied on the surface or incorporated. The concentra-
tion sensor and meteorological station locations are shown on the
scheme.

3 Results and discussion

3.1 Meteorological data range and simulated ammonia
sources

The meteorological conditions over the 13 periods repre-
sented a good sample of temperate climate conditions. The
friction velocity u∗ varied between 0.024 and 1.181 m s−1,
and the stability parameter z/L at 1 m height varied between
−49 and 21 (Fig. 3). It is noticeable that u∗ showed greater
variability during the winter than during the summer, while
it was the opposite for z/L. The surface temperature also
showed a structure varying between periods, with a larger
temperature range during the summer (from 5.7 to 50.4 ◦C)
than during the winter (from −5.2 to 22.9 ◦C). This surface
temperature variability is an essential feature to representing
real-case ammonia sources (Sutton et al., 2009), which shows
a variability reflecting both the surface temperature and the
resistance variations (Eqs. 9 and 10).

3.2 Example ammonia concentration dynamics
modelled with the tuned FIDES model

The modelled ammonia concentrations reproduced typical
patterns measured above field following nitrogen applica-
tion well, with maximum concentrations during the day and
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Figure 3. Footprints of measured u∗ (a), z/L at 1 m height (b), T (z0) (c) and wind direction (d) for the hour of the day and the 13 considered
periods over the year 2008 at the FR-Gri ICOS site. The modelled ammonia source is also reported (e) according to Eqs. (9) and (10) over
the same period with an emissions potential 0 = 10 000.

minimum concentrations at night (Fig. 4). These patterns are
a consequence of daily variations of the sources driven by
surface temperature combined with variations in the aero-
dynamic transfer function Di,j , which behaves similarly to
a transfer resistance (see Supplement Sect. S1). The inte-
gration periods are also shown in Fig. 4, which illustrates
the progressive loss of information of the pattern structure
with integration periods. Particularly, it can be seen that the
day-to-night variation is captured up to an integration pe-
riod of 6 h. Moreover, it should be noted that averaging also
means overestimating lower concentrations and underesti-
mating higher concentrations.

3.3 Evaluation of the inference method for a single
source and a single sensor

At first we evaluate the bias of the inference method for the
simpler case of a single source and a single sensor placed in
the centre of the source field at several heights, assuming we

know the background concentration (strategy C1; Fig. 1a).
This case has the advantage of having a condition number
equal to 1 (Supplement Sect. S2 and Eq. S1) and a bias δS
which is well defined and equal to −D

−1
×D′S′ (Eq. 8).

This section hence focuses on evaluating the influence of sen-
sor height, time integration and source dimension on the bias
without dealing with the complexity of the interactions be-
tween multiple fields.

3.3.1 Example of inferred source dynamics

Figure 5 reports an example source inference, which shows
the progressive smoothing of the source with integration
period. We first see that the source strength correspond-
ing to 0 = 105 leads to ammonia emissions ranging from
0 to ∼ 1 µgNH3 m−2 s−1 in the winter, which corresponds
to 0.71 kg N ha−1 day−1. Over the entire year, the maximum
emissions occur during the hottest days and reach up to
7.1 kg N ha−1 day−1. Regarding the inference method, it can
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Figure 4. Example modelled concentration pattern at 1 m above a single 50 m width source for several averaging periods (0.5, 12 and 168 h)
for the month of July 2008. The source 0 was set to 105. The y axis is log scaled.

be seen in that example that, up to 24 h, the variability in
emissions over the period is captured quite well.

3.3.2 Effect of target height, source dimension and
integration period on the bias δS for
a single source

In this simpler case shown in Fig. 6, the fractional bias of
the inferred emissions is mostly negative for the combina-
tion in which the ratio of sensor height to plot dimension is
small and integration times are larger than 6 h. According to
Eq. (5), this means that the covariance term D′S′ is nega-
tive for these conditions, meaning that any increase in source
strength S at a time t is correlated with a decrease in the
transfer functionD(t)and vice versa. This is expected as S(t)
increases with the surface temperature (Eq. 10) and is propor-
tional to

[
Ra (zref)+RbNH3

]−1 (Eq. 9), while D(t) is pro-
portional to the aerodynamic resistance Ra(zref), as shown
in Supplement Sect. S1. Hence, over daily periods, S and D
are negatively correlated: S increases during the day and de-
creases at night (due to temperature and wind speed daily
patterns), while D decreases during the day and increases at
night (mainly due to wind speed patterns). This is expected
to be a general feature for NH3 surface fluxes as the daily
variability reproduced by the model used in this study is rep-
resentative of most situations from mineral and organic fer-
tilisation to urine patches or seabird colonies (Ferrara et al.,
2014; Flechard et al., 2013; Milford et al., 2001; Móring et
al., 2016; Personne et al., 2015; Riddick et al., 2014; Sutton
et al., 2013).

The median bias δSi tends to increase in magnitude with
the sensor height for large fields (xplot = 100 and 200 m),
while it decreases for smaller fields (xplot = 25 and 50) when
sensor height gets close to the field boundary layer height.
Furthermore, δSi becomes positive and very large when sen-
sors are above the field boundary layer height (Fig. 6). For
large fields, the increase in the magnitude of the bias with
lower sensor height is expected as D decreases with height
in absolute value. For small fields, the decrease in the bias
corresponds to a loss of information as D gets close to zero
when the sensor gets closer to the field boundary layer height.
For heights above this limit, we observe a change in sign of
the bias, which can be explained by the fact that the sen-

sor concentration footprint is not in the source during stable
conditions (at night), while it is in the source under unstable
conditions during the day. The inference method will hence
not work if at least one sensor is not below the plot boundary
layer height.

We also note that for integration periods equal to or below
3 h, the fractional bias is slightly positive, which can be ex-
plained by the positive correlation between S and D at small
timescales. This is because of the influence of u∗ on T (z0):
for a given solar radiation and air temperature over small
timescales (< 3 h), an increase in u∗ leads to a decrease in
T (z0), which leads to an exponential increase in the surface
compensation point according to Eq. (10). However, at the
same time, Ra(z)

−1 decreases, but linearly with u∗. The re-
sulting ammonia emissions calculated with Eq. (9) neverthe-
less increases because the exponential effect of temperature
overcomes the linear effect of the exchange velocity (data
not shown). This effect is more visible for large fields than
small fields because over small fields an additional effect is
that when u∗ decreases, the footprint increases and the source
“seen” by the targets hence decreases because it incorporates
a fraction of zero emissions sources.

Overall, the median fractional bias for weekly integrated
emissions over a 25 m field and sensor heights below 0.5 m
was overall −8 % with an interquartile (−14 to −2 %). We
can conclude that the bias of the NH3 emissions is repro-
ducible within ±6 %. We can also conclude that it would be
better to place the concentration sensor at a low height to
minimise the bias of the method.

3.3.3 Effect of surface boundary layer turbulence on
the inference method for a single source

The inference method depends on the turbulence at the site
and especially on the main drivers of the dispersion, which
are the friction velocity and the stability regime. Indeed,
Fig. 7 shows that the relative root-mean-square residual of
the inferred source (RRMSR) decreases with increasing u∗
at long integration periods and is larger in slightly stable than
near-neutral or slightly unstable conditions. Figure 7 also
shows that under stable conditions or low u∗ the RRMSR
increases by more than an order of magnitude (up to 50 %)
when integration periods increase from 6 to 12 h, which
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Figure 5. Example source inference for a 25 m width square field and a concentration sensor placed at 0.5 m above ground. Here 0 = 105

and is set to constant (pattern 1). The seven integration periods are shown: 0.5 to 168 h. The x axis shows the day of year and corresponds to
a span over November. The prescribed source is in black (Obs.) and the inferred one in red (Pred.).

Figure 6. Fractional bias of inferred cumulated ammonia emissions for a single squared field with a lateral dimension of (xplot) 25, 50, 100
or 200 m and sensor heights (h) 0.25, 0.5, 1 and 2 m, as a function of sensor integrating periods. The points show the median, the boxes the
interquartile, and the whiskers the maximum and minimum over the 13 application periods.
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Figure 7. Relative root-mean-squared error as a function of integration period for stability factor and friction velocity classes for a single
25 m side field. Medians and quartiles are given for equally sized bins of u∗ and 1/L and for the lowest sensor height (0.25 m). The blue,
pink and green curves are the third, second and first quartiles, respectively.

catches most of the source variance. We also see that un-
der near-neutral or high u∗ conditions, the third quartile of
the RRMSR remains below 10 % for all integration periods.
Finally, we also see that the larger third quartiles at short in-
tegration periods are obtained with intermediate u∗ values or
slightly unstable conditions. A similar response of the bias
to u∗ and 1/L was reported by Fig. 6 in Flesch et al. (2004)
and Fig. 3 in Gao et al. (2009) in controlled source exper-
iments. While Gao et al. (2009) attributed the bias of the
inference method to parameterisation of the stability depen-
dence of the turbulent parameters (z/L), in this study this
cannot happen since we use the same parameterisation for
prescribing the concentration and inferring it. In our case,
the interpretation is to be linked with Eq. (5): the smaller
u∗ or the most stable conditions also correspond to the larger
time derivatives of source strength (driven by surface temper-
ature and surface exchange resistances) as well as the larger
time derivatives of transfer functionD. We hence expect that
under such conditions, the covariance between the transfer
function and the source strength will be larger than under
near-neutral conditions. In a more heuristic view, under low
turbulence, large time derivatives of concentrations are ex-
pected above a source due to low mixing (small changes in
mixing lead to large variations in concentrations).

We conclude that the inference method with a long inte-
gration period will lead to very moderate biases for loca-
tions with near-neutral conditions and high wind speed, but

may lead to much larger bias under stable conditions and low
wind speed as soon as the integration period reaches 12 h.

3.4 Multiple-source case

In contrast to the single-source case, with multiple sources
(see Fig. 1b) the inference method leads to biases at small
integration times as can be seen in the example reported in
Fig. 8. In that specific case, the emissions of treatments 2
(0 = 105) and 3 (0 = 106) are 10 times and 100 times larger
than those of treatment 1 (0 = 104), respectively. This leads
to concentrations over plots of treatment 1 (and to a lesser
extent over those of treatment 2) being highly correlated to
emissions from plots of treatment 3 (and hence less with sub-
plots of treatment 1). As a result, inferring emissions of plots
of treatment 1 becomes harder as soon as averaging peri-
ods become larger or equal to 3 h. This can be viewed as a
progressive loss of information of the treatment 1 contribu-
tion to concentrations due to the overweighing contribution
of treatment 3 plots. However, we also see that treatments
2 and 3 seem quite correctly inferred for integration times
smaller than 48 h.

In the following we will first evaluate the influence of
the length of integration periods, sensor heights and plot di-
mensions on the fractional biases made when inferring the
source. Each factor will be evaluated independently of the
others in order to understand the processes behind it. For
these evaluations background concentration was kept con-
stant at 1 µgNH3 m−3. Strategy C1 was used except when
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Figure 8. Example result of multiple plot case inference. Black curves: observations; red dots: inferred sources. (a) Treatment 1, 0 = 104.
(b) Treatment 2, 0 = 105. (c) Treatment 3, 0 = 106. Missing red dots are out of the y-scale boundaries. Example plots from treatments 1, 2
and 3 are shown from left to right. The period is the same as in Fig. 7 (November 2008 for the FR-Gri ICOS site), and emissions are up to
1, 10 and 100 µgNH3 m−2 s−1 for the three emissions potentials. Strategy C7 with target heights 0.25 and 1 m, and source width 25 m on a
side.

testing sensor heights, for which strategy C3, which uses two
targets, was also used. These two strategies assume that the
background concentration is known, which avoids any com-
pensating effects between source and background concentra-
tion inferences. Then the sensitivity of the methodology to
the (i) emissions ratios between two of the three treatments
and (ii) the variability in the background concentration were
evaluated. Finally, seven inversion strategies were compared
to determine which was the most robust (Table 1).

3.4.1 Effect of integration periods on the bias

We first consider strategy C1, which is the simplest con-
figuration, in which plots are independent, background con-
centration is known and one target is used above each plot.

Figure 9 shows that for the given treatment range (∼ 1–
100 µg NH3 m−2 s−1), the fractional mean bias is lower than
0.2 in magnitude for the treatment emitting the most (treat-
ment 3, 0 = 106), lower than 0.4 for the intermediate treat-
ment (treatment 2, 0 = 105) and up to 8 for the treatment
emitting the least (treatment 1, 0 = 105); here we consid-
ered the 0.25–0.75 quantiles. The bias of the highest treat-
ment (treatment 3) actually behaves similarly to a single-
source case (Fig. 6), with a median bias around 10 % for
48 h integration periods. This is expected because treatment 1
and treatment 2 have a much smaller emissions strength and
hence little influence on the concentration above the treat-
ment 3 plots, which therefore behave in a similar manner to
a single source. As a consequence, this bias in treatment 3 is
mainly due to the anti-correlation between D and S, which
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Figure 9. Effect of integration period on source inference in a multiple-plot set-up. The fractional mean bias of the source is shown for each
treatment. Inference strategy C1 was used (single sensor, independent blocks, background concentration known). Statistics for runs with
target heights 0.25 and 0.5 m and a source width= 25 m are calculated. All application periods are considered. Filled points show medians,
boxes show interquartiles, and bars show minimums and maximums. Outliers are points up to 1.5 times away from box limits.

Figure 10. Effect of target heights on source inference in a multiple-plot set-up for integration periods of 1 week (168 h). Same as the case
reported for Fig. 9 except that strategies C1 (with a single sensor, top graphs) and C3 (with two heights, bottom graphs) are compared here
(the background is assumed known in both strategies).

increases with integration periods. The fractional mean bias
is very large for treatment 1 even for small integration peri-
ods. The bias can either be positive or negative, showing that
this method does not allow for a correct estimation of the
smallest sources.

3.4.2 Effect of target heights on the bias

Figure 10 shows that the bias remains low as long as sensor
heights are low enough to catch a sufficient part of the field
footprint. When only a single height is used (strategy C1) this
means that the sensor should be placed at 0.5 m or below for
the field size we have tested here (25 m). The result is similar
for a pair of sensors (strategy C3). For the lowest treatment
though, the bias (and its variability) remain high whatever the
height. It is interesting to notice that the heights which were

found to provide an optimal inference of NH3 sources (below
0.5 m) are smaller than ZINST (the height at which the verti-
cal flux can be approximated by the horizontal flux) reported
by Wilson et al. (1982) (which were 0.9 m for 40 m diameter
circular sources, and which we estimate as 0.65 m based on a
power law extrapolation as in Laubach et al., 2012). It is also
important to note that this height should vary with both the
roughness length z0 and displacement height as was shown
by Wilson et al. (1982) for ZINST.

3.4.3 Effect of plot size on the bias

Increasing the plot size from 25 to 200 m in width reduces the
bias of the two highest source treatments for which the me-
dian bias reaches values around 10 %, while the interquartiles
remain stable (Fig. 11). Conversely, in treatment 1 (0 = 104),
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Figure 11. Effect of plot size on source inference in a multiple-plot set-up for integration periods of 168 h and target heights of 0.25 and
0.5 m. Same as in Fig. 8.

the bias increases. It is expected that the bias in a multiple-
source configuration never becomes smaller than the bias in
a single-source problem, which is a limit linked to the time
integration (covariance between the source and the concen-
tration; see Eqs. 3 and 6). It is also expected that the biases
remain higher than the single-source case until the source
size increases sufficiently so that the concentration generated
by a block on the neighbour fields becomes negligible com-
pared to the concentration generated by the source below.
This is what we observe in treatment 2 (0 = 105) and treat-
ment 3 (0 = 06), with treatment 2 showing a median bias of
−13 % (larger than in the single-source case) for the 200 m
wide field, while the bias of the largest source tends to be
−10 % [−17 %, −1 %], which is the range observed for a
single source.

3.4.4 Sensitivity of the method to ratios of emissions
potentials among treatments

A central question is the capability of the inference method
to resolve small or large differences in emissions from the
nearby blocks. Indeed, we can speculate that small differ-
ences will be hard to resolve while large differences will lead
to large bias. In order to determine the resolution power of
the method, we compared the performance of the inference
method with a set of three treatments: the first treatment had
0 = 0 to mimic a reference field receiving no nitrogen; the
second treatment had a constant 0 = 1000 corresponding to
a small emissions (0.7 kg N ha−1 day−1), and the third treat-
ment 0 was successively set to increasing values from 1500
to 105 (70 kg N ha−1 day−1). In this section we consider the
background to be known (sensitivity to the background con-
centration will be evaluated in the next section).

Figure 12 shows the median and interquartile biases of
the cumulated emissions for the longest integration period
of 168 h over the ratio of the high-to-low source treatments.
The bias of the largest source always remained around 14 %,
which is larger than the single-source case. The bias of
the lowest source increased with increasing inter-treatment
source ratios from 13 to 40 %. In fact we find that the
fractional bias increased approximately as a power func-

Figure 12. Median fractional bias of cumulated emissions as a func-
tion of the ratio of the high-to-low source treatments for a 7-day
integration period. (a) Bias as a function of the theoretical source
ratios. (b) Bias as a function of the predicted source ratios. Dotted
lines show power function regressions on medians (green) and in-
terquartiles (blue). Strategies C1 and C3 are pooled together with
all runs including sensor heights 0.25 and 0.5 m.

tion of the ratio of the two predicted sources (dotted lines,
0.11 x0.256).

3.4.5 Quality of background concentration estimations

As pointed out by Flesch et al. (2004), the knowledge of
the background concentration is essential in a source infer-
ence problem. Retrieving the background necessitates having
at least Nsources+1 sensors. Hence only strategies with two
heights per plot or which assume identical emissions in treat-
ment repetitions can be evaluated in their capacity of retriev-
ing the background (strategy C2 to C7). In order to evaluate
the sensitivity of the method when the background concen-
tration varies with time, we set a realistic background con-
centration as a linear combination of u∗ and air tempera-
ture (Ta) with a mean of 6 µgNH3 m−3 and a standard de-
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Figure 13. Background concentrations prescribed (Observation) and inferred using strategy C7 and height combination (0.25, 2 m): (a) effect
of the treatment contrasts for a short integration period of 6 h (treatments 1, 2 and 3 are given); (b) effect of integration period for contrasted
treatments (0 = 0, 1000, 10 000); (c) effect of integration period for similar treatments (0 = 0, 1000, 1500).

viation of 0.1 µgNH3 m−3. This test was performed with a
range of treatments in order to elucidate the correlations be-
tween varying background and varying treatments. We see in
Fig. 13 that the concentration, which follows a realistic pat-
tern, is well retrieved even over the longest integration period
of 168 h. However, we see that for the treatments with the
largest source contrast (0 = 1000 and 105), the background
concentration can be overestimated even for small integration
periods (6 h). The median residual of the background con-
centration was smaller in magnitude than 0.05 µgNH3 m−3,
except for the case with very large differences among treat-
ments (0, 1000, 10 000), for which the residual reached 0.1
and 0.5 µgNH3 m−3 for the 6 h and 24 h or 168 h integration
periods. Furthermore, the background concentrations were
overestimated for the largest source ratios and underesti-
mated for the lowest source ratios and longer integration pe-
riods (24 and 168 h).

3.4.6 Identifying the most robust strategy

Finally, to identify which strategy is the most suitable for re-
trieving the emissions from the multi-plot configuration, we
compared all strategies for a simulation with a variable back-
ground (set as in the previous section) and two source ratios
of 2 and 20 between treatments 2 and 3 (treatment 1 being
a zero-source reference). We found, as expected, that strate-

gies with known backgrounds have low biases compared to
strategies that calculate the background, except for strategy
C7, which provided biases similar to strategy C3, which is
the strategy equivalent to C7 but with a known background
(Fig. 14). We also see that incorporating some knowledge
of the sources by assuming plots from the same treatment
have the same emissions gave slightly better estimates when
the background is known (strategies C2 and C4 compared to
C3). This is however not true when the background is un-
known, in which case the magnitude of the bias increases
up to a median of 0.7 (strategies C5 and C6 compared to
C7). It is due to compensation between background concen-
tration and source strength as we have seen in Fig. 14 that the
background concentration was overestimated in such cases.
We also see, as expected, that the strategies with two sensors
placed at different heights above each plot lead to better eval-
uations of the emissions. Overall, the strategy based on two
sensors above each plot, which also assumes that sources are
independent, seems to be the most robust (strategy C7). This
strategy does not assume the background is known, nor does
it assume the plots have similar emissions, which is more
adapted to reality. Indeed, even though the same amount of
nitrogen is applied in each repetition plot, the emissions may
vary due to soil heterogeneity and advection. We finally ob-
tain a median bias for strategy C7 which is−16 % with an in-
terquartile [−8–22 %]. It is important to stress though that the
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Figure 14. Comparison of biases for all source inference strategies. In strategies C2, C3 and C4 we hypothesise that we have perfect
knowledge of the background concentrations, while in strategies C5, C6 and C7 background concentrations are inferred together with the
sources. In strategies C2, C4, C5 and C6 (red rectangles) we suppose that plots from the same treatment have the same emissions, while
in strategies C3 and C7 we infer each plot separately. In strategies C2 and C5 we assume single sensors are placed above each plot (blue
shades), while in strategies C3, C4, C6 and C7 we assume two sensors are placed above each plot.

minimums and maximums are further away, which indicates
that under some rarer circumstances, the method may over-
estimate the sources by 12 % or underestimate them by 40 %.
These cases correspond to integration periods with very low
wind speeds and stable conditions.

3.5 Application of the methodology to a real test case
with multiple treatments

The evaluation of the methodology on a real test case is
shown in Figs. 15–17. The concentration measured above
the surface-applied slurry (up to 200 µgN-NH3 m−3) is much
higher than above the two other treatments (below 50 µgN-
NH3 m−3) (Fig. 15).

The inference method gives very consistent results both in
terms of comparison between repetitions (B1 and B2) of a
given treatment and in terms of comparison between treat-
ments (strategy C7 shown in Fig. 16). Surface slurry ap-
plication showed the largest emissions: 9± 0.3 kg N ha−1 in
B1 and 10± 0.2 kg N ha−1 in B2 (median and confidence
interval). This corresponds to an emissions factor around
24 % of the N-NH4 applied and 8 % of the total N applied,
which is in line with agronomic references (Sintermann et al.,
2011a; Sommer et al., 2006). In contrast, the incorporated
slurry showed much smaller emissions: 0.3± 0.2 kg N ha−1

in B1 and 0.6± 0.2 kg N ha−1 in B2. It is noticeable that
no application showed slight deposition, especially in B2:
−0.26± 0.2 kg N ha−1 in B1 and −1.7± 0.2 kg N ha−1 in
B2.

Comparing the inference strategies is instructive (Fig. 17).
We see that in methods which assume a known background
(strategies C3 and C4), the inferred emissions are slightly
higher than when background is assumed unknown. We
should state that we set the background concentration to the

minimum concentration measured on the 3 m height masts
because these were located too close to the plots to be con-
sidered real background masts. This explains why strategies
C3 and C4 lead to higher estimates compared to strategies C6
and C7, as the background may have been underestimated.
We also find that all methods consistently infer a deposition
flux to the blocks with no application, which is consistent
with our knowledge of ammonia exchange between the at-
mosphere and the ground (Flechard et al., 2013). Indeed, the
concentration in the atmosphere, which is enriched by the
nearby sources is expected to be higher than near the ground
due to a low soil pH (6.1), a low nitrogen content in the soil
surface (6–9.5 g N kg−1 DM) and a 20 % humid soil surface,
hence leading to a flux from the air to the ground.

From our theoretical study we know that strategy C7
should give a bias around −16 %±∼ 7 %. Therefore, we
could expect that the real flux is the one measured with C7
times 1.15 (±0.08); hence it would be 10.9± 1.3 kg N ha−1.
This corresponds to 28± 3 % of the N-NH4 applied and
∼ 9± 1 % of the total N applied. For the incorporated slurry,
the emissions are around 20 times smaller than the emissions
from the surface-applied slurry. Under these conditions, the
bias on the emissions would be around −20 %, which means
that the corrected emissions would range from 0.5 to 2.5 %
of the N-NH4 applied and 0.2 and 0.8 % of the total N ap-
plied. We should bear in mind that the theoretical correction
is based on the median of the simulations performed with
the 2008 dataset in Grignon, which had similar meteorolog-
ical conditions to this trial. It would be much more relevant
though for future developments to evaluate the bias based on
the same method as developed here but with emissions and
meteorological conditions taken from the real case.
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Figure 15. Concentrations measured in a real test case with six blocks composed of three treatments and two repetitions. Here the mean
concentration for the repetition and the three replicate ALPHA samplers are shown at two heights above ground. The concentration measured
at 3 m height and 5 m away from the plots is also shown in green. The background concentration, evaluated as the minimum of the green
curve, was 5 µgN-NH3 m−3.

Figure 16. Cumulated fluxes estimated with the inference method on the real test case with strategy C7. Three treatments with two repetitions
are compared (B1 and B2).

3.6 Comparison with previous work

Several studies have reported methodologies for evaluating
multiple sources using dispersion models. These were mostly
based on backward Lagrangian modelling (Crenna et al.,
2008; Flesch et al., 2009; Gao et al., 2008). There were
several inference methods reported: the methods based on
the inversion of the dispersion matrix Di,j or singular value
decomposition of least-square optimisation (Flesch et al.,
2009), which optimise the conditioning of the dispersion ma-
trix, and one based on Bayesian inference (Yee and Flesch,

2010). Yee and Flesch (2010) showed that the Bayesian ap-
proach would avoid unrealistic source estimates that could
appear when the matrix conditioning was poor. Unrealis-
tic source estimates were for instance reported by Flesch et
al. (2009), with negative emissions sources.

Ro et al. (2011) evaluated the bLS technique to infer two
controlled methane surface sources with laser measurements.
They found 0.6 recovery ratios (ratio of inferred to known
source) if the fields were not in the footprint of the sensor
but with adapted filters; they found a high degree of recovery
of 1.1± 0.2 and 0.8± 0.1 for the two sources. They found
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Figure 17. Same as Fig. 16 but grouped by treatments and with additional strategies C4 and C6, which consider that replicates have the same
surface flux. The variability in the box plot aggregates the uncertainty on the inference method (the standard deviation on the flux estimate
in the least-square model, which accounts for the variability in the replicated concentration measurements), and the variability among the
repetitions in each treatment. Letters a, b and c show significant differences among treatments for the C7 strategy, according to a Tukey test
(95 % family-wise confidence level).

that in contradiction to Crenna et al. (2008) and Flesch et
al. (2009), even with large conditioning numbers they had
high recovery rates.

Misselbrook (2005) compared different methodologies
and showed that under high concentrations diffusion sam-
plers may lead to overestimation of up to 70 % of the con-
centration. They suggest potential issues related to the defor-
mation of the Teflon membrane, which would modify the dis-
tance between coated filters and the membrane itself, which
could cause sampler saturation. There is hence some concern
about the quality of diffusion samplers to measure concen-
trations at heights close to large sources, which would neces-
sitate field validations.

3.6.1 Sensor positioning and conditioning number

Crenna et al. (2008) have clearly shown that the optimal sen-
sor positioning should be so that each sensor preferentially
sees a single source, and reversely, each source should pref-
erentially influence a single sensor. In this study the source–
sensor geometry was especially designed in a way that min-
imises the condition number by placing the sensors in the
middle of each plot. For the smallest source (xplot = 25 m),
the conditioning number ranged from 1.97 to 3.01 (median
2.42) for sensors located at 0.25 m, and increased to 2.6–6.9
(median 3.2) for sensors at 0.5 m, 4.7–150 (median 21) for
sensors at 1.0 m, and 40–165 000 (median 640) for sensors at
2 m. This shows that including at least one sensor per block
at heights lower than the field width divided by 20 would en-
sure that the conditioning number remains lower than in most
trials reported by Crenna et al. (2008).

By comparing different strategies we have found that the
strategies using two sensors over each source systematically
led to improved performances (C3 versus C1 and C6 versus

C5, Fig. 14). This is also in line with the results of Crenna
et al. (2008), who showed that using more sensors separated
spatially improves the performance of the inference method.
Hence we can conclude that the inference method we used
is based on a well-conditioned system which leads to robust
results of the least-square optimisation. This is further illus-
trated by the real-case example (Figs. 15–17), which shows a
good reproducibility among block repetitions. Indeed, good
reproducibility among repetitions is a check for evaluating
the quality of the inference method in real test cases. The
use of the Bayesian inference method would however also be
valuable in the set-up we propose here.

3.6.2 Effect of time-integrating sensors on the source
inference quality

The use of time-averaging sensors for estimating ammonia
sources was already reported by Sanz et al. (2010), Theobald
et al. (2013), Carozzi et al. (2013a, b), Ferrara et al. (2014)
and Riddick et al. (2016a, 2014). All these studies have
shown the feasibility of these measurements; however only
a few of them allow the estimation of the impact of averag-
ing: Riddick et al. (2014) measured emissions from a bird
colony on Ascension Island with WindTrax using both sev-
eral ALPHA samplers in a transect across the colony and a
continuous analyser for ammonia (AiRRmonia, Mechatron-
ics, NL) downwind. They also averaged the continuous sam-
pler concentrations to evaluate the effect of averaging on the
emissions estimates. They found as we do here that averaging
over monthly periods would lead to systematic underestima-
tions from −9 to −66 %. They also found that estimations
from diffusive samplers would lead to average underestima-
tions of −12 %. This is very close to what we find here for
a single source over 1 week (Fig. 6). In a similar compari-
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son Riddick et al. (2016b) found that time integration led to
slight overestimations with the integration approach, which
is within the range of statistics of the bias we have found for
the larger area sources (third quartile in Fig. 6).

3.6.3 Dependency on meteorological conditions

We should bear in mind that the use of time-averaging sen-
sors in the inference method is also highly dependent on the
surface layer turbulent structure as shown by Fig. 7. We find,
as expected, that stable conditions or low wind speed con-
ditions are those that lead to the highest potential bias (as
shown by the third quartile under stable conditions at the bot-
tom of Fig. 7). This is a well-known limitation of inverse dis-
persion modelling which was reported by Flesch et al. (2009,
2004) and which suggested that inverse dispersion would be
inaccurate for u∗ < 0.15 m s−1 and |z/L|< 1. However, both
our study and the studies of Riddick et al. (2014, 2016b)
show that this is not as much of an issue for ammonia emis-
sions. Indeed, this is due to the fact that ammonia emissions
follow a daily cycle with low emissions at night and high
emissions during the day. This is firstly because the ground
surface compensation point concentration (Cpground) has an
exponential dependency on surface temperature as assumed
in Eq. (10) based on known thermodynamical equilibrium
constants (Flechard et al., 2013). This is secondly due to
the fact that ammonia emission is a diffusion-based process
which is limited by the surface resistances, as modelled in
Eq. (9), which leads to small fluxes when Ra (zref) and RbNH3

become large, which happens during low wind speeds (they
are both roughly inversely proportional to wind speed) and
stable conditions, which also happens at night (Flechard et
al., 2013). In real situations, the combination of small tur-
bulence and high surface concentration leads to a further
decrease in the flux, which is dependent on the difference
between Cpground and the concentration in the atmosphere
above (a feature which was not accounted for in this study
as this would imply a higher degree of complexity in the
modelling approach). This means that the results we found
in this study would not apply for species with an emissions
pattern with different temporal dynamics (either constant or
anti-correlated with surface temperature or wind speed).

4 Conclusions

In this study we have demonstrated that it is possible to in-
fer, with reasonable biases, ammonia emissions from mul-
tiple small fields located near each other using a combina-
tion of a dispersion model and a set of passive diffusion sen-
sors which integrate over a few hours to weekly periods. We
found that the Philip (1959) analytical model in FIDES gave
similar concentrations as the backward Lagrangian stochas-
tic model WindTrax at 2 m above a small source, under neu-
tral and stable stratification as long as the stability correction

functions used in both models are similar and the Schmidt
number is identical (here set to 0.64). Under unstable condi-
tions FIDES gave 20 % smaller concentrations at 2 m com-
pared to WindTrax.

We demonstrated by theoretical considerations that pas-
sive sensors always lead to the underestimation of ammonia
emissions for an isolated source because of the negative time
correlation between the ammonia emissions and the trans-
fer function. Using a yearly meteorological dataset typical of
the oceanic climate of western Europe we found that the bias
over weekly integration times is typically −8± 6 %, which
is in line with previous reports. Larger biases are expected
for meteorological conditions with stable conditions and low
wind speeds as soon as the integration period is larger than
12 h.

We showed that the quality of the inference method for
multiple sources was dependent on the number of sensors
considered above each plot. The most essential technique
to minimise the bias of the method was to place a sen-
sor in the middle of each source within the boundary layer.
The quality of the sensor positioning was evaluated using
“condition numbers” which ranged from 2 to 3 for a sen-
sor placed at 25 cm above the ground to much higher val-
ues (40–1.6× 105) for a sensor at 2 m above 25 m width
sources. Although the lowest sensors have the best condi-
tion number, we would rather recommend using heights of
50 cm above the canopy in order to reduce uncertainty in po-
sitioning the sensors close to the ground as well as avoid non-
diffusive transfer conditions. Similarly, although the highest
sensors had low condition numbers, they were shown to im-
prove the robustness of the sources’ inference, especially for
evaluating the background concentrations. Using replicates
of each treatment was found to be essential for evaluating
the quality of the inference and derive robust statistical indi-
cators for each treatment.

When considering a system, characteristic of agronomic
trials, composed of a low and a high potential source and
a reference with no nitrogen application, we found that the
fractional bias remained smaller than around 25 % for ra-
tios between the largest and smallest sources lower than a
factor of 5 and increased as a power function of the ra-
tio. Furthermore, the dynamics of the emissions were found
not to strongly affect the fractional bias. As expected, we
also found that the fractional bias decreased with increasing
source dimensions, especially for the lowest source strength
in a multiple-source trial.

Finally, a test on a practical trial proved the applicability of
the method in real situations with contrasted emissions. We
indeed calculated ammonia emissions of around 27± 3 %
of the total ammoniacal nitrogen applied for surface-applied
slurry while we found less than 1 % of emissions for the treat-
ments with incorporated slurry.

This method could also be improved by incorporating
knowledge of the surface source dynamics into the inference
procedure. Further work is required, however, for validating

www.biogeosciences.net/15/3439/2018/ Biogeosciences, 15, 3439–3460, 2018



3458 B. Loubet et al.: A new method for estimating ammonia volatilisation from multiple plots

the method, for instance using prescribed emissions, and to
evaluate the method for growing crops using real measure-
ments with diffusion samplers close to the ground.
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