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1. Introduction

Functional Data Analysis (FDA) proposes very good tools to handle data that
are functions of some covariate (e.g. time, when dealing with longitudinal data),
see Hsing and Eubank [11] or Horváth and Kokoszka [10]. These tools allow
for better modelling of complex relationships than classical multivariate data
analysis do, as noticed by Ramsay and Silverman [15, Ch. 1], Yao et al. [20, 19],
among others.

There are several models in FDA for studying the relationship between two
variables. In particular in this paper we are interested in the Functional Con-
current Model (FCM) which is defined as follows

Y(t) = β0(t) + β1(t)X (t) + ε(t), (1.1)

where t ∈ R, β0 and β1 are the unknown functions to be estimated, X ,Y are
random functions and ε is a noise random function. All the functions considered
here are complex valued.

From a practical perspective all functional linear models can be reduced to a
functional concurrent model with several covariates (Ramsay and Silverman [15,
p. 220]). This model is also related to the functional varying coefficient model
(VCM) and has been studied for example by Wu et al. [18] or more recently by
Şentürk and Müller [16].
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Another practical advantage of model (1.1) is that it allows to simplify the
study of the following convolution model

W (s) =

∫ +∞

−∞
θ(u)Z(s− u)du+ η(s), (1.2)

where u, s ∈ R, through the Fourier transform F with Y = F(W ), β0 ≡ 0,
β1 = F(θ), X = F(Z) and ε = F(η).

Despite the abundant literature related to FCM or functional VCM, there is
hardly any paper providing estimators of the unknown functions in model (1.1)
along with their asymptotic properties which use the norm of the functional
space where they belong to.

As noticed by Ramsay and Silverman [15, p. 259], most of the current meth-
ods of estimation come from a multivariate data analysis approach rather than
from a functional one. For some applications, for example when the observa-
tions are highly auto-correlated, taking this functional nature into account may
be decisive. If not, multivariate approaches may cause a loss of information be-
cause, as noticed by Şentürk and Müller [16, p. 1257], they “do not take full
advantage of the functional nature of the underlying data”. In practice this loss
of information may reduce the accuracy of estimation and prediction. To cir-
cumvent this problem, Şentürk and Müller [16] propose a three-step functional
approach based on smoothing and least square estimation. However, the con-
vergence results obtained on compact sets do not allow to study specific models
like (1.2), for which convergence on the whole real line is required.

Besides, Ramsay et al. [14, Ch 10] propose a practical estimation method by
projecting all the random functions to an adequate finite dimensional subspace
and then use a penalization to chose the estimator. They do not provide a
theoretical study of its asymptotic properties.

The objective of the present paper is to propose estimators of the functions
β0 and β1 in the FCM (1.1) for which the asymptotic properties are obtained.
Our estimation approach is based on the Ridge Regression method developed
in the classical linear case, see Hoerl [8]. We extend this to the functional data
framework of model (1.1).

To ease the notations and the presentation of the results, we introduce in
section 2 a simplified centered model. The functional ridge regression estimator
of the functional coefficient is then defined with a constant regularization pa-
rameter. In section 3 we establish the consistency of this estimator and get a
rate of convergence. Section 4 addresses the practical choice of the regularization
parameter through cross-validation criteria. We also introduce a more flexible
estimator with a functional regularization parameter. Some simulation trials are
presented in section 5, and show the comparison of the two penalized estimators
together with that of Ramsay et al. [14, Ch 10], in a very low signal-to-noise
ratio (SNR) setting. Finally an application on a real data set is presented in
section 6. All the proofs are postponed to Section 8.
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2. Estimator and hypotheses

Let (Xi,Yi)i=1,··· ,n be an i.i.d sample of FCM (1.1). To remove the functional
intercept β0, we center the model (1.1) and get

Y(t)− E[Y ](t) = β1(t) (X (t)− E[X ](t)) + ε(t).

The estimator of β0 depends on the estimator of β1 obtained from the centered
model. Given that the natural estimators of E[X ] and E[Y ] are the empirical
means (X̄n := 1/n

∑n
i=1 Xi and Ȳn := 1/n

∑n
i=1 Yi), the estimator of β0 is

defined as

β̂0 := Ȳn − β̂1 X̄n. (2.1)

The convergence results on β̂1 immediately transpose to β̂0. Now, to focus on
the estimation of β1, we define the elements of the centered model as follows,
X := X − E[X ], Y := Y − E[Y ] and β := β1 and the centered FCM writes

Y (t) = β(t)X(t) + ε(t). (2.2)

In what follows we discuss the estimation of β.

2.1. Functional ridge regression estimator (FRRE)

The definition of the estimator of β in the centered model (2.2) is inspired by
the estimator introduced by Hoerl [8] in the Ridge Regularization method that
deal with ill-posed problems in the classical linear regression. Let λn > 0 be a
regularization parameter, we define the Functional Ridge Regression Estimator
(FRRE) of β as follows

β̂n :=
1
n

∑n
i=1 Yi X

∗
i

1
n

∑n
i=1 |Xi|2 + λn

n

, (2.3)

where the exponent ∗ stands for the complex conjugate. In the classical linear
regression case, Hoerl and Kennard [9, p. 62] proved that there is always a reg-
ularization parameter for which the ridge estimator is better than the Ordinary
Linear Squares (OLS) estimator. Huh and Olkin [12] made a study of some
asymptotic properties of the ridge estimator in this case. In the context of the
functional linear regression with scalar output, Hall et al. [6, p. 73] have also
used a ridge regularization method to invert the whole covariance operator of
X. Their approach has two main differences with the one used to define the
FRRE: we use i) functional outputs (Yi) and ii) inversion of the diagonal terms
of the covariance matrix of X.

In our case, the use of λn in the denominator prevents from dividing by
zero because E[X] = 0 (centered model) and, therefore, it helps to control the
instability of the estimator. The simulation studies in Section 5 show that in
practice a better estimator is obtained with the regularization parameter.
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2.2. Notations and general hypotheses of the FCM

Before studying the FCM, let us define some useful notations. We define
L2(R,C) = L2 the set of square integrable complex valued functions, with the

L2-norm ‖f‖L2 :=
[∫

R
|f(x)|2dx

]1/2
, with its associated inner product 〈·, ·〉. Be-

sides, given a subset K ⊂ R, ‖f‖L2(K) :=
[∫

K
|f(x)|2dx

]1/2
, where | · | denotes

the complex modulus.
The theoretical results given in the next sections are proved on the whole real

line. For this reason, we need to restrict the study to the set of functions that
vanish at infinity. Let C0(R,C) = C0 be the space of complex valued continuous
functions, which satisfies: for all ζ > 0 there exists a R > 0 such that for all
|t| > R, |f(t)| < ζ. We use the supremum norm ‖f‖C0 := supx∈R

|f(x)|. In
particular for a subset K ⊂ R, ‖f‖C0(K) := supx∈K |f(x)|.

Finally, throughout this paper, the support of a continuous function f : R →
C is the set supp(f) := {t ∈ R : |f(t)| 
= 0}. This set is open because f is
continuous. Besides we define the boundary of a set S, as ∂(S) := S \ int(S),
where S is the closure of S and int(S) is its interior.

The space C0 is too large. For instance, its geometry does not allow for the
application of the Central Limit Theorem (CLT) under the general hypothesis
of the existence of the covariance operator, that is E(‖X‖2C0

) < ∞ (see Ledoux
and Talagrand [13, Ch 10]). To circumvent this difficulty, we consider functions
that belong to the space C0 ∩L2. Here are general hypotheses that will be used
all along the paper:

(HA1FCM ) X, ε are independent C0 ∩ L2 valued random functions,
such that E(ε) = 0,

(HA2FCM ) β0, β1 ∈ C0 ∩ L2,
(HA3FCM ) E(‖ε‖2C0

),E(‖X‖2C0
), E(‖ε‖2L2) and E(‖X‖2L2) are all finite.

We do not assume that E[X] = 0 in model (2.2). Therefore, we deal with
a more general case than the one derived after centering model (1.1), and our
results will be valid also for the centered case.

3. Asymptotic properties of the FRRE

From the definition (2.3), it is easy to show that the FRRE β̂n has the following
bias-variance decomposition:

β̂n = β − λn

n

[
β

1
n

∑n
i=1 |Xi|2 + λn

n

]
+

1
n

∑n
i=1 εiX

∗
i

1
n

∑n
i=1 |Xi|2 + λn

n

. (3.1)

In this equation, we can see that the penalization introduces a bias but helps
to control the variance (last term in (3.1)). Thus, the penalization should not
be too big nor too small. Note also that, when E[X] ≈ 0, the part of the denom-
inator 1

n

∑n
i=1 |Xi(t)|2 might be close to zero at some values of t. Therefore, the

penalization (λn > 0) is necessary to prevent the denominator to be too small.
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Clearly, 1
n

∑n
i=1 |Xi(t)|2 is an estimator of E[|X|2]. Then from the equation

(3.1) we deduce that the ill-posed degree of this estimation problem depends
on the intervals where these two conditions are satisfied: i) E[|X|2] is close to
zero and ii) β

E[|X|2] is not close to zero. The latter condition implies a big bias

because β will be significantly bigger than the denominator.
The main results of this paper are the probability convergence of the FRRE

with rate

‖β̂n − β‖L2 = OP

(
max

[
λn

n
,

√
n

λn

])
,

and the mean square error rate

E(‖β̂n − β‖2L2) = O

(
max

[
λ2
n

n2
,
n

λ2
n

])
,

under large conditions.

3.1. Consistency of the estimator

Theorem 3.1. Let us consider the FCM with the general hypotheses (HA1FCM ),
(HA2FCM ) and (HA3FCM ). Let (Xi, Yi)i≥1 be i.i.d. realizations. We suppose
moreover that

(A1) supp(|β|) ⊆ supp(E[|X|]),
(A2) (λn)n≥1 ⊂ R

+ is such that λn

n → 0 and
√
n

λn
→ 0 as n → +∞.

Then
lim

n→+∞
‖β̂n − β‖L2 = 0 in probability. (3.2)

Remark 3.2. The geometry of L2 helps in the proof of Theorem 3.1 to use
the Central Limit Theorem (CLT) (see Bosq [1, p. 53]). In this sense by paying
attention to the geometry of Lp spaces, for some p ≥ 1, it is also possible to
generalize this result for those spaces.

Remark 3.3. Hypothesis (A2) is classic in the context of ridge regression.
Hypothesis (A1) specifies that it is not possible to estimate β outside the support
of the modulus of X. From model (2.2), it is clear that β cannot be estimated
in the intervals where the function X is zero. We show this in Proposition 3.4,
where Hypothesis (nA1) is stronger than the negation of (A1). This hypothesis
provides that there exists some t0 in supp(|β|), such that X is zero almost surely
in a neighborhood of t0.

Proposition 3.4. Let (Xi, Yi)i=1,··· ,n be an i.i.d. sample of FCM in C0 ∩ L2

which satisfies hypothesis (A2) and

(nA1) There exists t0 ∈ supp(|β|) and δ > 0 such that E[‖X‖C0([t0−δ,t0+δ])] = 0.

Then there exists a constant C > 0 such that almost surely

‖β̂n − β‖L2 ≥ C. (3.3)
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In what follows we obtain some rates of convergence over the whole real line
and over compact subsets.

3.2. Rate of convergence

To obtain a rate of convergence, we need to control the shapes of the functions
β and E[|X|] on the points at the border of the support of E[|X|]. Theorem 3.5
handles the general case where |β|/E[|X|2] goes to infinity over the points of the
set Cβ,∂X := supp(|β|) ∩ ∂(supp(E[|X|])).
Theorem 3.5. Let us consider the FCM with the general hypotheses (HA1FCM ),
(HA2FCM ) and (HA3FCM ). We assume additionally that (A1) holds, together
with:

(A3) E[‖|X|2‖2L2 ] < ∞.

(A4)
∥∥∥ |β|
E[|X|2] 1supp(β)\∂(supp(E[|X|]))

∥∥∥
L2

< +∞.

(A5) There exist positive real numbers α > 0, M0,M1,M2, LI > 0 such that for
every p ∈ Cβ,∂X , there exists an open neighborhood Jp ⊂ supp(|β|) with
length m(Jp) < LI for which the following hold

(a) For every t ∈ Jp, E[|X|2(t)] ≥ |t− p|α, and∥∥∥∥ 1

E[|X|2]

∥∥∥∥
L2(Jp\{p})

≤ M0,

(b)
∑

p∈Cβ,∂X
‖β‖2C0(Jp)

< M1,

(c) |β|
E[|X|2] 1supp(|β|)\J < M2, where J =

⋃
p∈Cβ,∂X

Jp.

(A6) For n ≥ 1,

λn := n1− 1
4α+2 ,

where α > 0 comes from the hypothesis (A5).

Then
‖β̂n − β‖L2 = OP

(
n−γ

)
, (3.4)

where γ := min
[

1
2(2α+1) ,

1
2 − 1

2(2α+1)

]
and n−γ = max

[
λn

n ,
√
n

λn

]
.

The following corollary specifies the rate of convergence for α = 1/2.

Corollary 3.6. Under the hypotheses of Theorem 3.5 if α = 1/2 we have

‖β̂n − β‖L2 = OP

(
n−1/4

)
.

Remark 3.7. Hypothesis (A3) is classic and allows to apply the CLT on the

denominator of β̂n. Hypothesis (A4) is needed because
[

β
1
n

∑n
i=1 |Xi|2+λn

n

]
in (3.1)

can naturally be L2-bounded under this condition.
Next (A5a) requires that around the points p ∈ Cβ,∂X , the function E[|X|2]

goes to zero slower than a polynomial of degree α, which implies that the term
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β

1
n

∑n
i=1 |Xi|2+λn

n

]
in (3.1) behaves like β

E[|X|2] and determines the rate of con-
vergence.

The degree of ill-posedness of the problem depends on how close to zero E[|X|2]
is. The hypothesis (A5a) measures this through the polynomial degree α. In this
way the rate of convergence, which directly depends on α, is related to the ill-
posed nature of the problem.

Parts (b) and (c) of (A5) help us controlling the tails of β and |X| around
infinity. They are useful only when card(Cβ,∂X) = +∞. Note that the set Cβ,∂X

is always countable (see the proof of Theorem 3.5).
Finally hypothesis (A6) replaces (A2) in Theorem 3.1, as the rate of conver-

gence strongly depends on the behaviour of β
E[|X|2] around the points of Cβ,∂X ,

which depends on α. We can see that (A6) always implies (A2).

Remark 3.8. It is natural to ask whether the convergence rate obtained in
Theorem 3.5 is optimal or not. Stone [17] obtained an optimal convergence rate
in a multivariate nonparametric regression setting. Transposition for statistical
models with functional variables is still an open problem. In our case, the con-
vergence rate in Theorem 3.5 can be written under the form n−α/(2α+1) with
α < 1/2, which leads to a rate slower than n−1/4. The condition α < 1/2 pre-
vents from getting convergence rates of the same form than those given in Stone
[17]. This constraint enables to bound the quantity 1

E(|X|2) , which is crucial to

control the bias term. Indeed, the convergence rate is stated in a large setting
(i) for the L2 norm over the whole real line, (ii) without any assumption on the
regularity of the curve X, and (iii) without any assumption on the distribution
of X.

Under stronger but more intuitive hypotheses, we can also obtain similar
convergence results to that of Theorem 3.5. Corollary 3.9 is an example.

Corollary 3.9. If additionally to hypotheses (A1), (A2) and (A3), we assume

(A4bis) |β|
E[|X|2] 1supp(|β|) ∈ L2 ∩ L∞,

then

‖β̂n − β‖L2 = OP

(
max

[
λn

n
,

√
n

λn

])
. (3.5)

Hypothesis (A4bis) is a reformulation of (A4) and part (c) of (A5). It is
required to control the second term of (3.1) and the decreasing rate of β with
respect to E[|X|2] around infinity (tails control). Besides, note that (A4bis)
implies that Cβ,∂X = ∅.

Theorem 3.10 presents a simpler convergence result on compact subsets of
the support of E[|X|]. This theorem assumes general hypotheses and ensures
convergence in a wide variety of cases.

Theorem 3.10. Under hypotheses (A1), (A2) and (A3), for every compact
subset K ⊂ supp(E[|X|]), we have

‖β̂n − β‖L2(K) = OP

(
max

[
λn

n
,

√
n

λn

])
. (3.6)
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3.3. Further results

In the previous subsection, we presented some convergence theorems that use
convergence in probability (consistency). By adapting the arguments in the
proof, we can also obtain convergence of the mean square error. We proved the
following theorem.

Theorem 3.11. Under hypotheses (A1), (A2), (A3) and (A4bis) we obtain

E[‖β̂n − β‖2L2 ] =

∫
R

E[|β̂n − β|2] = O

(
max

[
λ2
n

n2
,
n

λ2
n

])
. (3.7)

Moreover, the confidence bands of β are computed in Proposition 3.12 under
suitable noise conditions. We first compute the expectation and the variance of
β̂n conditionally to the sample X1, · · · , Xn. Then we define an unbiased esti-
mator of the variance of the noise for each value t ∈ R, with which we compute
the confidence interval of β for this value t.

Proposition 3.12. The expectation and variance of β̂n conditional to a sample
X1, · · · , Xn are

E[β̂n |X1, · · · , Xn] = βDX and Var[β̂n |X1, · · · , Xn] =
E[|ε|2]∑n
i=1 |Xi|2

D2
X ,

where DX is a function defined for all t ∈ R as follows DX(t) :=
1
n

∑n
i=1 |Xi(t)|2

1
n

∑n
i=1 |Xi(t)|2+λn

n

.

Additionally, if for a given value t ∈ R, we suppose that β(t) ∈ R, X(t) ∈ R,
ε(t) ∼ N(0, σ2

ε ) and (εi(t))i=1,··· ,n is a i.i.d sample, then

β̂n(t)− β(t)DX(t)

σ̂εDX(
∑n

i=1 |Xi|2)−1/2
∼ T (n− 1),

where

σ̂ε :=
1

(n− 1)D2
X(t)

n∑
i=1

|DX(t)Yi(t)− β̂n(t)Xi(t)|2

is a unbiased estimator of σε(t) and T (n−1) is the Student’s t-distribution with
n− 1 degrees of freedom.

Consequently a confidence interval of β(t) at the level 1− α is the following

[
β̂n(t)

DX(t)
− tn−1(1− α/2)

σ̂ε√∑n
i=1 |Xi(t)|2

,

β̂n(t)

DX(t)
+ tn−1(1− α/2)

σ̂ε√∑n
i=1 |Xi(t)|2

],

with critical value tn−1(1− α/2).
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4. Selection of the regularization parameter

4.1. Predictive and generalized cross-validation

This section is devoted to developing a selection procedure of the regularization
parameter λn for a given sample (Xi, Yi)i∈{1,··· ,n}. To solve this problem we
chose the Predictive Cross-Validation (PCV) criterion. Its definition, see for
instance Febrero-Bande and Oviedo de la Fuente [4, p. 17] or Hall and Hosseini-
Nasab [7, p. 117], is the following

PCV (λn) :=
1

n

n∑
i=1

‖Yi − β̂(−i)
n Xi‖2L2 ,

where β̂
(−i)
n is computed with the sample (Xj , Yj)j∈{1,··· ,i−1,i+1,··· ,n}. The se-

lection method consists in choosing the value λn which minimizes the function
PCV (·).

Proposition 4.3 shows how to compute faster the PCV by only processing
one regression, instead of n. This result is based on similar ideas as those in
Green and Silverman [5, pp. 31-33] about the smoothing parameter selection for
smoothing splines.

Proposition 4.1. We have

PCV (λn) =
1

n

n∑
i=1

∥∥∥∥∥Yi − β̂n Xi

1−Ai,i

∥∥∥∥∥
2

L2

, (4.1)

where Ai,i ∈ L2 is defined as follows Ai,i := |Xi|2/(
∑n

j=1 |Xj |2 + λn).

Next we introduce the following Generalized Cross-Validation (GCV), which
is computationally faster than the PCV:

GCV (λn) :=
1

n

n∑
i=1

∥∥∥∥∥Yi − β̂n Xi

1−A

∥∥∥∥∥
2

L2

,

where A ∈ L2 is A := ( 1n
∑n

i=1 |Xi|2)/(
∑n

j=1 |Xj |2 + λn).

Remark 4.2. From the definition of A, we have that, for every t ∈ R, 0 ≤
A(t) ≤ 1/n, then 1 ≤ 1

1−A(t) ≤ n
n−1 , which yields that the GCV criterion is

bounded as follows:

1

n

n∑
i=1

∥∥∥Yi − β̂n Xi

∥∥∥2
L2

≤ GCV (λn) ≤
1

n− 1

n∑
i=1

∥∥∥Yi − β̂n Xi

∥∥∥2
L2

.

This last inequality quickly gives an idea about the GCV values.

4.2. Functional regularization parameter

Given that we are working with functional data, another possibility for the
estimator defined in (2.3) is to use a time-dependent function Λn(t) instead of
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a constant number λn. We shall optimize, for each time t, the choice of Λn(t).
To that aim, we have to compute the PCV for each time t ∈ R,

PCV (Λn(t)) :=
1

n

n∑
i=1

|Yi(t)− β̂(−i)
n (t)Xi(t)|2,

where β̂
(−i)
n (t) is computed with the sample (Xj(t), Yj(t))j∈{1,··· ,n}\{i}.

As above, we obtain a simpler formula for PCV (Λn(t)) (see next proposition
bellow), which yields a faster computation.

Proposition 4.3. We have

PCV (Λn(t)) =
1

n

n∑
i=1

∣∣∣∣∣Yi(t)− β̂n(t)Xi(t)

1−Ai,i(t)

∣∣∣∣∣
2

, (4.2)

where Ai,i(t) :=
|Xi(t)|2∑n

j=1 |Xj(t)|2+λn(t)
.

This criterion is discussed in the next section dedicated to simulation studies.
Its performance is evaluated and compared to that of GCV (λn).

Theoretical results can be obtained on the asymptotic properties of the es-
timator associated to the functional regularization parameter. For instance we
proved the following theorem.

Theorem 4.4. If additionally to the hypotheses (A1), (A3) and (A4bis) we
assume

(A2bis) There exists a constant b > 0 and a set of continuous functions Λn :
R → R+ such that for each n ∈ N, MΛn < bmΛn and

mΛn

n
→ 0 and

√
n

mΛn

→ 0,

where mΛn := min(Λn) and MΛn := max(Λn).

Then

‖β̂n − β‖L2 = OP

(
max

[
mΛn

n
,

√
n

mΛn

])
, (4.3)

where β̂n is obtained with Λn(t) minimizing (4.2).

5. Simulation study

We divide the simulation study into two parts. Firstly, we present in settings
1 and 2, a comparative numerical analysis of different estimators used for esti-
mation in model (1.1). Then, in the second part, a third setting simulation is
introduced to numerical study the dependence of the convergence rate (n−γ) on
α, where α is a bound for the decreasing rate of E[|X|2] towards 0, as described
in Theorem 3.5. In this case we use the model without intercept (2.2).
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5.1. Comparison of estimation methods

For settings 1 and 2, we evaluate our estimation procedures when the Signal-to-
Noise-Ratio (SNR) is low, that is, under noisy conditions. Both approaches for
computing the FRRE (using λn and Λn(t)) are compared along with the non
penalized case (λn = 0). Furthermore, we also compare them to the estimator
defined by Ramsay et al. ([14, Ch 10]). In this approach, the random functions
are projected onto an adequate finite-dimensional subspace generated by the
Fourier basis. The estimator is obtained as a solution of a penalized least square
criterion and is implemented in the R package fda.

We use the estimator (2.1) of β0 and the FRRE estimator of β1 after center-
ing, that is

β̂1 :=

∑n
i=1(Yi − Ȳn) (Xi − X̄n)

∗∑n
i=1 |Xi − X̄n|2 + λn

, (5.1)

β̂0 := Ȳn − β̂1 X̄n.

For each setting we computed 500 Monte Carlo runs to evaluate the mean ab-
solute deviation error (MADE) and the weighted average squared error (WASE),
defined in the same way as in Şentürk and Müller [16, p. 1261],

MADE :=
1

2T

[∫ T

0
|β0(t)− β̂0(t)| dt
range(β0)

+

∫ T

0
|β1(t)− β̂1(t)| dt
range(β1)

]
,

WASE :=
1

2T

[∫ T

0
|β0(t)− β̂0(t)|2dt
range2(β0)

+

∫ T

0
|β1(t)− β̂1(t)|2dt
range2(β1)

]
,

where [0, T ] is the domain of β0 and β1 and range(βr) is the range of the function
βr for r = 0, 1.

In the first setting, we analyze how the estimators behave when E[X ] > 0.
Then, in the second one, we study a case where the penalization (λ > 0) is
clearly needed, that is, when E[X ] = 0 and β0 = 0.

For both settings, we simulated random functions (Xi,Yi)i=1,··· ,n over the
interval [0, 1], discretized in p = 100 equispaced observation times tj := j/101
for j = 1, · · · , 100. Additionally, to measure the level of noise, we use the signal-
to-noise ratio (SNR), defined by SNR := (tr(Cov(X )))/(tr(Cov(ε)), where
Cov(X ) := E (< X , · > X− < E(X ), · > E(X )), Cov(ε) := E (< ε, · > ε) and tr
is the trace of an operator.

The general hypotheses (HA1FCM ) - (HA3FCM ) are satisfied for both set-
tings. The regularization parameter λn and the function Λn were optimized over
the interval [0, 100].

5.1.1. Setting 1

We simulated samples with size n = 70. The input curves Xi, for i = 1, . . . , n,
were generated with mean function μX (t) = t + sin(t) and covariance function
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constructed from the 10 first eigenfunctions of the Wiener Process with its cor-
respondent eigenvalues. That is, for 0 ≤ t ≤ 1, Xi(t) = μX (t)+

∑10
j=1 ρjξijφj(t),

where for j ≥ 1, φj(t) =
√
2 sin((j − 1/2)πt), ρj = 1/((j − 1/2)π) and the ξij

were generated from N(0, 1).
The function β0 is defined as β0(t) = (t− 0.25)2 1[0.25,1] and β1 as

β1(t) =

⎧⎨
⎩

−2
0.152 (t− 0.45)2 + 2 if t ∈ [0.3, 0.6],
−1

0.152 (t− 0.85)2 + 1 if t ∈ [0.7, 1],
0 otherwise.

The noise εi is defined as follows, εi(t) = cε
∑20

j=11 ρjξijφj(t), where cε is a
constant such that SNR = 2.

Results: The simulation results are presented in Figures 1, 2, and Table 1.
The performance of the four estimators are illustrated.

Fig 1. An example of the estimation of β0 and β1 (solid black line) with a sample size
n = 70. In green, the estimator without penalization (λ = 0); in red, the FREE with optimized
parameter λ > 0; in blue, the FREE with the functional optimized parameter Λ; and in orange,
Ramsay’s estimator.

We can see that, even under rather noisy conditions (SNR = 2), the es-
timators perform well. This shows their robustness. Furthermore, β1 is better
estimated than β0 (see Figure 1) because of two reasons: (i) it is estimated before
β0 in (5.1) and (ii) since X̄n ≈ μX has some periodicity, it introduces cycles on
the estimators of β0, which is monotone.

Lastly, let us remark that the FRRE computed with a functional regulariza-
tion Λn gives in average better estimations. To understand better this fact, in
Figure 3 we compare the mean of the 500 calibrated functional regularization
parameters (Λ̄n) with the mean of the correspondent calibrated regularization
parameters (λ̄n), which is equal to 0.5289 (sd = 0.1096).

The FRRE computed with a functional regularization Λn can reduce, if nec-
essary, either the bias or the variance of the estimator in (3.1). This adaptability
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Fig 2. Distribution of the evaluation criteria MADE (left panel) and WASE (right panel) for
the four estimators over 500 simulated samples.

Table 1

Means (and standard deviations) of the evaluation criteria MADE and WASE over 500
simulated samples.

MADE WASE
λ = 0 0.09171 (0.0252) 0.01985 (0.01129)
λn > 0 0.08973 (0.0238) 0.01873 (0.01047)
Λn 0.07521 (0.0232) 0.01499 (0.0097)

Ramsay 0.10938 (0.0255) 0.02784 (0.01386)

property makes it more efficient. An illustration is given in Figure 3. On the
one hand, Λ̄n penalizes much more in the intervals where β1 is equal to zero
to reduce the variance in (3.1). On the other hand, Λn is close to zero where
β1 > 0 to reduce the bias.

Fig 3. The mean of the 500 calibrated functional regularization parameters (Λ̄n) and the
mean of the correspondent calibrated regularization parameters λ̄n = 0.5289.
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5.1.2. Setting 2

We simulated samples with size n = 100. The input curves Xi, for i = 1, . . . , n,
were generated with two white Gaussian noises. The first one over the subinterval
[0, 0.5] with a variance σ2

X,I1
= 0.5, and the second one over [0.5, 1] with a

variance σ2
X,I2

= 0.5 ∗ 1/10. Accordingly, we have E[X ] = 0 and the function

E[|X |2] is constant over each of these subintervals.
Function β0 is null and β1 is defined as follows: β1 = 4(1−2 t)1/2 1[0,0.5]. The

noise εi is defined in a similar way to X , with a variance over [0, 0.5] σ2
ε,I1

= 0.3

and over [0.5, 1] σ2
ε,I2

= 20 ∗ 0.3. Consequently, SNR = 0.0873 (very noisy
situation).

Results: The simulation results are presented in Figures 4 and 5, and Table
2. The performance of the four estimators are illustrated.

Fig 4. An example of the estimation of β1 (black solid line) with a sample size n = 100. In
green, the estimator without penalization (λ = 0); in red, the FREE with optimized parameter
λ > 0 optimal; in blue, the FREE with the functional optimized parameter Λ, and Ramsay’s
estimator in orange.

Here, we see that under very noisy conditions (SNR = 0.0873), all the es-
timators perform well over the interval [0, 0.5]. Estimation performances differ
over [0.5, 1]. The FRRE computed with a functional regularization Λn gives a
more stable estimation.

Let us explain why the FRRE with a functional parameter performs better
than the other estimators. First of all, in this setting we have E[X ] = 0, then
penalizing is needed to avoid dividing by zero when computing the FRRE. Thus,
the estimator without penalization (λ = 0) is more unstable.

Secondly, the denominator of the FRRE (1/n
∑n

i=1 |Xi|2) behaves like E[|X |2],
which is equal to 0.5 over [0, 0.5] and to 0.05 over [0.5, 1]. Therefore, different
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Fig 5. Distribution of the evaluation criteria MADE (left panel) and WASE (right panel) for
the four estimators over 500 simulated samples.

Table 2

Means (and standard deviations) of the evaluation criteria MADE and WASE over 500
simulated samples.

MADE WASE
λ = 0 0.04049 (0.01324) 0.00404 (0.00342)
λn > 0 0.04258 (0.00836) 0.00274 (0.00151)
Λn 0.02581 (0.00721) 0.00173 (0.00147)

Ramsay 0.116 (0.02122) 0.03787 (0.01299)

penalization values are needed over each interval. A functional penalization like
Λ is more flexible and consequently, it performs better than a constant penal-
ization one.

Thirdly, given that the noise is 20 times bigger over [0.5, 1] than over [0, 0.5],
a bigger penalization is needed over [0.5, 1] to bound the variance in the bias-
variance decomposition (3.1). This is better handled by the flexible functional
penalization. Similarly, the bias is also better handled by a flexible penalization.

Finally, the FRRE estimators are more suitable than the estimator intro-
duced by Ramsay et al (Ramsay et al. [14]). The main reason is that the FRRE
estimators are pointwise defined, which avoids projecting the random functions
onto a finite dimensional subspace that may be composed by too regular func-
tions (Fourier basis). Thus, the approach we propose can better handle complex
datasets of random functions such as realizations of the white Gaussian noise.

5.2. Dependence of the convergence rate and α

As stated in Theorem 3.5, the convergence rate of the estimator (‖β̂n−β‖L2) is

bounded by OP (n−γ), where γ := min
[

1
2(2α+1) ,

1
2 − 1

2(2α+1)

]
. Therefore, this

rate depends on α. In this way, the rate is directly related to the behavior of
E[|X|2(t)] around border points (p ∈ Cβ,∂X). This behavior is explained through
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the polynomial lower bound function |t− p|α, according to hypothesis A5 (part
a).

We present in setting 3 a case that explicitly shows the dependence of the
convergence rate and α. In particular, we are interested in the behavior of ‖β̂n−
β‖L2 and of its upper bound, i.e.,

Cn :=
λn

n

∥∥∥∥∥ β
1
n

∑n
i=1 |Xi|2 + λn

n

∥∥∥∥∥
L2

+D0

√
n

λn
, (5.2)

where D0 = 10 has been empirically chosen in order that (5.2) can be a bound

of ‖β̂n − β‖L2 . From the proof of Theorem 3.5 (see section 8), we can see that
Cn has a rate equal to OP (n−γ).

To illustrate Theorem 3.5, we chose p = 0 ∈ Cβ,∂X (see Assumption A5).
The random functions Xi and Yi are defined in a neighbourhood of p.

Setting 3
For each alpha value α ∈ {0.001, 0.1, 0.25, 0.5, 1, 3, 9}, samples (Xi, Yi)i=1,··· ,n,

with sizes n ∈ {102, 103, 104, 5 · 104, 105}, were simulated. More precisely, for
each couple (n, α), N = 50 Monte Carlo runs were computed to obtain means

of ‖β̂n − β‖L2 and Cn.
The random functions X and Y are defined over the interval [−1, 1]. We

considered the equispaced observation times, [t0, t1, · · · , t199], with tk = −1 +
2k/199 and k = 0, · · · , 199.

The input functions Xi, for i = 1, · · · , n, are realizations of

X(t) = |t|α/2 + 1

40

10∑
j=1

ρjξi,jφj(|t|),

where t ∈ [−1, 1], and for j ≥ 1, φj(|t|) =
√
2 sin((j − 1/2)π|t|), ρj = 1/((j −

1/2)π) and the ξij were generated from N(0, 1). In this definition we use the ten
first eigenfunctions of the Wiener Process with its corresponding eigenvalues.
Similarly, the noise is defined as realizations of ε(t) = cε

∑20
j=11 ρjξijφj(t), where

cε is a scalar, such that SNR = 5 (20 % of noise).
The functional coefficient is defined as β(t) = 1.5 − t2. Lastly, the output

functions Yi are generated according to model (2.2).
From these definitions, E[|X(t)|2] = |t|α and p := 0 ∈ Cβ,∂X .

Results: In Tables 3 and 4 we show the mean values of ‖β̂n − β‖L2 and of its
upper bound Cn, respectively.

Clearly, as the value of α increases, the convergence rate deteriorates due to
the increasing bias. Specifically, when α >> 0, E[|X|] ≈ 0 and then, the bias
behaves like β in Equation (3.1) slowing down its rate.

The upper bound Cn behaves as expected for n large enough. That is, its
convergence rate is very low when α ≈ 0, improves to reach its maximum value
for α = 1/2.

We can also see that ‖β̂n−β‖L2 tends to 0 faster when α tends to 0. Indeed,
for α ≈ 0, the function E[|X(t)|2] = |t|α ≈ 1 over [−1,−δ]∪ [δ, 1], where δ ∈]0, 1[
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α n = 102 n = 103 n = 104 n = 5 · 104 n = 105

0.001 0.1557 0.0526 0.0170 0.0076 0.0054
0.1 0.2466 0.1039 0.0414 0.0214 0.0161
0.25 0.4085 0.2210 0.1114 0.0673 0.0539
0.5 0.6882 0.4928 0.3351 0.2491 0.2179
1.0 1.0749 0.9538 0.8337 0.7529 0.7193
3.0 1.5200 1.4998 1.4788 1.4634 1.4566
9.0 1.6636 1.6618 1.6601 1.6589 1.6583

Table 3

Mean values of ‖β̂n − β‖L2 .

α n = 102 n = 103 n = 104 n = 5 · 104 n = 105

0.001 10.1098 9.9839 9.9255 9.9002 9.8911
0.1 7.0595 5.7273 4.6830 4.0804 3.8472
0.25 5.0501 3.3832 2.2658 1.7148 1.5217
0.5 3.8505 2.2710 1.3351 0.9179 0.7802
1.0 3.2293 1.9538 1.2979 1.0244 0.9347
3.0 2.9095 2.0177 1.6718 1.5602 1.5286
9.0 2.7924 2.0411 1.7875 1.7183 1.7012

Table 4

Mean values of Cn.

is small. Using an equispaced grid around zero, we can assume that for all
these observation times tk, |X(tk)|2 > 0.5. Therefore, in Equation (3.1), we can
bound the variance with 2

n‖
∑n

i=1 εi X
∗
i ‖L2 = OP (1/

√
n), and get an optimal

rate for the variance. Similarly, we can show that the convergence rate of the bias
((O(λn/n)) is high because when α ≈ 0, λn/n ≈ n−1/2 which is the parametric
convergence rate.

In this way, we can see that when α tends to 0, both the variance and the bias
have better convergence rates than Cn = OP (n−γ). Thus the convergence rate

of ‖β̂n − β‖L2 reveals to be better than that of Cn, which is the upper bound
obtained in Theorem 3.5. This bound is not optimal. The additional Proposition
8.5 in section 8 is stated to show how to improve the upper bound on compact
sets.

6. Application

We illustrate the use of the estimators in (5.1) with the “gait data”. These data
have been processed by Ramsay et al. [14, p. 158] as an example of estimation in
the FCM and can be found in the R package fda. The data “are measurements
of angle at the hip and knee of 39 children as they walk through a single gait
cycle. The cycle begins at the point where the child’s heel under the leg being
observed strikes the ground. For plotting simplicity we run time here over the
interval [0, 20], since there are 20 times at which the two angles are observed.”

The main question the authors wanted to study was: “How much control does
the hip angle have over the knee angle?”. Accordingly, the hip angle curves are
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the covariate Xi and the knee angle curves the response Yi. They model this
interaction through the FCM with intercept (1.1).

The estimators of β0 and β1 (5.1) with optimized constant and functional
parameters are presented in Figure 6. These estimators gave similar results as
those obtained with fda, with a better computation time. Additionally, the
empirical mean Ȳn is also compared to β0 to see what happens if β1 = 0, that
is when the hip angle (X ) does not influence the knee angle (Y). From Figure 6
(left panel) we see that a functional coefficient β1 is required.

Fig 6. The FRRE estimators of β0 and β1 (5.1) with optimized constant (in red) and func-
tional (in blue) parameters compared to Ramsay’s estimator (in black). The empirical mean
Ȳn (in orange) is plotted in the first panel.

7. Conclusions

In this paper we generalized the Ridge Regression method to define the FRRE
estimator of the functional coefficient β1 in the FCM (1.1). We proved its con-
sistency for the L2-norm, and obtained its rate of convergence over the whole
real line, not only on compact sets.

From a practical point of view, we introduced two penalized estimators, one
with a constant regularization parameter and the other with a functional one.
The functional regularization is more flexible in case where the noise variance
is changing over the estimation interval, or when the functional parameter β
is close to 0. For both estimators, we provided a selection procedure through
PCV.

In addition we compared this estimation method with that of Ramsay et al.
[14, Ch. 10] in a simulation study and in an application. Both perform well
under noisy conditions and in some cases the former is more robust, may better
handle complex datasets of random functions and is faster to compute.
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All these results open new perspectives for studying the FCM with several
covariates and related models such as the convolution model (1.2), for which the
properties of the Fourier transform allow to transpose the convergence results
to an estimator based on the FRRE.

8. Proofs

8.1. Proof of Theorem 3.1

Let us first introduce a useful technical lemma. Here we will denote ϕ :=
E[|X|2] ∈ C0.

Lemma 8.1. Under hypotheses (A1) and (A2) of Theorem 3.1, if there exists a
sequence of functions (fn)n≥1 ⊂ C0 such that ‖fn − ϕ‖C0 → 0, then there exist

1. a sequence (Cj)j≥1 of subsets of R such that

m

(
lim sup
j→+∞

Cj

)
= m

(
∩J≥1[∪J

j=1Cj ]
)
= 0,

where m is the Lebesgue measure,
2. a strictly increasing sequence of natural numbers (Nj)j≥1 ⊂ N and a se-

quence of real numbers (dn)n≥1 ⊂ R, with limn→+∞ dn = 0,

such that for every j ≥ 1 and n ∈ {Nj , · · · , Nj+1},
∣∣∣∣λn

n

∣∣∣∣
∥∥∥∥∥ β

fn + λn

n

∥∥∥∥∥
C0(R\Cj)

≤ dn. (8.1)

Proof of Lemma 8.1. To start the proof, we notice that supp(ϕ) = supp(E[|X|]),
hence supp(|β|) ⊆ supp(ϕ) by hypothesis (A1).

We define the sequence αr :=
√

λr

r which is decreasing to 0, and the sets

Kϕ
r := ϕ−1([αr,+∞[) and Kβ

q := |β|−1([1/q,+∞[) for r, q ∈ N
+. All these sets

are compacts and cover the supports of ϕ and β respectively, that is ∪∞
r=1 ↑

Kϕ
r = supp(ϕ) and ∪∞

q=1 ↑ Kβ
q = supp(β).

Without loss of generality, we can suppose that there exists some Q1 ∈ N such
that Kβ

Q1

= ∅ (otherwise β ≡ 0). Then we redefine for all q ∈ N, Kβ

q := Kβ
Q1+q.

Let us take a sequence δs decreasing to 0 and define for all s ∈ N,

Ds := Bδs(∂supp(ϕ)) = ∪a∈∂supp(ϕ)Bδs(a) and Cs := Kβ
s ∩Ds,

with Bδs(a) :=]a− δs, a+ δs[. Clearly

Kβ
1 \ C1 ⊂ int(supp(ϕ)) = supp(ϕ) = ∪∞

r=1K
ϕ
r .

since the supports of continuous functions are open.
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Thus, from the definition of Kϕ
r and the fact that αr goes to zero, there exists

r1 ∈ N such that for all r ≥ r1, K
β
1 \ C1 ⊂ Kϕ

r .
Moreover, from (A2) there exists r̃1 > r1 such that, for all r ≥ r̃1,

max
r≥r̃1

λr

r
≤ λr1

r1
.

Considering Kβ
1 \C1, from the definition of Kϕ

r1 and the uniform convergence
of (fn)n≥1 towards ϕ, we deduce that there exists N1 > r̃1 such that for all
n ≥ N1 and t ∈ Kϕ

r1 ,
3

4
αr1 ≤ fn(t) +

λn

n
.

Thus for all n such that n ≥ N1,

|λn

n
|
∥∥∥∥∥ β

fn + λn

n

∥∥∥∥∥
C0(K

ϕ
r1

)

≤ |λn

n
| 4

3αr1

‖β‖C0(R) ≤
(
max
s≥r̃1

[|λs

s
|]
)

4

3αr1

‖β‖C0(R).

In particular we can deduce, for all n ≥ N1 > r1,

|λn

n
|
∥∥∥∥∥ β

fn + λn

n

∥∥∥∥∥
C0(K

β
1 \C1)

≤ |λr1

r1
| 4

3αr1

‖β‖C0(R) ≤
√

λr1

r1

4

3
‖β‖C0(R).

because of the definition of αr1 .
Similarly

Kβ
2 \ C2 ⊂ int(supp(ϕ)),

and there exists r2 > r1 such that for all r ≥ r2, K
β
2 \ Cδ2 ⊂ Kϕ

r . From (A2)

there exists r̃2 > r2 such that maxr≥r̃2
λr

r ≤ λr2

r2
.

Again, given the definition of Kϕ
r2 and the uniform convergence of (fn)n≥1

towards ϕ, we deduce that there exists N2 > r̃2 such that for all n ≥ N2 and
t ∈ Kϕ

r2 ,
3

4
αr2 ≤ fn(t) +

λn

n
.

This yields that, for all n such that n ≥ N2 > r2,∣∣∣∣λn

n

∣∣∣∣
∥∥∥∥∥ β

fn + λn

n

∥∥∥∥∥
C0(K

β
2 \C2)

≤
√

λr2

r2

4

3
‖β‖C0(R).

We continue this way to build three strictly increasing sequences rj ↑ ∞,
r̃j ↑ ∞ and Nj ↑ ∞ such that for all j ∈ N,

1. Nj > r̃j > rj ,

2. ∀r ≥ rj , Kβ
j \ Cj ⊂ Kϕ

r ,

3. maxr≥r̃j [
λr

r ] ≤ λrj

rj
,

4. ∀n ≥ Nj , |λn

n |
∥∥∥ β

fn+
λn
n

∥∥∥
C0(K

β
j \Cj)

≤
√

λrj

rj
4
3‖β‖C0(R).
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Let n be an integer greater than N1. Then there exists an integer j such that
n belongs to the set {Nj , Nj +1, · · · , Nj+1 − 1}. The following sequence (dn) is
then defined as follows:

dn := max

{
4

3

√
λrj

rj
‖β‖C0(R),

1

j

}
. (8.2)

It is easy to see that this sequence goes to zero and from (8.2) we conclude that
for all n ∈ {Nj , Nj + 1, · · · , Nj+1 − 1},

|λn

n
|
∥∥∥∥∥ β

fn + λn

n

∥∥∥∥∥
C0(R\Cj)

≤ dn, (8.3)

because of the definition of Kβ
j (outside Kβ

j , β is bounded by 1/j) and the fact

that R \ Cδj = [Kβ
j \ Cδj ] ∩ [(Kβ

j )
c \ Cδj ].

Proof of Theorem 3.1. From the decomposition (3.1), we obtain

‖β̂n − β‖L2 ≤
∣∣∣∣λn

n

∣∣∣∣
∥∥∥∥∥ β

1
n

∑n
i=1 |Xi|2 + λn

n

∥∥∥∥∥
L2

+

∥∥∥∥∥
1
n

∑n
i=1 εiX

∗
i

1
n

∑n
i=1 |Xi|2 + λn

n

∥∥∥∥∥
L2

.

Let us start by showing that∥∥∥∥∥
1
n

∑n
i=1 εiX

∗
i

1
n

∑n
i=1 |Xi|2 + λn

n

∥∥∥∥∥
L2

= OP

(√
n

λn

)
. (8.4)

First we have

E[‖εX∗‖2L2 ] ≤ E[‖ε‖2C0
] E[‖X‖2L2 ] < +∞,

because of (HA1FCM ) and (HA3FCM ).
Now due to the moment monotonicity E[‖εX‖L2 ] < +∞, εX is strongly

integrable with the L2-norm, so the function E[εX] exists and belongs to L2.
From (HA1FCM ), E[εX] is the zero function. We conclude that

E[εX] = 0 and E[‖εX‖2L2 ] < +∞,

which, from the CLT in L2 (see Theorem 2.7 in Bosq [1, p. 51] and Ledoux and
Talagrand [13, p. 276] for the rate of convergence), yields to∥∥∥∥∥ 1n

n∑
i=1

εiX
∗
i

∥∥∥∥∥
L2

= OP

(
1√
n

)
.

Finally (8.4) is obtained from the fact that∥∥∥∥∥
1
n

∑n
i=1 εiX

∗
i

1
n

∑n
i=1 |Wi|2 + λn

n

∥∥∥∥∥
L2

≤
∣∣∣∣ nλn

∣∣∣∣
∥∥∥∥∥ 1n

n∑
i=1

εiX
∗
i

∥∥∥∥∥
L2

= OP

(√
n

λn

)
.
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As
√
n

λn
→ 0 by (A3), we obtain the probability convergence of this part.

To conclude the proof, it is enough to show that

∣∣∣∣λn

n

∣∣∣∣
∥∥∥∥∥ β

1
n

∑n
i=1 |Xi|2 + λn

n

∥∥∥∥∥
L2

a.s.−−→ 0. (8.5)

To that purpose, we use the fact that∥∥∥∥∥ 1n
n∑

i=1

|Xi|2 − E[|X|2]
∥∥∥∥∥
C0

a.s.−−→ 0,

which can be obtained by applying the Strong Law of Large Numbers (SLLN)
(see Bosq [1, p. 47]) to the random function |X|2. Notice here that E[|X|2] ∈ C0.

Now for S := {ω ∈ Ω : ‖ 1
n

∑n
i |X(ω)|2 − ϕ‖C0 → 0}, P (S) = 1. Let us take

an arbitrary and fixed value ω ∈ S. Then for n ≥ 1 we define the sequence
of functions fn := 1

n

∑n
i=1 |Xi(ω)|2. Clearly this sequence belongs to C0 and

‖fn − ϕ‖C0 → 0. Thus we can use Lemma 8.1 which implies that there exists
a sequence of subsets of R, (Cj)j≥1, a strictly increasing sequence of natural
numbers (Nj)j≥1 ⊂ N and a sequence of real numbers (dn)n≥1 ⊂ R converging
to zero, such that inequality (8.1) holds.

At this point we define for n ≥ N1, Rn := 1
dn

→ ∞ and the intervals Īn :=
[−Rn,+Rn]. For n ∈ {Nj , Nj + 1, · · · , Nj+1 − 1}, by the triangular inequality
and inequality (8.1),

|λn

n |
∥∥∥ β

fn+
λn
n

∥∥∥
L2(R)

≤ |λn

n |
∥∥∥ β

fn+
λn
n

∥∥∥
L2(Īn∩Cj)

+ |λn

n |
∥∥∥ β

fn+
λn
n

∥∥∥
L2(Īn∩Cc

j )
+

+ ‖β‖L2(Īc
n)

≤ ‖β‖L2(Cj) + |λn

n |
∥∥∥ β

fn+
λn
n

∥∥∥
C0(R\Cj)

√
2 Rn + ‖β‖L2(Īc

n)
.

In this way we obtain for every n ∈ {Nj , Nj + 1, · · · , Nj+1 − 1},

|λn

n
|
∥∥∥∥∥ β

fn + λn

n

∥∥∥∥∥
L2(R)

≤ ‖β‖L2(Cj) + dn

√
2

dn
+ ‖β‖L2(Īc

n)
.

Thus

L := lim
n→∞

|λn

n
|
∥∥∥∥∥ β

fn + λn

n

∥∥∥∥∥
L2(R)

≤ lim
j→∞

‖β · 1Cj‖L2(R).

Finally the sequence of functions |β · 1Cj | is bounded by β and is pointwise
convergent to zero almost everywhere because {t ∈ R : β · 1Cj (t) → 0}c ⊂
∩∞
l=1 ∪s≥l Cs ⊂ ∩∞

l=1 ∪s≥l Ds ⊂ ∩∞
l=1Dl ⊂ ∂supp(ϕ) which is countable then

with measure zero.
By the dominated convergence theorem, limj→∞ ‖β ·1Cj‖L2 = 0. Thus L = 0

and so (8.5) is proved because ω is an arbitrary element of S and P (S) = 1.
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Proof of Proposition 3.4. For all independent realizations of X, we have
E[‖Xn‖C0([t0−δ,t0+δ])] = 0. Then for all n ∈ N, the function Xn restricted to
the interval [t0 − δ, t0 + δ] is equal to zero almost surely. Thus over this interval

β̂n = 0 (a.s.). If we define C := ‖β‖L2([t0−δ,t0+δ]) we obtain

‖β̂n − β‖L2 ≥ ‖β̂n − β‖L2([t0−δ,t0+δ]) = C (a.s.).

8.2. Proof of Theorem 3.5

We use (3.1) and the triangle inequality to obtain

‖β̂n − β‖L2 ≤
∣∣λn

n

∣∣ ∥∥∥ β
1
n

∑n
i=1 |Xi|2+λn

n

∥∥∥
L2(supp(|β|))

+
∥∥∥ 1

n

∑n
i=1 εiX

∗
i

1
n

∑n
i=1 |Xi|2+λn

n

∥∥∥
L2

.

The proof of ∥∥∥∥∥
1
n

∑n
i=1 εiX

∗
i

1
n

∑n
i=1 |Xi|2 + λn

n

∥∥∥∥∥
L1

= OP

(√
n

λn

)

is the same as in Theorem 3.1.

Hence, to finish the proof of Theorem 3.5, we have to show that

∥∥∥∥∥ β
1
n

∑n
i=1 |Xi|2 + λn

n

∥∥∥∥∥
2

L2(supp(|β|)\J)

+

∥∥∥∥∥ β
1
n

∑n
i=1 |Xi|2 + λn

n

∥∥∥∥∥
2

L2(J)

= OP (1),

(8.6)
which will lead to

‖β̂n − β‖L2 =

∣∣∣∣λn

n

∣∣∣∣OP (1) +OP

(√
n

λn

)
= OP

(
n−γ

)
.

The proof of (8.6) is based on the two following lemmas.

Lemma 8.2. Under the assumptions of Theorem 3.5, we have

∥∥∥∥∥ β
1
n

∑n
i=1 |Xi|2 + λn

n

∥∥∥∥∥
2

L2(supp(|β|)\J)

= OP (1).

Proof of Lemma 8.2. Throughout the proof, we use the following notations to
simplify the writing. For all n ≥ 1, λ̄n := λn

n , Sn :=
∑n

i=1 |Xi|2, S̄n := Sn

n , An :=
|β|/(S̄n + λ̄n). The support of function ϕ := E[|X|2] is supp(ϕ) = supp(E[|X|]),
so that Cβ,∂X = supp(|β|) \ ∂(supp(ϕ)). Finally, the set C := supp(|β|) \ J
satisfies C ⊂ supp(ϕ).

Let us define for j ≥ 1, rj := ‖ϕ‖C0/2
j , r0 := ‖ϕ‖C0 + 1, the compact sets

K0 := ∅, Kj := ϕ−1([rj ,∞[), and Dj := Kj \ Kj−1. So we have ∪j≥1 ↑ Kj =
supp(ϕ) and we can cover C = ∪j≥1(C ∩Dj).
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We obtain

‖An‖2L2(C) =
∑

j≥1 ‖An 1S̄n∈[0,rj/2]‖2L2(C∩Dj)
+
∑

j≥1 ‖An 1S̄n>rj/2‖2L2(C∩Dj)

≤ 1
λ̄2
n

∑
j≥1 ‖β‖2C0(C∩Dj)

m(S̄n ∈ [0, rj/2] ∩ C ∩Dj) +

+
∑

j≥1
22

r2j

r2j−1

r2j−1
‖β‖2L2(C∩Dj)

.

Now for each j ≥ 1,
rj−1

rj
≤ r0

r1
and in the set C ∩Dj ,

β
rj−1

< β
ϕ ≤ β

rj
. Then

‖β‖C0 ≤ M2rj−1 because of part (c) of (A5). Thus

‖An‖2L2(C) ≤ 1
λ̄2
n
M2

2 ( r0r1 )
2
∑

j≥1 r
2
j−1 m(S̄n ∈ [0, rj/2] ∩ C ∩Dj)+

+ 4( r0r1 )
2
∑

j≥1 ‖
β
ϕ‖2L2(C∩Dj)

.

Moreover

∑
j≥1

r2j
4 m(S̄n ∈ [0, rj/2] ∩ C ∩Dj) ≤

∑
j≥1 ‖(ϕ− S̄n) 1S̄n∈[0,rj/2]‖2L2(C∩Dj)

≤ ‖ϕ− S̄n‖2L2(C).

Now we can bound An

‖An‖2L2(C) ≤ 1
λ̄2
n
M2

2 ( r0r1 )
2 × 4‖ϕ− S̄n‖2L2(C) + 4( r0r1 )

2‖ β
ϕ‖2L2(C)

= 4M2
2 ( r0r1 )

2 OP ((
√
n

λn
)2) + 4( r0r1 )

2‖ β
ϕ‖2L2(C) = OP (1).

(8.7)

Lemma 8.3. Under the assumptions of Theorem 3.5, we have∥∥∥∥∥ β
1
n

∑n
i=1 |Xi|2 + λn

n

∥∥∥∥∥
2

L2(J)

= OP (1).

Proof of Lemma 8.3. We start the proof by considering the set Cβ,∂X . Since
supp(ϕ) is an open set in R, it is a union of open intervals and ∂(supp(ϕ)) is
countable. Besides, by hypothesis (A5), for every p ∈ Cβ,∂X , there is an open
neighborhood Jp, in which (a) holds. Thus for all p ∈ Cβ,∂X , Jp ∩∂(supp(ϕ)) =
{p}. These intervals Jp are countable and pairwise disjoint.

Now we suppose that card(Cβ,∂X) = +∞ (the case where this set is finite is
similar). We denote its elements as pv, with v ≥ 1. So J is the union of disjoint
intervals J = ∪v≥1Jv, where Jv := Jpv , and part (b) of (A5) can be written as∑

v≥1 ‖β‖2C0(Jv)
< M1.

Let us define ξ0 := max{‖ϕ‖C0 , L
α
I , λ

2α
1 +1} and for n ≥ 1, ξn := λ̄2α

n . Clearly

from (A6), ξn ↓ 0. We define for l ≥ 0, the compact sets Kξ
l := ϕ−1([ξl,∞[), and

Dξ
l := Kξ

l \Kξ
l−1. So we have ∪ ↑ Kξ

l = supp(ϕ) and we can cover Jv \ {pv} =

∪j≥1(Jv ∩Dξ
j ) for each fixed v ≥ 1. Moreover in Dξ

l ,
1

ξl−1
< 1

ϕ ≤ 1
ξl
.
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Let us take a fixed v ≥ 1. Given the fact that ξl is strictly decreasing to zero,
by hypothesis (A6), there exists a unique number Nv ≥ 1 such that

ξNv < max
t∈∂(Jv)

|t− pv|α ≤ ξNv−1.

Then for every n ≥ Nv,

‖An‖2L2(Jv)
=

∑n
l=1 ‖An‖2L2(Jv∩Dξ

l )
+ ‖An‖2L2(Jv\Kξ

n)

=
∑n

l=1 ‖An 1S̄n∈[0,ξl/2]‖2L2(Jv∩Dξ
l )

+

+
∑n

l=1 ‖An 1S̄n≥ξl/2‖2L2(Jv∩Dξ
l )

+ ‖An‖2L2(Jv\Kξ
n)

≤ ‖β‖2C0(Jv)

[
λ̄−2
n

∑n
l=1 m(S̄n ∈ [0, ξl/2] ∩ Jv ∩Dξ

l )
]

+ ‖β‖2C0(Jv)

[∑n
l=1

4
ξ2l
m(Jv ∩Dξ

l ) + λ̄−2
n m(Jv \Kξ

n)
]
.

Using the inequality

ξ2n
4

n∑
l=1

m(S̄n ∈ [0, ξl/2] ∩ Jv ∩Dξ
l ) ≤ ‖ϕ− S̄n‖L2(Jv),

we obtain

‖An‖2L2(Jv)
≤ ‖β‖2C0(Jv)

[
λ̄−2
n

4
ξ2n
‖ϕ− S̄n‖L2(Jv) + 4

∑n
l=1

ξ2l−1

ξ2l

m(Jv∩Dξ
l )

ξ2l−1
+

+ λ̄−2
n m(Jv \Kξ

n)
]
.

Because of (A6), there exists M3 > 0 such that for l ≥ 1, | ξl−1

ξl
| ≤ M3. Thus for

n ≥ Nv,

‖An‖2L2(Jv)
≤ ‖β‖2C0(Jv)

[
4 λ̄

−(2+4α)
n ‖ϕ− S̄n‖L2(Jv)+

+ 4M2
3 ‖ 1

ϕ‖2L2(Jv∩Kξ
n)

+ λ̄−2
n m(Jv \Kξ

n)
]
.

Now for t ∈ Jv \Kξ
n we have 0 ≤ ϕ(t) < ξn, then |t − pv|α ≤ ϕ(t) < ξn. In

particular Jv \ Kξ
n ⊂ [pv − ξ

1/α
n , pv + ξ

1/α
n ]. Thus for n ≥ Nv, m(Jv \ Kξ

n) ≤
2ξ

1/α
n ≤ 2λ̄2

n.
Using these inequalities we can prove that for every n < Nv,

‖An‖2L2(Jv)
≤ 1

λ̄2
n

‖β‖2L2(Jv)
,

and for n ≥ Nv,

‖An‖2L2(Jv)
≤ 4‖β‖2C0(Jv)

[
n‖S̄n − ϕ‖2L2(Jv)

+M2
3 ‖

1

ϕ
‖2L2(Jv)

+ 1/2

]
.
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To finish the proof of this lemma, we bound the sequence ‖An‖2L2(J) =∑
v≥1 ‖An‖2L2(Jv)

. In order to do this we define for each n ≥ 1, the set Cn :=

{v ≥ 1 : n < Nv}. We obtain

‖An‖2L2(J) ≤ λ̄−2
n ‖β‖2L2(∪v∈CnJv)

+

+
(
4
∑

v≥1 ‖β‖2C0(Jv)

) [
n‖S̄n − ϕ‖2L2(J) +M2

3M
2
0 + 1/2

]

≤ λ̄−2
n ‖β‖2L2(∪v∈CnJv)

+ 4M1

[
OP (1) +M2

3M
2
0 + 1/2

]
.

For each n ≥ 1, v ∈ Cn then n < Nv, hence ξn ≥ maxt∈∂Jv (t − pv)
α, from

what we deduce that m(Jv) ≤ 2 ξ
1/α
n . We obtain for n ≥ 1

‖β‖2L2(∪v∈CnJv)
≤ 2ξ1/αn

∑
v∈Cn

‖β‖2C0(Jv)
≤ 2ξ1/αn

⎡
⎣∑
v≥1

‖β‖2C0(Jv)

⎤
⎦= 2ξ1/αn [M1/4] ,

and thus for n ≥ 1,

‖An‖2L2(J) ≤ λ̄−2
n 2ξ

1/α
n

M1

4 + 4M1

[
OP (1) +M2

3M
2
0 + 1/2

]
≤ M1

2 + 4M1

[
OP (1) +M2

3M
2
0 + 1/2

]
= OP (1).

Proof of Corollary 3.6. Direct computation using α < 1/2 in Theorem 3.5.

Proof of Corollary 3.9. As in the proof of Theorem 3.5, we only need to prove
that ∥∥∥∥∥ β

1
n

∑n
i=1 |Xi|2 + λn

n

∥∥∥∥∥
2

L2(supp(|β|))

= OP (1).

To achieve this we use a similar method to that of Lemma 8.2. First note
that hypothesis (A4bis) implies that, for all t ∈ supp(β), |β(t)|/ϕ(t) is finite.
Consequently, supp(β) ⊂ supp(ϕ).

Secondly we define C := supp(β), M2 := ‖ β
E[|X|2]‖L∞ , r0 := ‖ϕ‖C0 + 1 and,

for j ≥ 1, rj := ‖ϕ‖C0/2
j . Then we apply the same method as in Lemma 8.2.

This leads to the inequality (8.7) which implies what we wanted.

Proof of Theorem 3.10. We start with the decomposition

‖β̂n−β‖L2(K) =

∣∣∣∣λn

n

∣∣∣∣
∥∥∥∥∥ β

1
n

∑n
i=1 |Xi|2 + λn

n

∥∥∥∥∥
L2(K)

+

∥∥∥∥∥
1
n

∑n
i=1 εiX

∗
i

1
n

∑n
i=1 |Xi|2 + λn

n

∥∥∥∥∥
L2(K)

.

The proof of
∥∥∥ 1

n

∑n
i=1 εiX

∗
i

1
n

∑n
i=1 |Xi|2+λn

n

∥∥∥
L2(K)

= OP (
√
n

λn
) is the same as in Theorem

3.1. We finish the proof of the theorem by showing that∥∥∥∥∥ β
1
n

∑n
i=1 |Xi|2 + λn

n

∥∥∥∥∥
L2(K)

= OP (1). (8.8)
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Given that K ⊂ supp(ϕ), there exists a positive number s1 > 0 such that
K ⊂ Kϕ

s1 , where Kϕ
s1 := ϕ−1([s1,∞[) is a compact in R. We define s := s1/2.

We have for every n ∈ N,∥∥∥∥ β

S̄n + λ̄n

∥∥∥∥
L2(K)

≤
∥∥∥∥ β

S̄n + λ̄n
1S̄n∈[0,s]

∥∥∥∥
L2(K)

+

∥∥∥∥ β

S̄n + λ̄n
1S̄n∈[s,∞[

∥∥∥∥
L2(K)

.

Clearly, the first part above is bounded by∥∥∥∥ β

S̄n + λ̄n
1S̄n∈[s,∞[

∥∥∥∥
L2(K)

≤ 1

s
‖β‖L2(K) = OP (1).

The second part is bounded as follows∥∥∥∥ β

S̄n + λ̄n
1S̄n∈[0,s]

∥∥∥∥
L2(K)

≤ 1

λ̄n

∥∥β 1S̄n∈[0,s]

∥∥
L2(K)

≤ ‖β‖C0

λ̄n

√
m(K ∩ S̄n ∈ [0, s]).

Moreover, thanks to hypothesis (A3), we have ‖S̄n − ϕ‖L2(K) = OP (
1√
n
). This

inequality, together with the fact that |S̄n − ϕ| > s whenever S̄n ∈ [0, s], allows
to obtain

‖S̄n − ϕ‖L2(K) ≥ ‖(S̄n − ϕ)1S̄n∈[0,s]‖L2(K) ≥
√∫

K
|s|21S̄n∈[0,s]dm

≥ |s|
√
m(K ∩ S̄n ∈ [0, s]).

In this way,
√

m(K ∩ S̄n ∈ [0, s]) = OP (
1√
n
) and as a consequence

∥∥∥∥ β

S̄n + λ̄n
1S̄n∈[0,s]

∥∥∥∥
L2(K)

≤ ‖β‖C0

λ̄n
OP (

1√
n
) = OP (

√
n

λn
),

which finishes the proof of (8.8).

8.3. Further results on the convergence rates

Corollary 8.4. Under the hypotheses (A2), (A3) and

(A1bis) supp(β) is compact and supp(|β|) ⊂ supp(E[|X|]),
we obtain

‖β̂n − β‖L2 = OP

(
max

[
λn

n
,

√
n

λn

])
.

Proof of Corollary 8.4. Take K = supp(β) in Theorem 3.10 to upper bound

‖β̂n − β‖L2(K). Finally, we have ‖β̂n − β‖L2(Kc) ≤ OP (
√
n

λn
) because, first β ≡ 0

over Kc, which implies that the bias is null outside K (see (3.1)), and secondly,

OP (
√
n

λn
) is the natural upper bound of the variance over Kc. Thus, using the

bias-variance decomposition we upper bound ‖β̂n − β‖L2(R) as we wanted.
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Under more restricted hypotheses we can obtain the optimal rate of conver-
gence. This is shown in Proposition 8.5 for the model (2.2).

Proposition 8.5. Under the hypotheses (A1bis), (A2), (A3) and

(A4ter) There is mX > 0 s.t. |X| > mX almost surely over supp(|β|),
we obtain

‖β̂n − β‖L2 = OP

(
λn

n

)
.

Furthermore, under the hypotheses (A1bis), (A3), (A4ter) and by replacing (A2)
with

(A2bis) (λn)n≥1 ⊂ R
+ is the constant sequence equal to λ > 0,

we obtain

‖β̂n − β‖L2 = OP

(
1√
n

)
.

Proof of Proposition 8.5. We start with the decomposition

‖β̂n − β‖L2 ≤ ‖β̂n − β‖L2(K) + ‖β̂n − β‖L2(Kc),

where K := supp(β).
First, we obtain the convergence rates over K considering the bias variance

decomposition

‖β̂n−β‖L2(K) =

∣∣∣∣λn

n

∣∣∣∣
∥∥∥∥∥ β

1
n

∑n
i=1 |Xi|2 + λn

n

∥∥∥∥∥
L2(K)

+

∥∥∥∥∥
1
n

∑n
i=1 εiX

∗
i

1
n

∑n
i=1 |Xi|2 + λn

n

∥∥∥∥∥
L2(K)

.

We deduce from Hypothesis (A4ter) that almost surely

‖β̂n − β‖L2(K) ≤
∣∣λn

n

∣∣ ∥∥∥ β
mX

∥∥∥
L2(K)

+
∥∥∥ 1

n

∑n
i=1 εiX

∗
i

mX

∥∥∥
L2(K)

,

which, under hypothesis (A2), implies

‖β̂n − β‖L2(K) = OP (
λn

n
) +OP (

1√
n
) = OP (

λn

n
).

Likewise, given that the bias is null over Kc, we obtain from a similar bias-
variance decomposition over Kc that

‖β̂n − β‖L2(Kc) ≤ 0 +

∥∥∥∥ 1
n

∑n
i=1 εiX

∗
i

mX

∥∥∥∥
L2(K)

= OP (
1√
n
).

Thus, we get the convergence rate of ‖β̂n − β‖L2 by adding the rates over K
and Kc, that is, OP (

λn

n ), under hypothesis (A2).

Finally, when hypothesis (A2bis) holds, the upper bound of ‖β̂n−β‖L2(K) is

OP (
λ
n ) + OP (

1√
n
), with λ > 0 constant. This bound is equal to OP (

1√
n
). The

bound of ‖β̂n − β‖L2(Kc) is OP (
1√
n
). Then, by adding both we get the optimal

convergence rate.
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8.4. Proof of Theorem 3.11

From the decomposition (3.1) we obtain

E[‖β̂n − β‖2L2 ] ≤ 2|λ̄n|2E‖
β

S̄n + λ̄n
‖2L2 +

2

|λ̄n|2
E‖ 1

n

n∑
i=1

εiX
∗
i ‖2L2 ,

where λ̄n := λn

n and S̄n :=
∑n

i=1 |Xi|2
n .

Thus to finish this proof we need to prove two things:

E

∥∥∥∥ β

S̄n + λ̄n

∥∥∥∥
2

L2

= O(1) and E

∥∥∥∥∥ 1n
n∑

i=1

εiX
∗
i

∥∥∥∥∥
2

L2

= O(
1

n
).

Let us prove the first equality. We know that hypothesis (A4bis) implies that
the set Cβ,∂X := supp(|β|)\∂(supp(ϕ)) is empty (see proof of the Corollary 3.9).
For this reason, by taking J := ∅ the hypotheses (A4) and (A5) in Theorem 3.5
will hold.

Now we can extend the inequality (8.7) of Lemma 8.2 to the whole real line
because C = supp(β) in this inequality. Then we have∥∥∥∥ β

S̄n + λ̄n

∥∥∥∥
2

L2

≤ 1

λ̄2
n

M2
2M3‖ϕ− S̄n‖2L2 +M3‖

β

ϕ
1supp(β)‖2L2 ,

where M3 := 16(
‖ϕ‖C0

+1

‖ϕ‖C0
)2. The second term in the right side of this inequality

is non random. Then we need to prove that the expectation of the first term in
this side goes to zero, that is

1

λ̄2
n

M2
2M3E[‖ϕ− S̄n‖2L2 ] → 0.

To prove this, let us recall that n
λ2
n
→ 0 by hypothesis (A2). So we only need to

show that there exists a constant d > 0 such that for all n ∈ N, E[‖ϕ− S̄n‖2L2 ] ≤
d
n .

From hypothesis (A3) we can prove that |ϕ − S̄n|2 is a random function
belonging to L1(R,R) and that E

∫
R
|ϕ− S̄n|2 < ∞. Thus by Fubini and Tonelli

Theorems (see Brezis [2, p. 91]) and thanks to the independence of the Xi we
have

E[‖ϕ− S̄n‖2L2 ] =
∫
R
E[|ϕ− 1

n

∑n
i=1 |Xi|2|2]

≤ 1
n

∫
R
E[|ϕ− |X|2|2]

≤ 2
n

{∫
R
E[|ϕ|2] +

∫
R
E[|X|4]

}
Now again by hypothesis (A3) we get

E[‖ϕ− S̄n‖2L2 ] ≤
2

n

{
‖ϕ‖2L2 + E‖|X|2‖2L2

}
.
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Thus by putting d := 2‖ϕ‖2L2 + 2E‖|X|2‖2L2 < ∞ we obtain the first equality.
Next, to finish this proof we will prove the second equality, namely

E

∥∥∥∥∥ 1n
n∑

i=1

εiX
∗
i

∥∥∥∥∥
2

L2

= O(
1

n
).

From the hypotheses (HA1FCM ) and (HA3FCM ) it can be proved that the
random function | 1n

∑n
i=1 εiX

∗
i |2 belongs to L1(R,R) and that its expectation

is upper bounded. Thus thanks to the independence of the εi and Xi we obtain
what we wanted

E[‖ 1
n

∑n
i=1 εiX

∗
i ‖2L2 ] =

∫
R
E[| 1n

∑n
i=1 εiX

∗
i |2]

= 1
n

∫
R
E[|εX∗|2]

≤ 1
nE‖X‖2C0

E‖ε‖2L2 = O( 1n ).

Proof of Proposition 3.12. The conditional expectation comes directly from the
decomposition (3.1). To compute the variance let us define for i = 1, · · · , n, the
random functions gi :=

X∗
i

1
n

∑n
i=1 |Xi|2+λn

n

. Since the gi are independent of the εi

we obtain

Var[β̂n |X1, · · · , Xn] = E[| 1n
∑n

i=1 εigi|2]

= 1
n2

∑n
i=1[E(|εi|2)]|gi|2

= 1
n2E(|ε|2)]

∑n
i=1[|gi|2]

= E(|ε|2)
n

[
1
n

∑n
i=1 |Xi|2

( 1
n

∑n
i=1 |Xi|2+λn

n )2

]

= E(|ε|2)∑n
i=1 |Xi|2 D

2
X ,

where DX is a function defined as follows DX :=
1
n

∑n
i=1 |Xi|2

1
n

∑n
i=1 |Xi|2+λn

n

. Here we need

DX(t) > 0, otherwise X1(t) = · · · = Xn(t) = 0 and nothing can be inferred
about β(t).

Next, let t ∈ R be fixed and such that ε(t) ∼ N(0, σ2
ε ) and (εi(t))i=1,··· ,n

is an i.i.d sample. To simplify the proof let us define for i = 1, · · · , n, xi :=
Xi(t) ∈ R, yi := Yi(t) ∈ R, εi := εi(t) ∈ R and b1 := β(t) ∈ R. Thanks to
these conditions the set (xi, yi)i=1,··· ,n is an i.i.d sample of the linear regression

model, yi = b1xi+εi. For this model the OLS estimator of b1 is b̂1 :=
∑n

i=1 yixi∑n
i=1 |xi|2 .

The OLS estimator (see Cornillon and Matzner-Lober [3, p. 12]) is unbiased

(E[b̂1] = b1), its variance is Var(b̂1) =
σ2
ε∑n

i=1 |xi|2 and it follows a normal law.

Furthermore (see Cornillon and Matzner-Lober [3, p. 49]),

b̂1 − b1
σ̃ε(

∑n
i=1 |xi|2)−1/2

∼ T (n− 1),
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where σ̃ε :=
1

n−1

∑n
i=1 |yi − b̂1xi|2 is an unbiased estimator of σ2

ε .

From these properties and the fact that b̂1 = β̂n(t)
DX(t) we obtain: i) σ̂ε = σ̃ε is

unbiased, ii)

β̂n(t)− β(t)DX(t)

σ̂εDX(
∑n

i=1 |Xi(t)|2)−1/2
=

b̂1 − b1
σ̃ε(

∑n
i=1 |xi|2)−1/2

∼ T (n− 1),

and iii) the confidence interval of β(t) = b1.

8.5. Proofs of the results of Section 4

Proof of Proposition 4.1. We only need to prove that for every i = 1, · · · , n,

Yi − β̂(−i)
n Xi =

Yi − β̂nXi

1−Ai,i
. (8.9)

Let us take an arbitrary i ∈ {1, · · · , n}. We define for each j = 1, · · · , n,

Ỹj :=

{
Yj if j 
= i,

β̂
(−i)
n Xj otherwise.

Because β̂
(−i)
n =

∑n
l �=i YlX

∗
l∑n

l �=i |Xl|2+λn
by definition, we have

∑n
l=1 ỸlX

∗
l

Sn+λn
=

∑n
l �=i YlX

∗
l

Sn+λn
+

β̂(−i)
n |Xi|2
Sn+λn

= β̂
(−i)
n

[∑n
l �=i |Xl|2+λn

Sn+λn
+ |Xi|2

Sn+λn

]
= β̂

(−i)
n .

Then

β̂nXi − β̂
(−i)
n Xi =

∑n
l=1 YlX

∗
l −

∑n
l=1 ỸlX

∗
l

Sn+λn
Xi =

Yi−β̂(−i)
n Xi

Sn+λn
|Xi|2,

from what we obtain

1− Yi − β̂nXi

Yi − β̂
(−i)
n Xi

=
β̂nXi − β̂

(−i)
n Xi

Yi − β̂
(−i)
n Xi

=
|Xi|2

Sn + λn
= Ai,i,

which implies (8.9).

Proof of Proposition 4.3. It is similar to that of Proposition 4.1.

Proof of Theorem 4.4. We use (3.1), the triangle inequality and the hypothesis
(A2bis) to obtain

‖β̂n − β‖L2 ≤
∣∣∣ b mΛn

n

∣∣∣ ∥∥∥∥ β
1
n

∑n
i=1 |Xi|2+

mΛn
n

∥∥∥∥
L2(supp(|β|))

+

∥∥∥∥ 1
n

∑n
i=1 εiX

∗
i

1
n

∑n
i=1 |Xi|2+

mΛn
n

∥∥∥∥
L2

.
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The proof of ∥∥∥∥ 1
n

∑n
i=1 εiX

∗
i

1
n

∑n
i=1 |Xi|2 + mΛn

n

∥∥∥∥
L1

= OP

( √
n

mΛn

)
,

is the same as in Theorem 3.1.
Thus we only need to prove∥∥∥∥ β

1
n

∑n
i=1 |Xi|2 + mΛn

n

∥∥∥∥
L2(supp(|β|))

= OP (1),

since b > 0 is constant and does not modify the rate of convergence. To prove
this equality we use the same techniques as in the proof of Corollary 3.9 with
λn := mΛn .
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