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MORPHISMS OF 1-MOTIVES DEFINED BY LINE BUNDLES

CRISTIANA BERTOLIN AND SYLVAIN BROCHARD

Abstract. Let S be a normal base scheme. The aim of this paper is to study the line
bundles on 1-motives defined over S. We first compute a dévissage of the Picard group of a
1-motive M according to the weight filtration of M . This dévissage allows us to associate,
to each line bundle L on M , a linear morphism ϕL : M → M∗ from M to its Cartier
dual. This yields a group homomorphism Φ : Pic(M)/Pic(S) → Hom(M,M∗). We also
prove the Theorem of the Cube for 1-motives, which furnishes another construction of the
group homomorphism Φ : Pic(M)/Pic(S) → Hom(M,M∗). Finally we prove that these two
independent constructions of linear morphisms M → M∗ using line bundles on M coincide.
However, the first construction, involving the dévissage of Pic(M), is more explicit and
geometric and it furnishes the motivic origin of some linear morphisms between 1-motives.
The second construction, involving the Theorem of the Cube, is more abstract but also more
enlightening.
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Introduction

Let A be an abelian variety over a field k and let A∗ = Pic0
A/k be its dual. It is a

classical fact that if L is a line bundle on A, then the morphism ϕL : A → A∗, defined by
ϕL(a) = µ∗aL ⊗ L−1 where µa : A → A is the translation by a, is a group homomorphism.
This is an easy consequence of the Theorem of the Square, which itself is a consequence of the
Theorem of the Cube. We have then a functorial homomorphism Φ : Pic(A)→ Hom(A,A∗)
which is a key result in the basic foundations of the theory of abelian varieties. In [D74, §10]
Deligne introduced the notion of 1-motives, which can be seen as a generalization of abelian
schemes. Let S be a scheme. A 1-motive M = (X,A, T,G, u) defined over S is a complex
[u : X → G] of commutative S-group schemes concentrated in degree 0 and -1, where:

• X is an S-group scheme which is locally for the étale topology a constant group scheme
defined by a finitely generated free Z -module,
• G is an extension of an abelian S-scheme A by an S-torus T,
• u : X → G is a morphism of S-group schemes.

1991 Mathematics Subject Classification. 14K30,14C20.
Key words and phrases. 1-motives, line bundles, linear morphisms, commutative group stack.
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2 CRISTIANA BERTOLIN AND SYLVAIN BROCHARD

A linear morphism of 1-motives is a morphism of complexes of S-group schemes. We will
denote by

Hom(M1,M2)

the group of linear morphisms from M1 to M2. In this paper we study line bundles on a
1-motive M and their relation to linear morphisms from M to its Cartier dual M∗.

Our aim is to answer the following natural questions:
(1) If M is a 1-motive over S, is it possible to construct a functorial homomorphism

Φ : Pic(M)→ Hom(M,M∗) that extends the known one for abelian schemes?
(2) Is there an analog of the Theorem of the Cube for 1-motives?
We give a positive answer to both questions if the base scheme S is normal (for comments

on what happens if the base scheme S is not normal, see Remark 5.4).
The notion of line bundle on a 1-motiveM over S already implicitly exists in the literature.

Actually, in [Mu63, p. 64] Mumford introduced a natural notion of line bundles on an arbitrary
S-stack X (see 1.1). Since to any 1-motive M over S we can associate by [D63, §1.4] a
commutative group stack st(M), we can define the category PIC(M) of line bundles on M
as the category of line bundles on st(M). The Picard group of M , denoted by Pic(M), is the
group of isomorphism classes of line bundles on st(M) (see Definition 1.2).

The stack st(M) associated to a 1-motiveM = [X
u→ G] is isomorphic to the quotient stack

[G/X], where X acts on G by translations via u. Under this identification, the inclusion of
1-motives ι : G → M corresponds to the projection map G → [G/X], which is étale and
surjective. We can then describe line bundles on M as couples

(L, δ)

where L is a line bundle on G and δ is a descent datum for L with respect to the covering
ι : G → [G/X] (see Section 1, after Lemma 1.3). Throughout this paper, we will use this
description of line bundles on M , which amounts to say that a line bundle on a 1-motive M
is a line bundle on G endowed with an action of X that is compatible with the translation
action of X on G.

The main result of our paper is the following theorem, which generalizes to 1-motives the
classical homomorphism Φ : Pic(A)→ Hom(A,A∗) for abelian varieties.

Theorem 0.1. Let M be a 1-motive defined over a scheme S. Assume that the toric part of
M is trivial or that S is normal. Then there is a functorial homomorphism

(0.1) Φ : Pic(M)/Pic(S) −→ Hom(M,M∗).

We actually provide two independent constructions of Φ:
(1) the first construction, given in Section 3, is the most explicit and geometric one. It

is based on the “dévissage” of the Picard group of M , computed in Section 2, and on
the explicit functorial description of the Cartier dual M∗ of M in terms of extensions
given in [D74, (10.2.11)].

(2) the second construction, given in Sections 4 and 5, is more abstract but also more
enlightening. It works for a category which is a bit larger than 1-motives (see 5.1) and
it also provides the fact that Φ is a group homomorphism. This construction relies
on the “Theorem of the Cube for 1-motives” (Theorem 5.1), a result that we think is
of independent interest, and on the description of the Cartier dual of a 1-motive in
terms of commutative group stacks.

In Proposition 5.3 we prove that these two constructions coincide.
Dévissage of the Picard group of M : 1-motives are endowed with a weight filtration

W∗ defined by W0(M) = M,W−1(M) = G,W−2(M) = T,Wj(M) = 0 for each j ≤ −3. This
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weight filtration allows us to “dévisser ” the Picard group of M , which is our second main
result: we will first describe the Picard group of G in terms of Pic(A) and Pic(T ) using the
first short exact sequence 0→ T

i→ G
π→ A→ 0 given by W∗. Consider the morphism

ξ : Hom(T,Gm)→ Pic(A)

defined as follows: for any morphism of S-group schemes α : T → Gm, ξ(α) is the image of the
class [α∗G] of the push-down of G via α under the inclusion Ext1(A,Gm) ↪→ H1(A,Gm) =
Pic(A). At the beginning of Section 2 we will show that

Proposition 0.2. Assume the base scheme S to be normal. The following sequence of groups
is exact

0 −→ Hom(G,Gm)
i∗−→ Hom(T,Gm)

ξ−→ Pic(A)

Pic(S)

π∗−→ Pic(G)

Pic(S)

i∗−→ Pic(T )

Pic(S)
.

The second short exact sequence 0 → G
ι→ M

β→ X[1] → 0 given by the weight filtration
W∗ of M induces by pullback the sequence Pic(X[1])

β∗→ Pic(M)
ι∗→ Pic(G), which is not

exact as we will see in Example 2.3, but which is nevertheless interesting since the kernel of
the homomorphism ι∗ : Pic(M)→ Pic(G) fits in a long exact sequence. In fact, at the end of
Section 2 we will prove that

Proposition 0.3. Assume the base scheme S to be reduced. Then the kernel K of the homo-
morphism ι∗ : Pic(M)→ Pic(G) fits in an exact sequence

Hom(G,Gm)
◦u−→ Hom(X,Gm)

β∗−→ K
Θ−→ Λ

Ψ−→ Σ.

Note that the group Hom(X,Gm) in the above sequence identifies in a natural way with
Pic(X[1])/Pic(S).

Here the group Λ is the subgroup of Hom(X,GD), where GD = Hom(G,Gm), consisting
of those morphisms of S-group schemes that satisfy the equivalent conditions of Lemma 2.4,
and Σ is a quotient of the group of symmetric bilinear morphisms X ×S X → Gm (see
Definition 2.5 and (2.6) for the definitions of Λ,Σ,Ψ and Θ). Remark that there is a natural
identification of K with the kernel of Pic(M)/Pic(S)→ Pic(G)/Pic(S) and so the map β∗ in
the above sequence is really the pullback along β : M → X[1].
Theorem of the Cube for 1-motives: In its classical form, the Theorem of the Cube

asserts that for any line bundle L on an abelian variety, the associated line bundle θ(L) is
trivial (see Section 4 for the definitions of θ(L) and θ2(L)). In [B83] Breen proposed the
following reinforcement of the Theorem of the Cube. A cubical structure on L is a section
of θ(L) that satisfies some additional conditions so that θ2(L) is endowed with a structure
of symmetric biextension. A cubical line bundle is a line bundle endowed with a cubical
structure. Then a commutative S-group scheme G is said to satisfy the (strengthened form
of the) Theorem of the Cube if the forgetful functor

CUB(G) −→ RLB(G)

from the category CUB(G) of cubical line bundles on G to the category RLB(G) of rigidified
line bundles on G is an equivalence of categories.

The notion of cubical structure introduced by Breen generalizes seamlessly to commutative
group stacks (see Definition 4.1). In a very general context, in Theorem 4.2, we explain how
a cubical line bundle (L, τ) on a commutative group stack G defines an additive functor from
G to its dual D(G) = Hom(G, BGm):

ϕ(L,τ) : G −→ D(G)

a 7−→
(
b 7→ Lab ⊗ L−1

a ⊗ L−1
b

)
.
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In Theorem 5.1 we show that over a normal base scheme, 1-motives satisfy the Theorem
of the Cube in the above sense, which is our third main result. Then Theorem 0.1 is an
immediate corollary of Theorems 4.2 and 5.1. Remark that the quotient Pic(M)/Pic(S) is
isomorphic to the group of isomorphism classes of rigidified line bundles on M .

We finish observing that the construction of the morphism Φ(L, δ) : M → M∗, with
(L, δ) a line bundle on M , that we give in Section 3, is completely geometric and so it
allows the computation of the Hodge, the De Rham and the `-adic realizations of Φ(L, δ) :
M → M∗, with their comparison isomorphisms. This furnishes the motivic origin of some
linear morphisms between 1-motives and their Cartier duals (here motivic means coming
from geometry - see [D89]). In this setting, an ancestor of this paper is [Be09] where the first
author defines the notion of biextensions of 1-motives and shows that such biextensions furnish
bilinear morphisms between 1-motives in the Hodge, the De Rham and the `-adic realizations.
Just as biextensions of 1-motives are the motivic origin of bilinear morphisms between 1-
motives, line bundles on a 1-motive M are the motivic origin of some linear morphisms
between M and its Cartier dual M∗. As observed in Remark 3.5 not all morphisms from M
to M∗ are defined by line bundles.

Notation

Let S be a site. For the definitions of S-stacks and the related vocabulary we refer
to [G71]. By a stack we always mean a stack in groupoids. If X and Y are two S-stacks,
HomS−stacks(X,Y) will be the S-stack such that for any object U of S, HomS−stacks(X,Y)(U)
is the category of morphisms of S-stacks from X|U to Y|U . If S is a scheme, an S-stack will
be a stack for the fppf topology.

A commutative group S-stack is an S-stack G endowed with a functor + : G ×S G →
G, (a, b) 7→ a + b, and two natural isomorphisms of associativity σ and of commutativity τ ,
such that for any object U of S, (G(U),+, σ, τ) is a strictly commutative Picard category. An
additive functor (F,

∑
) : G1 → G2 between two commutative group S-stacks is a morphism of

S-stacks F : G1 → G2 endowed with a natural isomorphism
∑

: F (a+ b) ∼= F (a) + F (b) (for
all a, b ∈ G1) which is compatible with the natural isomorphisms σ and τ underlying G1 and
G2. A morphism of additive functors u : (F,

∑
) → (F ′,

∑′) is an S-morphism of cartesian
S-functors (see [G71, Chp I 1.1]) which is compatible with the natural isomorphisms

∑
and∑′ of F and F ′ respectively. For more information about commutative group stacks we refer

to [D63, §1.4] or [Br14].
Let D[−1,0](S) be the subcategory of the derived category of abelian sheaves on S consisting

of complexes K such that Hi(K) = 0 for i 6= −1 or 0. Denote by Picard(S) the category
whose objects are commutative group stacks and whose arrows are isomorphism classes of
additive functors. In [D63, §1.4] Deligne constructs an equivalence of category

(0.2) st : D[−1,0](S) −→ Picard(S).

We denote by [ ] the inverse equivalence of st. Via this equivalence of categories to each
1-motive M is associated a commutative group S-stack st(M) and morphisms of 1-motives
correspond to additive functors between the corresponding commutative group stacks.

We will denote by BGm the classifying S-stack of Gm, i.e. the commutative group S-stack
such that for any object U of S, BGm(U) is the category of Gm-torsors over U . Remark that
[BGm] = Gm[1] where Gm[1] is the complex with the multiplicative sheaf Gm in degree -1. If
G and Q are two commutative group stacks, Hom(G,Q) will be the commutative group S-stack
such that for any object U of S, Hom(G,Q)(U) is the category whose objects are additive
functors from G|U to Q|U and whose arrows are morphisms of additive functors. We have that
[Hom(G,Q)] = τ≤0RHom

(
[G], [Q]

)
, where τ≤0 is the good truncation in degree 0. The dual
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D(G) of a commutative group stack G is the commutative group stack Hom(G, BGm). In par-
ticular [D(G)] = τ≤0RHom

(
[G],Gm[1]

)
. Note that the Cartier duality of 1-motives coincides

with the duality for commutative group stacks via the equivalence st, i.e. D(st(M)) ' st(M∗),
where M∗ is the Cartier dual of the 1-motive M (see [D74, (10.2.11)]).

Let S be an arbitrary scheme. An abelian S-scheme A is an S-group scheme which is
smooth, proper over S and with connected fibers. An S-torus T is an S-group scheme which
is locally isomorphic for the fpqc topology (equivalently for the étale topology) to an S-group
scheme of type Gr

m (with r a nonnegative integer and G0
m the trivial torus). If G is an S-group

scheme, we denote by GD the S-group scheme Hom(G,Gm) of group homomorphisms from
G to Gm. If T is an S-torus, then TD is an S-group scheme which is locally for the étale
topology a constant group scheme defined by a finitely generated free Z-module.

1. Line bundles on 1-motives

Let S be a scheme. The following definition is directly inspired from [Mu63, p. 64].

Definition 1.1. Let p : X→ S be an S-stack.
(1) A line bundle L on X consists of

• for any S-scheme U and any object x of X(U), a line bundle L(x) on U ;
• for any arrow f : y → x in X, an isomorphism L(f) : L(y) → p(f)∗L(x) of line
bundles on U verifying the following compatibility: if f : y → x and g : z → y
are two arrows of X, then L(f ◦ g) = p(g)∗L(f) ◦ L(g).

(2) A morphism F : L1 → L2 of line bundles over X consists of a morphism of line bundles
F (x) : L1(x) → L2(x) for any S-scheme U and for any object x of X(U), such that
p(f)∗F (x) ◦ L1(f) = L2(f) ◦ F (y) for any arrow f : y → x in X.

The usual tensor product of line bundles over schemes extends to stacks and allows us to
define the tensor product L1⊗L2 of two line bundles L1 and L2 on the stack X. This tensor
product equips the set of isomorphism classes of line bundles on X with an abelian group law.
Using the equivalence of categories [D63, §1.4] between 1-motives and commutative group
stacks, we can then define line bundles on 1-motives as follows.

Definition 1.2. Let M be a 1-motive defined over S.
(1) The category PIC(M) of line bundles on M is the category of line bundles on st(M).
(2) The Picard group of M , denoted by Pic(M), is the group of isomorphism classes of

line bundles on st(M).

The following lemma will allow us to describe line bundles on a 1-motive M = [X
u→ G]

as line bundles on G endowed with an action of X that is compatible with the translation
action of X on G.

Lemma 1.3. Let ι : X0 → X be a representable morphism of stacks over S. Assume that ι
is faithfully flat, and quasi-compact or locally of finite presentation. Then the category of line
bundles on X is equivalent to the category of line bundles on X0 with descent data, that is to
the category whose objects are pairs (L, δ) where L is a line bundle on X0 and δ : q∗1L→ q∗2L is
an isomorphism such that, up to canonical isomorphisms, p∗13δ = p∗23δ ◦p∗12δ (with the obvious
notations for the projections qi : X0 ×X X0 → X0 and pij : X0 ×X X0 ×X X0 → X0 ×X X0).

Proof. We have to prove that the pullback functor ι∗ from the category of line bundles on X

to the category of line bundles on X0 with descent data is an equivalence. The result is well-
known if X is algebraic, see [LMB00, (13.5)]. Hence, for any S-scheme U and any morphism
x : U → X, the statement is known for the morphism ιU : X0 ×X U → U obtained by base
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change. Since a line bundle on X is by definition a collection of line bundles on the various
schemes U , the general case follows. �

Let M = [X
u→ G] be a 1-motive over a scheme S. By [LMB00, (3.4.3)] the associated

commutative group stack st(M) is isomorphic to the quotient stack [G/X] (where X acts
on G via the given morphism u : X → G). Note that in general it is not algebraic in the sense
of [LMB00] because it is not quasi-separated. However the quotient map ι : G → [G/X] is
representable, étale and surjective, and the above lemma applies. The fiber productG×[G/X]G
is isomorphic to X ×S G. Via this identification, the projections qi : G ×[G/X] G → G (for
i = 1, 2) correspond respectively to the second projection p2 : X ×S G → G and to the map
µ : X×SG→ G given by the action (x, g) 7→ u(x)g. We can further identify the fiber product
G ×[G/X] G ×[G/X] G with X ×S X ×S G and the partial projections p13, p23, p12 : G ×[G/X]

G ×[G/X] G → G ×[G/X] G respectively with the map mX × idG : X ×S X ×S G → X ×S G
where mX denotes the group law of X, the map idX × µ : X ×S X ×S G→ X ×S G, and the
partial projection p′23 : X ×S X ×S G → X ×S G. Hence by Lemma 1.3 the category of line
bundles on M is equivalent to the category of couples

(L, δ)

where L is a line bundle on G and δ is a descent datum for L with respect to ι : G→ [G/X].
More explicitly, the descent datum δ is an isomorphism δ : p∗2L → µ∗L of line bundles
on X ×S G satisfying the cocycle condition

(mX × idG)∗δ =
(
(idX × µ)∗δ

)
◦
(
(p′23)∗δ

)
.

It is often convenient to describe line bundles in terms of “points”. If g is a point of G, i.e.
a morphism g : U → G for some S-scheme U , we denote by Lg the line bundle g∗L on U .
Then δ is given by a collection of isomorphisms

δx,g : Lg → Lu(x)g

for all points x of X and g of G, such that for all points x, y of X and g of G,

(1.1) δx+y,g = δx,u(y)g ◦ δy,g .

With this description, the pullback functor ι∗ maps a line bundle (L, δ) on M to L, i.e. ι∗
just forgets the descent datum. Note for further use that ι∗ is faithful.

2. Dévissage of the Picard group of a 1-motive

Let us first recall the following global version of Rosenlicht’s Lemma from [R70, Corollaire
VII 1.2].

Lemma 2.1 (Rosenlicht). Let S be a reduced base scheme and let P be a flat S-group scheme
locally of finite presentation. Assume that the maximal fibers of P are smooth and connected.
Let λ : P → Gm be a morphism of S-schemes. If λ(1) = 1, then λ is a group homomorphism.

(I) First dévissage coming from the short exact sequence 0→ T
i→ G

π→ A→ 0.

Proof of Proposition 0.2. By [MB85, Chp I, Prop 7.2.2], the category CUB(A) is equivalent
to the category of pairs (L, s) where L is a cubical line bundle on G and s is a trivialization of
i∗L in the category CUB(T ). With this identification, the pullback functor π∗ : CUB(A) →
CUB(G) is the forgetful functor that maps a pair (L, s) to L. But since the base scheme
is assumed to be normal, all these categories of cubical line bundles are equivalent to the
categories of line bundles rigidified along the unit section [MB85, Chp I, Prop 2.6]. The
group of isomorphism classes of rigidified line bundles on G is isomorphic to Pic(G)/Pic(S),
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and similarly for A and T . Hence the equivalence of categories [MB85, Chp I, Prop 7.2.2]
induces the following exact sequence when we take the groups of isomorphism classes:
(2.1)

Aut(OG)
i∗−→ Aut(i∗OG) −→ Pic(A)/Pic(S)

π∗−→ Pic(G)/Pic(S)
i∗−→ Pic(T )/Pic(S) ,

where the automorphism groups on the left are the automorphism groups in the categories of
rigidified line bundles on G and on T . An automorphism of OG (rigidified) is an automorphism
λ : OG → OG such that e∗λ = id where e is the unit section of G. Hence the above group
Aut(OG) identifies with the kernel of e∗ : Γ(G,O∗G) → Γ(S,O∗S), i.e. with the group of
morphisms of schemes λ : G → Gm such that λ(1) = 1. Since S is reduced, this kernel is
isomorphic to Hom(G,Gm) by Lemma 2.1. Similarly, the group Aut(i∗OG) of automorphisms
in the category of rigidified line bundles is isomorphic to Hom(T,Gm). Moreover, since
Hom(A,Gm) = 0 the first map i∗ is injective. �

Remark 2.2. (1) Over any base scheme S, by [MB85, Chp I, Prop 7.2.1] the category
CUB(T ) is isomorphic to the category of extensions of T by Gm. Moreover, by [MB85, Chp
I, Remark 7.2.4], if we assume the base scheme S to be normal, or geometrically unibranched,
or local henselien, then the group Ext1(T,Gm) vanishes if the torus T is split.

(2) If L is a rigidified line bundle on G, the class of the line bundle i∗L in Pic(T )/Pic(S)
represents the obstruction to the fact that L comes from a rigidified line bundle over A. Since
Pic(T )/Pic(S) ' Ext1(T,Gm) and since the tori underlying 1-motives are split locally for the
étale topology, as a consequence of (1) of this Remark we have that if S is normal, there exists
an étale and surjective morphism S′ → S such that (i∗L)|S′ = 0, i.e. after a base change to
S′, the rigidified line bundle L on G comes from A.

(II) Second dévissage coming from the exact sequence 0→ G
ι→M

β→ X[1]→ 0.

Let us describe more explicitly the maps ι∗ : Pic(M) → Pic(G) and β∗ : Pic(X[1]) →
Pic(M) in terms of line bundles with descent data. As explained in §1, we identify the
category of line bundles on M with the category of couples

(L, δ)

where L is a line bundle on G and δ is a descent datum for L with respect to the covering ι :
G→ [G/X]. Then the pullback functor ι∗ maps a line bundle (L, δ) onM to L: ι∗(L, δ) = L.

If L is the trivial bundle OG, via the canonical isomorphism p∗2L ' µ∗L, a descent datum
δ on L can be seen as a morphism of S-schemes δ : X ×S G→ Gm, and the cocycle condition
(1.1) on δ can be rewritten as follows: for any points x, y of X and g of G, we have the
equation

(2.2) δ(x+ y, g) = δ(x, u(y)g).δ(y, g) .

The category of line bundles on X[1] is equivalent to the category of line bundles on S
together with a descent datum with respect to the presentation S → [S/X]. By [Br09,
Example 5.3.7] we have that

Pic(X[1])

Pic(S)
' Hom(X,Gm).

Let us now describe the pullback morphism β∗ in these terms. Unwinding the various
definitions, it can be seen that given a character α : X → Gm, the associated element
β∗α ∈ Pic(M) is the class of the line bundle (OG, δα) where δα is the automorphism of
OX×SG corresponding to the morphism of S-schemes δα : X ×S G→ Gm, (x, g) 7→ α(x):

β∗α = [(OG, δα)].
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Even if the composition ι∗β∗ is trivial, the sequence Pic(X[1])→ Pic(M)→ Pic(G) is not
exact in general as shown in the following example. However, in the special case of 1-motives
without toric part, this sequence is always exact (see Remark 2.9).

Example 2.3. Let S be any base scheme with Pic(S) = 0. Let T be an S-torus, let X = Z
and let M = [u : X → T ] be a 1-motive with u the trivial morphism. Let (OT , δ) be a line
bundle on M (using the above description) that is mapped to the neutral element of Pic(T ).
Note that since u is trivial the cocycle condition (2.2) here means that for any g ∈ T (U),
δ(., g) is a group homomorphism in the variable x.

The class of (OT , δ) is in the image of Pic(X[1]) if and only if there is an α ∈ Hom(X,Gm)
such that (OT , δ) ' (OT , δα). An isomorphism (OT , δ) ' (OT , δα) is an automorphism λ
of OT such that δα ◦ p∗2λ = µ∗λ ◦ δ. But here µ = p2 (since u is trivial) and the group of
automorphisms of OX×ST is commutative. So (OT , δ) and (OT , δα) are isomorphic if and only
if δ = δα. This proves that (OT , δ) is in the image of Pic(X[1]) if and only if δ, seen as a
morphism of S-schemes δ : X ×S T → Gm, is constant in the variable g ∈ T (for the “if”
part, we define α by α(x) = δ(x, 1) and the cocycle condition on δ ensures that α is a group
homomorphism). We will now construct a descent datum δ on OT which is not constant
in g and this will prove that the sequence Pic(X[1]) → Pic(M) → Pic(T ) is not exact. Let
λ ∈ Hom(T,Gm) be a non trivial homomorphism and define δ functorially by δ(n, g) = λ(g)n.
This δ is a homomorphism in the variable n for any g and so it is indeed a descent datum, but
it is non constant in g since λ is non constant. Hence the corresponding line bundle (OT , δ)
is not in the image of Pic(X[1]).

Now we compute the kernel of ι∗ : Pic(M) → Pic(G). Let GD = Hom(G,Gm) and XD =
Hom(X,Gm) be the Cartier duals of G and X respectively

Lemma 2.4. For a morphism of S-group schemes λ : X → GD, the following conditions are
equivalent:

(1) For any S-scheme U and any two points x, y ∈ X(U), λ(x)(u(y)) = λ(y)(u(x)).
(2) The diagram

(2.3) X
λ //

u

��

GD

uD
��

G
λD
// XD,

where we have identified the term G in the bottom left-hand corner with its double
dual (GD)D, and where uD, λD are the morphisms of group schemes induced by u, λ
by “taking the Cartier dual”, commutes.

Proof. We just give the proof of (2). Put f = uD ◦λ : X → XD. Identifying X with its double
dual (XD)D, we have that fD = X → XD coincides with f and so λD ◦ u = (uD ◦ λ)D =
uD ◦ λ. �

We say that a morphism of S-schemes σ : X ×S X → Gm is symmetric if it satisfies
the equation σ(x, y) = σ(y, x). If α : X → Gm is a morphism of S-schemes, we denote by
σα : X ×S X → Gm the symmetric morphism given by σα(x, y) = α(x+y)

α(x)α(y) . Hence α is a
morphism of S-group schemes if and only if σα is trivial.

Definition 2.5. (1) We denote by Λ the subgroup of Hom(X,GD) consisting of those
morphisms of S-group schemes that satisfy the equivalent conditions of Lemma 2.4.
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(2) We denote by Σ the quotient of the group of symmetric bilinear morphisms X ×S
X → Gm by the subgroup of morphisms of the form σα for some morphism of S-
schemes α : X → Gm.

(3) We denote by Ψ : Λ→ Σ the natural homomorphism that maps a λ ∈ Λ to the class
of the function (x, y) 7→ λ(x)(u(y)).

Remark 2.6. Note that, following [CE56, XIV, §2 to §4] we can view Σ as a subgroup of
the kernel of the natural morphism Ext1(X,Gm) → H1(X,Gm). Since the framework and
statements of [CE56] are not exactly the same as ours, we briefly recall the construction
here. If σ : X ×S X → Gm is a symmetric bilinear morphism, let Eσ be the group scheme
Gm ×S X, where the group law is given by (γ1, x).(γ2, y) := (γ1γ2σ(x, y), x + y). With the
second projection π : Eσ → X and the inclusion i : Gm → Eσ given by i(γ) = (γ, 0), the
group scheme Eσ is a commutative extension of X by Gm. Then a direct computation shows
that σ 7→ Eσ induces an injective group homomorphism from Σ to Ext1(X,Gm). Since the
projection π : Eσ → X has a section x 7→ (1, x), the Gm-torsor over X induced by Eσ is
trivial, which proves that the image of Σ lies in the kernel of Ext1(X,Gm) → H1(X,Gm).
Actually, if E is an extension of X by Gm, its class [E] ∈ Ext1(X,Gm) lies in Σ if and only if
the projection E → X has a section s : X → E (only as a morphism of schemes, not of group
schemes) which is of degree 2 in the language of [B83] or [MB85], i.e. such that θ3(s) = 1.

Remark 2.7. In particular, if X is split (that is, X ' Zr for some r) then Σ = 0 since the
morphism Ext1(X,Gm)→ H1(X,Gm) is injective.

For the rest of this Section, we assume that the base scheme S is reduced. Denote by K
the kernel of the forgetful functor ι∗ : Pic(M) → Pic(G). This kernel is the group of classes
of pairs (OG, δ), where δ is a descent datum on OG. Such a descent datum can be seen as
a morphism of schemes δ : X ×S G → Gm that satisfies the cocycle condition (2.2). Two
pairs (OG, δ1), (OG, δ2) are in the same class if and only if they are isomorphic in the category
of line bundles on G equipped with a descent datum relative to ι : G → M , which means
that there is a morphism of S-schemes ν : G → Gm such that (µ∗ν).δ1 = δ2.p

∗
2ν where

µ, p2 : X ×S G→ G are the action of X on G and the second projection. The latter equation
can be rewritten as ν(u(x)g)δ1(x, g) = δ2(x, g)ν(g) for any (x, g) ∈ X(U)×G(U). Replacing
ν with g 7→ ν(g)/ν(1), we may assume that ν(1) = 1 so that ν is a group homomorphism by
Rosenlicht’s Lemma 2.1. The equation then becomes

(2.4) ν(u(x))δ1(x, g) = δ2(x, g).

The group law on K is given by [(OG, δ1)].[(OG, δ2)] = [(OG, δ1.δ2)].
We will now construct a homomorphism Θ : K → Λ, where Λ was defined in Definition

2.5. Let [(OG, δ)] be a class in K where δ is a solution of (2.2). For any point x of X, consider
the morphism of S-schemes

(2.5) λδ(x) : G→ Gm, g 7→
δ(x, g)

δ(x, 1)
.

Since λδ(x)(1) = 1, the morphism λδ(x) is actually a homomorphism by Lemma 2.1, hence
a section of GD. This construction is functorial and defines a morphism of S-schemes λδ :
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X → GD. By (2.2), for any x, y ∈ X and any g ∈ G we have

λδ(x+ y)(g) =
δ(x+ y, g)

δ(x+ y, 1)

=
δ(x, u(y)g)δ(y, g)

δ(x, u(y))δ(y, 1)

=
δ(x, u(y)g)

δ(x, 1)
.
δ(x, 1)

δ(x, u(y))
.
δ(y, g)

δ(y, 1)

=
λδ(x)(u(y)g)

λδ(x)(u(y))
.λδ(y)(g)

= λδ(x)(g).λδ(y)(g)

where the last equality follows from the fact that λδ(x) is a homomorphism. Hence λδ is a
morphism of S-group schemes. Moreover, by (2.2) for any x, y ∈ X we have

δ(x, u(y))δ(y, 1) = δ(x+ y, 1) = δ(y + x, 1) = δ(y, u(x))δ(x, 1).

Hence λδ(x)(u(y)) = λδ(y)(u(x)) and so λδ belongs to Λ. Since λδ only depends on the class
[(OG, δ)], this construction induces a well-defined homomorphism

(2.6) Θ : K → Λ, [(OG, δ)] 7→ λδ.

It is a homomorphism because λδ1δ2 = λδ1λδ2 .

Proof of Proposition 0.3. The morphism β∗ : Hom(X,Gm) → K maps an α ∈ Hom(X,Gm)
to the class [(OG, δα)], where δα is defined by δα(x, g) = α(x). By the equality (2.4), [(OG, δα)]
is trivial if and only if there is a morphism of S-group schemes ν : G→ Gm such that α = ν◦u,
which means that the sequence is exact in Hom(X,Gm).

Now we check the exactness in K. Let [(OG, δ)] be a class in K. By (2.5) its image λδ
under Θ is trivial if and only if δ satisfies the equation δ(x, 1) = δ(x, g) for any x ∈ X
and g ∈ G. If so, let α : X → Gm be the morphism of S-schemes defined by α(x) = δ(x, 1).
Then by (2.2) α is a homomorphism, and we have δ = δα = β∗(α), which proves the exactness
in K.

It remains to prove the exactness in Λ. Let λ ∈ Λ. Assume that λ is in the image
of K, i.e. there is some solution δ of (2.2) such that λ = λδ. Let α : X → Gm be the
morphism of S-schemes defined by α(x) = δ(x, 1). Then for any (x, g) ∈ X × G we have
δ(x, g) = λ(x)(g)α(x). The bilinearity of λ and (2.2) yield λ(x)(u(y)) = α(x+y)

α(x)α(y) . Hence
the image of λ in Σ is trivial. Conversely, assume that the image Ψ(λ) is trivial in Σ, in
other words there is a morphism of S-schemes α : X → Gm such that λ(x)(u(y)) = α(x+y)

α(x)α(y) .
Then we define δ by δ(x, g) = λ(x)(g)α(x) and the same computations as above show that δ
satisfies (2.2) and that λ = λδ, which concludes the proof. �

If the lattice X underlying the 1-motive M = [u : X → G] is split then by Remark 2.7
the morphism K → Λ is surjective. Actually we can give an explicit section, that depends
on the choice of a Z-basis for X, as follows. Let e1, . . . , en be a Z-basis of X. For λ ∈ Λ,
let λ1, . . . , λl : G→ Gm be the images of e1, . . . , el under λ. We denote by δλ the morphism
from X ×S G to Gm defined by

(2.7) δλ(x, g) = λ(x)(g)
∏
i

(
λi ◦ u

(
ni(ni − 1)

2
ei

)) ∏
1≤i<j≤l

λi(u(ej))
ninj .

for any S-scheme U , any x =
∑
niei ∈ X(U) and any g ∈ G(U).
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Proposition 2.8. Let M = [u : X → G] be a 1-motive defined over a reduced base scheme S.
Assume that the lattice X is split. With the above notations, the application λ 7→ [(OG, δλ)]
defines a section s : Λ→ K of the homomorphism Θ defined in (2.6). In particular the group
Pic(M) fits in the following exact sequence:

(2.8) Hom(G,Gm) −→ Hom(X,Gm)× Λ −→ Pic(M)
ι∗−→ Pic(G) .

Proof. A direct computation shows that δλ satisfies the equation (2.2), hence it is a descent
datum and s is well-defined. From the definition of δλ, we see that δλ.λ′ = δλ.δλ′ hence s is
a group homomorphism. Moreover, the quotient δλ(x, g)/δλ(x, 1) is equal to λ(x)(g), which
proves that Θ([(OG, δλ)]) = λ. The exact sequence (2.8) now follows from Proposition 0.3. �

Remark 2.9. Let M = [v : X → A] be a 1-motive without toric part. Since Hom(A,Gm) =
0, the group Λ is trivial and so from Proposition 0.3, we obtain that β∗ : Hom(X,Gm)→ K
is an isomorphism, that is the short sequence defined by β∗ and ι∗, Pic(X[1])/Pic(S) →
Pic(M)/Pic(S)→ Pic(A)/Pic(S), is exact.

3. Construction of Φ : Pic(M)/Pic(S)→ Hom(M,M∗) (0.1)

Using the dévissage of the Picard group of a 1-motive M , in this Section we construct the
morphism Φ : Pic(M)/Pic(S)→ Hom(M,M∗) of Theorem 0.1 in an explicit way.

We start proving the following lemma which might be well-known, but for which we were
unable to find a convenient reference.

Lemma 3.1. Let S be a reduced base scheme. Consider the following commutative diagram
of commutative S-group schemes

0 // T
i //

h
��

G
π //

u
��

A //

v
��

0

0 // T ′
i′ // G′

π′ // A′ // 0

where T, T ′ are tori, A,A′ are abelian schemes, all the solid arrows are group homomorphisms,
the rows are exact, and u is only assumed to be a morphism of schemes over S. Then,

(1) u is a group homomorphism.
(2) u is uniquely determined by h and v, i.e. if u1 and u2 are two morphisms that make

the whole diagram commutative, then u1 = u2.
(3) if h = v = 0, then u = 0.

Proof. Let us prove (3). Since π′ ◦ u = 0 the morphism u factorizes through a morphism of
schemes u′ : G→ T ′. The question is local on S, and T ′ is locally isomorphic to Gr

m for some
integer r, hence we may assume that T ′ = Gm. Since u′ ◦ i is trivial, in particular u′(1) = 1
and so by Rosenlicht’s Lemma 2.1 u′ is a group homomorphism. Now the result follows since
Hom(A,Gm) = 0.

Applying (3) with u = u1 − u2 we get (2). Now let us prove (1). It suffices to apply (2)
with the exact sequence 0 → T ×S T → G ×S G → A ×S A → 0 and the morphisms
u1, u2 : G×S G→ G′ defined by u1(x, y) = u(x+ y) and u2(x, y) = u(x) + u(y). �

Let S be a normal base scheme and let M = [u : X → G] be a 1-motive over S, where
G fits in an extension 0 → T

i→ G
π→ A → 0. We start recalling from [D74, (10.2.11)] the

description of the Cartier dual M∗ = [u′ : TD → G′] of M . Denote by M the 1-motive
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M/W−2M = [v : X → A] where v = π ◦ u. An extension of M by Gm is a pair (E, ṽ), where
E is an extension of A by Gm and ṽ is a trivialization of v∗E:

X
ṽ

��
v
��

0 // Gm // E // A // 0

Extensions ofM by Gm do not admit non trivial automorphisms. The functor of isomorphism
classes of such extensions is representable by a group scheme G′, which is an extension of A∗
by XD:

0 // XD i′ // G′
π′ // A∗ // 0

The 1-motive M is an extension of M by T . If τ : T → Gm is a point of TD, the pushdown
τ∗M is an extension ofM by Gm, i.e. it is a point of G′. This defines a morphism u′ : TD → G′

by u′(τ) = τ∗M and by definition the Cartier dual of M is the 1-motive M∗ = [TD
u′→ G′].

Now, we start the construction of Φ : Pic(M)/Pic(S) → Hom(M,M∗). Let (L, δ) be a
line bundle on M , where L is a line bundle on G and δ is a descent datum on L, i.e. an
isomorphism

δ : p∗2L→ µ∗L

satisfying the cocycle condition (1.1) (see end of Section 1). We have to construct a morphism
Φ(L, δ) : M →M∗. The first dévissage of Pic(M) (see Proposition 0.2) furnishes the following
exact sequence of groups

Hom(T,Gm)
ξ−→ Pic(A)/Pic(S)

π∗−→ Pic(G)/Pic(S)
i∗−→ Pic(T )/Pic(S).

By Remark 2.2 (2), since the tori underlying 1-motives are split locally for the étale topology,
there exists an étale and surjective morphism S′ → S such that (i∗L)|S′ is trivial, which
means that

L|S′ = π∗L

for some line bundle L ∈ Pic(A|S′ )/Pic(S′). Below we will construct locally defined linear
morphisms Φ((L, δ)|S′ ) : M|S′ → M∗|S′

from M|S′ to its Cartier dual M∗|S′ . Since these are
induced by a global line bundle (L, δ), they glue together and yield a linear morphism Φ(L, δ) :
M → M∗ over S. Hence it is not restrictive if we assume S′ = S and L = π∗L in order to
simplify notation.

Via the classical homomorphism ΦA : Pic(A) → Hom(A,A∗), the line bundle L furnishes
a morphism of S-group schemes

ϕL : A −→ A∗, a 7→ (µ∗aL)⊗ L−1.

where µa : A→ A is the translation by a. Let us check that ϕL : A→ A∗ does not depend on
the choice of the line bundle L but only on its pullback L = π∗L, in other words ΦA ◦ ξ = 0.
Let α ∈ Hom(T,Gm). By definition of ξ, ξ(α) is the image of the class [α∗G] under the
inclusion Ext1(A,Gm) ↪→ Pic(A), that is ξ(α) comes from Ext1(A,Gm). Hence by [R67,
Prop 1.8] ΦA(ξ(α)) = 0.

Our next aim is to define a morphism ϕ̃L : G → G′ that lifts ϕL. Before we recall briefly
the isomorphism between Ext1(A,Gm) and A∗ : any extension of A by Gm is in particular
a Gm-torsor over A and therefore a line bundle over A, that is a point of A∗; on the other
hand, to any line bundle N over A we associate the sheaf E such that for any S-scheme T

E(T ) = {(a, τ) | a ∈ A(T ), τ : NT
∼=→ µ∗aNT },
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where NT is the pull-back of N to AT = A×S T , which is in fact an extension of A by Gm.
(see [De67, §2] for more details). Now let g ∈ G(S). The line bundle ϕL(π(g)) = µ∗π(g)L⊗L

−1

is a point of A∗(S). We denote by EϕL(π(g)) the corresponding extension of A by Gm. As
observed before, the extension EϕL(π(g)) has the following functorial description: EϕL(π(g))(S)
is the set of pairs (a, β) where a ∈ A(S) and β : ϕL(π(g)) → µ∗aϕL(π(g)) is an isomorphism
of line bundles over A. We define functorially

(3.1) ϕ̃L : G −→ G′

g 7−→ ϕ̃L(g) = (EϕL(π(g)), ṽg),

where the trivialization ṽg : X → EϕL(π(g)) is defined by

(3.2) ṽg(x) = (v(x), ϕg,x)

with ϕg,x : ϕL(π(g)) → µ∗v(x)ϕL(π(g)) the isomorphism of line bundles on A given by the
following lemma.

Lemma 3.2. With the above notation, there is a unique isomorphism ϕg,x : ϕL(π(g)) →
µ∗v(x)ϕL(π(g)) of line bundles on A such that π∗ϕg,x : µ∗gL⊗L−1 → µ∗g(µ

∗
u(x)L)⊗ (µ∗u(x)L)−1

is equal to µ∗gδx ⊗ δ−1
x , where δx : L → µ∗u(x)L denotes the isomorphism (x, idG)∗δ of line

bundles on G induced by the descent datum δ.

Proof. For any x ∈ X(S) and b ∈ G(S), let us denote by δx,b the isomorphism OS →
Lu(x)b ⊗ L−1

b induced by δx,b and by δx : OG → µ∗u(x)L ⊗ L−1 the isomorphism induced by
δx. Consider the line bundle N = µ∗π(g)(µ

∗
v(x)L⊗ L

−1)⊗ (µ∗v(x)L⊗ L
−1)−1 on A. In order to

prove our Lemma it is enough to show that there is a unique isomorphism ϕ : OA → N such
that π∗ϕ = µ∗gδx ⊗ δ

−1
x .

By [MB85, Chp I, Prop 2.6 and 7.2.2] the pullback functor π∗ induces an equivalence
between the category of rigidified (at the origin) line bundles on A, and the category of pairs
(N, α) where N is a rigidified line bundle on G and α is a trivialization of i∗N in the category
of rigidified line bundles on T . The line bundle OA is canonically rigidified at 1 and the line
bundle N on A has a rigidification at 1 given by δx,g ⊗ δ

−1
x,1. Hence by the above equivalence

of categories to prove the Lemma it suffices to prove that µ∗gδx ⊗ δ
−1
x is compatible with the

trivializations of i∗π∗OA and i∗π∗N . In other words, we have to prove that for any point t
of T , the following diagram commutes:

OS
δx,gi(t)⊗δ

−1
x,i(t) //

δx,g⊗δ
−1
x,1

��

(Lu(x)gi(t) ⊗ L−1
gi(t))⊗ (Lu(x)i(t) ⊗ L−1

i(t))
−1

(Lπ(u(x)gi(t)) ⊗ L−1
π(gi(t)))⊗ (Lπ(u(x)i(t)) ⊗ L−1

π(i(t)))
−1

(Lu(x)g ⊗ L−1
g )⊗ (Lu(x) ⊗ L−1

1 )−1 (Lπ(u(x)g) ⊗ L−1
π(g))⊗ (Lπ(u(x)) ⊗ L−1

1 )−1

This diagram defines an automorphism of OS , hence an element of Gm(S), and the diagram
commutes if and only if this element is equal to 1 ∈ Gm(S). As g and t vary, these diagrams
induce a morphism of schemes ζ : G×S T → Gm. If t = 1, the diagram obviously commutes,
hence ζ(g, 1) = 1 and by Rosenlicht’s Lemma 2.1 ζ(g, .) is a group homomorphism T → Gm.
Then ζ corresponds to a morphism of schemes G → TD. Since G has connected fibers and
TD is a lattice, the latter morphism must be constant. But the diagram obviously commutes
if g = 1, hence ζ is constant equal to 1 and the diagram commutes for all points g of G and
t of T , as required. �
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Now ṽg is well-defined and the formula (3.1) defines a morphism of schemes ϕ̃L : G→ G′.
If g ∈ G(S), the image π′(ϕ̃L(g)) is the class in A∗(S) of the extension EϕL(π(g)), that is
π′(ϕ̃L(g)) = ϕL(π(g)), and so the right square in the following diagram is commutative. We
denote by h : T → XD the unique morphism that makes the left square commutative:

0 // T
i //

h
��

G
π //

ϕ̃L
��

A //

ϕL
��

0

0 // XD

i′
// G′

π′
// A∗ // 0

Remark 3.3. We can give an explicit description of h : T → XD in terms of (L, δ) as
follows. Let t ∈ T (S) be a point of T . Then by definition ϕ̃L(i(t)) = (EϕL(π(i(t))), ṽi(t)).
Since π(i(t)) = 1 the extension EϕL(π(i(t))) is trivial. The morphism h(t) : X → Gm is given
by ṽi(t). Let x ∈ X(S). By definition ṽi(t)(x) = (v(x), ϕi(t),x). Since the line bundle ϕL(1) is
trivial, the isomorphism ϕi(t),x : ϕL(1) → µ∗v(x)ϕL(1) can be seen as a morphism of schemes
A→ Gm, and h(t)(x) ∈ Gm(S) is the (necessarily constant) value of this morphism. We may
evaluate it at the origin of A and we see that h(t)(x) is the point of Gm that corresponds to the
isomorphism of (canonically trivial) line bundles δx,i(t)⊗ δ−1

x,1 : Li(t)⊗L−1
1 → Lu(x)i(t)⊗L−1

u(x).

It is clear from the above Remark that h does not depend on the choice of L. Moreover,
since h(1) = 1, it follows from Rosenlicht’s Lemma 2.1 that h is a group homomorphism.
Then by Lemma 3.1 ϕ̃L is also a group homomorphism, and it does not depend on the choice
of the lifting L of L (since φL does not depend on this choice as we have already proved).

The following proposition proves that the pair (hD, ϕ̃L) is a morphism of 1-motives and so
we can set

Φ : Pic(M)/Pic(S) −→ Hom(M,M∗)
(L, δ) 7−→ Φ(L, δ) = (hD, ϕ̃L).

Proposition 3.4. Let hD : X → TD be the Cartier dual of h. Then the diagram

X
hD //

u
��

TD

u′

��
G

ϕ̃L

// G′

is commutative. In other words, the pair (hD, ϕ̃L) is a morphism of 1-motives from M to M∗.

Proof. Let x ∈ X(S). We have to prove that u′(hD(x)) = ϕ̃L(u(x)). With the identification
X ' XDD, the morphism hD(x) is equal to evx ◦ h : T → Gm where evx : XD → Gm is
the evaluation at x. Hence, by definition, u′(hD(x)) is the extension of M by Gm obtained
from M by pushdown along the morphism evx ◦ h.
(3.3) u′(hD(x)) = evx∗h∗M

Let ML = [ϕ̃L ◦ u : X → G′] and ML = ML/W−2ML = [ϕL ◦ v : X → A∗]. Consider the two
morphisms of 1-motives ϕ′L = (idX , ϕ̃L) : M →ML and ϕL = (idX , ϕL) : M →ML which fit
in the following diagram of extensions:

0 // T //

h
��

M //

ϕ′L
��

M //

ϕL
��

0

0 // XD // ML
// ML

// 0
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By [S59, Chp VII, (7) and (8)] the existence of ϕ′L proves that h∗M and ϕL∗ML are isomorphic
as extensions of M by XD. Combining this with (3.3) we get that

(3.4) u′(hD(x)) = evx∗ϕL
∗ML

We can describe extensions of ML by XD in terms of pairs (E, ξ) where E is an extension
of A∗ by XD and ξ is a trivialization of (ϕL ◦ v)∗E. In these terms, the extension ML

corresponds to G′ together with the morphism ϕ̃L ◦u : X → G′. Hence the extension ϕL∗ML

of M by XD corresponds to the pair (ϕ∗LG
′, v), where the trivialization v is the morphism

X → ϕ∗LG
′ induced by ϕ̃L ◦ u, with ϕ̃L defined in (3.1):

X
v

		
v

��
0 // XD // ϕ∗LG

′ //

��
�

A //

ϕL

��

0

0 // XD i′ // G′
π′ // A∗ // 0

Set theoretically ϕ∗LG
′(S) = G′ ×A∗ A(S) consists of pairs (a, (EϕL(a), ṽ)) where a ∈ A(S)

and (EϕL(a), ṽ) ∈ G′(S), with ṽ : X → EϕL(a) a trivialization of v∗EϕL(a). The morphism
v : X → ϕ∗LG

′ is then defined by

v(y) = (v(y), (EϕL(v(y)), ṽu(y)))

for any point y ∈ X(S), where ṽu(y) is defined in equation (3.2).
Now we will construct a morphism q : ϕ∗LG

′ → EϕL(v(x)) that fits in the following commu-
tative diagram:

(3.5) 0 // XD //

evx

��

ϕ∗LG
′ //

q

��

A // 0

0 // Gm // EϕL(v(x))
// A // 0

This will allow us to identify the pushdown evx∗ϕ
∗
LG
′ with EϕL(v(x)) and the extension

evx∗ϕL
∗ML of M by Gm then corresponds to the pair (EϕL(v(x)), q ◦ v). The construction of

q is as follows. Let (a, (EϕL(a), ṽ)) be an element of ϕ∗LG
′(S), i.e. a ∈ A(S) and (EϕL(a), ṽ) ∈

G′(S), with ṽ : X → EϕL(a) an A-morphism. In particular we have a point ṽ(x) ∈ EϕL(a)(S)
above v(x), hence an isomorphism of line bundles β : ϕL(a) → µ∗v(x)ϕL(a). The latter iso-
morphism corresponds to a trivialization OA ' µ∗v(x)+aL ⊗ µ

∗
v(x)L

−1 ⊗ µ∗aL−1 ⊗ L. Via the
symmetry isomorphism, this in turn induces a trivialization of µ∗v(x)+aL⊗µ

∗
aL
−1⊗µ∗v(x)L

−1⊗L,
hence an isomorphism of line bundles β′ : ϕL(v(x))→ µ∗aϕL(v(x)). We define q by

q(a, (EϕL(a), ṽ)) := (a, β′)

with the above notation. In the diagram (3.5), it is obvious that the right-hand square
commutes. To prove that the left square also commutes, we observe that both morphisms
from XD to EϕL(v(x)) map an element α : X → Gm to the pair (1, α(x)) where 1 ∈ A(S) is
the unit of A and α(x) ∈ Gm(S) is seen as an automorphism of the line bundle ϕL(v(x)).
Now it follows from Lemma 3.1 that q is automatically a group homomorphism.

We have proved that u′(hD(x)) corresponds to the pair (EϕL(v(x)), q ◦ v). On the other
hand, by definition of ϕ̃L, the extension ϕ̃L(u(x)) corresponds to the pair (EϕL(v(x)), ṽu(x)).
Hence to conclude the proof, it remains to prove that q ◦ v = ṽu(x). Let y ∈ X(S) be
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a point of X and let us prove that q(v(y)) = ṽu(x)(y). Unwinding the definitions of q, v
and ṽu(x), we have to prove that the isomorphism ϕu(x),y : ϕL(v(x)) → µ∗v(y)ϕL(v(x)) (see
Lemma 3.2) is equal to the isomorphism β′ induced by ϕu(y),x : ϕL(v(y)) → µ∗v(x)ϕL(v(y))

via the symmetry isomorphism as explained in the previous paragraph (with a = v(y)). Since
π∗ is faithful on the category of line bundles, it suffices to check the equality after applying
π∗. In other words we have to prove that the descent datum δ on L satisfies the following
condition: µ∗u(x)δy⊗δ

−1
y should be equal to the isomorphism induced by µ∗u(y)δx⊗δ

−1
x through

the symmetry isomorphism. But this is a consequence of the cocycle condition (1.1) on the
descent datum δ (use it both for δx+y and δy+x). �

This concludes the proof of Theorem 0.1. We do not prove here that Φ : Pic(M)/Pic(S)→
Hom(M,M∗) (0.1) is a group homomorphism: this will follow from Corollary 5.2, where we
give a second construction of Φ, and from the comparison Theorem 5.3.

We finish this Section giving another interesting construction of the morphism Φ : Pic(M)/Pic(S)→
Hom(M,M∗) in the special case of Kummer 1-motives, that is 1-motives without abelian part.
This construction, which is based on the second dévissage of the Picard group of M , involves
only the group Λ introduced in Definition 2.5.

Let M = [u : X → T ] be a Kummer 1-motive over a reduced scheme S. In this case
M∗ = [uD : TD → XD] and a morphism from M to M∗ is a commutative diagram

X
g //

u

��

TD

uD
��

T
h
// XD

By Definition 2.5, Λ is a subgroup of Hom(M,M∗): an element λ ∈ Λ defines the morphism
M →M∗ given by λ : X → TD and λD : T → XD.

From Proposition 0.3, we know that the kernel K of ι∗ : Pic(M)→ Pic(T ) fits in the exact
sequence

Hom(T,Gm)
◦u−→ Hom(X,Gm)

β∗−→ K
Θ−→ Λ

Ψ−→ Σ.

Then, locally on S, the morphism Φ : Pic(M) → Hom(M,M∗) coincides with Θ in the
following sense. Let L be a line bundle on M . By Remark 2.2 (2), since the tori underlying
1-motives are split locally for the étale topology, there exists an étale and surjective morphism
S′ → S such that (ι∗L)|S′ is trivial, which means that L|S′ ∈ K. Then Φ(L|S′ ) is equal to
Θ(L|S′ ) via the inclusion Λ ⊂ Hom(M,M∗).

Remark 3.5. The homomorphism Φ : Pic(M)/Pic(S) → Hom(M,M∗) is far from being
surjective. For example, let M = [X

u→ T ] with X = Z, T = Gm and u the trivial morphism.
Then Hom(M,M∗) identifies with Hom(X,X)2 ' Z2 and by Proposition 2.8, the group
Pic(M)/Pic(S) identifies with Hom(X,Gm)× Λ ' Gm(S)× Z. The morphism Φ : Gm(S)×
Z→ Z2 is given by (γ, n) 7→ (n, n).

4. Linear morphisms defined by cubical line bundles

In this Section we first give the definition and basic properties of cubical structure on a
line bundle over a commutative group stack G. Then we explain how a cubical line bundle
on G, that is a line bundle on G endowed with a cubical structure, defines an additive functor
G→ D(G) from G to its dual.

Let G be a commutative group stack over S, whose group law (a, b) 7→ ab will be denoted
multiplicatively. We denote by G3 the commutative group stack G ×S G ×S G. Following
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[MB85, Chp I, 2.4] we define a functor from the category of line bundles on G to the category
of line bundles on G3

θ : PIC(G) −→ PIC(G3)

with
θ(L) = m∗123L⊗ (m∗12L)−1 ⊗ (m∗13L)−1 ⊗ (m∗23L)−1 ⊗m∗1L⊗m∗2L⊗m∗3L

where for I = {i1, . . . , il} ⊂ {1, 2, 3}, mi1...il denotes the additive functor G3 → G given by
(a1, a2, a3) 7→ ai1 . . . ail . (Our θ(L) is denoted by θ3(L) in [MB85].) In terms of points the
above definition becomes

(4.1) θ(L)a1,a2,a3 = La1a2a3 ⊗ (La1a2)−1 ⊗ (La1a3)−1 ⊗ (La2a3)−1 ⊗ La1 ⊗ La2 ⊗ La3

for any (a1, a2, a3) ∈ G3. As in [MB85, Chp I, (2.4.2)] the symmetric groupS3 of permutations
acts on θ(L), that is for (a1, a2, a3) ∈ G3 and for σ ∈ S3 there is a natural isomorphism

(4.2) pσa1,a2,a3 : θ(L)a1,a2,a3
∼−→ θ(L)aσ(1),aσ(2),aσ(3) .

Moreover, as in [MB85, Chp I, (2.4.4)], θ(L) is endowed with cocycle isomorphisms: for
a, b, c, d ∈ G one of these cocycle isomorphisms is

(4.3) coca,b,c,d : θ(L)ab,c,d ⊗ θ(L)a,b,d
∼−→ θ(L)a,bc,d ⊗ θ(L)b,c,d ,

the others are obtained from this one by permutation.

Definition 4.1. Let L be a line bundle on G. A cubical structure on L is an isomorphism
τ : OG3 → θ(L) of line bundles over G3 that is compatible with the isomorphisms (4.2)
and (4.3). In other words:

(i) For any σ ∈ S3 and any (a1, a2, a3) ∈ G3, τaσ(1),aσ(2),aσ(3) = pσa1,a2,a3 ◦ τa1,a2,a3 .
(ii) For any a, b, c, d ∈ G, τa,bc,d ⊗ τb,c,d = coca,b,c,d ◦ (τab,c,d ⊗ τa,b,d).

A cubical line bundle on G is a pair (L, τ) where L is a line bundle on G and τ is a cubical
structure on L. Amorphism of cubical line bundles (L, τ)→ (L′, τ ′) is a morphism f : L→ L′

of line bundles on G such that τ ′ = θ(f) ◦ τ .

We denote by CUB(G) the category of cubical line bundles on G, and by CUB1(G) the
group of isomorphism classes of cubical line bundles on G.

Let Cub(G) be the stack of cubical line bundles on G, i.e. for any S-scheme U , Cub(G)(U)
is the category of cubical line bundles on G ×S U . If (L, τ) and (L′, τ ′) are two cubical line
bundles on G, then τ and τ ′ induce a canonical cubical structure on the line bundle L ⊗ L′

and we denote by (L, τ)⊗ (L′, τ ′) the resulting cubical line bundle. The operation ⊗ endows
Cub(G) with a structure of commutative group stack.

As in [MB85, Chp I, 2.3] we also have a functor from the category of line bundles on G to
the category of line bundles on G2

θ2 : PIC(G) −→ PIC(G2)

defined by
θ2(L)a,b = Lab ⊗ L−1

a ⊗ L−1
b

for all L ∈ PIC(G) and all (a, b) ∈ G2. This line bundle θ2(L) furnishes a morphism of stacks

ϕL : G −→ HomS−stacks(G, BGm)

a 7−→
(
ϕL(a) : b 7→ ϕL(a)(b) = θ2(L)a,b

)
.

It is possible to recover θ(L) from θ2(L) via the following two canonical isomorphisms

θ2(L)ab,c ⊗ θ2(L)−1
a,c ⊗ θ2(L)−1

b,c ' θ(L)a,b,c ' θ2(L)a,bc ⊗ θ2(L)−1
a,b ⊗ θ2(L)−1

a,c .
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Now let τ be a cubical structure on L. Through the above two isomorphisms, τ induces two
isomorphisms of line bundles (thought of as partial composition laws on θ2(L)):

τ1
a,b,c : θ2(L)a,c ⊗ θ2(L)b,c → θ2(L)ab,c

τ2
a,b,c : θ2(L)a,b ⊗ θ2(L)a,c → θ2(L)a,bc .

Generalizing [MB85, Chp I, 2.5] to line bundles on stacks, the conditions (i) and (ii) on τ
imply that the two composition laws τ1 and τ2 are a structure of symmetric biextension of
(G,G) by Gm on the Gm-torsor θ2(L) (see [Be13, Definition 5.1] for the notion of biextension
of commutative group stacks). In particular, the isomorphism τ2 provides for all points a, b, c
of G a functorial isomorphism

(τ2
a,b,c)

−1 : ϕL(a)(bc)→ ϕL(a)(b).ϕL(a)(c).

The commutativity and associativity conditions that τ2 satisfies (see for instance the di-
agrams (1.1.3) and (1.1.5) p.2 in [B83]) imply that this isomorphism is compatible with
the commutativity and associativity isomorphisms of G and BGm. Hence ϕL(a), equipped
with this isomorphism, is an additive functor from G to BGm, that is ϕL(a) is a point of
D(G) = Hom(G, BGm). This defines a morphism of stacks

ϕL : G −→ D(G).

The isomorphism (τ1)−1 defines a functorial isomorphism from ϕL(ab) to ϕL(a).ϕL(b) hence
it endows ϕL with the structure of an additive functor. The required compatibility conditions
are given by the commutativity and associativity conditions on τ1 and by the compatibility
of τ1 and τ2 with each other (see [B83], diagrams (1.1.4), (1.1.5) and (1.1.6)). From now on
we denote by ϕ(L,τ) the resulting additive functor from G to D(G).

If α : (L, τ) → (L′, τ ′) is an isomorphism of cubical line bundles, the isomorphism θ2(α) :
θ2(L) → θ2(L′) provides an isomorphism of functors from ϕ(L,τ) to ϕ(L′,τ ′). Since α is
compatible with the cubical structures τ and τ ′, it follows that the latter isomorphism of
functors is compatible with the additive structures of ϕ(L,τ) and ϕ(L′,τ ′), in other words it is
an isomorphism of additive functors, i.e. it is an isomorphism in Hom(G, D(G)). This way
the construction (L, τ) 7→ ϕ(L,τ) is functorial and we get a morphism of stacks from Cub(G)
to Hom(G, D(G)). Lastly, if (L, τ) and (L′, τ ′) are two cubical line bundles, the canonical
isomorphism θ2(L ⊗ L′) ' θ2(L) ⊗ θ2(L′) ([MB85, Chp I, 2.2.1]) induces an isomorphism of
functors from ϕ(L,τ)⊗(L′,τ ′) to ϕ(L,τ).ϕ(L′,τ ′), which is compatible with the commutativity and
associativity isomorphisms. Summing up, we have proved the following theorem.

Theorem 4.2. Let G be a commutative group S-stack.
(1) Let (L, τ) be a cubical line bundle on G. Then there is a natural additive functor

ϕ(L,τ) : G→ D(G), given by the formula

ϕ(L,τ) : G −→ D(G)

a 7−→
(
b 7→ θ2(L)a,b = Lab ⊗ L−1

a ⊗ L−1
b

)
.

(2) The above construction induces an additive functor

ϕ : Cub(G) −→ Hom(G, D(G))
(L, τ) 7−→ ϕ(L,τ) .

Remark 4.3. If a is a point of G, the morphism ϕ(L,τ)(a) : G → BGm corresponds to the
line bundle (µ∗aL) ⊗ (f∗a∗L)−1 ⊗ L−1 on G, where µa : G → G is the translation by a and
f : G → S is the structural morphism. In particular, if G is an abelian S-scheme A, then
ϕ(L,τ) coincides with the classical morphism ϕL : A → A∗ defined by ϕL(a) = (µ∗aL) ⊗ L−1.
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By [R67, VIII Prop 1.8] ϕL = 0 if and only if L ∈ Pic0(A), hence ϕ factorizes through the
Néron-Severi group NS(A) and induces ϕ : NS(A)→ Hom(A,A∗).

5. The theorem of the cube for 1-motives.

If G is a commutative group stack with neutral object e, we denote by RLB(G) the category
of line bundles on G rigidified along e, i.e. the category of pairs (L, ξ) where L is a line bundle
on G and ξ : OS → e∗L is an isomorphism of line bundles.

Theorem 5.1 (Theorem of the cube for 1-motives). Let S be a scheme. Let [X
u→ G] be a

complex of commutative S-group schemes. Assume that one of the following holds:
(1) G is an abelian scheme.
(2) S is normal, X ×S X is reduced, G is smooth with connected fibers, and the maximal

fibers of G are multiple extensions of abelian varieties, tori (not necessarily split) and
groups Ga.

Let M = st([X
u→ G]) be the commutative group stack associated to the above complex via the

equivalence of categories (0.2). Then the forgetful functor

CUB(M) −→ RLB(M)

is an equivalence of categories.

Proof. In the sequel, the group laws of M and G are denoted multiplicatively while the one
of X is denoted additively. We denote by ι : G → M the canonical projection and by 1 the
unit section of G. Then ι ◦ 1 : S →M is a neutral section of M and will also be denoted by 1.

By (4.1) for any line bundle L on M, there is a canonical isomorphism θ(L)1,1,1 ' L1,
where L1 is the line bundle 1∗L on S. Hence a cubical structure τ : OM3 → θ(L) on L

induces a natural rigidification of L along the unit section that we still denote by τ1,1,1 :
OS → L1 (by a slight abuse of notation). The operation (L, τ) 7→ (L, τ1,1,1) defines a functor
CUB(M) → RLB(M), which is the above-mentioned forgetful functor. By [MB85, Chp I,
2.6] we already know that G satisfies the theorem of the cube, i.e. that the forgetful functor
CUB(G)→ RLB(G) is an equivalence of categories.

Let us prove that CUB(M) → RLB(M) is fully faithful. Let (L, τ) and (L′, τ ′) be two
cubical line bundles on M and let f : L → L′ be a morphism in RLB(M), i.e. a morphism
which is compatible with the rigidifications τ1,1,1 and τ ′1,1,1. We have to prove that f is
compatible with τ and τ ′, i.e. that τ ′ = θ(f) ◦ τ . Since the functor ι∗ from the category
of line bundles on M to the category of line bundles on G is faithful, this is equivalent to
ι∗τ ′ = ι∗θ(f)◦ι∗τ . But, up to canonical isomorphisms, ι∗θ(f) identifies with θ(ι∗f). Moreover,
by assumption on f , τ ′1,1,1 = f1 ◦ τ1,1,1, hence (ι∗τ ′)1,1,1 = (ι∗f)1 ◦ (ι∗τ)1,1,1. This means that
ι∗f : ι∗L → ι∗L′ is compatible with the rigidifications induced by the cubical structures ι∗τ
and ι∗τ ′ on ι∗L and ι∗L′. By the theorem of the cube for G, this implies the desired equality
ι∗τ ′ = θ(ι∗f) ◦ ι∗τ .

Now let us prove that CUB(M) → RLB(M) is essentially surjective. As observed at the
end of Section 1, a line bundle L on M is a pair (L, δ) where L = ι∗L is a line bundle on G
and δ : p∗2L → µ∗L is a descent datum for L. Let ξ : OS → L1 be a rigidification of L along
the unit section of M. Via the canonical isomorphism L1 ' L1, ξ is also a rigidification of L
along the unit section of G. By the theorem of the cube for G, there is a cubical structure τ :
OG3 → θ(L) that induces ξ, i.e. such that τ1,1,1 = ξ. We want to construct a cubical structure
τ : OM3 → θ(L) that induces ξ. The group stack M3 is canonically isomorphic to the quotient
stack [G3/X3] with the action of X3 on G3 by translations via u3 : X3 → G3. As for M, we
identify the category of line bundles on M3 with the category of line bundles on G3 equipped
with a descent datum. The line bundle OM3 corresponds to OG3 equipped with the canonical
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isomorphism p∗2OG3 → µ∗OG3 (where p2, µ : X3 ×S G3 → G3 respectively denote the second
projection and the action by translation). The line bundle θ(L) on M3 corresponds to the line

bundle θ(L) on G3 equipped with the descent datum p∗2θ(L) ' θ(p∗2L)
θ(δ)→ θ(µ∗L) ' µ∗θ(L),

that by a slight abuse we denote by θ(δ). In terms of points, θ(δ) can be described as follows:
for any points x = (x1, x2, x3) of X3 and a = (a1, a2, a3) of G3,

(5.1) θ(δ)x,a : θ(L)a → θ(L)u3(x)a

is equal to δx1+x2+x3,a1a2a3 ⊗ δ−1
x1+x2,a1a2 ⊗ δ

−1
x1+x3,a1a3 ⊗ δ

−1
x2+x3,a2a3 ⊗ δx1,a1 ⊗ δx2,a2 ⊗ δx3,a3 .

We claim that the following diagram of line bundles on X3 ×S G3 commutes

(5.2) p∗2OG3
can. //

p∗2τ

��

µ∗OG3

µ∗τ
��

p∗2θ(L)
θ(δ)
// µ∗θ(L) .

The proof of this claim will be the main part of the proof. It is equivalent to saying that
for any points x of X3 and a of G3, we have θ(δ)x,a ◦ τa = τu3(x)a. For any S-scheme U , we
identify Aut(OU ) with Gm(U) and this allows us to define a morphism of S-schemes

λ : X3 ×S G3 −→ Gm
(x, a) 7−→ τ−1

u3(x)a
◦ θ(δ)x,a ◦ τa .

Now to prove the claim we have to prove that λ is constant equal to 1.
By (1.1), the following diagram commutes

θ(L)a
θ(δ)x+x′,a //

θ(δ)x′,a %%

θ(L)u3(x)u3(x′)a

θ(L)u3(x′)a

θ(δ)x,u3(x′)a

77

It follows that for any x, x′ ∈ X3 and any a ∈ G3 we have the equation

λ(x+ x′, a) = λ(x, u3(x′)a).λ(x′, a)(5.3)

For any x ∈ X3, a ∈ G3 and any permutation σ ∈ S3, by the condition (i) of Definition 4.1,
the left and right triangles in the following diagram commute (where for a = (a1, a2, a3) we
write aσ = (aσ(1), aσ(2), aσ(3)))

θ(L)a
θ(δ)x,a //

pσa

��

θ(L)u3(x)a

pσ
u3(x)a

��

OU

τa
66

τaσ ((

OU

τu3(x)aii

τu3(xσ)aσuu
θ(L)aσ

θ(δ)xσ,aσ
// θ(L)u3(xσ)aσ

The central square also commutes by construction of the canonical isomorphism pσa and of θ(δ).
Hence

λ(xσ, aσ) = λ(x, a).(5.4)

Now let us choose x ∈ X3 and a ∈ G3 such that x3 = 0 and a3 = 1. From the above
description (5.1) of θ(δ) we see that, via the canonical isomorphisms θ(L)a ' θ(L)1,1,1 and
θ(L)u3(x)a ' θ(L)1,1,1, the isomorphism θ(δ)x,a is just the identity of θ(L)1,1,1. Moreover, as in
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[MB85, Chp I, 2.5.3], from condition (ii) of Definition 4.1 it follows that τa = τu3(x)a = τ1,1,1.
Using (5.4), we get

(5.5) λ(x, a) = 1

as soon as there is an index i such that xi = 0 and ai = 1. In particular, if xi = 0 for some i,
we have λ(x, 1) = 1. Hence Lemma 2.1, applied to the S-group scheme G3, implies that λ is
a group homomorphism in the variable a, i.e. for any x ∈ X3 such that some xi is zero, and
for any a, a′ ∈ G3 we have

λ(x, aa′) = λ(x, a).λ(x, a′)(5.6)

[Actually Rosenlicht only applies when the base scheme S is reduced. But we apply it for the
“universal” point (idX×SX , 0) ∈ X3(U) where the base scheme U = X×SX is reduced, and the
general case follows.] In particular for x = (x1, 0, 0) ∈ X3 and for any a = (a1, a2, a3) ∈ G3,
using (5.6) and (5.5) we get

λ(x, a) = λ(x, (a1, a2, 1))λ(x, (1, 1, a3)) = 1

By (5.4) this proves that λ(x, a) = 1 as soon as two of the xi’s are zero and finally using (5.3)
this proves that λ is constant equal to 1. This finishes the proof of the claim.

Now, the commutativity of (5.2) means that τ is an isomorphism in the category of line
bundles on G3 equipped with descent data. Hence it corresponds to an isomorphism τ :
OM3 → θ(L). Moreover, the condition (i) (resp. (ii)) of Definition 4.1 can be expressed by
the commutativity of some diagrams of line bundles over M3 (resp. M4). Since the functor ι∗
is faithful, the fact that τ satisfies the conditions (i) and (ii) of Definition 4.1 implies that τ
itself satisfies these two conditions. Hence τ is a cubical structure on L. From τ1,1,1 = ξ it
follows that τ1,1,1 = ξ and this concludes the proof of the theorem. �

Corollary 5.2. With the notation and assumptions of Theorem 5.1, there is a functorial
group homomorphism Φ′ : Pic(M)/Pic(S)→ Hom(M, D(M)).

Proof. Since Pic(M)/Pic(S) is isomorphic to the group of isomorphism classes of rigidified
line bundles on M, this is an immediate consequence of Theorems 4.2 and 5.1. �

Theorem 5.3. LetM be a 1-motive defined over a scheme S. Assume that the base scheme S
is normal. The morphism Φ′ defined above coincides with the morphism Φ : Pic(M)/Pic(S)→
Hom(M,M∗) constructed in Section 3.

Proof. Let (L, δ) be line bundle on M . We want to prove that Φ(L, δ) = Φ′(L, δ). The
question is local on S hence as in section 3 we may assume that the line bundle L on G is
induced by a line bundle L on A, i.e. L = π∗L. To prove the theorem it suffices to prove that
the morphisms A → A∗, X → TD and T → XD induced by Φ′(L, δ) are respectively equal
to the ϕL, hD and h of section 3.

The Cartier dual of G as a 1-motive is G∗ = [TD
v′→ A∗] and Hom(G,G∗) = Hom(A,A∗).

By functoriality of Φ′, the morphisms ι : G → M and π : G → A induce a commutative
diagram:

Pic(M)
ι∗ //

Φ′

��

Pic(G)

Φ′G
��

Pic(A)
π∗oo

Φ′A
��

Hom(M,M∗) // Hom(G,G∗) Hom(A,A∗)
∼oo

The morphism A → A∗ induced by Φ′(L, δ) is the image of Φ′(L, δ) under the bottom hori-
zontal map of this diagram. Hence it is equal to Φ′A(L), which is equal to ϕL by Remark 4.3.



22 CRISTIANA BERTOLIN AND SYLVAIN BROCHARD

Now let us prove that the morphism ξ : T → XD induced by Φ′(L, δ) is equal to h. To
this end we consider the action of Φ′(L, δ) on the objects of st(M). Let t ∈ T (S) be a point
of T . Its image i(t) ∈ G(S) induces an object of the stack st(M) still denoted by i(t), and
by definition Φ′(L, δ)(i(t)) is the morphism from st(M) to BGm that maps an object b to
θ2(L)i(t),b. To get the induced morphism from X to Gm it suffices to consider the action of
Φ′(L, δ)(i(t)) on the arrows of the stack st(M). If b1, b2 ∈ G(S) and if x ∈ X(S) is an arrow
from b1 to b2 in st(M) (i.e. u(x) = b2− b1) then Φ′(L, δ)(i(t)) maps this arrow to the induced
isomorphism from θ2(L)i(t),b1 to θ2(L)i(t),b2 . The induced element ξ(t)(x) ∈ Gm(S) does not
depend on the choice of the source b1 hence we may chose b1 = 1 and ξ(t)(x) is the point
of Gm(S) induced by the isomorphism θ2(L)i(t),1 → θ2(L)i(t),u(x) induced by δ. The latter
is δx,i(t) ⊗ δ−1

0,i(t) ⊗ δ
−1
x,1. But, by the cocycle condition (1.1), δ0,i(t) is the identity, hence this

corresponds to the description of h given in Remark 3.3.
To prove that Φ′(L, δ) induces hD from X to TD we have to consider its action on the

arrows of st(M). The argument is very similar to the above one and left to the reader. �

Remark 5.4. The hypothesis of normalness on S is essential in order to identify the categories
of cubical line bundles with the categories of line bundles rigidified along the unit section, even
on a torus. See [MB85, Chp I, Example 2.6.1] for a counter-example. Hence if the base scheme
S is not normal, we only have the functorial homomorphism CUB1(M) → Hom(M,M∗)
given by Theorem 4.2. The morphism CUB1(M)→ Pic(M)/Pic(S) induced by the forgetful
functor CUB(M) → RLB(M) is neither injective nor surjective in general. If S is reduced,
we can prove that the forgetful functor is fully faithful, hence CUB1(M) → Pic(M)/Pic(S)
is injective. This inclusion is an isomorphism if the base scheme S is normal.
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