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Abstract. Privacy properties like anonymity or untraceability are now
well identified, desirable goals of many security protocols. Such properties
are typically stated as equivalence properties. However, automatically
checking equivalence of protocols often yields efficiency issues.
We propose an efficient algorithm, based on graph planning and SAT-
solving. It can decide equivalence for a bounded number of sessions, for
protocols with standard cryptographic primitives and phases (often nec-
essary to specify privacy properties), provided protocols are well-typed,
that is encrypted messages cannot be confused. The resulting imple-
mentation, SAT-Equiv, demonstrates a significant speed-up w.r.t. other
existing tools that decide equivalence, covering typically more than 100
sessions. Combined with a previous result, SAT-Equiv can now be used to
prove security, for some protocols, for an unbounded number of sessions.

1 Introduction

Security protocols are notoriously difficult to design. A common good practice
is to formally analyse protocols using symbolic techniques, in order to spot flaws
possibly before their deployment (e.g. TLS 1.3 [23, 5], an avionic protocol [7]).
These symbolic techniques are mature for reachability properties like confiden-
tiality or authentication. More recently, this approach has been extended to pri-
vacy properties, such as vote secrecy, anonymity, untraceability, or unlinkability.
These properties are expressed through equivalences. For example, in the case of
biometric passports, an attacker should not be able to distinguish whether she
is in contact with Alice’s passport or Bob’s passport.

Recently, a new tool, SAT-Equiv [20], has been proposed to decide such
equivalence properties for security protocols, for a bounded number of sessions.
It is based on a standard model-checking approach, namely graph planning [9,
27] and SAT-solving. Intuitively, protocols executions are over-approximated as a
graph planning problem, which allows to consider several possible interleavings
in parallel, allowing the analysis of dozen of sessions of a protocol in a few
seconds. However, this result is limited to a very small set of primitives, namely
symmetric encryption and concatenation.



Our contributions. Building upon this novel approach, we enrich SAT-Equiv in
order to cover protocols using asymmetric primitives and/or phases. As for the
original SAT-Equiv, we assume a non confusion property: encrypted messages
should not be confused, a condition automatically checked by our tool and which
can be enforced e.g. through appropriate labelling.

First, we extend SAT-Equiv to cover all standard primitives: symmetric
and asymmetric encryption, signatures, and hashes. Since graph planning is a
bounded model-checking technique, SAT-Equiv relies on a small model prop-
erty, that bounds the size of messages. More precisely, [14] guarantees that if
there is an attack, then there is a well-typed attack, where messages follow a fix
format. This result has been recently extended to standard primitives [17]. The
straightforward extension of SAT-Equiv to standard primitives however yields
severe efficiency issues. Indeed, unlike the symmetric encryption case, checking
whether two sequences of messages are equivalent (i.e. in static equivalence) may
require complex tests where the attacker construct messages (that is, hash or
asymmetrically encrypt messages). We therefore provide a precise characteri-
sation of the set of tests that need to be considered when checking for static
equivalence. This characterisation is of independent interest and could be used
in other contexts. We also extend SAT-Equiv to consider protocols with phases,
which are useful to model game-based properties.

Our extension of SAT-Equiv now provably terminates. In [20], termination
can be guaranteed by checking that any state of the planning graph is indeed
reachable, which requires to query a SAT-solver at each step. While this provides
termination in theory, this yields a non practical algorithm and has not been
implemented. Instead, we exhibit a bound on the maximal length of the smallest
attack (bounding the attacker steps as well). It is therefore sufficient to stop the
construction of the graph planning once this bound has been reached, enforcing
termination for free (no computation overhead).

Finally, we have considerably revisited and improved the original implemen-
tation of SAT-Equiv. This significant speedup now allows for security proofs for
an unbounded number of sessions. Indeed, [16] shows decidability of equivalence,
for an unbounded number of sessions, for protocols with an acyclic dependency
graph. The notion of dependency graph is introduced in [16] and intuitively cap-
tures how the input/output actions of the protocol may use messages from other
steps of the protocol. As a corollary, [16] induces a bound on the number of
sessions that needs to be considered for an attack, which depends on the size
and structure of the graph. This bound can be rather large (50 to 100 sessions,
even on small examples) but SAT-Equiv is now able to reach such bounds.

These novelties are implemented in an extension of SAT-Equiv and compared
with the other tools of the literature, namely Spec [24], Akiss [10] and the very
recent DeepSec [13] tool. Our experiments show that SAT-Equiv is much faster
on all the examples, allowing to reach typically more than 100 sessions. As an
application, we consider two protocols, Denning-Sacco and Needham-Schroeder
symmetric keys, shown to have acyclic dependency graphs in [16]. Considering
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the necessary number of sessions as induced by [16], we establish trace equiva-
lence for these two protocols, for an unbounded number of sessions.

The tool source, the example files as well as all the proofs are available in [1].

Related work. There are two main families of tools to analyse equivalence proper-
ties on security protocols. Some tools prove equivalence for an arbitrary number
of sessions, that is, no matter how often a protocol is used. The main tools in this
category are ProVerif [8], Tamarin [28], Maude-NPA [26], Type-Eq [21]. Maude-
NPA often suffers from termination issues when used for equivalence proper-
ties. Type-Eq [21, 22] is a sound (but incomplete) type-checker for equivalence
properties that has good performance. It requires that protocols have a similar
structure. ProVerif and Tamarin work well in practice. They actually prove a
stronger notion of equivalence, diff-equivalence, that also requires that the two
considered protocols have a very similar structure. Moreover, equivalence prop-
erties are undecidablein general for an unbounded number of sessions. Therefore,
ProVerif may not terminate and Tamarin may need some user guidance.

A second approach consists in deciding equivalence, for a bounded number
of sessions. Spec [24] is one of the first tool that decides equivalence of secu-
rity protocols but it does not scale well when the number of sessions grows (it
can typically handle up to three sessions for small protocols). DeepSec [13] is a
very recent tool that builds upon Akiss [10] and Apte [11]. All these tools anal-
yse symbolic executions and typically have to consider all possible interleavings
between the roles of the protocol, which often raises efficiency issues.

2 Model

Protocols are modeled through a process algebra, in the spirit of the applied-pi
calculus [2]. We consider here the model used in [20, 17].

2.1 Term algebra

As usual, messages are modeled by terms. Private data are represented through
an infinite set N of names used to model e.g. keys or nonces. We consider an infi-
nite set C0 of constants to represent public data such as agent names or attacker’s
nonces or keys. We consider also two sets of variables X and W . Variables in X
model arbitrary data expected by the protocol, while variables in W are used
to store messages learnt by the attacker. A data is either a constant, a variable,
or a name. Cryptograhic primitives are represented by function symbols. We
consider the signature Σ parameterised by n ≥ 2:

– Σc = {senc, aenc, hash, pub, sign, vk, ok} ∪ {〈 〉k | 2 ≤ k ≤ n};
– Σd = {sdec, adec, getmsg} ∪ {projkj | 2 ≤ k ≤ n and 1 ≤ j ≤ k}; and
– Σ = Σc ∪Σd ∪ {check}.

The symbols senc, aenc, sdec, and adec of arity 2 are used to model resp. sym-
metric and asymmetric encryption. We also consider signature sign and hash
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function hash. Concatenation of messages is modeled through tuple operators
together with their projection functions. For example, 〈m1,m2,m3〉3 represents
the concatenation of the three messages m1, m2, and m3. It is syntactically dif-
ferent from the nested pairs 〈m1, 〈m2,m3〉2〉2. These two representations corre-
spond to different implementation choices. We distinguish between constructors
in Σc and destructors in Σd. The symbol check of arity 2, that corresponds to
the verification of a signature, is neither a destructor nor a constructor. The set
of terms built from a signature F and a set of data D is denoted T (Σ,D). Given
a term u, we denote St(u) the set of its subterms, vars(u) the set of its variables,
and root(u) its root symbol. A term is ground if it contains no variable. The
application of a substitution σ to a term u is written uσ. We denote dom(σ) its
domain and img(σ) its image. Two terms u1 and u2 are unifiable when there
exists a substitution σ such that u1σ = u2σ.

We consider two sorts : atom and bitstring. The sort atom represents atomic
data like nonces or keys while bitstring models arbitrary messages. Names in N
and constants in C0 have sort atom. Any f ∈ Σc comes with its sorted arity:

〈 〉k : bitstring × · · · × bitstring → bitstring

senc : bitstring × atom → bitstring

aenc : bitstring × bitstring → bitstring

sign : bitstring × atom → bitstring

ok : → bitstring

pub : atom → bitstring

vk : atom → bitstring

hash : bitstring → bitstring

Given D ⊆ C0 ⊎ X , the set T0(Σc, D) is the set of terms t in T (Σc, D) such
that (i) for any term pub(u) (resp. vk(u)) in St(t), u is of sort atom; (ii) for any
aenc(u, v) ∈ St(t), v = pub(v′) for some v′. Terms in T0(Σc,N ⊎ C0) are called
messages. Intuitively, messages are terms with atomic keys.

The properties of the cryptographic primitives are reflected through the fol-
lowing convergent rewriting rules.

sdec(senc(x, y), y) → x adec(aenc(x, pub(y)), y) → x
getmsg(sign(x, y)) → x check(sign(x, y), vk(y)) → ok

projkj (〈x1, . . . , xk〉k) → xj with 2 ≤ k ≤ n and 1 ≤ j ≤ k

A term u can be rewritten into v if there is a position p in u, and a rewriting
rule g(t1, ..., tn) → t such that u|p = g(t1, . . . , tn)θ for some substitution θ, and
v = u[tθ]p, i.e. u in which the subterm at position p has been replaced by tθ.
Moreover, we assume that t1θ, . . . , tnθ as well as tθ are messages, in particular
they do not contain destructor symbols. As usual, we denote →∗ the reflexive-
transitive closure of →, and u↓ the normal form of a term u.

An attacker builds his own messages by applying public function symbols to
terms he already knows and that are available through variables in W . Formally,
a computation done by the attacker is a recipe, i.e. a term in T (Σ,W ⊎ C0).

2.2 Process algebra

We consider processes that may receive and send messages. We assume that each
process communicates on a dedicated public channel. In practice, ip adresses and
sessions identifiers are typically used to desambiguate which message is adressed
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to who and for which session. Of course, these channels may be freely manipu-
lated by the attacker. Since we consider equivalence properties, distinct (public)
channels provide more abilities for the adversary to distinguish between proto-
cols. Formally, given a set Ch of channels, we consider the fragment of simple
processes without replication built on basic processes as defined e.g. in [12].

Definition 1. A basic processes is defined as follows:

P,Q := 0 | in(c, u1).P | out(c, u2).P | i:P

with u1, u2 ∈ T0(Σc, C0⊎N ⊎X ), c ∈ Ch, and increasing phase numbers. A simple
process is a multiset of basic processes on pairwise distinct channels. A protocol
is a simple process such that all its variables are in the scope of an input.

The process 0 does nothing and we often omit it. The process “ in(c, u1).P ”
expects a message m of the form u1 on channel c and then behaves like Pσ
where σ is a substitution such that m = u1σ. Note that checking whether a re-
ceived message has the expected form is done through pattern-matching instead
of explicit tests. The process “out(c, u2).P ” emits u2 on c, and then behaves
like P . Our calculus also has a phase instruction, in the spirit of [8], denoted
i:P . This instruction is useful to model security requirements, for example in
case the attacker interacts with the protocol before being given some secret.

Example 1. As an illustrative example, we consider a simplified version of the
Denning-Sacco protocol which is a key distribution protocol relying on asym-
metric encryption and signature. Informally, the protocol is as follows.

A→ B : aenc(sign(〈A,B,Kab〉, prv(A)), pub(B))

The agents A and B aim at authenticating each other and establishing a fresh
session keyKab. We model this protocol in our formalism through the simple pro-
cess PDS = {PA;PB} where PA = out(cA, aenc(sign(〈a, b, kab〉3, ska), pub(skb))).0
and PB = in(cB, aenc(sign(〈a, b, x〉3, ska), pub(skb))).0 where ska, skb, and kab
are names, a and b are constants, and x is a variable.

The operational semantics of a process is defined using a relation over con-
figurations. A configuration is a tuple (P ;φ;σ; i) with i ∈ N and such that:

– P is a multiset of processes (not necessarily ground);
– φ = {w1 ⊲ m1, . . . ,wn ⊲ mn} is a frame, i.e. a substitution where w1, . . . ,wn

are variables in W , and m1, . . . ,mn are messages;
– σ is a substitution such that dom(σ) = fv(P), and img(σ) are messages.

Intuitively, P represents the processes that still remain to be executed; φ
represents the sequence of messages that have been learnt so far by the attacker,
and σ stores the value of the variables that have already been instantiated. We
write P instead of 0:P and P ⊎ P instead of {P} ⊎ P . Given a protocol P , we
also often write P instead of (P ; ∅; ∅; 0). The operational semantics is induced

by the relation
α
−→ over configurations defined in Figure 1. For example, the In

rule defines how messages can be input on a (public) channel: the adversary may
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In (i:in(c, u).P ∪ P ;φ;σ; i)
in(c,R)
−−−−→ (i:P ∪ P ;φ;σ ⊎ σ0; i) where R is a recipe

such that Rφ↓ is a message, and Rφ↓ = (uσ)σ0 for σ0 with dom(σ0) = vars(uσ).

Out (i:out(c, u).P ∪ P ;φ;σ; i)
out(c,w)
−−−−−→ (i:P ∪ P ;φ ∪ {w ⊲ uσ};σ; i)

with w a fresh variable from W, and uσ is a message.

Move (P ;φ;σ; i)
phase i′

−−−−→ (P ;φ;σ; i′) with i′ > i.
Phase (i′:i′′:P ∪ P ;φ;σ; i)

τ
−−→ (i′′:P ∪ P ;φ;σ; i)

Fig. 1. Semantics for processes

send any message, provided she can construct it through a recipe R applied on
her previous knowledge φ. Note that only messages can be received (and sent).

The relation
tr
−→ between configurations (where tr is a possibly empty sequence

of actions) is defined in the usual way. Given a configuration K, we write:

trace(K) = {(tr, φ) | K
tr
−→ (P ′;φ;σ; i) for some configuration (P ′;φ;σ; i)}.

Example 2. Continuing Example 1, let KDS = ({PA;PB;PB′};φ0; ∅; 0) where PB′

models an additional session of the role B obtained by simply renaming cB
and x with c′B and x′. The frame φ0 = {wa ⊲ vk(ska),wb ⊲ pub(skb)} models
the fact that the attacker initially knows the public key of b and the verifica-
tion key of a. We consider a simple scenario without dishonest participant. The
trace tr0 = out(cA,w1).in(cB,w1).in(c

′
B ,w1) is executable from KDS, and yields

φ = φ0 ⊎ {w1 ⊲ aenc(sign(〈a, b, kab〉3, ska), pub(skb))}, i.e. (tr0, φ) ∈ trace(KDS).

2.3 Type-compliance

We present here our main assumption on protocols. Intuitively, we assume that
ciphertexts cannot be confused, and we rely for this on a notion of typing system.

Definition 2. A typing system is a pair (Tinit, δ) where Tinit is a set of elements
called initial types, and δ is a function mapping data in C0 ⊎N ⊎ X to types τ :

τ, τ1, τ2 = τ0 | f(τ1, . . . , τn) with f ∈ Σc and τ0 ∈ Tinit

Then, δ is extended to constructor terms as follows:

δ(f(t1, . . . , tn)) = f(δ(t1), . . . , δ(tn)) with f ∈ Σc.

A configuration is type-compliant if two unifiable encrypted subterms have
the same type. We write ESt(t) for the set of encrypted subterms of t, i.e.
ESt(t) = {u ∈ St(t) | u is of the form f(u1, . . . , un) and f 6= 〈 〉i}.

Definition 3. A configuration K is type-compliant w.r.t. a typing system (Tinit, δ)
if for every t, t′ ∈ ESt(K) we have that t and t′ unifiable implies that δ(t) = δ(t′).

Example 3. Continuing our running example, we consider the typing system
generated from TDS = {τa, τb, τk, τsk} of initial types, and the function δDS that
associates the expected type to each constant/name (δDS(a) = τa, δDS(kab) = τk,
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etc), and such that δDS(x) = δDS(x
′) = τk. We have that KDS is type-compliant

w.r.t. (TDS, δDS): unifiable encrypted subterms occurring in the configuration
have the same type since δDS(x) = δDS(x

′) = δDS(kab).

Type-compliant protocols have the property that, when looking for attacks,

it is sufficient to consider well-typed execution. Formally, an execution K
tr
−→

(P ;φ;σ; i) is well-typed w.r.t. a typing system (Tinit, δ), if σ is a well-typed sub-
stitution, i.e. every variable of its domain has the same type as its image.

2.4 Trace equivalence

Many privacy properties such as vote-privacy or untraceability are expressed as
trace equivalence [25, 3]. Intuitively, two configurations are trace equivalent if an
attacker cannot tell with which of the two configurations he is interacting. We
first introduce a notion of equivalence (actually, inclusion) between frames.

Definition 4. Two frames φ1 and φ2 are in static inclusion, written φ1 ⊑s φ2,
when dom(φ1) = dom(φ2), and:
– for any recipe R, we have that Rφ1↓ is message implies that Rφ2↓ is message;
– for any recipes R,R′ such that Rφ1↓, R′φ1↓ are messages, we have that:
Rφ1↓ = R′φ1↓ implies Rφ2↓ = R′φ2↓.

Intuitively, φ1 is included in φ2 if any recipe producing a message in φ1 also
produces a message in φ2 and if any equality satisfied in φ1 is also satisfied in φ2.

Example 4. We consider φ1 = φ ⊎ {w2 ⊲ senc(m1, kab),w
′
2 ⊲ senc(m1, kab)}, and

φ2 = φ ⊎ {w2 ⊲ senc(m2, k),w
′
2 ⊲ senc(m2, k

′)} where m1,m2 ∈ C0. We have that
w2φ1↓ = w′

2φ1↓ whereas this equality does not hold in φ2. Hence φ1 6⊑s φ2.

Trace inclusion is the active counterpart of static inclusion. Two configu-
rations are in trace inclusion if, however the attacker behaves, the resulting
sequences of messages observed by the attacker are in static inclusion.

Definition 5. Let K and K′ be two configurations. We have that K ⊑t K′, if for
every (tr, φ) ∈ trace(K), there exists (tr, φ′) ∈ trace(K′) such that φ ⊑s φ

′.

We easily derive a notion of trace equivalence: two configurations K and K′

are trace equivalence, denoted K ≈t K′, if K ⊑t K′ and K′ ⊑t K. This notion of
trace equivalence slightly differs from the one used in e.g. [14] but they actually
coincide on the class of protocols we consider in this paper [10].

Example 5. To model the secrecy of the key kab, we define strong secrecy of kab
by requiring that kab is indistinguishable from a fresh value. Formally, we con-
sider P 1

B (resp. P 1
B′) obtained by replacing the process 0 with 1:out(cB, senc(m1, x))

(resp. 1:out(c′B, senc(m1, x
′))). On the other side of the equivalence, we con-

sider P 2
B and P 2

B′ obtained by replacing the process 0 with 1:out(cB , senc(m2, k))
(resp. 1:out(c′B , senc(m2, k

′))) with fresh names k and k′.

K1
DS = ({PA;P

1
B;P

1
B′};φ0) and K2

DS = ({PA;P
2
B ;P

2
B′};φ0).

Then, we can show that K1
DS 6⊑ K2

DS since kab is not strongly secret. An
attacker can replay the message sent by A due to lack of freshness. This is exem-
plified by the trace tr0.out(cB ,w2).out(c

′
B ,w

′
2) and the test given in Example 4.
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3 From static inclusion to planning

The overall objective of this paper is to provide a practical algorithm for deciding
trace inclusion (and thus trace equivalence) relying on graph planning and SAT
solving. We start here by explaining how to build a planning problem to two
frames such that the planning problem has a solution if, and only if, the two
corresponding frames are not in static inclusion.

3.1 Planning problems

We first recall the definition of a planning problem, slightly simplified from [18].
Intuitively, a planning system defines a transition system from sets of facts to
sets of facts. New facts may be produced and some old facts may be deleted.

Definition 6. A planning system is tuple 〈Fact, Init,Rule〉 where Fact is a
set of ground formulas called facts, Init0 ⊆ Fact is a set of facts representing
the initial state, and Rule is a set of rules of the form Pre −→ Add;Del where
Pre, Add, Del are finite sets of facts such that Add ∩ Del = ∅, Del ⊆ Pre. We
write Pre −→ Add when Del = ∅.

Given a rule r ∈ Rule of the form Pre −→ Add;Del, we denote Pre(r) =
Pre, Add(r) = Add, and Del(r) = Del. If S ⊆ Fact are such that Pre(r) ⊆ S,

then we say that the rule is applicable in S, denoted S
r
−→ S′, and the state

S′ = (S r Del) ∪ Add is the state resulting from the application of r to S.
We allow some rules to be applied in parallel when no facts are deleted. Given
S ⊆ Fact, and a set of rules {r1, . . . , rk} such that Del(ri) = ∅ and Pre(ri) ⊆ S

for any i ∈ {1, . . . , k}, {r1, . . . , rk} is applicable in S, denoted S
{r1,...,rk}
−−−−−−→ S′,

and the state S′ =
⋃k

i=1 Add(ri) ∪ S is the state resulting from the application
of {r1, . . . , rk} to S.

A planning path from S0 ⊆ Fact to Sn ⊆ Fact is a sequence r1, . . . , rn
made of rules or sets of rules in Rule such that S0

r1−→ S1
r2−→ . . . Sn−1

rn−→ Sn

for some stated S1, . . . , Sn−1 ⊆ Fact. A planning problem for a system Θ =
〈Fact, Init,Rule〉 is a pair Π = 〈Θ,Sf 〉 where Sf ⊆ F represents the target
facts. A solution to Π = 〈Θ,Sf 〉, called a plan, is a planning path from Init to
a state Sn such that Sf ⊆ Sn.

A transition S
{r1,...,rk}
−−−−−−→ S′ can be mimicked by S

r1−→ S1
r2−→ . . .

rk−→ S′, thus
the possibility of applying set of rules in a single step does not change the set of
reachable states from a given state S. However, this allows us to consider plans
of smaller length and will be useful later on to derive a tight bound and ensure
the termination of our algorithm.

In this section, we explain the translation of static inclusion into a planning
problem. We consider an (infinite) set Fact0 of facts that represent the attacker’s
knowledge, i.e. formulas of the form att(uP , uQ) where uP and uQ are messages,
plus a special symbol bad. Intuitively, att(uP , uQ) represents the fact that the
attacker knows uP in the “left” frame, while he knows uQ in the “right” one.
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3.2 Attacker analysis rules

Following [20], we first describe the planning rules that correspond to the analysis
part of the attacker behaviours. We start by describing a set of abstract rules
RAna that we instantiated later on, yielding a (concrete) planning system.

att(〈x1, . . . , xk〉k, 〈y1, . . . , yk〉k) −→ att(xi, yi) with i ≤ k
att(senc(x1, x2), senc(y1, y2)), att(x2, y2) −→ att(x1, y1)

att(aenc(x1, pub(x2)), aenc(y1, pub(y2))), att(x2, y2) −→ att(x1, y1)
att(sign(x1, x2), sign(y1, y2)) −→ att(x1, y1)

These rules correspond to the attacker’s ability to project, decrypt, and re-
trieve messages from their signature. There is no Del since the attacker never
forgets. Given a rule r ∈ RAna, we explain how to compute its concretization.

Concrete+(r). The positive concretizations of r consist of instantiating r such
that the resulting terms are messages. More formally, we have:

Concrete+(r) = {rσ | σ substitution such that rσ only involve messages.}

Concrete−(r). We say that a sequence of facts att(u1, v1), . . . , att(uk, vk) left-
unifies with a sequence att(u′1, v

′
1), . . . , att(u

′
k, v

′
k) if there exists σ such that

u′1σ = u1, . . . , u
′
kσ = uk (and symmetrically for right-unification). Given an

abstract attacker rule r = Pre −→ Add, we define Concrete−(r) as the set con-
taining f1, . . . , fk −→ bad for any sequence of facts f1, . . . , fk ∈ Fact such that
f1, . . . , fk left-unifies with Pre, whereas f1, . . . , fk does not right-unify with Pre.

Example 6. The negative concretizations of the abstract rule corresponding to
asymmetric decryption are all the concrete rules of the form

att(aenc(u1, pub(u2)), v), att(u2, v
′) −→ bad

where u1, u2, v, v
′, aenc(u1, pub(u2)) are messages, whereas adec(v, v′)↓ is not.

3.3 Static inclusion

According Definition 4, to break static inclusion, an attacker may build new
terms (using both analysis and synthesis rules) but also check for equalities and
computation failures. To encode static inclusion using planning in an efficient
way, we need to strictly control the terms that an attacker has to synthetise.

We say that R is destructor-only if R ∈ T (Σd, C0 ∪W). It is simple if there
exist destructor-only recipes R1, . . . , Rk, and a context C made of constructors
such that R = C[R1, . . . , Rk].

Definition 7. Let φ, ψ be such that dom(φ) = dom(ψ). We write φ ⊑simple
s ψ if:

1. For each destructor-only recipe R such that Rφ↓ is a (resp. atomic) message,
Rψ↓ is a (resp. atomic) message.

2. For each simple recipe R and destructor-only recipe R′ such that Rφ↓, R′φ↓
are messages and Rφ↓ = R′φ↓, we have that Rψ↓ = R′ψ↓.
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3. For each destructor-only recipes R,R′, if Rφ↓ = sign(t, s), and R′φ↓ = vk(s)
for some term t and atom s, then Rψ↓ = sign(t′, s′), and R′ψ↓ = vk(s′) for
some term t′ and atom s′.

4. For each destructor-only recipe R, such that Rφ↓ = pub(s) for atom s,
Rψ↓ = pub(s′) for some atom s′.

We write φ ⊑simple+

s ψ when the test described at item 2 is only performed
when (i) either R is destructor-only; (ii) or root(R) 6∈ {senc}∪{〈 〉k | 2 ≤ k ≤ n},
and root(R′) 6= adec.

This notion of static inclusion is equivalent to the original one.

Lemma 1. Let φ and ψ be two frames having the same domain. We have that:

φ ⊑s ψ ⇔ φ ⊑simple
s ψ ⇔ φ ⊑simple+

s ψ.

From this new characterisation of static inclusion ⊑simple
s , we derive the plan-

ning rules that capture all the cases of failures.

Ratom
fail = {att(u, v) −→ bad | u is an atom but v is not}

Rpub
fail = {att(pub(u), v) −→ bad | v is not of the form pub(v′)}

Rcheck
fail =

{

att(sign(u1, u2), v1)
att(vk(u2), v2)

−→ bad | check(v1, v2)↓ is not a message

}

Rtest
fail =







att(u1, v1), . . . , att(uk, vk)
att(C[u1, . . . , uk], v)

−→ bad |
C is a constructor context,
C[u1, . . . , uk] ∈ St(φ) ∪ C0
v 6= C[v1, . . . , vk].







Actually, not all subterms of St(φ) need to be considered. Therefore, we
consider an optimised version that captures only the terms that may not be
reconstructed from their subterms. Formally, Stopti(t) is defined as follows.

– Stopti(〈t1, t2〉) = Stopti(t1) ∪ Stopti(t2);
– Stopti(senc(t1, t2)) = Stopti(t1);
– Stopti(aenc(t1, t2)) = {aenc(t1, t2)} ∪ (Stopti(t1)r {t1})
– Stopti(sign(t1, t2)) = {sign(t1, t2) ∪ Stopti(t1);
– Stopti(f(t)) = {f(t)} with f ∈ {hash, pub, vk}.

Thanks to the fact that ⊑simple+

s is equivalent to static inclusion, we may only
consider simple recipes which evaluation yields a term in Stopti(φ).

Lemma 2. Let φ be a frame, R = C[R1, . . . , Rk] be a simple recipe such that
root(R) 6∈ {senc} ∪ {〈 〉k | 2 ≤ k ≤ n}, and R′ be a destructor-only recipe such
that root(R′) 6= adec. Assume that Rφ↓ and R′φ↓ are both messages such that
Rφ↓ = R′φ↓. We have that either C is the empty context, or Rφ↓ ∈ Stopti(φ)∪C0.

Therefore, Rtest
fail can be replaced by the following (smaller) set of rules:

Rtest1
fail = {att(u1, v1), att(u1, v2) −→ bad | v1 6= v2}

Rtest2
fail = {att(u1, v1), . . . , att(uk, vk), att(C[u1, . . . , uk], v) −→ bad | C is a non-empty

constructor context, C[u1, . . . , uk] ∈ Stopti(φ) ∪ C0, and v 6= C[v1, . . . , vk].}
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Let φ and ψ be two frames with dom(φ) = dom(ψ) and built using constants
from C ⊆ C0. The set of facts associated to φ and ψ is defined as follows:

FactC(φ, ψ) = {att(a, a) | a ∈ C} ∪ {att(wφ,wψ) | w ∈ dom(φ)}
Two frames are in static inclusion if, and only if, the corresponding planning

system has no solution. Actually, when the frames are not in static inclusion, we
provide a bound on the length of the (minimal) plan witnessing this fact.

Proposition 1. Let φ and ψ be two frames with dom(φ) = dom(ψ), and Θ =
〈Fact0,FactC0

(φ, ψ),R〉 where

R = Concrete(RAna) ∪Rtest1
fail ∪Rtest2

fail ∪Ratom
fail ∪Rcheck

fail ∪Rpub
fail .

Let Π = 〈Θ, {bad}〉. We have that φ 6⊑s ψ if, and only if, Π has a solution
of length at most (N + 1) × depth(φ) + 1 where N is the number of names n
occurring in φ at a key position, i.e. such that n (resp. pub(n)) occurs in key
position of an encryption in φ.

Intuitively, once all needed keys are derived, the minimal plan witnessing
non-inclusion contains at most depth(φ) rules where depth(φ) is the maximal
depth of a term occurring φ. Then we may need depth(φ) rule to derive each
deducible key, hence the bound.

4 From trace inclusion to planning

We are now ready for the active case. Given two configurations, we show how to
build a planning problem such that the planning problem has a solution if, and
only if, the two corresponding configurations are not in trace inclusion.

In several places of this section, we will consider three special constants,
namely c⋆0 and c⋆1 of sort atom, and c⋆+ of sort bitstring. These three constants
have a special type, denoted τ⋆.

4.1 Abstract protocol rules

We first define the abstract rules describing the protocol behaviour. We de-
note CP (resp. CQ) the constants from C0 occurring in P (resp. Q), For simplicity
we assume that variables of P and Q are disjoint. In addition to the facts of the
form att(u, v) used to represent attacker’s knowledge, we also consider:

– facts of the form Phase(i) with i ∈ N to represent phases; and
– facts of the form St(P,Q) = statecP,Q(idP , idQ) where P , Q are two basic

processes on channel c, and idP (resp. idQ) is the identity substitution of
domain fv (P ) (resp. fv (Q)).

Therefore, in this section, we consider the infinite set of facts Fact0 that consists
of all the ground facts of this form, plus the special symbol bad.

To deal with phases, we mimic the Phase rule by considering basic processes
in normal form w.r.t. the rule i:j:P −→ j:P . Then, the transformation Rule(P ;Q)
from basic processes (in normal form) to abstract planning rules is defined by
Rule(P ;Q) = ∅ when P = i:0, and otherwise:
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1. Case output: i.e. if P = i:out(c, u).P ′.

– {St(P,Q),Phase(i) −→ att(u, v), St(P ′, Q′); St(P,Q)} ∪ Rule(i:P ′; i:Q′)
when if Q = i:out(c, v).Q′

– {St(P,Q),Phase(i) −→ att(u, c⋆0), bad} otherwise.
2. Case input: i.e. P = i:in(c, u).P ′.

– {St(P,Q), att(u, v),Phase(i) −→ St(P ′, Q′); St(P,Q)} ∪ Rule(i:P ′; i:Q′)
when Q = i:in(c, v).Q′

– {St(P,Q), att(u, x),Phase(i) −→ bad} otherwise (with x fresh).

Intuitively, abstract rules simply try to mimic each step of P by a similar step
in Q. Clearly, ifQ cannot follow P , the two processes are not in trace equivalence,
which is modelled here by the bad state. Note that, in case P = i:out(c, u).P ′

whereas Q is not ready to perform an output, bad will be triggered only if the
sent term is indeed a message. This transformation is then extended to protocols
in a natural way considering in addition planning rule to model phase changes.
We consider P = {P1, . . . , Pn} and Q = {Q1, . . . , Qn}, and we assume w.l.o.g.
that Pi and Qi are basic processes on channel ci. We define:

– Rule(P ,Q) = Rule(P1, Q1) ∪ . . . ∪ Rule(Pn, Qn).
– Rphase = {Phase(i) −→ Phase(i+ 1) ; Phase(i) | i ∈ N}.

4.2 Concrete protocol rules

Deriving concrete rules from the abstract ones can be obtained by instantiating
them with arbitrary terms. However, this would not allow us to derive a decision
procedure. Moreover, we would like our algorithm to have good performance. To
achieve this, we first show that only three constants need to be considered (and
no nonces), in addition to those explicitly mentioned in the protocol.

Given a protocol P that is type-compliant w.r.t. to a typing system (TP , δP)

(and such that τ⋆ does not occur in δP(P)), an execution P
tr
−→ (P ′;φ′;σ′; i′) is

quasi-well-typed if δP(xσ
′) � δP(x) for every variable x ∈ dom(σ′) where � is

the smallest relation on types defined as follows:

– τ⋆ � τ and τ � τ for any type τ (initial or not);
– f(τ1, . . . , τk) � f(τ ′1, . . . , τ

′
k) when τ1 � τ ′1, . . . , τk � τ ′k, and f ∈ Σc.

The attacker needs at most the constants c⋆0, c
⋆
1, c

⋆
+ to mount an attack.

Theorem 1. Let KP be an initial C0-configuration type-compliant w.r.t. (TP , δP)
and KQ be another initial C0-configuration. Let C⋆ = (CP ∪ CQ) ⊎ {c⋆0, c

⋆
1, c

⋆
+}.

We have that KP 6⊑t KQ w.r.t. C0 if, and only if, there exists a witness (tr, φ) ∈
trace(KP ) of this non-inclusion which only involves constants from C⋆, simple
recipes, and with a quasi-well-typed underlying execution.

The existence of a quasi well-typed witness comes from [17] with some extra
work to guarantee that we can consider simple recipes. The reduction to three
constants extends the previous reduction [20] to asymmetric primitives.
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Flattening. In terms of efficiency, one key step of our algorithm is to avoid
composition rules from the attacker. For static inclusion, we only consider specific
contexts, hence very specific synthesis rules, guided by the form of the underlying
frames. For the active case, we transform protocol rules in order to pre-compute
all necessary composition steps. This flattening step was already used in e.g. [4,
20], and is quite intuitive. We therefore only describe it informally on an example.

Consider our Denning Sacco protocol presented in Example 1. Agent B ex-
pects a message of the form u = {sign(〈a, b, x〉3, ska)}pub(skb). Either the attacker
obtains a message m of the expected form, or the attacker obtains several com-
ponents of it and forges the whole message. For example, it is sufficient for
him to obtain m1 of the form u1 = sign(〈a, b, x〉3, ska) and m2 of the form
u2 = pk(skb). Therefore, in addition to the (informal) protocol rule u→ . . ., we
also consider the rule u1, u2 → . . .. Similarly, we also need to consider the rules
a, b, x, ska, pk(skb) → . . . and a, b, x, ska, skb → . . ..

More generally, given an abstract protocol rule r, we can define Flat(r) the set
of rules obtained by performing flattening on each fact. To decompose a term, we
follow its structure, and the structure of a variable is given by its type. Moreover,
when the other side of the process is not able to follow the decomposition, this
leads us to a failure rule. A formal definition is provided in Appendix D.

Similarly to the static case, we define Concrete+(r) as the set of ground, quasi
well-typed instantiations of a rule r where the instantiation of a state is obtained
by simply composing the substitutions, i.e.

stcP,Q(σP , σQ)σ = stcP,Q(σ ◦ σP , σ ◦ σQ).

We also define Concrete−(r) the concrete rule yielding to the bad state, when
the right-hand side of the rule does not unify or is not a message. Given a pair
of protocols, we initialise our planning system as follows.

FactC(P ,Q) = {Phase(0)} ∪ {att(c, c) | c ∈ C} ∪
{statecP,Q(∅, ∅) | P ∈ P , Q ∈ Q basic processes built on c}.

Our main technical result states that our encoding is sound and complete:
two protocols are in trace inclusion if, and only if, the corresponding planning
system has a solution. Moreover, when a witness of non-inclusion exists, we are
able to bound the length of the resulting plan. Below, nbin(P) (resp. nbout(P))
denotes the number of inputs (resp. outputs) occurring in P whereas maxphase(P)
is the maximal integer occurring in a phase instruction in P .

Theorem 2. Let P a protocol type-compliant w.r.t. (TP , δP), and Q be another
protocol. We consider the following set R of concrete rules:

Concrete(RAna∪Flat(Rule(P ,Q)))∪Rphase∪Rtest1
fail ∪Rtest2

fail ∪Ratom
fail ∪Rcheck

fail ∪Rpub
fail

Let Θ = 〈Fact0,FactC⋆(P ,Q),R〉 and Π = 〈Θ, {bad}〉. We have that P 6⊑t Q if,
and only if, Π has a solution of length

1 + nbin(P) + nbout(P) +maxphase(P) + depth(δP (P))× [1 + nbin(P) +N ]

where N is the number of names occurring in P having a key type, i.e. such that
δP(n) (resp. pub(δP(n))) occurs in key position of an encryption in δP(P).
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Proof. (Sketch) It is rather easy to establish that a solution to the planning prob-
lem defines a witness of non trace inclusion, Conversely, thanks to Theorem 1, if
P 6⊑t Q, then there exists a quasi well-typed witness of non trace inclusion, that
uses at most three constants (besides the constants of P and Q). This witness
guides the definition of a plan of Π . Establishing a not too coarse bound on its
length requires some care. It relies on the flattening of the protocol and the fact
that the plan can mimic the computation of several messages in parallel.

5 Algorithm

Similarly to the algorithm presented in [20], we decide trace inclusion by apply-
ing graph planning and SAT-solving techniques to the planning problem that en-
codes trace inclusion (thanks to Theorem 2). Given a protocol P , type-compliant
w.r.t. (TP , δP), and a protocol Q, our algorithm proceeds as follows.

1. It first computes the corresponding abstract rules, namely Flat(Rule(P ;Q))∪
RAna and the initial state Fact(P ,Q).

2. It then applies a planning graph algorithm, a standard technique to solve
planning problems (see e.g. [9]). The only difference is that, for efficiency
reasons, we do not contruct the planning problem Π a priori but instead,
we compute it “on the fly”, while building the associated planning graph. This
planning graph over-approximates the possible solutions by executing several
actions in parallel, even if they may be incompatible. Some incompatibilities
are recorded and propagated through so-called mutex. The planning graph
is deemed to capture all possible plans. More precisely, the planning graph
built until depth k captures all possible plans of length at most k.

3. In case no fact bad has been reached while building the planning graph, we
can immediately conclude that P ⊑t Q. Otherwise, since the planning graph
over-approximates the possible executions, we need to check that bad is truly
reachable. This is done by encoding each path leading to bad as a SAT for-
mula. We then call the SAT solver mini-SAT to decide its satisfiability. In
case bad is indeed reachable, mini-SAT provides a solution that is translated
back to a witness of non-inclusion. To improve termination, we check acces-
sibility of a state containing bad as soon as it appears in the graph, even if
the construction of the graph is not completed yet.

Termination. The algorithm defined above may not terminate. The planning
graph contains facts of the form att(u, v) where u must be (quasi) well-typed.
There is therefore only a finite number of such u. However, the planning graph
construction may introduce several facts of the form att(u, v1), . . . , att(u, vk),
where the vi get arbitrarily large. We exhibit some (contrived) examples in Ap-
pendix E where the algorithm does not terminate. [20] suggests that termination
could be enforce by checking at each step (thanks to the SAT-solver) that each
node of the planning graph is indeed reachable. This would be however not
practical. Instead, we can enforce termination thanks to the bound provided in
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Spec Akiss Deepsec CSF’17 Sat-Eq
Denning-Sacco 7 10 35 98 > 210 (4h)

Needham-Schroeder sym 6 6 21 21 94∗ (20h30)
Wide Mouth Frog 7 12 28 84 > 210 (6min)
Yahalom-Paulson 6 6 12 7 > 28 (7h)

Passive Authentication 6 8 46 – > 400 (98s)
Active Authentication 6 8 50 – > 400 (78s)

Needham-Schroeder-Lowe 4 6 16 – > 64 (11min)
Denning-Sacco signature 8 8 18 – > 64 (100s)

Fig. 2. Comparison of SAT-Equiv with the other tools. We indicate the number of
sessions for which the tool fails (time out, memory out, or other issues). When we did
not reach the limit of the tool, we write ≥ k to indicate that the tool can analyse more
than k sessions, and we indicate the analysis time for k. * see Section 6.2

Theorem 2 that also bounds the maximal depth of the planning graph that needs
to be considered. Indeed, it is sufficient to simply stop the construction of the
planning graph as soon as the bound is reached. The interest of this approach is
that we guarantee termination at no cost (computing the bound is immediate).
In practice, the planning graph is typically much smaller than this bound.

SAT-Equiv. We have implemented our new algorithm in the tool SAT-Equiv,
extending it to protocols with phases and all the standard cryptographic prim-
itives and guaranteeing termination. Moreover, we significantly improve its effi-
ciency by rewriting parts of the codes and modifying the data structure.

6 Experiments

In this section, we analyse several protocols of the literature and compare the
results obtained using different tools. We ran our experiments a single Intel 3.1
GHz Xeon. We limit the memory to 128 Go (MO stands for memory out) and
the execution time to 24h (TO stands for time out).

For all the considered protocols, we analyse strong secrecy of the exchanged
key or nonce, as for Example 5, except for the passport protocol (PA), for which
we prove anonymity as in [3]. We progressively increase the number of sessions
in order to consider a semi complete scenario, where Alice’s role is instantiated
by honest a talking to honest b or dishonest c and Bob’s role is instantiated
by b talking to a or c. This typically corresponds to 7 sessions in the case of a
symmetric key protocol (with 3 roles).

6.1 Comparison with the other tools

Our experiments show a significant speed-up w.r.t. the original version of SAT-
Equiv [20]. Our new is 100 faster in average, allowing to analyse about twice more
sessions, as exemplified in Figure 2 (more experiments in [1]). We compare SAT-
Equiv with other tools of the literature that decide equivalence for a bounded
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number of sessions, namely Spec [24], Akiss [10] and Deepsec [13]. We did not
include APTE in our study [11] as it is now subsumed by Deepsec. For each
protocol, we progressively increased the number of sessions until we reached a
time out. The overall results of our experiments are summarized in Figure 2.
They show a significant speed-up even w.r.t. the very recent Deepsec tool. Note
however that Deepsec covers more protocols (with else branches, or not type
compliant), except if they include phases. Deepsec can also be parallelized thus
the analysis time can be divided by the number of available cores. The detailed
results for the Denning-Sacco protocol are below.

Denning-Sacco Spec Akiss Deepsec CSF’17 SAT-Equiv
3 12 s 0.08 s <0.01 s 0.3 s 0.07 s 42
6 5 h 9 s <0.01 s 1 s 0.1 s 64
7 MO 75 s <0.01 s 2 s 0.2 s 74
10 MO 0.01 s 4 s 0.3 s 114
21 18 s 60 s 1.3 s 216
35 TO 9 min 6 s 344
84 13 h 164 s 792
98 TO 6 min 920
210 4h20 1942

The 2nd column for SAT-Equiv indicates the theoretical bound on the length
of the planning graph, as given by Theorem 2. This illustrates that this bound
remains reasonable although our tool actually terminates before reaching it.

6.2 Towards an unbounded number of sessions

Although equivalence is undecidable in general for an unbounded number of
sessions, [16] exhibits a decidability result, for type-compliant protocols that
have an acyclic dependency graph. Intuitively, the dependency graph captures
how a message expected as input may be built (and therefore may depend) from
messages sent as output of the protocol. Decidability is proven by showing that a
(minimal) attack trace may be mapped to this dependency graph. Looking at the
dependency graphs of the Denning-Sacco and the Needham-Schroeder symmetric
key protocols, we deduce that it is sufficient to analyse respectively 42 and 94
sessions. Thanks to the efficiency of SAT-Equiv, we can easily analyse 42 sessions
of Denning-Sacco (in 10s). We can therefore deduce from [16] that the protocol
remains secure even if the considered sessions are arbitrarily replicated. The case
of the Needham-Schroeder protocol requires a bit more work as 94 sessions is
slightly out of reach of SAT-Equiv. However, we noticed that, according to [16],
we do not need to analyse 94 full sessions. Instead, some of some of them may be
truncated (a minimal attack will use only the first step for example). Since SAT-
Equiv can prove equivalence of these refined 94 sessions (in 20h30min), we can
again deduce from [16] that the protocol remains secure even if the considered
sessions are arbitrarily replicated.

As future work, we plan to optimize the bound on sessions induced by [16]
and automatically generate the desired scenario, in order to extend SAT-Equiv
to proofs of equivalence for an unbounded number of sessions.
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A From static inclusion to planning

The main goal of this section is to prove Proposition 1. We introduce the notion of
forced normal form, denoted u

։

. This is the normal form obtained when applying
rewrite rules as soon as the destructor and the constructor match. More formally,
we have that:

Rf =







sdec(senc(x, y), z) ։ x adec(aenc(x, y), z) ։ x
getmsg(sign(x, y)) ։ x check(x, y) ։ ok

projij(〈x1, . . . , xi〉i) ։ xj with 2 ≤ i ≤ n and 1 ≤ j ≤ i

A term u can be rewritten in v using Rf if there is a position p in u, and a
rewriting rule g(t1, . . . , tn) ։ t such that u|p = g(t1, . . . , tn)θ for some substitu-
tion θ, and v = u[tθ]p. As usual, we denote ։

∗, the reflexive-transitive closure
of ։. We may note that such a rewriting system is confluent as it terminates
and has no critical pair. From [17], we get the following Lemma:

Lemma 3. Let φ be a frame, R be a recipe such that Rφ↓ is a message, and R′

be such that R ։ R′. We have that R′ is a recipe, and R′φ↓ = Rφ↓.

Lemma 4. Let R be a recipe in normal form w.r.t. ։ such that Rφ↓ is a mes-
sage for some frame φ. We have that R is a simple recipe.

Proof. We prove this result by structural induction on R.

Base case: R ∈ W∪C0. In both cases, the result holds since R is a simple recipe.

Induction case: We have that R = f(R1, . . . , Rk) for some f ∈ Σ, and we know
that R1, . . . , Rk are in normal form w.r.t. ։.

– Case f ∈ Σc. We have that Rφ↓ = f(R1φ↓, . . . , Rkφ↓) is a message for
some frame φ, and thus Riφ↓ is a message for i ∈ {1, . . . , k}. Applying our
induction hypothesis on Ri (1 ≤ i ≤ k), we easily conclude.

– Case f = des ∈ Σd⊎{check}. Let ℓdes −→ rdes be the rewriting rule associated
to des, and ℓ′des ։ rdes be its associated forced rewriting rule. The case where
des = check is impossible as R is in forced normal form. Therefore, we have
that f ∈ {projij , sdec, adec, getmsg}. From now on, we assume that f = adec.
The other cases can be done in a rather similar way.
Since f = adec, we have that R = f(R1, R2). As Rφ↓ is a message, R1φ↓
and R2φ↓ are messages. Applying our induction hypothesis, we deduce that
both R1 and R2 are simple. As R2φ↓ is an atomic message, we know that
R2 is destructor-only. First, we assume that R1 = g(R′

1, . . . , R
′
n) for some

g ∈ Σc. As Rφ↓ is a message, g = aenc. However, this contradicts the fact
that R is in forced normal form. Thus, R1 is destructor-only, and therefore R
is simple. ⊓⊔

Lemma 1. Let φ and ψ be two frames having the same domain. We have that:
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φ ⊑s ψ ⇔ φ ⊑simple
s ψ ⇔ φ ⊑simple+

s ψ.

Proof. It is easy to see that φ ⊑s ψ ⇒ φ ⊑simple
s ψ ⇒ φ ⊑simple+

s ψ. Thus, we
only consider the two other implications.

First implication: φ ⊑simple
s ψ ⇒ φ ⊑s ψ. We consider an alternative defini-

tion of static inclusion, denoted ⊑′
s. This notion is similar to the one given in

Definition 7 but considering arbitrary recipes instead of simple/destructor-only
recipes. Clearly, we have that φ ⊑′

s ψ ⇒ φ ⊑s ψ, and thus to conclude, it
remains to establish φ ⊑simple

s ψ ⇒ φ ⊑′
s ψ.

More precisely, given an arbitrary test T that holds in φ, we show that T also
holds in ψ assuming that any test smaller than T have already been transfered
from φ to ψ. We consider the following measure where |R| is simply the size
of R, i.e. the number of function symbols occurring in it.

1. T is a recipe (message/atomic message/public key): µ(T ) = |R|
2. T is made of two recipes (equality test/signature test): µ(T ) = |R|+ |R′|.

R is a recipe such that Rφ↓ is a message (resp. atomic message).

– Case where R is not in normal form w.r.t. ։. Consider R′ such that R ։ R′.
We have that R′φ↓ is a message (Lemma 3), By induction hypothesis R′ψ↓
is a message too. It remains to show that Rψ↓ is a message. Actually, we
have that R = C[adec(aenc(R1, R2), R3)] and R′ = C[R1] (other cases are
similar). Since Rφ↓ is a message, we know that R2φ↓ = pub(R3)φ↓. By
induction hypothesis R2ψ↓ = pub(R3)ψ↓, and this allows us to conclude.

– Case where R is in normal form w.r.t. ։. In this case, we know that R is
simple (Lemma 4), i.e. R = C[R1, . . . , Rk], where C is a constructor context
and Ri are destructor-only recipes. If C is empty, then R is destructor-only.
We conclude by relying on our hypothesis. Otherwise R = f(R′

1, . . . , R
′
n).

By induction hypothesis, we know that R′
iψ↓ is a message (1 ≤ i ≤ n). We

have to prove that C[R1, . . . , Rk]ψ↓f(R′
1, . . . , R

′
n)ψ↓ is a message. We have

atomic messages at key positions (thanks to our induction hypothesis). In
case f = aenc (and thus n = 2), we have to ensure that R′

2ψ↓ is of the form
pub(s). This is given by item 4 of Definition 7.

R and R′ are recipes, Rφ↓, R′φ↓ are messages, and Rφ↓ = R′φ↓.

– Case R (resp. R′) is not in normal form w.r.t. ։. Let R′′ = R

։

. Since Rφ↓
and Rψ↓ are messages, we deduce that R′′φ↓ = Rφ↓ and R′′ψ↓ = Rψ↓. We
have that R′′φ↓ = Rφ↓ = R′φ↓. Relying on our induction hypothesis applied
on the test R′′ = R′, we deduce that R′′ψ↓ = R′ψ↓, and thus Rψ↓ = R′ψ↓.

– Case R and R′ are simple, i.e. R = C[R1, . . . , Rk] and R′ = C′[R′
1, . . . , R

′
ℓ],

where C,C′ are constructor contexts and Ri (1 ≤ i ≤ k) as well as R′
j

(1 ≤ j ≤ ℓ′) are destructor-only recipes. If neither C nor C′ is empty (that
is, neither R nor R′ is destructor-only) then root(R) = root(R′), and thus
we conclude relying on our induction hypothesis. Otherwise, we conclude
relying on our hypothesis.
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R and R′ are recipes, Rφ↓ = sign(t, s), and R′φ↓ = vk(s) for some term t and
some atom s.

– Case R (resp. R′) is not in forced normal form. R

։

(resp. R′

։

) is a smaller
recipe then R (resp. R′). By Lemma 3, R

։

φ↓ = Rφ↓ (resp. R′
։

φ↓ = R′φ↓).
So R

։

, R′ (resp. R,R′

։

) gives us a smaller test than R,R′. By induction
hypothesis we get that say R

։

ψ↓ = sign(t′, s′) and R′ψ↓ = vk(s′) for some
term t and atom s. We already considered the case where Rφ↓ is a message,
so we can assume Rψ↓ is a message. Then we deduce that Rψ↓ = R

։

ψ↓ by
Lemma 3, and it concludes this case.

– Case R and R′ are both simple recipes. In case they are both destructor-
only recipes we conclude relying on our hypothesis. Otherwise, assume first
R = sign(R1, R2). In such a case, we have that vk(R2) = R′ and this
test is smaller than R = R′, it holds in φ, and thus it can be trans-
fered from φ to ψ by induction hypothesis. This allows us to conclude
that R = R′ holds in ψ. Now, assume that R′ = vk(R′

1). Since R′
1φ↓ is

an atomic message, R′
1 is destructor only. We have that R′ is destructor

only, and thus sign(getmsg(R), R′) is simple, R is destructor-only and the
sign(getmsg(R), R′

1) = R holds in φ. By hypothesis, it also holds in ψ. This
allows us to conclude that Rψ↓ = sign(t′, s′) with R′

1ψ↓ = vk(s′).

R is a recipe such that Rφ↓ = pub(s) for some atom s.

– Case R is not in forced normal form, we have that R

։

is a smaller recipe than
R. By Lemma 3, R

։

φ↓ = Rφ↓. So by induction hypothesis R

։

ψ↓ = pub(s)
for some atom s. We have already proved that, as Rφ↓ is a message, Rψ↓ is
a message. So by Lemma 3, R

։

φ↓ = Rφ↓ = pub(s).
– Case R is a simple recipe. In case R is a destructor-only recipe, we conclude

relying on our hypothesis. Otherwise R = pub(R1) and R1φ↓ is an atom,
thus R1 is destructor-only. We conclude that R1ψ↓ is an atom too relying
on our induction hypothesis, and thus Rψ↓ = pub(s′) for some atom s′.

Second implication: φ ⊑simple+

s ψ ⇒ φ ⊑simple
s ψ. Let R be a simple recipe with

constructor context C andR′ be a destructor-only recipe such that Rφ↓ and R′φ↓
are both messages. Assume Rφ↓ = R′φ↓. We have to show that Rψ↓ = R′ψ↓. We
show that such a test transfers from φ to ψ by induction on #senc(R) (number
of occurrences of senc and 〈 . . . 〉k at top level in C), and #adec(R

′) (number of
occurrences of adec at top level in R′) ordered lexicographically.

Base case: (#senc(R),#adec(R
′)) = (0, 0). In such a case, the test transfers by

hypothesis.

Induction step: #senc(R) ≥ 1. In such a case, we consider R = senc(R1, R2). We
consider the test R1 = sdec(R′, R2). We have (R1 = sdec(R′, R2))φ so by induc-
tion hypothesis, (R1 = sdec(R′, R2))ψ. We deduce that (R′ = senc(R1, R2))ψ
that is (R = R′)ψ. The case where R = 〈R1, R2〉 can be done in a similar way.

Now, we consider the case where #senc(R) = 0 and #adec(R
′) ≥ 1. In such a

case, we have that R′ = adec(R′
1, R

′
2). We consider the test aenc(R, pub(R′

2)) =
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R′
1. We still have that #senc(aenc(R, pub(R

′
2))) = 0, and #adec(R

′
1) < #adec(R

′).
(aenc(R, pub(R′

2)) = R′
1)φ so by induction hypothesis (aenc(R, pub(R′

2)) = R′
1)ψ.

We deduce that (R = adec(R′
1, R

′
2))ψ, that is (R = R′)ψ. ⊓⊔

Let t be a term, we define Stded(t) the set of subterms that occur at a de-
ducible position as follows:

– Stded(〈t1, . . . , tn〉n) = {〈t1, . . . , tn〉n} ∪ Stded(t1) ∪ . . . ∪ Stded(tn);

– Stded(f(t1, t2)) = {f(t1, t2)} ∪ Stded(t1) with f ∈ {senc, aenc, sign};
– Stded(f(t)) = {f(t)} with f ∈ {hash, pub, vk}.

Lemma 2. Let φ be a frame, R = C[R1, . . . , Rk] be a simple recipe such that
root(R) 6∈ {senc} ∪ {〈 〉k | 2 ≤ k ≤ n}, and R′ be a destructor-only recipe such
that root(R′) 6= adec. Assume that Rφ↓ and R′φ↓ are both messages such that
Rφ↓ = R′φ↓. We have that either C is the empty context, or Rφ↓ ∈ Stopti(φ)∪C0.

Proof. Let φ be a frame, R′ be a destructor-only recipe such that R′φ↓ is a
message. We first prove that R′φ↓ ∈ Stded(φ)∪C0 by structural induction on R′.

Base case R′ = w ∈ dom(φ) or R′ = a ∈ C0. In both cases, we easily conclude
that R′φ↓ ∈ Stded(φ) ∪ C0.

Induction step: R′ = g(R′
1, . . . , R

′
k). We distinguish several cases depending on g.

In case g = sdec, we have that k = 2, R′
1φ↓ = senc(t1, t2), R

′
2φ↓ = t2, and

R′φ↓ = t1 for some t1, t2. Applying our induction hypothesis on R′
1, we deduce

that R′
1φ↓ ∈ Stded(φ) ∪ C0, and thus R′φ↓ ∈ Stded(φ) ∪ C0. The case where

R′ = 〈R′
1, R

′
2〉, R

′ = getmsg(R′
1), and R′ = adec(R′

1, R
′
2) are similar.

Now, we prove the proposition. Let R = C[R1, . . . , Rk] be a simple recipe
such that root(R) 6∈ {senc} ∪ {〈 〉k | 2 ≤ k ≤ n}, and R′ be a destructor-only
recipe such that root(R′) 6= adec. Thanks to the result we have just proved,
we know that R′φ↓ ∈ Stded(φ) ∪ C0. Moreover, we know that either (i) R′ =
w ∈ dom(φ) or (ii) R′ = a ∈ C0 or (iii) R′ = g(R′

1, . . . , R
′
k) for some g ∈

Σd r {adec}. In cases (i) and (ii), we easily conclude that either C is empty
or Rφ↓ = C[R1φ↓, . . . , Rkφ↓] ∈ Stopti(φ) ∪ C0. In case (iii), assuming that g =
sdec(R′

1, R
′
2), we deduce that R′

1φ↓ ∈ Stded(φ) and since R′
1φ↓ = senc(t1, t2), we

deduce that R′
1φ↓ ∈ Stopti(φ), and thus R′φ↓ ∈ Stopti(φ) since R′φ↓ = Rφ↓ is

headed neither with a symbol in {〈 〉k | 2 ≤ k ≤ n}, nor with senc. The case
where g ∈ {〈 〉k | 2 ≤ k ≤ n}∪{getmsg} can be done in a similar way. Note that
we know that g 6= adec. ⊓⊔

Before establishing Proposition 1, we start by establishing the following result
regarding deduction using destructor-only recipes.

Lemma 5. Let φ and ψ be two frames having the same domain, and C ⊆ C0. Let
Θ = 〈Fact0,FactC(φ, ψ),Concrete

+(RAna)〉 and Π = 〈Θ, {att(u, v)}〉 for some
messages u and v. If Π has a solution then there is a destructor-only C-recipe
R such that Rφ↓ = u, and Rψ↓ = v.
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Proof. Let π = r1, . . . , rn be a planning path from S0 to Sn, and att(u, v) ∈ Sn.
We show the result by induction on the length of π, and since applying planning
rules in parallel does not change the set of reachable states, we assume w.l.o.g.
that the planning path under study is such that each ri ∈ Concrete+(RAna).

Base case. We have that π is empty. In such a case, by definition of S0, the result
trivially holds.

Inductive case. We know that rn is an instance of one of the abstract rules in
RAna, e.g. att(senc(u1, u2), senc(v1, v2)), att(u2, v2) −→ att(u1, v1). Thanks to our
induction hypothesis, we know that there exist:

– a destructor-only C-recipe R1 such that R1φ↓ = senc(u1, u2), and R1ψ↓ =
senc(v1, v2);

– a destructor-only C-recipe R2 such that R2φ↓ = u2, and R2ψ↓ = v2.

Therefore, the C-recipe R = sdec(R1, R2) allows us to conclude. The reasoning
is rather similar for the other rule. ⊓⊔

Let R be a destructor-only recipe. We denote by |R|main the length of its
main path, i.e. the longest sequence of 1 which corresponds to a position in R.

Lemma 6. Let φ be a frame, and R be a destructor-only recipe such that Rφ↓
is a message. We have that |R|main ≤ depth(φ).

Proof. We first establish that |R|main + depth(Rφ↓) ≤ depth(φ) for any R such
that Rφ↓ is a message by structural induction on R.

Base case: R = w or R ∈ C0. In such a case, we have

|R|main + depth(Rφ↓) = 0 + depth(Rφ↓) ≤ depth(φ).

Inductive case: R = g(R1, . . . , Rk) for some g ∈ Σd. Since Rφ↓ is a message,
we know that R1φ↓ is a message. Therefore, the induction hypothesis applies
and we obtain that |R1|main + depth(R1φ↓) ≤ depth(φ). Moreover, we have that
depth(R1φ↓) ≥ 1 + depth(Rφ↓), and |R|main = |R1|main + 1. Therefore, we have
that:

|R|main + depth(Rφ↓) ≤ |R1|main + 1 + depth(R1φ↓)− 1 ≤ depth(φ).

We have that |R|main + depth(Rφ↓) ≤ depth(φ). Since depth(Rφ↓) ≥ 0, we
deduce that |R|main ≤ depth(φ). ⊓⊔

Given a destructor-only recipe R, the key-recipes of R, denoted Key(R), are
all the recipes occurring as a subterm of R at a key position, i.e. as a second
argument of sdec or adec, excepted those of the form c ∈ C0 that do not count.
This notation is extended as expected to sets of destructor-only recipes. Given
a set of recipes R, we write |R| the number of elements occurring in it.

Lemma 7. Let φ and ψ be two frames having the same domain, and R be a set
of destructor-only C-recipes such that Rφ↓ and Rψ↓ are messages for any R ∈ R.
Let Θ = 〈Fact0,FactC(φ, ψ)∪{att(Rφ↓, Rψ↓) | R ∈ Key(R)},Concrete+(RAna)〉,
and Π = 〈Θ, {att(Rφ↓, Rψ↓) | R ∈ R}〉. We have that Π has a solution of length
at most depth(φ).
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Proof. We show the existence of a solution of length at most ℓ = max{|R|main |R ∈
R}, and we conclude relying on Lemma 6 that ℓ ≤ depth(φ).

Base case: ℓ = 0. In such a case, we have that R ∈ dom(φ) ∪ C for any R ∈ R,
and the empty planning path of length 0 is indeed a solution of Π .

Inductive case: ℓ > 0. Let R′ = {R ∈ R | |R|main = ℓ} = {R1, . . . , Rn}. For each
i ∈ {1, . . . , n}, we have that:

– either Ri = des(R1
i , R

2
i ) with des ∈ {adec, sdec}; and R1

iφ↓ and R1
iψ↓, as

well as R2
iψ↓ and R2

iψ↓ are messages. Moreover, we have that R2
i ∈ Key(Ri)

or R2
i ∈ C0, and thus by hypothesis, we have that att(R2

iφ↓, R
2
iψ↓) belongs

to the initial state of our planning system Θ.
– or Ri = des(R1

i ) with des ∈ {projkℓ , getmsg}; and R1
iφ↓ and R1

iψ↓ are mes-
sages.

Moreover, we have that Key(R1
i ) ⊆ Key(R′) for any i ∈ {1, . . . , n}. Therefore,

relying on our induction hypothesis, we deduce that there is a plan π0 of length
ℓ− 1 of

Π0 = 〈Θ, {att(R1
iφ↓, R

1
iψ↓) | 1 ≤ i ≤ n} ∪ att(R′φ↓, R′ψ↓) | R′ ∈ RrR′}〉.

Moreover, when Ri = sdec(R1
i , R

2
i ) (the case where Ri = adec(R1

i , R
2
i ) can

be done in a similar way), as Riφ↓ and Riψ↓ are messages, we know that
R1

iφ↓ = senc(Riφ↓, R2
iφ↓) and R1

iψ↓ = senc(Riψ↓, R2
iψ↓). Let ri be the fol-

lowing planning rule:

att(senc(Riφ↓, R
2
iφ↓), senc(Riψ↓, R

2
iψ↓)), att(R

2
iφ↓, R

2
iψ↓) −→ att(Riφ↓, Riψ↓)

We have that:

– Add(ri) = {att(Riφ↓, Riψ↓)};
– att(senc(Riφ↓, R2

iφ↓), senc(Riψ↓, R2
iψ↓)) = att(R1

i φ↓, R
1
iψ↓), and

– att(R2
iφ↓, R

2
iψ↓) belongs to the initial state of our planning system Θ.

So each ri (1 ≤ i ≤ n) is applicable after π0, and therefore π0.{r1, . . . , rn} is
a planning path of length ℓ which is a solution of Π . ⊓⊔

Lemma 8. Let φ and ψ be two frames having the same domain, and R be a set
of destructor-only C-recipes such that Key(R) ⊆ R; Rφ↓ and Rψ↓ are messages
for any R ∈ R.
Let F̂ = {att(Rφ↓, Rψ↓) | R ∈ R}, R0 ⊆ R, and F̂0 = {att(Rφ↓, Rψ↓) | R ∈ R0}.
Let Θ = 〈Fact0,FactC(φ, ψ)∪ F̂0,Concrete

+(RuleA)〉, and Π = 〈Θ, F̂〉. We have
that Π has a solution of length at most |RrR0| × depth(φ).

Proof. We consider the partial order R < R′ over destructor-only recipes such
that R < R′ if, and only if, R ∈ Key(R′). We show the result by induction on
|RrR0|, i.e. the number of elements in RrR0.

Base case: |RrR0| = 0. In such a case, the empty plan of length 0 is indeed a
solution of Π = 〈Θ,F〉.

24



Inductive case: |R rR0| > 0. In such a case, we consider R a minimal element
in R r R0 w.r.t. <. We have that Rφ↓ and Rψ↓ are messages. We know that
Key(R) ⊆ R, and since R is minimal, we have that Key(R) ⊆ R0. Therefore,
Lemma 7 applies to {R}, and we get a solution π of length at most depth(φ) of
〈Θ, {att(Rφ↓, Rψ↓)}〉.

Let Θ′ = 〈F0,FactC(φ, ψ) ∪ F̂0 ∪ att(Rφ↓, Rψ↓),Concrete+(RuleA)〉. By in-
duction hypothesis, there is a solution π′ of 〈Θ′,F〉 of length at most |Rr (R0∪
{R})| × depth(φ) = |RrR0| × depth(φ)− depth(φ). We conclude that π.π′ is a
solution of Π of length at most |RrR0| × depth(φ). ⊓⊔

A static inclusion test T w.r.t. ⊑simple
s is either a destructor-only recipe R, or

a pair (R,R′) of recipes such that R is simple whereas R′ is destructor-only. We
define Key(T ) as:

– Key(R) in the first case,
– Key({R′, R1, . . . , Rn}) in the second case assuming that R = C[R1, . . . , Rn].

Lemma 9. Let φ and ψ be two frames with dom(φ) = dom(ψ). Let R0 be a
set of destructor-only C0-recipes such that Key(R0) ⊆ R0; Rφ↓ and Rψ↓ are
messages for any R ∈ R0. Let F̂ = {att(Rφ↓, Rψ↓) | R ∈ R0} and Θ =
〈Fact0,FactC0

(φ, ψ) ∪ F̂ ,R〉 where

R = Concrete(RAna) ∪Rtest1
fail ∪Rtest2

fail ∪Ratom
fail ∪Rcheck

fail ∪Rpub
fail .

Let Π = 〈Θ, {bad}〉. Assume φ 6⊑simple+

s ψ. Let T be a static inclusion test
w.r.t. ⊑simple

s that holds in φ but not in ψ. Then Π has a solution of length at
most (k + 1)× depth(φ) + 1 where k = |Key(T )rR0|.

Proof. We have that φ 6⊑simple+

s ψ. Following the definition of ⊑simple+

s , we con-
sider the four cases separately.

1. There is a destructor-only recipe R such that Rφ↓ is a message but Rψ↓
is not. Let R′ be the smallest subterm of R such that this property holds.
Since both φ and ψ are frames, and thus contain messages, we have that
R′ = g(R′

1, R
′
2) with g ∈ {sdec, adec}, or R′ = g(R′

1) with g ∈ {getmsg} ∪
{projkj | 2 ≤ k ≤ n, 1 ≤ j ≤ k}. We assume w.l.o.g. that R′ = sdec(R′

1, R
′
2),

and by minimality of our test, R′
1ψ↓ and R′

2ψ↓ are messages.
Applying Lemma 8 with R′ = Key({R′

1, R
′
2})∪{R′

2} and R0, we deduce the
existence of a plan of length at most |Key({R′

1, R
′
2})∪{R′

2}rR0|×depth(φ)
leading to

{att(Rφ↓, Rψ↓) | R ∈ Key({R′
1, R

′
2}) ∪ {R′

2}}.

Thus, relying on Lemma 7, 〈Θ, {att(R′
1φ↓, R

′
1ψ↓), att(R

′
2φ↓, R

′
2ψ↓)}〉 has a

solution of length at most

|(Key({R′
1, R

′
2}) ∪ {R′

2})rR0| × depth(φ) + depth(φ).

Then, we consider the rule r of the form:

att(R′
1φ↓, R

′
1ψ↓), att(R

′
2φ↓, R

′
2ψ↓) → bad
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which is indeed an instance of a rule in Concrete−(RAna) since R′
1φ↓ =

senc(u1, u2) for some u1, u2, and senc(u1, u2), R
′
1ψ↓, R

′
2ψ↓ are messages

whereas sdec(R′
1ψ↓, R

′
2ψ↓)↓ is not a message. This rule r can be triggered

and leads to bad. Since Key({R′
1, R

′
2}∪{R

′
2}) ⊆ Key(R′) ⊆ Key(R) = Key(T ),

we have that Π has as solution of length at most

(|Key(T )rR0|+ 1)× depth(φ) + 1.

Now, assuming that Rφ↓ is an atomic message, and Rψ↓ is a message but
not an atomic one. In such a case, with a similar reasoning, we get that
〈Θ, {att(Rφ↓, Rψ↓)}〉 has a solution of length at most

|Key(T )rR0| × depth(φ) + depth(φ).

Then, we consider the rule r of the form:

att(Rφ↓, Rψ↓) → bad

which is indeed an instance of a rule Ratom
fail , and which leads to a solution

for Π . Therefore, Π has as solution of length at most

(|Key(T )rR0|+ 1)× depth(φ) + 1.

2. The minimal test is a destructor-only recipe R such that Rφ↓ = pub(s)
for some atom s, whereas Rψ↓ 6= pub(s′) for any atom s′. First, thanks to
the first item, we may assume that Rψ↓ is a message. Applying Lemma 8
with R = Key(R) and R0, and then Lemma 7 on {R}, we get a solution of
〈Θ, {att(Rφ↓, Rψ↓)}〉 of length at most (|Key(R)|+1)× depth(φ). Then, we
consider the rule r of the form:

att(Rφ↓, Rψ↓) → bad

which is indeed an instance of a rule Rpub
fail , and which leads to a solution for

Π of length at most (|Key(T )rR0|+ 1)× depth(φ) + 1.
3. There are destructor-only recipes R and R′ such that Rφ↓ = sign(t, s),
R′φ↓ = vk(s) for some message t, and some atom s, whereasRψ↓ 6= sign(t′, s′)
or Rψ↓ 6= vk(s′) for any message t′ and any atom s′. First, thanks to the
first item, we may assume that both Rψ↓, and R′ψ↓ are messages. Applying
Lemma 8 with R = Key({R,R′}) and R0, and then Lemma 7 on {R,R′},
we get a solution of 〈Θ, {att(Rφ↓, Rψ↓), att(R′φ↓, R′ψ↓)}〉 of length at most
(|Key({R,R′}) r R0| + 1) × depth(φ). Then, we consider the rule r of the
form:

att(Rφ↓, Rψ↓), att(R′φ↓, R′ψ↓) → bad

which is indeed an instance of a rule Rcheck
fail , and which leads to a solution

for Π of length at most (|Key(T )rR0|+ 1)× depth(φ) + 1.
4. There is a simple recipe R = C[R1, . . . , Ri] and a destructor-only recipe R′

such that Rφ↓ = R′φ↓ are messages whereas Rψ↓ 6= R′ψ↓. Moreover, we

26



know that root(R) 6∈ {senc} ∪ {〈 〉k | 2 ≤ k ≤ n}, and also that root(R′) 6=
adec. First, thanks to the first item, we may assume that R1ψ↓, . . . , Rkψ↓,
as well as Rψ↓, are messages. Applying Lemma 8 on Key({R1, . . . , Ri, R

′}),
and then Lemma 7 on {R1, . . . , Ri, R

′}, we get a solution of

〈Θ, {att(R1φ↓, R1ψ↓), . . . , att(Riφ↓, Riψ↓), att(R
′φ↓, R′ψ↓)}〉

of length at most (|Key({R1, . . . , Ri, R
′}) r R0| + 1) × depth(φ). Then, we

consider the rule r of the form:

att(R1φ↓, R1ψ↓), . . . , att(Riφ↓, Riψ↓), att(R
′φ↓, R′ψ↓) → bad

which is an instance of a rule in Rtest1
fail or Rtest2

fail . Indeed, thanks to Lemma 2,
we know that:
– either C is the empty context, and thus r is an instance of Rtest1

fail since
R′φ↓ = Rφ↓, and R′ψ↓ 6= Rψ↓;

– or Rφ↓ ∈ Stopti(φ) ∪ C0, and thus r is an instance of Rtest2
fail since R′φ↓ =

Rφ↓ = C[R1φ↓, . . . , Riφ↓], and R′ψ↓ 6= Rψ↓ = C[R1ψ↓, . . . , Riψ↓].
Therefore, this allows us to conclude that Π has a solution of length at most
(|Key(T )rR0|+ 1)× depth(φ) + 1. ⊓⊔

Proposition 1. Let φ and ψ be two frames with dom(φ) = dom(ψ), and Θ =
〈Fact0,FactC0

(φ, ψ),R〉 where

R = Concrete(RAna) ∪Rtest1
fail ∪Rtest2

fail ∪Ratom
fail ∪Rcheck

fail ∪Rpub
fail .

Let Π = 〈Θ, {bad}〉. We have that φ 6⊑s ψ if, and only if, Π has a solution
of length at most (N + 1) × depth(φ) + 1 where N is the number of names n
occurring in φ at a key position, i.e. such that n (resp. pub(n)) occurs in key
position of an encryption in φ.

Proof. First, thanks to Lemma 1, it is sufficient to show that φ 6⊑simple+

s ψ if, and
only if, Π has a solution. We show the two directions separately.

(⇒) We have that φ 6⊑simple+

s ψ. We consider a static inclusion test T w.r.t.

⊑simple+

s . We consider one such that Key(T ) is minimal, and then among those
that have a minimal Key(T ), we consider one whose size (number of function
symbols) is minimal. Lemma 9 applies with R0 = ∅. Therefore, we have that Π
has a solution of length at most (|Key(T )|+1)×depth(φ)+1. To conclude, we need
to show that |Key(T )| ≤ N . Actually, we have that {Rφ↓ | R ∈ Key(T )}rC0 ≤ N
since all these recipes occur in key position (i.e. second argument of sdec/adec)
of a recipe that leads to a message in φ. Now, in case there are two recipes in
K,K ′ ∈ Key(T )∪C0 such that Kφ↓ = K ′φ↓, then by minimality of our test (note
that at least the size of the test has descreased), we know that Kψ↓ = K ′ψ↓,
and therefore replacing K by K ′ will give us a smaller test according to our
measure. This allows us to conclude that Π has a solution of length at most
(N + 1)× depth(φ) + 1.

(⇐) We have a plan of bad. We consider such a plan r1, . . . , rn of minimal
length without performing rules in parallel. Since this plan is mimimal, we know
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that r1, . . . , rn−1 are rules in Concrete+(RAna), and therefore, we can rely on
Lemma 5 to conclude that there exists a destructor-only recipe R such that
Rφ↓ = u and Rψ↓ = v for any att(u, v) ∈ Sn−1 (the state resulting from
the application of r1, . . . , rn−1). Then, in order to derive bad, we have applied

a rule in Concrete−(RAna) ∪ Ruletest1fail ∪ Ruletest2fail ∪ Ruleatomfail ∪ Rulecheckfail ∪ Rule
pub
fail .

It is actually easy to derive a witness of φ 6⊑s ψ. For instance, regarding the
first case, according to the definition of Concrete−(RAna), we have for instance
rn = att(senc(u1, u2), v), att(u2, v

′) −→ bad with v not of the form senc(v0, v
′) for

some v0. Moreover, we have destructor-only recipes R1 (and R2) allowing us to
derive these facts. In such a case, we conclude using the recipe sdec(R1, R2). The
other cases are rather similar. ⊓⊔

B Reduction to well-typed witness

In this section, we exploit a result established in [17]. The main idea is to show
that we can restrict ourselves to consider well-typed execution when looking for
a witness of non0-inclusion. However, to achieve this, we need to assume the
existence of an infinite set Cbitstring

0 of constants of sort bitstring. In the following,

we will consider C+
0 = C0 ⊎ Cbitstring

0 , and we further assume the existence of an
infinite number of constants of any type in both sets.

All our definitions (messages, recipes, frames, configurations, processes, etc),
as well as our semantics can be easily extended to take into account this new set
of constants, and we sometimes parametrized these definition explicitly with the
underlying set of constants (typically C0 or Cbitstring

0 ) to avoid confusion. Note

that any constant in Cbitstring
0 is of sort bitstring, and therefore not an atomic

constant. Such a constant c can not occur at a key position, e.g. in senc(m, c).

Theorem 3. Let KP be a C0-configuration type-compliant w.r.t. (TP , δP) and KQ

be a C0-configuration. We have that KP 6⊑t KQ w.r.t. C0 if, and only if, there
exists a witness (tr, φ) ∈ traceC0

(KP) of this non-inclusion which only involves
simple recipes, and with a well-typed underlying execution.

Theorem 3 is a direct consequence of the result established in [17]. It only
remains to establish that the witness tr can be choosen such that it only involves
simple recipes. Actually, this can be obtained by taking recipes in forced normal
form, and it is a direct consequence of Lemma 3 and Lemma 4 (see Appendix A).

C Bounding constants

Our goal is to bound the number of constants used in an attack. We show
here that actually, two constants are sufficient. The proof technique is inspired
from [15] and [19] which respectively reduce the number of nonces and agents in
the context of equivalence properties. A direct application of the proof technique
would however yield two constants of each type, which represents still a high
number of constants. Instead, we show here how to further reduce the number
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of additional constants to only 3, considering a weaker version of well-typed
execution, namely quasi-well-typed execution.

Given a protocol P , we denote CP the constants from C0 that occur in P .
Sometimes, to make clear the set of constants C that may be used, we write →
w.r.t. C, traceC(K), C-recipe, C-message, . . .

Theorem 1. Let KP be an initial C0-configuration type-compliant w.r.t. (TP , δP)
and KQ be another initial C0-configuration. Let C⋆ = (CP ∪ CQ) ⊎ {c⋆0, c

⋆
1, c

⋆
+}.

We have that KP 6⊑t KQ w.r.t. C0 if, and only if, there exists a witness (tr, φ) ∈
trace(KP ) of this non-inclusion which only involves constants from C⋆, simple
recipes, and with a quasi-well-typed underlying execution.

Given A ⊆ C+
0 , an A-renaming is a function ρ such that dom(ρ)∪ img(ρ) ⊆ A;

and ρ(a) is of sort atom when a is of sort atom. Given a typing system (T , δ),
we say that ρ is type-preserving when δ(a) = δ(ρ(a)) for any a ∈ dom(ρ).

Lemma 10. Let t and t′ be two terms in T (Σ, C+
0 ⊎ N ).

1. If t↓ is a C+
0 -message then (t↓)ρ = (tρ)↓ for any C+

0 -renaming ρ.

2. If t↓ is not a C+
0 -message, then there exists c0 ∈ C+

0 such that for any C+
0 -

renaming ρ such that c0 6∈ dom(ρ) ∪ img(ρ), tρ↓ is not a C+
0 -message.

3. If t↓ and t′↓ are C+
0 -messages and t↓ 6= t′↓, then there exists c0 ∈ C+

0 such
that for any C+

0 -renaming ρ such that c0 6∈ dom(ρ) ∪ img(ρ), tρ↓ 6= t′ρ↓.

Proof. We prove the three items separately.

Item 1. Let t ∈ T (Σ, C+
0 ⊎N ) such that t↓ is a C+

0 -message. We show the result
by structural induction on t.

Base case. In such a case, we have that t ∈ C+
0 ⊎N , and thus (t↓)ρ = tρ = (tρ)↓.

Inductive case. First, we consider the case where t = f(t1, . . . , tk) with f ∈ Σc.
In such a case, relying on our induction hypothesis, we have that:

(t↓)ρ = f(t1↓ρ, . . . , tk↓ρ) = f(t1ρ↓, . . . , tkρ↓) = f(t1, . . . , tk)ρ↓ = (tρ)↓.

Second, we consider the case where t = g(t1, . . . , tk) with g ∈ Σd ∪ {check}. For
sake of clarity, we consider the case where g = adec. In such a case, we have
that t = adec(t1, t2), t1↓, t2↓ are C+

0 -messages, t1↓ = aenc(u, pub(v)), t2↓ = v
and sdec(t1, t2)↓ = u for some C+

0 -message u, and some atom v. Thanks to our
induction hypothesis, we have that:

– (t1↓)ρ = aenc(u, pub(v))ρ = aenc(uρ, pub(vρ)) = (t1ρ)↓; and

– (t2↓)ρ = vρ = (t2ρ)↓.

Therefore, we have that:

– (t↓)ρ = (adec(t1, t2)↓)ρ = (adec(t1↓, t2↓)↓ρ = u↓ρ = uρ; and

– (tρ)↓ = (adec(t1, t2)ρ)↓ = adec(t1ρ↓, t2ρ↓)↓ = uρ.
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This allows us to conclude when g = adec, and the other cases can be done in a
similar way.

Item 2. Let t ∈ T (Σ, C+
0 ⊎ N ) be a term in normal form and such that t is not

a C+
0 -message. In case t ∈ T (Σc, C

+
0 ⊎ N ), the only case where tρ is a message

(whereas t is not) is if there is a constant c of sort bitstring such that pub(c)
occurs in t, and ρ(c) is of sort atom. Let c0 be such a constant, and ρ be a C+

0 -
renaming such that c0 /∈ dom(ρ)∪ img(ρ), we have that tρ↓ is not a C+

0 -message
since pub(c0) occurs in tρ as a subterm and c0 is not of sort atom.

Now, t must contain at least one symbol in Σd ∪{check}. Let p be one of the
lowest positions such that t = C[g(t1, . . . , tk)]p for some g ∈ Σd ∪ {check} and
t1, . . . , tk ∈ T (Σc, C

+
0 ⊎ N ). Let u = g(t1, . . . , tk), and ρ0 be a special renaming

that maps any constant in C+
0 to c0 ∈ C+

0 (i.e. an arbitrary constant of sort
atom). Let ℓ → r be the rewriting rule associated to g. Either the rule does
not apply on uρ0, and thus the rule will not apply on uρ for any C+

0 -renaming
ρ. Otherwise, we have that the rule can be applied on uρ0 whereas it can not
be applied on u. In such a case, we have that there are two positions p1 6= p2
such that ℓ|p1

= ℓ|p2
∈ X , and thus u|p1

6= u|p2
whereas (uρ0)|p1

= (uρ0)|p2
.

Moreover, we know that u|p1
and u|p2

are both constants in C+
0 (they are of

sort atom since otherwise reduction is not possible). Let c1 = u|p1
. Any C+

0 -
renaming ρ with c1 /∈ (dom(ρ)∪ img(ρ)) will prevent the rewriting rule ℓ→ r to
be applicable on uρ and thus on tρ. This allows us to conclude that tρ↓ is not a
C+
0 -message.

Item 3. Let t1, t2 ∈ T (Σ, C+
0 ⊎ N ) such that t1↓, t2↓ are C+

0 -messages and t1↓ 6=
t2↓. Thanks to Item 1, we have that (t1↓)ρ = (t1ρ)↓ and (t2↓)ρ = (t2ρ)↓.
Therefore, we can simply show that if t1, t2 are C+

0 -messages and t1 6= t2 then
there exists c0 ∈ C+

0 such that t1ρ 6= t2ρ for any C+
0 -renaming ρ such that

c0 6∈ dom(ρ) ∪ img(ρ).

Base case: The only non trivial base case is when both t1 and t2 are in C+
0 .

Assume w.l.o.g. that t2 = c0. Since t1 6= t2, we have that t1ρ 6= t2ρ for any C+
0 -

renaming ρ such that c0 6∈ dom(ρ) ∪ img(ρ). The other base cases where either
t1 or t2 is in C+

0 ⊎N are trivial and we may actually choose any C+
0 -renaming ρ.

Inductive case: Now, in case t1 and t2 are not atomic, we distinguish two cases.
In case they do not have the same function symbol at their root, we can choose
any C+

0 -renaming ρ, and the disequality between t1ρ and t2ρ will be preserved.
Now, assume that t1 = f(u1, . . . , uk) and t2 = f(v1, . . . , vk) with f ∈ Σc. We know
that ui 6= vi for some i ∈ {1, . . . , k}. We can apply our induction hypothesis to
conclude that there exists c0 such uiρ 6= viρ for any C+

0 -renaming ρ such that
c0 6∈ dom(ρ) ∪ img(ρ). Therefore, considering any C+

0 -renaming that satisfies
such a condition will allow us to conclude. ⊓⊔

Lemma 11. Let KP be an initial C+
0 -configuration type-compliant w.r.t. (TP , δP),

ρ be a type-preserving A-renaming such that A ⊆ C+
0 rCP , and KP

tr
−→ (P ′;φ′;σ′; i′)

be a quasi-well-typed execution. We have that KP
trρ
−−→ (P ′;φ′ρ;σ′ρ; i′) is a quasi-

well-typed execution.

30



Proof. Let KP = (P ; ∅; ∅; 0), and K ′
P = (P ′;φ′;σ′; i′). We show this result by

induction on the length n of the execution trace KP
tr
−→ K′

P .
Base case. We have that K′

P = KP , and the result trivially holds.

Induction case. In such a case, we have that tr = tr− · α, and we have that:

KP
tr−

−−→ (P−;φ−;σ−; i−)
α
−→ (P ′;φ′;σ′; i′).

Relying on our induction hypothesis, we know that KP
tr−

−−→ (P−ρ;φ−ρ;σ−ρ; i−).
We distinguish three cases depending on α.

– Case α = phase i′. In such a case, we have that P ′ = P−, σ′ = σ−, φ′ = φ−,

and i− < i′. We have that (P−;φ−ρ;σ−ρ; i−)
phase i′

−−−−→ (P−;φ−ρ;σ−ρ; i′), and
this allows us to conclude since (P−;φ−ρ;σ−ρ; i′) = (P ′;φ′ρ;σ′ρ; i′).

– Case α = out(c,w). In such a case, we have that P− = {i−:out(c, u).P0}∪P0

for some u, P0, and P0. We have also that σ′ = σ−, φ′ = φ− ∪ {w ⊲ uσ−}

and i′ = i−. To conclude that (P−;φ−ρ;σ−ρ; i−)
out(c,w)
−−−−−→ (P ′;φ′ρ;σ′ρ; i′), it

is sufficient to show that (uσ−)ρ = u(σ−ρ). Actually, (uσ−)ρ = (uρ)(σ−ρ),
and since dom(ρ) ⊆ C+

0 r CP , we deduce that uρ = u, and since ρ(a) is an
atom when a is an atom, this allows us to conclude.

– Case α = in(c, R). In such a case, we have that P− = {i−:in(c, u).P0} ∪ P0

for some u, P0, and P0. We have also that φ′ = φ−, σ′ = σ− ⊎ σ0 for some
σ0 such that Rφ−↓ = (uσ−)σ0 and Rφ−↓ is a message. Moreover, i− = i′.

To conclude that (P−;φ−ρ;σ−ρ; i−)
in(c,Rρ)
−−−−−→ (P ′;φ′ρ;σ′ρ; i′), it remains to

show that (Rρ)(φ−ρ)↓ = u(σ−ρ)σ′
0 and σ′ρ = σ−ρ ⊎ σ′

0 for some σ′
0. Since

Rφ−↓ = (uσ−)σ0, we deduce that (Rφ−↓)ρ = ((uσ−)σ0)ρ, and thanks to
Lemma 10 (item 1), we have that (Rφ−)ρ↓ = ((uρ)(σ−ρ))(σ0ρ). Lastly, since
ρ is an A-renaming and A ⊆ C0 r CP , we know that uρ = u, and therefore
we have that (Rρ)(φ−ρ)↓ = (u(σ−ρ))(σ0ρ). Moreover, since σ′ = σ− ⊎ σ0,
we have that σ′ρ = σ−ρ ⊎ σ0ρ. Therefore, choosing σ′

0 = σ0ρ allows us to
conclude.

Since ρ is type-preserving, the resulting execution is quasi-well-typed when
the original one is quasi-well-typed. ⊓⊔

Theorem 1. Let KP be an initial C0-configuration type-compliant w.r.t. (TP , δP)
and KQ be another initial C0-configuration. Let C⋆ = (CP ∪ CQ) ⊎ {c⋆0, c

⋆
1, c

⋆
+}.

We have that KP 6⊑t KQ w.r.t. C0 if, and only if, there exists a witness (tr, φ) ∈
trace(KP ) of this non-inclusion which only involves constants from C⋆, simple
recipes, and with a quasi-well-typed underlying execution.

Proof. The ⇐ direction is actually easy to establish. It is a direct consequence
of Lemma 3.11 established and proved in [17]. Therefore, we consider the other
direction (⇒).

First, we apply Theorem 3 to obtain a witness (tr, φ) ∈ traceC+

0

(KP) of this

non-inclusion which only involves simple recipes, and with a well-typed under-
lying execution. Then, considering C⋆⋆ = (CP ∪ CQ) ⊎ {c ∈ C+

0 | δP(c) = τ⋆},
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and applying an alpha-renaming along the derivation to rename constants from
C+
0 r C⋆⋆ to constants from C⋆⋆, we easily derive a witness which only involves

simple recipes built using constants from C⋆⋆, and with a quasi-well-typed un-
derlying execution.

We consider a minimal (in length) witness of non-inclusion, i.e. a trace
(tr, φ) ∈ traceC⋆⋆(KP ) such that:

1. either (tr, ψ) 6∈ traceC⋆⋆(KQ) for any ψ; or
2. (tr, ψ) ∈ traceC⋆⋆(KQ) but φ 6⊑s ψ.

We will apply a renaming on such a witness to get rid of constants from
C⋆⋆

r (CP ∪CQ). Such a renaming ρ will be such that dom(ρ) ⊆ C⋆⋆
r (CP ∪CQ),

and img(ρ) ⊆ {c⋆0, c
⋆
1, c

⋆
+}. Moreover, in case c is of sort atom, then ρ(c) will be

of sort atom.
In the following, we will consider different renamings. In particular, we con-

sider ρ0 which maps any constant from C⋆⋆ to c⋆0, as well as the renaming ρ1
which maps any constant from C⋆⋆ of sort atom to c⋆0, and any constant from
C⋆⋆ of sort bitstring to c⋆+.

Case 1: tr = tr− · α does not pass in KQ. In such a case, we have that:

– KP
tr−

−−→ (P−;φ−;σ−
P ; i−)

α
−→ (P ;φ;σP ; i);

– KQ
tr−

−−→ (Q−;ψ−;σ−
Q; i

−); and
– φ− ⊑s ψ

−.

Relying on Lemma 11, we have that:

– KP
tr−ρ
−−−→ (P−;φ−ρ;σ−

Pρ; i
−)

αρ
−−→ (P ;φρ;σPρ; i); and

– KQ
tr−ρ
−−−→ (Q−;ψ−ρ;σ−

Qρ; i
−)

for any A-renaming ρ such that A ⊆ C+
0 r (CP ∪ CQ). Thus, to conclude, it

remains to justify that αρ can not be triggered from (Q−;ψ−ρ;σ−
Q; i−) for a C+

0 -
renaming ρ such that img(ρ) ⊆ {c⋆0, c

⋆
1, c

⋆
+}. We consider three cases depending

on the action α.

1. Case α = phase i. In such a case, we have that (Q−;ψ−;σ−
Q; i

−) 6
phase i
−−−−→ and

this is impossible since α can be triggered from (P−;φ−;σ−
P ; i−), and thus

i− < i.
2. Case α = out(c,w). In such a case, we have that P− = out(c, u).P0 ⊎ P0.

Either Q− is not ready to perform an output on channel c, and thus this
is the case for (Q−;ψ−ρ0;σ

−
Qρ0; i

−), and we are done. Otherwise, we have

that Q− = out(c, v).Q0 ⊎ Q0 but vσ−
Q is not a C⋆⋆-message. We have that

(vσ−
Q)ρ1 = v(σ−

Qρ1) is still not a message, and we are done.
3. Case α = in(c, R). In such a case, we have that P− = in(c, u).P0⊎P0. Either

Q− is not ready to perform an imput on channel c, and thus (Q−;ψ−;σ−
Q; i

−)
is not ready to perform an input on channel c, and we are done. Otherwise,
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since φ− ⊑s ψ
−, and Rφ−↓ is a message, we deduce that Rψ−↓ is a mes-

sage, and we have that Rψ−↓ρ0 = (Rψ−)ρ0↓ = (Rρ0)(ψ
−ρ0)↓ is a message

(Lemma 10 - item 1). Hence, since the input can not be triggered, this is due
to a problem of filtering, there does not exist τ such that (vσ−

Q)τ = Rψ−↓.

If Rψ−↓ and vσ−
Q do not match because their structure differ, then no re-

naming will change that. Therefore, we consider the renaming ρ0, and it
is easy to see that (Rρ0)(ψ

−ρ0)↓ and v(σ−Qρ0) do not match. Otherwise,
the only possibility is that there are two position p1 and p2 in (vσ−

Q) such

that (vσ−
Q)|p1

= (vσ−
Q)|p2

∈ X , but (Rψ−↓)|p1
6= (Rψ−↓)|p2

. Thanks to

Lemma 10 (item 3), there is a constant c0 such that for any C+
0 -renaming ρ

with c0 6∈ dom(ρ)∪ img(ρ), t1ρ 6= t2ρ. In case c0 ∈ CP ∪CQ, then we can sim-
ply consider ρ0 that will kept c0 unchanged. Otherwise, we assume w.l.o.g.
that c0 is c⋆0 (or c⋆+) (performing an alpha-renaming), and we consider the
renaming ρ which maps any constants from C⋆⋆ (except c⋆0 or c⋆+) to c+1 .

Case 2: We have that KP
tr
−→ (P ;φ;σP ; i); KQ

tr
−→ (Q;ψ;σQ; i); and φ 6⊑s ψ.

Relying on Lemma 11, we have that:

– KP
trρ
−−→ (P ;φρ;σPρ; i); and

– KQ
trρ
−−→ (Q;ψρ;σQρ; i)

for any A-renaming ρ such that A ⊆ C+
0 r(CP∪CQ). Thus, to conclude, it remains

to justify that φρ 6⊑ ψρ for a C+
0 -renaming ρ such that img(ρ) ⊆ {c⋆0, c

⋆
1, c

⋆
+}. We

distinguish two cases depending on the form of the test.

1. Case message. There is a recipe R w.r.t. C⋆⋆ such that Rφ↓ is a C+
0 -message

whereas Rψ↓ is not. Therefore, by Lemma 10 (item 2), there is a constant
c0 ∈ C+

0 such that for any C+
0 -renaming ρ such that c0 6∈ dom(ρ)∪ img(ρ), we

have that (Rψ)ρ↓ is not a message. In case c0 ∈ CP ∪ CQ, then we consider
the renaming ρ0. We have that (Rρ0)(φρ0)↓ = (Rφ)ρ0↓ = Rφ↓ρ0 (Lemma 10
- item 1) is a message. Moreover, we have seen that (Rρ0)(ψρ0)↓ = (Rψ)ρ0↓
is not a message. This allows us to conclude. Now, in case c0 6∈ CP ∪ CQ,
we assume w.l.o.g. that c0 is c⋆0 (or c⋆+) (performing an alpha-renaming, and
we consider the renaming ρ which maps any constants from C⋆⋆ (except c⋆0
or c⋆+) to c+1 . We have that (Rρ)(φρ)↓ = (Rφ)ρ↓ = Rφ↓ρ (Lemma 10 -
item 1) is a message. Moreover, we have seen that (Rρ)(ψρ)↓ = (Rψ)ρ↓ is
not a message. Therefore, we have our witness of non-inclusion.

2. Case test. There are two recipes R1 and R2 w.r.t. C⋆⋆ such that R1φ↓, R2φ↓
are messages, and R1φ↓ = R2φ↓. Moreover, we have that R1ψ↓ and R2ψ↓
are mesages, but R1ψ↓ 6= R2ψ↓. Thanks to Lemma 10 (item 3), there is a
constant c0 ∈ C+

0 such that for any C+
0 -renaming ρ such that c0 6∈ dom(ρ) ∪

img(ρ), we have that (R1ψ)ρ↓ 6= (R2ψ)ρ↓. In case c0 ∈ CP ∪ CQ, then we
consider the renaming ρ0. We have that (Riρ0)(φρ0)↓ = (Riφ)ρ0↓ = Riφ↓ρ0
(Lemma 10 - item 1) is a message (i ∈ {1, 2}). Similarly, we have that
(Riρ0)(ψρ0)↓ = (Riψ)ρ0↓ = Riψ↓ρ0 with i ∈ {1, 2}. This allows us to
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conclude that R1ρ0
?
= R2ρ0 is a test that holds in φρ0 but not in ψρ0. Now,

in case c0 6∈ CP ∪CQ, we assume w.l.o.g. that c0 is c⋆0 (or c⋆+) (performing an
alpha-renaming, and we consider the renaming ρ which maps any constants
from C⋆⋆ (except c⋆0 or c⋆+) to c+1 . We have that (Riρ)(φρ)↓ = (Riφ)ρ↓ =
Riφ↓ρ (Lemma 10 - item 1) is a message (i ∈ {1, 2}). Similarly, we have that
(Riρ)(ψρ)↓ = (Riψ)ρ↓ = Riψ↓ρ with i ∈ {1, 2}. This allows us to conclude

that R1ρ
?
= R2ρ is a test that holds in φρ but not in ψρ. Therefore, we have

our witness of non-inclusion. ⊓⊔

D From trace inclusion to planning

The goal of this section is to establish Theorem 2. Before starting to prove this
theorem, we formally define the notion of flattening (see Section D.1) and the
notion of concretization (see Section D.2) briefly described in Section 4.2.

D.1 Flattening

We explain how to formally compute the set of flattened rules from a given
abstract rule r. For this, we start by explaining how to decompose a fact att(u, v).

Definition 8. Given a term u ∈ T0(Σc, C ⊎ N ⊎ X ), we say that u is decom-
posable when:

– either u ∈ X and δP(u) is not an initial type;
– or u 6∈ C ⊎ N ⊎ X .

Intuitively, a variable of non initial type is decomposable since it may be
instantiated by a non atomic term which, in turns, may have been obtained by
composition. Given att(u, v) with u decomposable, and let f ∈ Σc be such that
δP(u) = f(τ1, . . . , τk), we define split(att(u, v)) as follows:

split(att(u, v)) = (f; {att(x1, y1), . . . , att(xk, yk)};σP ;σQ)

where

– x1, . . . , xk are fresh variables of type τ1, . . . , τk and σP = mgu(u, f(x1, . . . , xk));
– y1, . . . , yk are fresh variables, σQ = mgu(v, f(y1, . . . , yk)).

Note that σP exists and is necessarily a quasi-well-typed substitution. By
convention, we assume that mgu(u, u′) = ⊥ when u and u′ are not unifiable.

Let r be an abstract rule of the form Pre −→ Add;Del with f = att(u, v) ∈ Pre

such that u is decomposable and split(f) = (f, S, σP , σQ). The decomposition
of r w.r.t. f , denoted decom(r, f), is defined as follows:

1.
(

(Prer f) ∪ S −→ bad
)

σP in case σQ = ⊥;

2.
(

(Prer f) ∪ S −→ Add;Del
)

(σP ⊎ σQ) otherwise.
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Then, decomposition is applied recursively on each rule.

Flat(r) = Flat({decom(r, f) | f = att(u, v) ∈ Pre(r) with u decomposable})
∪ {r}

Lemma 12. Let r = Pre, att(u, v) −→ Add;Del be an abstract rule. Let σ be a
grounding substitution for r such that δP(xσ) � δP(x) for any x ∈ vars left(r).
Let C be a constructor context such that uσ = C[u1, . . . , un] and vσ = C[v1, . . . , vn].
There exists r′ = Pre′, att(u′1, v

′
1), . . . , att(u

′
n, v

′
n) −→ Add′;Del′ in Flat(r), and σ′

a grounding substitution for r′ such that:

1. δP(xσ
′) � δP(x) for any x ∈ vars left(r

′);
2. (Pre′,Add′,Del′)σ′ = (Pre,Add,Del)σ; and
3. att(u, v)σ = att(C[u′1, . . . , u

′
n], C[v

′
1, . . . , v

′
n])σ

′.

For the next lemmas, we need to be more specific on how the fact bad has
appeared. Therefore, from now on, we consider three facts instead: bad-proto,
bad-flat, and bad-concrete. Moreover, we assume that in protocol rules, bad is
replaced by bad-proto, in flattening rules, bad is replaced by bad-flat, and in
concretization rules bad is replaced by bad-concrete. When the precise origin of
the failure does not matter, we simply write bad (meaning one of the three cases
above).

Lemma 13. Let r be an abstract protocol rule, and r′ ∈ Flat(r) be such that

r′ = Pre, att(u1, v1), . . . , att(un, vn) −→ Add;Del

with bad-flat /∈ Add. There exists a constructor context C and a substitution τ
such that rτ = Pre, att(C[u1, . . . , un], C[v1, . . . , vn]) → Add;Del.

For the next lemma, we need to define the relation =left on facts as f1 =left f2
if and only if f1 = att(u, v), f2 = att(u′, v′) with u = u′, or f1 = statecP,Q(σP , σQ),

f2 = statec
′

P ′,Q′(σ′
P , σ

′
Q) with c = c′, P = P ′ and σP = σ′

P . We extend this
definition to Pre.

Lemma 14. Let r = Pre, att(u, v) −→ Add;Del be an abstract protocol rule. Let
σ be a grounding substitution for vars left(r) such that δP(xσ) � δP(x) for any
x ∈ vars left(r). Let C be a constructor context such that uσ = C[u1, . . . , un],
whereas v and C[z1, . . . , zn] are not unifiable.

There exists r′ = Pre′, att(u′1, v1), . . . , att(u
′
n, vn) −→ bad in Flat(r), and σ′ a

grounding substitution for vars left(r) such that u′iσ
′ = ui for any i ∈ {1, . . . , n},

and Pre′σ′ =left Preσ.

Lemma 15. Let r be an abstract protocol rule, and r′ ∈ Flat(r) be such that

r′ = Pre, att(u1, v1), . . . , att(un, vn) −→ bad-flat

There exists a constructor context C, a substitution τ , a term v, and two sets
Add0 and Del0 such that rτ = Pre, att(C[u1, . . . , un], v) −→ Add0;Del0 but v does
not unify with C[z1, . . . , zn].
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D.2 Concretization

Given an abstract rule r, we denote vars left(r) the variables occurring on the left
(first parameter) of a predicate occurring in r, i.e.

– vars left(att(u, v)) = vars(u); and
– vars left(state

c
P,Q(σP , σQ)) = vars(img(σP )).

Given a substitution σ grounding for r, the application of σ on an abstract
state is the concrete state obtained by simply composing the substitutions, i.e.

stcP,Q(σP , σQ)σ = stcP,Q(σ ◦ σP , σ ◦ σQ).

Given an abstract protocol rule r, its positive concretization simply consists
in all its instantiations that are quasi-well-typed w.r.t. the left side of the rule.

Concrete+(r) = {rσ | σ substitution such that rσ only involves messages
with constants in C⋆ and δP(xσ) � δP(x) for any x ∈ vars left(r)}

Similarly to the static case, we need to make sure that we can detect when
P and Q are not in trace inclusion. For this, we consider additional rules that
express when a step that can be performed on the left hand side cannot be
mimicked on the right hand side.

Given an abstract protocol rule r = Pre −→ Add;Del, Concrete−(r) is the
set of planning rules that contains: f1, . . . , fk −→ bad for any sequence of facts
f1, . . . , fk such that f1, . . . , fk left-unify with Pre with substitution σL and u ∈
T0(Σc,N ∪ C⋆) for any att(u, v) ∈ AddσL, and such that one of the following
conditions holds:

– f1, . . . , fk does not right-unify with Pre;
– f1, . . . , fk right-unify with Pre with substitution σR but v 6∈ T0(Σc,N ∪ C⋆)

for some att(u, v) ∈ AddσR.

D.3 Bounded planning

In this section, we state one of our main lemma that allows on to relate execution
traces and planning paths, and we rely on the following definitions:

Let KP = (P ;σP ;φ; iP ) and KQ = (Q;σQ;ψ; iQ) be two configurations with
dom(φ) = dom(ψ) and such that iP = iQ. The set of facts associated to KP

and KQ w.r.t. a given set of constants C is defined as follows:

FactC(KP ,KQ) = {Phase(i)} ∪ FactC(φ, ψ) ∪
{statecP,Q(σP , σQ) | P ∈ P , Q ∈ Q are basic processes on channel c,

σP = σP |fv(P ) and σQ = σQ|fv(Q) }

Note that this definition is in line with the one provided in the core of the
paper for protocols assuming that P represents the configuration (P ; ∅; ∅; 0).

Definition 9. Given two sets of facts S and S′ such that S = FactC(KP ,KQ)
with KP = (P ;φ;σP ; i) and KQ = (Q;ψ;σQ; i) with dom(φ) = dom(ψ), we write
FactC(KP ,KQ) ↑ S′ when:

36



– FactC(KP ,KQ) and S′ coincide on states fact, and also the phase fact;
– for any att(u, v) ∈ FactC(KP ,KQ), att(u, v) ∈ S′; and
– for any att(u, v) ∈ S′, there exists a destructor-only C-recipe R such that
Rφ↓ = u, and Rψ↓ = v.

Below, nbin(tr) (resp. nbout(tr)) is the number of input actions (resp. output
actions) occurring in tr whereas maxphase(tr) is the maximal integer occurring in
a phase instruction in tr.

Lemma 16. Let P be a protocol type-compliant w.r.t. (TP , δP), and Q be an-
other protocol. Let Θ = 〈Fact0,FactC⋆(P ,Q),R〉 where

R = Concrete+(RAna ∪ Flat(Rule(P ,Q))) ∪Rphase(P).

Let (tr, φ) ∈ trace(P) w.r.t. C⋆ for some φ such that:

– tr only contains simple recipes;
– (tr, φ) is quasi-well-typed w.r.t. (TP , δP);
– (tr, ψ) ∈ trace(Q) w.r.t. C⋆ for some ψ.

Then, there exists a planning path from FactC⋆(P ,Q) to some S such that
Fact(K′

P ,K
′
Q) ↑ S of length at most

nbin(tr) + nbout(tr) +maxphase(tr) + (nbin(tr) + |Key(tr)|)× depth(φ)

where K′
P (resp. K′

Q) is the resulting configuration starting from P (resp. Q)
and executing tr, and {att(Rφ↓, Rψ↓) | R ∈ Key(tr)} ⊆ S.

Conversely, let π be a planning path from FactC⋆(P ,Q) to S such that bad 6∈ S.
Then, there exist a trace tr, and frames φ and ψ such that:

– tr only contains simple recipes;
– (tr, φ) ∈ trace(P) w.r.t. C⋆ and is quasi-well-typed w.r.t. (TP , δP);
– (tr, ψ) ∈ trace(Q) w.r.t. C⋆; and
– FactC⋆(K′

P ,K
′
Q) ↑ S where K′

P (resp. K′
Q) is the resulting configuration start-

ing from P (resp. Q) and executing tr.

Proof. We show the two directions separately.

(⇒) We do the proof by induction on the execution KP
tr
−→ K′

P .

Base case. The empty planning path can be used to establish the result.

Inductive case. We have that tr = tr′.α. Therefore, we consider K′′
P and K′′

Q such

that KP
tr′

−→ K′′
P

α
−→ K′

P , and KQ
tr′

−→ K′′
Q

α
−→ K′

Q. Let K′′
P = (P ′′;φ′′;σ′′

P ; i
′′),

K′
P = (P ′;φ′;σ′

P ; i
′), K′′

Q = (Q′′;ψ′′;σ′′
Q; i

′′), and K′
Q = (Q′;ψ′;σ′

Q; i
′).

We apply our induction hypothesis on tr′ and we obtain a planning path π0
of length at most

nbin(tr
′) + nbout(tr

′) +maxphase(tr
′) + (nbin(tr

′) + |Key(tr′)|)× depth(φ′′)
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from FactC⋆(KP ,KQ) to some S′′. Moreover, we have that FactC⋆(K′′
P ,K

′′
Q) ↑ S

′′,
and att(Rφ↓, Rψ↓) ∈ S′′ for any R ∈ Key(tr′). We perform a case analysis on
the action α.

Case α = phase i′. We have that i′ > i′′, P ′ = P ′′, φ′ = φ′′ and σ′
P = σ′′

P .
Similarly, we have Q′ = Q′′, ψ′ = ψ′′ and σ′

Q = σ′′
Q. As FactC⋆(K′′

P ,K
′′
Q) ↑ S

′′, we
have that Phase(i′′) ∈ S′′. Let ri = Phase(i) → Phase(i+1);Phase(i) with i ∈ N.
We have that π = π0.ri′′ . . . . .ri′−1 is a planning path from FactC⋆(KP ,KQ) to
some S′, with FactC⋆(K′

P ,K
′
Q) ↑ S

′ and att(Rφ↓, Rψ↓) ∈ S′ for any R ∈ Key(tr).
Since φ′ = φ′′, and tr = tr′.phase i′, the length of π is at most

nbin(tr) + nbout(tr) +maxphase(tr) + (nbin(tr) + |Key(tr)|)× depth(φ).

Case α = out(c,w). We have that there exist P ′
c, and Q′

c, as well as u and v such
that

– P ′′ = {i′′:out(c, u).P ′
c} ⊎ P0, and P ′ = {i′′:P ′

c} ⊎ P0;
– Q′′ = {i′′:out(c, v).Q′

c} ⊎ Q0, and Q′ = {i′′:Q′
c} ⊎ Q0.

Moreover, we have that φ′ = φ′′ ⊎ {w ⊲ uσ′′
P}, and ψ′ = ψ′′ ⊎ {w ⊲ vσ′′

Q}; and
σ′
Q = σ′′

P , as well as σ′
Q = σ′′

Q, and i′ = i′′. Moreover, we know that uσ′′
P and

vσ′′
Q are messages. Let r be the abstract protocol rule corresponding to this step.

We have that r ∈ Rule(P ,Q) and this rule is of the form:

Phase(i′′), St(P,Q) −→ att(u, v), St(P ′, Q′); St(P,Q)

Now, we consider the concrete instance that corresponds to the execution men-
tioned above, i.e. the one obtained by applying σ′

P ⊎ σ′
Q. This allows us to

conclude in one step, and since nbout(tr) = nbout(tr
′) + 1, nbin(tr) = nbin(tr

′),
Key(tr) = Key(tr′), and depth(φ′) ≥ depth(φ′′), we get a plan of length at most

nbin(tr) + nbout(tr) +maxphase(tr) + (nbin(tr) + |Key(tr)|)× depth(φ).

Case α = in(c, R). We know that R is a simple recipe, i.e. R = C[R1, . . . , Rk],

and we have that there exist P ′
c, and Q′

c, as well as u and v such that:

– P ′′ = {i′′:in(c, u).P ′
c} ⊎ P0, and P ′ = {i′′:P ′

c} ⊎ P0;
– Q′′ = {i′′:in(c, v).Q′

c} ⊎ Q0, and Q′ = {i′′:Q′
c} ⊎ Q0.

Moreover, we have that φ′ = φ′′, ψ′ = ψ′′; σ′
P = σ′′

P ⊎ mgu(Rφ′′↓, uσ′′
P), and

σ′
Q = σ′′

Q ⊎mgu(Rψ′′↓, vσ′′
Q), and i′ = i′′. Moreover, we know that uσ′

P and vσ′
Q

are messages. Applying Lemma 8 with R = Key(tr) and R0 = Key(tr′), we get a
plan π1 to S′′ such that {att(R′φ↓, R′ψ↓) | R′ ∈ Key(tr′)} ⊆ S′′, and the length
of π1 is at most |Key({R1, . . . , Rk})r Key(tr′)| × depth(φ′′).

Let r be the abstract protocol rule corresponding to this step. We have that
r ∈ Rule(P ,Q) and this rule is of the form:

Phase(i′′), St(P,Q), att(u, v) −→ St(P ′, Q′); St(P,Q).
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We know that Rφ′↓ = uσ′
P and Rψ′↓ = vσ′

Q with R = C[R1, . . . , Rk]. Therefore,
we know that uσ′

P = C[R1φ
′↓, . . . , Rkφ

′↓] and vσ′
Q = C[R1ψ

′↓, . . . , Rkψ
′↓].

Thanks to Lemma 12, there exists a rule r′ ∈ Flat(r):

r′ = Pre′, att(u′1, v
′
1), . . . , att(u

′
k, v

′
k) −→ Add′;Del′

and σ′ a grounding substitution for r′ such that:

1. δP(xσ
′) � δP(x) for any x ∈ vars left(r

′);
2. (Pre′,Add′,Del′)σ′ = (Pre,Add,Del)(σ′

P ⊎ σ′
Q); and

3. att(uσ′
P , vσ

′
Q) = att(C[u′1, . . . , u

′
k], C[v

′
1, . . . , v

′
k])σ

′.

We have that att(Riφ
′↓, Riψ

′↓) = att(u′iσ
′, v′iσ

′) for 1 ≤ i ≤ k. Thanks to
Lemma 7 there is a plan π2 (that we can apply after π1) of length at most
depth(φ′) containing only attacker rules such that att(Riφ

′↓, Riψ
′↓) is in the

final state after π2. We consider r′σ′ ∈ Concrete+(r′), and we obtain the expected
result considering the plan π0.π1.π2.r

′′ of length at most

nbin(tr
′) + nbout(tr

′) +maxphase(tr
′) + (nbin(tr

′) + |Key(tr′)|)× depth(φ′′)
+|Key({R1, . . . , Rk})r Key(tr′)| × depth(φ′′) + depth(φ′) + 1

≤ nbin(tr) + nbout(tr) +maxphase(tr) + (nbin(tr) + |Key(tr)|)× depth(φ′)

(⇐) We show this result by induction on the length of the planning path.
Base case. Obvious.

Inductive case. We have a planning path r1, . . . , rn. Thanks to our induction
hypothesis, we know that the result holds for r1, . . . , rn−1 leading to the state
Sn−1, and therefore the existence of a trace tr′ such that:

– tr′ only contains simple recipes;
– (tr′, φ′′) ∈ trace(P) w.r.t. C⋆ and is quasi-well-typed w.r.t. (TP , δP);
– (tr′, ψ′′) ∈ traceC(Q) w.r.t. C⋆ for some ψ′′; and
– FactC⋆(K′′′

P ,K
′′
Q) ↑ S where K′′

P (resp. K′′
Q) is the resulting configuration

starting from P (resp. Q) and executing tr′.

We distinguish several cases depending on the rule rn. In case rn is an instance
of Concrete+(RAna), we consider tr = tr′ again. The case where rn is a rule
that adds bad is impossible since bad 6∈ Sn. The case where rn is Phase(i) →
Phase(i+1);Phase(i) can be mimicked in the execution by the phase instruction.
Now, if rn is an instance of an abstract rule in Flat(Rule(P ,Q)). Let rf be the
flattened abstract rule, and r the abstract protocol rule.

In case r is a rule corresponding to the case of an output on channel c, then
rn is an instance of r since the flattening does not produce any other rule. In
such a case, we can mimick this step by considering tr′.out(c,w).

In case r is a rule corresponding to an input, then rn is an instance of a rule
rf ∈ Flat(r). We have that rf is of the form:

Phase(i), StcP,Q(θP , θQ), att(u1, v1), . . . , att(uk, vk) −→ StcP ′,Q′(θP ′ , θQ′)
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and rn is an instance of rf (σ
′′
P ∪ σ′′

Q) where σ′′
P (resp. σ′′

Q) is the substitution
obtained after executing tr′. Let τP , and τQ be grounding substitution such that
rn = (rf (σ

′′
P ∪ σ′′

Q))(τP ∪ τQ).
We know that there exist destructor only recipesR1, . . . , Rk such thatRiφ

′′↓ =
uiσ

′′
PτP and Riψ

′′↓ = viσ
′′
QτQ by Lemma 5. We can apply Lemma 13 on rule rn

written as:
rn = Pre, att(u1, v1), . . . , att(un, vn) −→ Add;Del

We are in the case where bad-flat /∈ Add, so there exists a constructor context
C and a substitution τ such that rf (σ

′′
P ∪ σ′′

Q)τ = Pre, att(u, v) −→ Add;Del
where u = C[u1, . . . , un] and v = C[v1, . . . , vn]. Therefore, consider the trace
tr′ · in(c, C[R1, . . . , Rk]). This step can be done on the P side, as well as on the
Q side. Hence, the result. ⊓⊔

Theorem 2. Let P a protocol type-compliant w.r.t. (TP , δP), and Q be another
protocol. We consider the following set R of concrete rules:

Concrete(RAna∪Flat(Rule(P ,Q)))∪Rphase∪Rtest1
fail ∪Rtest2

fail ∪Ratom
fail ∪Rcheck

fail ∪Rpub
fail

Let Θ = 〈Fact0,FactC⋆(P ,Q),R〉 and Π = 〈Θ, {bad}〉. We have that P 6⊑t Q if,
and only if, Π has a solution of length

1 + nbin(P) + nbout(P) +maxphase(P) + depth(δP (P))× [1 + nbin(P) +N ]

where N is the number of names occurring in P having a key type, i.e. such that
δP(n) (resp. pub(δP(n))) occurs in key position of an encryption in δP(P).

Proof. We show the two directions separately.
(⇒) In case P 6⊑t Q, we know thanks to Theorem 1 that there exists a

witness of this fact such that (tr, φ) ∈ trace(P) is quasi-well-typed, only involve
the constants we consider here, and tr is made of simple recipes. We consider
such a witness of minimal length, and then we consider one such that Key(tr)
is minimal. By minimality of tr, we can assume that there is no phase i action
in tr for i > maxphase(P). We distinguish two cases depending on the fact that
(tr, ψ) ∈ trace(Q) for some ψ or not.

Case (tr, ψ) ∈ trace(Q) for some ψ. Lemma 16 allows us to conclude that there
exists a planning path π0 from FactC⋆(P ,Q) to S of length at most

nbin(tr) + nbout(tr) +maxphase(tr) + (nbin(tr) + |Key(tr)|)× depth(φ)

such that:

– FactC⋆(K′
P ,K

′
Q) ↑ S where K′

P (resp. K′
Q) is the resulting configuration

starting from P (resp. Q) and executing tr; and
– {att(Rφ↓, Rψ↓) | R ∈ Key(tr)} ⊆ S.

In case (tr, ψ) ∈ trace(Q), we know that φ 6⊑simple+

s ψ. We consider a static in-

clusion test T w.r.t. ⊑simple+

s which is minimal for the following measure (ordered
lexicographically):
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– Key(T )r Key(tr);
– its size, i.e. number of function symbols occurring in T .

Lemma 9 applies with R0 = Key(tr). We deduce that there is a plan π1 of
bad of length at most

(|Key(T )r Key(tr)|+ 1)× depth(φ) + 1

It gives us a plan π0.π1 of bad of length at most

nbin(tr)+nbout(tr)+maxphase(tr)+(nbin(tr)+ |Key(tr)∪Key(T )|+1)×depth(φ)+1

Since nbin(tr) ≤ nbin(P), nout(tr) ≤ nbout(P), maxphase(tr) ≤ maxphase(P) (by
minimality of tr), depth(φ) ≤ depth(δP (P)), to conclude it remains to prove that
|Key(tr)∪Key(T )| ≤ N . First, we have that {Rφ↓ | R ∈ Key(tr)∪Key(T )}rC0 ≤
N since all these recipes occur in key position (i.e. 2nd argument of sdec/adec)
of a recipe that leads to a message in φ. Now, in case there are two recipes in
K,K ′ ∈ Key(tr)∪Key(T )∪C0 such that Kφ↓ = K ′φ↓, then by minimality of our
witness of non-inclusion, we know that Kψ↓ = K ′ψ↓, and therefore replacing K
or K ′ with the one which is deducible earlier or the smallest one in case they
are both deducible at the same stage will give us a smaller test according to our
measure. So we get that the length is smaller than

nbin(P) + nbout(P) +maxphase(P) + [nbin(P) +N + 1]× depth(δP(P)) + 1

Case tr does not pass in Q. Let tr = tr−1.α. We have that (tr−1, ψ−1) ∈ trace(Q)
but the last action α can not be performed. Lemma 16 allows us to conclude
that there exists a planning path π0 from FactC⋆(P ,Q) to S of length at most

nbin(tr
−1) + nbout(tr

−1) +maxphase(tr
−1) + (nbin(tr

−1) + |Key(tr−1)|)× depth(φ)

such that:

– FactC⋆(K′
P ,K

′
Q) ↑ S where K′

P = (P ′;φ′;σ′
P ; i

′) (resp. K′
Q = (Q′;ψ′;σ′

Q; i
′))

is the resulting configuration starting from P (resp. Q) and executing tr−1;
and

– {att(Rφ↓, Rψ↓) | R ∈ Key(tr−1)} ⊆ S.

We consider three cases depending on the action α.

Case: α = phase i. This case is impossible since this action can be performed
by Q as soon as its current phase is smaller than i, and this is the case since
both P and Q are synchronised and the action α is feasible by P .

Case: α = out(c,w). If such an action can not be performed, it means that this
action is not available in the process or would lead to output a term that is
not a message. In the first case, we have an abstract protocol rule r that can
be instantiated to mimick this step. In the second case, we have to consider the
instance in Concrete−(r). Note that for such a rule Flat(r) = r. In each case, we
only use one rule, so the plan is of length at most

nbin(tr
−1)+nbout(tr

−1)+maxphase(tr
−1)+(nbin(tr

−1)+ |Key(tr−1)|)×depth(φ)+1
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As before, it is smaller than

nbin(P) + nbout(P) +maxphase(P) + depth(δP (P))× [1 + nbin(P) +N ] + 1

Case: α = in(c, R) with R = C[R1, . . . , Rk] a simple recipe. We consider in(c, u)

the corresponding action in K′
p and we have that Rφ′↓ = (uσ′

P)τP for some
substitution τP . If such an action can not be performed, it means that either
this action is not syntactically available in the process or the term in the Q side
does not match. Let r be the abstract protocol rule corresponding to this step.

Thanks to Lemma 8 applied with R = Key({R1, . . . , Rk}) and R0 = Key(tr−1),
there is a plan π1 of length at most |Key({R1, . . . , Rk})r Key(tr−1)| × depth(φ)
of {att(R′′φ↓, R′′ψ↓) | R′′ ∈ Key({R1, . . . , Rk})}. It allows us to apply Lemma 7
on R = {R1, . . . , Rk}: there is a plan π2 of length at most depth(φ) of

{att(R1φ↓, R1ψ↓), . . . , att(Rkφ↓, Rkψ↓)}.

Thus, with a similar reasoning as before, π0.π1.π2 is a plan of length at most

nbin(P) + nbout(P) +maxphase(P) + depth(δP(P))× [1 + nbin(P) +N ]

If the input is not syntactically available in the process, then r is of the
form Phase(i), St(P,Q), att(u, y) −→ bad-proto where y is a fresh variable and i
an integer. St(P,Q) unifies with the corresponding fact of S with substitution
σ′
P ⊎ σ′

Q ⊎ τP such that

– St(P,Q)(σ′
P ⊎ σ′

Q ⊎ τP ) ∈ S.
– Rφ′↓ = u(σ′

P ⊎ τP )
– δP(x(σ

′
P ⊎ τP)) � δP(x) for any x ∈ vars left(r).

We can apply Lemma 12 on r and σ′
P ⊎ σ′

Q ⊎ τP ⊎ {y 7→ Rψ′↓} (Note that
Rψ′↓ is a message by minimality of our witness tr). We get a rule rf ∈ Flat(r):

rf = Pre′, att(u′1, v
′
1), . . . , att(u

′
k, v

′
k) −→ Add′;Del′

and a grounding substitution σ′ such that:

– δP(xσ
′) � δP(x) for any x ∈ vars left(r

′)
– (Pre′,Add′,Del′)σ′ = (St(P,Q), bad-proto, ∅)(σ′

P ⊎ σ′
Q ⊎ τP ⊎ {y 7→ Rψ′↓})

– u(σ′
P ⊎ τP) = C[u′1, . . . , u

′
k] and Rψ′↓ = C[v′1, . . . , v

′
k].

As the att(Riφ
′↓, Riψ

′↓) unify with Pre(rf ), there is a rule r′ in Concrete+(rf )
such that its preconditions are exactly the att(Riφ

′↓, Riψ
′↓). This concludes the

case where the input is not syntactically available in the process.

The cases where there is an input in(c, v) in the Q side can be done in a
rather similar way. We rely on Lemma 12 when v unifies with C[z1, . . . , zk], and
we have a plan reaching bad applying a concrete rule in Concrete−(Flat(r)). We
rely on Lemma 14 otherwise, and the concrete planning rule leading to bad is
either in Concrete+(Flat(r)) or in Concrete−(Flat(r)).
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In each case, we conclude with a plan of bad of length at most

nbin(P) + nbout(P) +maxphase(P) + depth(δP (P))× [1 + nbin(P) +N ] + 1

(⇐) We show this result by induction on the length of planning path leading
to bad. We consider one without rules in parallel of minimal length. We have that
π = r1, . . . , rn, and we denote Si the state obtained after executing r1, . . . , ri.
We apply Lemma 16 on r1, . . . , rn−1. We obtain the trace tr′, and frames φ′ nad
ψ′ such that:

– tr′ only contains simple recipes;
– (tr′, φ′) ∈ trace(P) w.r.t. C⋆ and is quasi-well-typed w.r.t. (TP , δP);
– (tr′, ψ′) ∈ trace(Q) w.r.t. C⋆; and
– FactC⋆(K′

P ,K
′
Q) ↑ Sn−1 where K′

P = (P ′;φ′;σ′
P ; i

′) (resp. K′
Q = (Q′;ψ′;σ′

Q; i
′))

is the resulting configuration starting from P (resp. Q) and executing tr.

Note that it implies that Phase(i) ∈ Sn−1. Now, we distinguish several cases
depending on whether rn is

1. in Concrete−(RAna) ∪Rtest1
fail ∪Rtest2

fail ∪Ratom
fail ∪Rcheck

fail ∪Rpub
fail ; or

2. in Concrete(Flat(Rule(P ,Q))

Note that rn cannot be a phase rule as it would not allows us to reach bad. In the
first case, we conclude relying on Proposition 1, and therefore we obtain that the
frames φ′ and ψ′ resulting from the execution of tr′ are not in static inclusion.
The second case occurs when rn ∈ Concrete(Flat(Rule(P ,Q))). So there is an
abstract protocol rule rf such that rn ∈ Concrete(Flat(rf )). Similarly to the
proof done in [20], we show that this “planning” step can be mimicked on the
protocol side form the P side, and has no counterpart on the Q side. To prove
this, we rely on Lemma 13 and Lemma 15 to establish that any planning rule
obtained by flattening is linked to an abstract protocol rule, which in turn can
be mimicked on the protocol side. ⊓⊔

E Examples of non termination

We exhibit here two examples on which the original SAT-Equiv algorithm does
not terminate. Given a channel c, consider the processes P (c) and Q(c) defined
as follows.

P (c) := in(c, 〈x, a〉).out(c, 〈x, a〉)
Q(c) := in(c, 〈x, a〉).out(c, 〈〈x, x〉, a〉)

where a is a public constant and x a variable. We consider KP = {P (c1);P (c2)}
and KQ = {Q(c1);Q(c2)} for some public channel names c1, c2. On this example,
starting with att(b, b) (b being simply a public constant in the initial knowledge
of the attacker), the following facts will be successively added when computing
the planning graph:

– att(〈b, a〉, 〈b, a〉),
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– att(〈b, a〉, 〈〈b, b〉, a〉),

– att(〈b, a〉, 〈〈〈b, b〉, 〈b, b〉〉, a〉), . . .

Actually, att(〈b, a〉, 〈〈b, b〉, a〉) can be added in two different ways: either consid-
ering the output on c1, or the one on c2. Therefore this fact will not be put
in mutex with the other ones. In particular, the fact att(〈b, a〉, 〈〈b, b〉, a〉) and
the state fact indicating that the process on channel c1 has not yet started
are not in mutex, and can be used to trigger the planning rules leading to
att(〈b, a〉, 〈〈〈b, b〉, 〈b, b〉〉, a〉). Since the term computed on the Q’s side grows
at each step, this computation is endless.

Here, it is easy to see that KP is not trace included in KQ, as an attacker
can distinguish between b and 〈b, b〉. So, as soon as a message is outputted, the
resulting frames are not in static inclusion. Therefore, termination can easily be
retrieved by enforcing SAT-Equiv to stop the exploration of the planning graph
as soon as an attack is found.

We can turn this example into a more complex one on which the original
SAT-Equiv will not terminate even if we decide to stop the exploration of the
planning graph as soon as an attack is found. Consider the processes P0(c), P1(c)
and Q1(c) given below. We assume that k is name representing a symmetric
secret key, whereas a, b, c are public constants.

P0(c) = in(c, x).out(c, senc(x, k))
P1(c) = in(c, 〈senc(a, k), senc(b, k), senc(c, k)〉3).P (c)
Q1(c) = in(c, 〈senc(a, k), senc(b, k), senc(c, k)〉3).Q(c)

We consider the configurations K′
P = {P0(c0);P0(c1);P1(c2);P1(c3)} and

K′
Q = {P0(c0);P0(c1);Q1(c2);Q1(c3)} where c0, c1, c2, c3 are public channel names.

Processes P0 on channels c0 and c1 are used as oracles. Roughly, we can get two
ciphertexts among the three ciphertexts: senc(a, k), senc(b, k), and senc(c, k). It
is however not possible to get the three of them. Noticing this, it is then easy to
see that KP and KQ are trace included.

However, as in the previous example, the planning graph is not precise enough
to detect that it is not possible to obtain these three ciphertexts. Once the
inputs on channel c2 and c3 are executed, we reach a situation similar to the one
discussed in the previous example. Each time bad will be added into the planning
graph, our SAT encoding will tell us that this state is not truly reachable (but
only exists in the over-approximation). Thus, we will continue to explore the
planning graph for ever since no attack will be found (the protocols are trace-
equivalent).
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F Benchmark

In this Appendix, we present the results of our experiments on bounded equiv-
alence checkers. Figure 3 compares the results of SAT-Equiv as in [20] with the
current version on three symmetric protocols. Figures 4, 6, 7, as 5, are results on
examples of symmetric protocols on which we compared the tools. We extended
our benchmark to some assymmetric protocols. The corresponding results can
be found on Figures 8 and 9.

Yahalom-Lowe CSF’17 Current
3 5s 300ms
6 3m 800ms
7 19m 1.9s
10 206m 5s
12 19h 13s
14 TO 23s

Otway-Rees CSF’17 Current
3 104s 900ms
6 46m 3s
7 50m 5s
10 276m 11s
12 9h40m 16s
14 TO 27s

Simple stateful CSF’17 Current
1 200ms 20ms
2 1s 80ms
3 2s 150ms
4 6s 200ms
12 155s 800ms
36 85m 3s
60 6h40m 9s

Fig. 3. Comparison of new and old version of Sat-Equiv for Yahalom-Lowe protocol,
Otway-Rees protocol and the simple stateful example as in [20].
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YP Spec Akiss Deepsec CSF’17 Sat-Eq
3 23m 7s <10ms 50s 400ms 73
6 MO TO 900ms 165m 5s 122
7 6s TO 17s 136
10 85m 63s 185
12 TO 143s 214
14 6m 248
21 155m 360
28 7h 472

Fig. 4. Analysis of the Yahalom-Paulson protocol. The second column of Sat-Eq indi-
cates the theoretical bound of the planning graph.

Denning-Sacco Spec Akiss Deepsec CSF’17 Sat-Eq
3 12s 80ms <0.01s 300ms 70ms 42
6 5h 9s <0.01s 1s 100ms 64
7 MO 75s <0.01s 2s 200ms 74
10 SO 0.01s 4s 300ms 114
12 0.04s 7s 400ms 134
14 0.2s 11s 500ms 152
21 18s 60s 1.3s 216
28 25m 3m30s 3s 280
35 TO 9m 6s 344
42 23m 10s 408
63 164m 51s 600
84 13h 164s 792
91 23h 4m15s 856
98 TO 6m 920
105 8m 984
126 20m 1176
140 35m 1304
154 56m 1432
168 75m 1560
182 128m 1688
196 3h10m 1816
210 4h20m 1944

Fig. 5. Analysis of the Denning-Sacco protocol. The second column of Sat-Eq indicates
the theoretical bound of the planning graph.
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WMF Spec Akiss Deepsec CSF’17 Sat-Eq
3 6s 40ms <10ms 100ms 10ms 29
6 58m 1.6s <10ms 1s 20ms 42
7 TO 5s <10ms 2s 70ms 47
10 8m30s 60ms 7s 100ms 60
12 SO 440ms 40s 200ms 69
14 5s 118s 350ms 78
21 21m 77s 200ms 106
28 TO 4m45s 400ms 137
35 24m 600ms 168
42 36m 1s 199
56 163m 2.4s 261
63 5h 4s 292
70 9h 5s 323
77 18h 7s 354
84 TO 9s 385
112 24s 509
140 55s 633
154 93s 695
168 140s 757
182 3m30s 819
196 4m30s 881
210 6m 943

Fig. 6. Analysis of the Wide-Mouth-Frog protocol. The second column of Sat-Eq indi-
cates the theoretical bound of the planning graph.

NSS Spec Akiss Deepsec CSF’17 Sat-Eq
3 1m 4s <10ms 2s 80ms 50
6 MO TO 10ms 54s 400ms 88
7 50ms 153s 1.2s 98
10 600ms 8m 3s 132
12 7s 22m 4s 155
14 120s 77m 11s 176
21 TO TO 51s 346
28 178s 452

47 ref. 48m 527
47 129m 759

94 ref. 20h30m 1024
94 MO 1489

Fig. 7. Analysis of the Needham-Schroeder protocol. The second column of Sat-Eq
indicates the theoretical bound of the planning graph. For the examples with 47 and
94 roles, we also consider refined scenarios where some roles are cut before the end, as
explained in Subsection 6.2.
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PA Spec Akiss Deepsec Sat-Eq
2 3s 100ms <10ms 10ms 27
4 14m 4s 10ms 30ms 43
6 MO 10m 20ms 60ms 59
8 TO 20ms 90ms 75
10 80ms 100ms 91
20 3s 300ms 171
40 3h20m 800ms 332
46 TO 1s 380
50 1.1s 412
54 1.2s 444
60 1.7s 492
80 3s 652
120 6s 972
160 12s 1292
200 20s 1612
400 98s 3212

AA Spec Akiss Deepsec Sat-Eq
2 3s 100ms <10ms 10ms 37
4 15m 3s <10ms 40ms 61
6 MO 5m 20ms 70ms 85
8 SO 20ms 70ms 109
10 60ms 100ms 133
20 2s 300ms 253
40 2h30m 800ms 493
46 23h50m 900ms 565
50 TO 1.1s 613
54 1.2s 661
60 1.7s 733
80 3s 973
120 6s 1453
160 11s 1933
200 18s 2413
400 78s 4813

Fig. 8. Analysis of the Passive-Authentication protocol (left) and Active Authenti-
cation (right). The second column of Sat-Eq indicates the theoretical bound of the
planning graph. For Passive Authentication, the verified property is anonymity.

NSL Spec Akiss Deepsec Sat-Eq
2 11s 40ms 10ms 20ms 27
4 MO 2s 10ms 40ms 43
6 SO 120ms 200ms 59
8 7s 500ms 75
12 58m 0.9s 107
16 TO 3s 139
32 35s 267
48 162s 395
64 11m 523

DS sig. Spec Akiss Deepsec Sat-Eq
2 1.5s 60ms <10ms 0.01s 39
4 4m 1.5s <10ms 0.02s 55
8 MO SO 240ms 0.2s 87
16 4h50m 0.9s 151
18 TO 1.1s 167
24 3s 215
32 8s 279
48 66s 407
64 100s 535

Fig. 9. Analysis of Needham-Schroeder-Low protocol (left) and Denning-Sacco proto-
col with signature from [6] (right). The second column of Sat-Eq indicates the theoret-
ical bound of the planning graph.
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