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SCHRODINGER OPERATORS
WITH NEGATIVE POTENTIALS
AND LANE-EMDEN DENSITIES

LORENZO BRASCO, GIOVANNI FRANZINA, AND BERARDO RUFFINI

ABSTRACT. We consider the Schrodinger operator —A 4+ V' for negative potentials V', on open sets
with positive first eigenvalue of the Dirichlet-Laplacian. We show that the spectrum of —A + V'
is positive, provided that V is greater than a negative multiple of the logarithmic gradient of the
solution to the Lane-Emden equation —Awu = 9! (for some 1 < ¢ < 2). In this case, the ground
state energy of —A + V is greater than the first eigenvalue of the Dirichlet-Laplacian, up to an
explicit multiplicative factor. This is achieved by means of suitable Hardy-type inequalities, that
we prove in this paper.
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1. INTRODUCTION

1.1. Foreword. Let V € L2 (R") be a real-valued potential such that V' < 0 and let us consider

loc

the Schrédinger operator Hy := —A + V, acting on the domain
D(Hy) = H*RY)n{u e L*RY) : Vue L2 (RY)}.
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2 BRASCO, FRANZINA, AND RUFFINI
Observe that the hypothesis V € L2 (RY) entails the inclusion
CE*(RY) € D(Hy),

thus D(Hy) is dense in L2(RY). The operator Hy : D(Hy) — L*(RY) is symmetric and self-
adjoint as well, thanks to the fact that V is real-valued (see [16, Example p. 68]). The spectrum of
Hy is the set
o(Hv) =R\ p(Hv),

where p(Hy ) is the resolvent set of Hy, defined as the collection of real numbers A such that Hy — A
is bijective and its inverse is a bounded linear operator.

A distinguished subset of o(Hy) is given by the collection of those A such that the kernel of
Hy — A is nontrivial. In this case, the stationary Schrédinger equation

(1.1) Hy u= A\u,

admits a nontrivial solution u € ©(Hy). Whenever this happens, A is called an eigenvalue of the
Schrodinger operator. Correspondingly, the solution is said to be an eigenfunction corresponding
to .

The operator Hy comes with the associated quadratic form

v Qu(p) = / \V@]Qda: +/ V o*dx, v € D(Hy).
RN RN

From classical Spectral Theory, we have (see [16, Theorem 2.20])

(1.2) info(Hy) = inf {Qv(go) : /RN gonx:l}.

PED(Hy)

We call such a value ground state energy of Hy .

This quantity is important in classical Quantum Mechanics, since it is the lowest energy that a
particle in R interacting with the force field generated by the potential V' can attain (and which
will eventually attain by emitting energy). From a mathematical point of view, we observe that the
stationary Schrodinger equation (1.1) is precisely the Euler-Lagrange equation of problem (1.2).

An issue of main interest is providing a lower bound on the ground state energy (and thus on
the spectrum) of Hy .

It is well-known that when V' = 0, then inf o(Hy) = 0. On the other hand, if we take V' < 0,
the kinetic energy f]RN |V|? de and the potential energy f]RN V p?dx are in competition in the
quadratic form Qy and one could expect that

info(Hy) < 0.

Actually, this depends on the potential V. For example, by recalling the Hardy inequality on RY
(for N > 3)

N —2 2 (102 2 oo mN
"2 ) Jan e dr < i Vel d, ¢ € Cg°(R™\ {0}),
we get that if the potential V' is such that

N-2\2% 1
o>V >— —— —
- ( 2 > |z[2

then the spectrum of Hy is still non-negative. This is an example of how Hardy-type inequalities
can be exploited in order to identify classes of negative potentials with non-negative spectrum.
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1.2. Aim of the paper. In this paper we deal with a confined version of this problem. More
precisely, we turn our attention to prescribed open sets Q € RY. We fix a potential V € L? (Q)

loc

such that V' < 0 and consider the localized Schrodinger operator with homogeneous boundary
conditions Hoy = —A + V, this time acting on the domain
(1.3) D(Hav) = H*( Q) NHI(Q) N{uecL*Q): Vue L*N)}.

Here H}(Q) is the closure of C§°(£2) in the Sobolev space H'(2). This is still a symmetric and
self-adjoint operator Hy : D(Hav) — L*(Q), with real spectrum o(Hq,). Observe that the
hypothesis V' € L2 (Q) entails as before the inclusion

loc
Coo () Cc D(Ha,v),

thus the operator is densely defined. We define the associated quadratic form

Quule) = [ [Velrdo+ [ Vitds, o eDHay).
Q Q
The stationary equation (1.1) now reads

Hovu = Au in
(1.4) { v = 0, inRN\Q.

Equation (1.4) can be formally considered as a peculiar form of (1.1), where the potential V' has
the trapping property V = 400 in RV \ Q. This models the physical situation where the particle is
“trapped” in the confining region €.

The issue we tackle is the following

“find explicit pointwise bounds on the potential V
assuring that the ground state energy of Ha,v stays positive”

In the vein of the example discussed above using Hardy’s inequality in the entire space, we will
approach this problem by proving localized Hardy-type inequalities with suitable weights. A typical
instance of these inequalities occurs when we limit ourselves to consider functions supported in a
proper open subset 2 C RY and we use the distance dg(z) := dist(z,0) as a weight. In other
words, one has

1 2
= / %dm < / |V|? d, v € C5°(Q).
C Jq dg Q

However, the existence of such a constant C' > 0 typically requires some conditions on the geometry
of the set 2 or on the regularity of its boundary. In this paper on the contrary, we will prove
alternative Hardy-type inequalities, with weights depending on solutions of peculiar elliptic partial
differential equations.
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Roughly speaking, we will consider the solution w, q to the Lane-Emden equation' with 1 < ¢ < 2

—Au = uwi! inQ,
(1.5) u = 0, in RV \ Q,
u > 0, in €,

prove a Hardy inequality with weight depending on wy o and show that the condition
2

Vwgq )
— a.e. in €,

0>V >—

Wq, 0
leads to positivity of the spectrum of the Schrédinger operator Ho v .

The function wy o will be called the Lane-Emden q—density of €2, we refer to Definitions 2.5 and
2.8 below.

1.3. Main results. Let us now try to be more precise about our results. We first need to fix some
definitions. For v > 1, we denote

1.6 Ao(Q) = inf (/v 2da :%.
(16) @ = __int A 9ePde Lol
Henceforth we shall often work with the following class of sets.
Definition 1.1. We say that Q@ C RY is an open set with positive spectrum if it is open and
(17) AI(Q) = )\272(Q) = inf {/ ‘V(p‘de : H(pHLQ(Q) = 1} > 0.
el () LJ/a

The main result of the paper is the following lower bound on the ground state energy of Hq v .
We refer to Theorem 6.2 and Corollary 6.3 for its proof.

Theorem 1.2. Let Q C RN be an open set with positive spectrum, and let V € LIZOC(Q). For an
exponent 1 < q < 2, we assume that

2
Vw0

1
OZVZ—Z , a.e. in .

Wq,Q

Then the spectrum o(Ha,v) of Ha,v is positive and we have that

info(Ho,v) = inf {QQ,V(‘P) : /@2 dx = 1} > %)\1(9),
Q

PeCe ()
where C = C(N,q) > 0 is an explicit dimensional constant.

As stated above, the main tool we use to prove this result is an Hardy-type inequality, in which
a weight involving the solution wy o of the Lane-Emden equation (1.5) enters. This is the content
of the next result. For questions related to optimal choices of weights in Hardy-type inequalities,
see [10] and the references therein.

IThe terminology comes from astrophysics, where the Lane-Emden equation is

1d<2du

-4 au T

for a radially symmetric function u : R®* — R. The positive number ~ is usually called polytropic index. Observe that
for a radial function u defined in R®, this is equivalent to

—Au=1u".

Though our paper is not concerned with astrophysics, we found useful to give a name to the equation and its solution.
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Theorem 1.3 (Hardy-Lane-Emden inequality). Let 1 < ¢ < 2 and let Q@ C RN be an open set with
positive spectrum. Then for every u € C§°(Q) and § > 0 we have that

1 1 2 1
Z(1=2 2 z
6( 5>/Q “”“”5/9

We refer to Remark 3.2 for some comments about the proof of this result.

Vw0

2
” ngq dz < / ]Vgo|2dx.
q,82 qu Q
1.4. Plan of the paper. The paper is organized as follows: in Section 2, we define the Lane-
Emden g—density of a set  C RY, first under the assumption that € is bounded and then for a
general open set. Then in Section 3 we prove the Hardy-Lane-Emden inequality of Theorem 1.3
for bounded open sets.

In Section 4 we show how the summability properties of the Lane-Emden densities are equivalent
to the embedding of Dé’2(Q) into suitable Lebesgue spaces. This part generalizes some results
contained in the recent paper [3], by replacing the torsion function with any Lane-Emden g—density.
Though this section may appear unrelated to ground state energy estimates for Hq -, some of its
outcomes are used to extend (in Section 5) the Hardy-Lane-Emden inequality to open sets with
positive spectrum.

The proof of Theorem 1.2 is then contained in Section 6, while Section 7 contains some appli-
cations of our main result to some particular geometries (a ball, an infinite slab and a rectilinear
wave-guide with circular cross-section).

We conclude the paper with an Appendix, containing a local L estimate for subsolutions of the
Lane-Emden equation, which is necessary in order to get the explicit lower bound on the ground
state energy of Ho v .

Acknowledgments. The first author would like to thank Douglas Lundholm for a discussion on
Hardy inequalities and the so-called Ground State Representation in February 2017, during a visit
to the Department of Mathematics of KTH (Stockholm). He also wishes to thank Erik Lindgren
for the kind invitation. Remark 4.4 comes from an informal discussion with Guido De Philippis in
December 2015, we wish to thank him.

The authors are members of the Gruppo Nazionale per 1’Analisi Matematica, la Probabilita e le
loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INAAM).

2. PRELIMINARIES

2.1. Notation. Let @ C RY be an open set and define the norm on C§°(2)

1
2
Ielloge = ([ 196P )" pec@.

We consider the homogeneous Sobolev space Dé’z(Q), obtained as the completion of C5°(£2) with
respect to the norm || - ||D(1),2(Q). For N > 3 this is always a functional space, thanks to Sobolev
inequality but in dimension N = 1 or N = 2, this may fail to be even a space of distributions if 2
is “too big”, see for example [9, Remark 4.1].

Remark 2.1. For an open set with positive spectrum €2, we have automatically continuity of the
embedding Dé’2(Q) < L%*(Q). Thus in this case Dé’2(Q) is a functional space. Moreover, we have
that
1,2
Dy"(2) = Hy(9),
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thanks to the fact that in this case

1 1 1
2 2 2 : 2 :
|Vpl© dx and \Volodz | + pdx |
Q Q Q

are equivalent norms on C§°(2).
2.2. Lane-Emden densities: bounded sets. We start with the following auxiliary result.

Lemma 2.2. Let Q C RYN be an open bounded set. For 1 < q < 2, the variational problem

(2.1) HllIl { /|Vc,0|2 x—/ eldr : ¢ >0 a.e. inQ},

admits a unique solution.

Proof. Since the absolute value of every minimizer of the functional

1 1
w/rwwx—/wrwx,
2 Jo q Jo

is also a minimizer of (2.1), problem (2.1) is equivalent to

IIllIl { /\Vgp[2daj—/|4p\qdw}

The existence of a solution follows then by the Direct Methods in the Calculus of Variations, since
the embedding Dé’Q(Q) — L9() is compact and Dé’Q(Q) is weakly closed.

As for uniqueness, we first suppose that € is connected. We observe that for ¢ = 1 problem (2.1)
is strictly convex, thus the solution is unique. For 1 < ¢ < 2, we can use a trick by Brezis and
Oswald based on the so-called Picone’s inequality, see [6, Theorem 1]. We reproduce their argument
here for completeness. We first observe that a minimizer is a positive solution of the Lane-Emden
equation

(2.2) — Au =l in €,

with homogeneous Dirichlet boundary conditions. More precisely, for every ¢ € Dé’2(Q) it holds

(2.3) /(Vu, V) d:c:/uq_lgodaz.

Q Q
We now suppose that (2.1) admits two minimizers uy,us € D(l)’2(Q). By the minimum principle
for superharmonic functions, u; > 0 and us > 0 on 2. Moreover, by standard Elliptic Regularity,

ug,uz € L*(Q). We fix € > 0, then we test equation (2.3) for u; with
uj

uy + €

Y= — u1,
and equation (2.3) for uy with

2
uy

Ug + €

— Ug.
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Summing up, we get that

2 2
/<w1,v< 2 >>dx—/]Vu1|2da:+/<Vuz,V< ad! >>dm—/|Vu2|2dx
Q uy +e¢ Q Q Uz +¢€ Q

wl™t ul™l
:/ u%dm—/u?dx—i—/ 2 u%d:c—/ugdx.
QU1Lt+E Q QU2 t+e¢ Q
We now recall that

(2.4) <w,v <1j>> < |Vol?,

for v and u > 0 differentiable. This is precisely Picone’s inequality, see for example [2]. By observing
that Vu; = V(u; 4+ ¢) and using (2.4) in the identity above, we conclude that

ul™! ul™!
/ u%dw—/u‘{dm—i—/ 2 u%dw—/ugdx<0.
Quite Q Qu2te Q

We now take the limit as € goes to 0. By Fatou’s Lemma, we obtain that

/u‘f_Qu%dac—/u‘{dx+/ug_2u%dx—/ugdx§0.
Q Q Q Q

The previous terms can be recast into inequality
[ =) (7~ oz 0
Q

By using the fact the function ¢ +— 972 is monotone decreasing, we get that u; = uy as desired.

Finally, if € is not connected, it is sufficient to observe that a solution of (2.1) must minimize
the same functional on every connected component, due to the locality of the functional; since the
solution is unique on every connected component, we get the conclusion in this case as well. O

Remark 2.3 (About uniqueness). Uniqueness of the solution to (2.1) can also be inferred directly
at the level of the minimization problem. It is sufficient to observe that the functional to be
minimized is convex along curves of the form

1

v = ((1 —t) pd + tgo‘f) E, te€[0,1], 0,1 € ’Dé’2(Q) positive,

see [2, Proposition 2.6]. Then one can reproduce the uniqueness proof of [1]. For a different proof
of the uniqueness for (2.2), we also refer to [11, Corollary 4.2].

Remark 2.4. It is useful to keep in mind that if u € D(l)’Q(Q) solves equation
—Au = tul™, in Q,

for some t > 0, then the new function
1
vy =192 u,

solves (2.2).

Definition 2.5. Let Q € RY be an open bounded set. For 1 < ¢ < 2, we define the Lane-Emden
q—density of {2 as the unique solution of (2.1). We denote such a solution by wq . In the case
q = 1, we simply write wq and call it torsion function of 2.
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The variational problem defining w, o is related to the optimal Poincaré constant s 4(£2) defined
in (1.6). This is the content of the next result, that we record for completeness. We omit the proof
since it is based on a straightforward scaling argument.

Lemma 2.6. Let 1 < g < 2 and let Q) C R be an open bounded set. Then we have

q

y {1 ot . } q—2( | )“
2.5 min — Vol*dr — = Idr : >0 Qy =
(25) peDp2(Q) {2 Q Vel q Jo 4 7= 2q \2,4()

2—q

(2.6) </QyubJAde>q=:)Q;29).

2.3. Lane-Emden densities: general sets. We now want to define the Lane-Emden densities
for a general open set, where the variational problem

1 1
inf {/V<p|2d:n—/g0qdfc:g0201n§2},
pent?(@) 12 Ja q Jo

may fail to admit a solution.

We start with a sort of comparison principle for Lane-Emden densities.
Lemma 2.7. Let 1 < ¢ < 2 and let Q; C Q9 C RN be two open bounded sets. Then we have
wQ791 S wQ7QQ'
Proof. We test the minimality of wq o, against ¢ = min{wg q,,wq0,}. After some simple manipu-
lations, this gives
3 / \Vwg o, de — - / wg o, dx
{wg, 0y <wg,0;} q {wg, 0y <wq,0,}
1 1
> B / ‘qu,§21|2 dr — — / wg,ﬂl dz.
{wg,0,<wg,0,} 4 J{wg,0,<wg0, }

We now add on both sides the term
1 1

2 q
5 / [Vwg0,|" de — = / W, da,
{wq,ﬂz >wq791} q {wq,QQ >wq791}

thus if set U = max{wg 0, wq0,}, we get that

— Vwg, o, |“de — = wl, dr > = VU|*dx — — U?dzx.
2 Q2 ’ q,542 ‘ q Q2 q7Q2 2 Q2 ‘ ’ q Q2

By uniqueness of the minimizer wg,q,, this gives U = wy n,. By recalling the definition of U, this
in turn yields the desired conclusion. ([

Thanks to the previous property, we can define the Lane-Emden density for every open set. In
what follows, we set

Qr =QNBr(0), R>0,

where Br(0) is the N—dimensional open ball, with radius R and centered at the origin.
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Definition 2.8. Let © € RY be an open set. For 1 < ¢ < 2 we define
Wy = lim w .
Q7Q R—sf00 (LQR

We observe that this definition is well-posed, since each wq q, € Dé’Q(Q Rr) exists thanks to the
boundedness of Qi and the function

is monotone, thanks to Lemma 2.7.
Remark 2.9 (Consistency). When Q2 C RY is an open bounded set or, more generally, is such
that the embedding D(l)’Q(Q) — L9(Q) is compact, then the definition of w, q above coincides with

the variational one. For ¢ = 1 this is proved in [3, Lemma 2.4], the other cases can be treated in
exactly the same way. We skip the details.

3. HARDY-LANE-EMDEN INEQUALITIES

The following theorem, which is a generalization of [3, Theorem 4.3], is the main result of the
present section. For simplicity, we state and prove the result just for open bounded sets, but it
is easily seen that the same proof works for every open set @ C RY such that the embedding
Dé’Z(Q) — L1(Q) is compact.

Theorem 3.1. Let 1 < ¢ <2 and let Q C RY be an open bounded set. Then for every ¢ € C5°(Q)

wq»ﬂ

(3.1) - /
(3.2) /Q (Vwg.q, Vo) dz = /Q wi' ¥ da,

1
—|— 5 O’ dr < | |Vo|*d.
! Q

Wy,

Proof. We recall that

for any 1 € Dé’z(Q). Let p € C§°(Q2) and let € > 0, by taking in (3.2) the test function

902

we get

wg + €’
Vwga
3.3 / ©* dx =2 / ® <q’,V<,0> dz.
(3:3) Q Q (wg,0 +¢)
By Young’s inequality, it holds

7’,V _ v _1_77’
*”<<wq,a+e> “”> 2 VOt 35 g + 22 7

[Vwgol? + wiy (wea+e)
(wg,0 +€)?

for § > 0. Thus we get
J

[Vwgal? + wZ}zl (wg,0 +¢)
(wg,0 + €)?

x<6/|ch|2dx+5/ (w Q+€ ©? dx.
7,
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The previous inequality gives

-1
[ T uly
0 Jo 6) (wgn+e)?  (wgo+e)
By recalling that ¢ is compactly supported in  and observing that?

2
€ Llloc(Q)7

<p2d:c§/ |V|? da.
Q

‘ Vwg,n

Wq,0

we conclude the proof by taking the limit as € goes to 0 and appealing to the Monotone Convergence
Theorem. O

Remark 3.2 (A comment on the proof). The idea of the previous proof comes from that of Moser’s
logarithmic estimate for elliptic partial differential equations, see [14, page 586]. In regularity theory,
this is an essential tool in order to establish the validity of Harnack’s inequality for solutions.

An alternative proof is based on Picone’s inequality (2.4). This goes as follows: one observes

that the function W = w;’/g locally solves
1 1 1 /1 1_g
—AW = —sugg Awga - 5 (5 - 1) waq Vgl
2]

_ 1 q—2 1 _1 quvg
=W léwqﬂ —1—5 (1 5) ’ W0
2
] W@bdxz/(VW,Vw) dz,
Q

1 o, 1 ( 1) ‘qu a
—w + - 1—— D77
/Q [(5 (AU ) Wq,0
for every 1 € C§°(Q). If we now take the test function ¥ = ¢?/W and use inequality (2.4), we get
the desired inequality.

This technique to obtain Hardy-type inequalities is sometimes referred to as Ground State Rep-
resentation, see for example [12, Proposition 1].

Thus we have

As a consequence of the Hardy-Lane-Emden inequality, we record the following integrability
properties of functions in D(l]’2(Q).

Corollary 3.3. Let 1 < ¢ < 2 and let Q C RY be an open bounded set. Then for every ¢ € Dé’2(Q)

Vuwga | 2
(3.4) / Y W2 ©* dr < 400 and / f_ dx < +oo0.
Q1 We,0 Q wq@q

Moreover, if {¢on nen C D(l)’g(Q) converges strongly to ¢ € Dé’2(Q), then

2
) Vwg o
lim et i)
n—oo Q

2
|lon — 80’2 dr =0 and lim / Ln 27;0| dx = 0.
Q ’qu

wq,Q n—0o0

2t is sufficient to remark that Vwga € L*(R2) and that by the strong minimum principle, we have
Wq,0 > ¢k >0 for every K € 2.
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Proof. Let ¢ € D(l)’2(Q), then there exists {¢p}neny C C§°(Q2) converging to ¢ in Dé’Q(Q). By
choosing § = 2 in (3.1), we have that

1 Yw,ol? 2
4/ ‘ 22 e q] wndw</ Veon|? da.

By using the norm convergence in the right-hand side and Fatou’s Lemma in the left-hand side, we
deduce the validity of (3.4) for ¢.

In order to prove the second part of the statement, we observe that the first part of the proof
also implies the validity of inequality (3.1) in Dé’Q(Q), for § = 2. Plugging in ¢, — ¢ gives that

Vv 2
lim sup - / Ya.02 + = lon — | dx < 11m / |Ven — V|2 dz =0,
nooo 4 Q Wq,Q q Qq
as desired. 0

As a consequence of Corollary 3.3 and thanks to the definition of Dé’Q(Q), we get the following

Corollary 3.4. The Hardy-Lane-Emden inequality (3.1) is valid for every § > 0 and u € Dé’Q(Q).

4. SOBOLEV EMBEDDINGS AND DENSITIES

In this section, we consider general open sets and study the connections between the integrability
of wy o and the embeddings of D(l)’z(Q) into Lebesgue spaces. For the case of the torsion function,
i.e. when ¢ = 1, related studies can be found in [3, 5, 7] and [8].

We start with a simple consequence of Theorem 3.1. This is valid for a general open set.

Lemma 4.1. Let Q C RY be an open set and 1 < q < 2. Then for any ¢ € C§°(RY) it holds that

/ 90 dac</ V|2 d.
{reQ:wy q(x)<+o0} w

Proof. Let Br(0) be the ball of radius R centered in 0, we set Qr = QN Br(0) and wr = wy 0.
Let ¢ € C§°(£2), then for every R large enough the support of ¢ is contained in Qr. By using (3.1)

on Qg with § =1, we get
/ o dm</|Vg0|2d:B.
QwR Q

We conclude by letting R — 400 and by Fatou’s Lemma. O

The following result is a generalization of [3, Theorem 1.2]. We point out that the equivalence
between 1. and 2. below is a known fact in Sobolev spaces theory, see [13, Theorems 15.6.2].

Theorem 4.2. Let 1 < q < 2 and let Q C RY be an open set. Then for every q < v < 2 the
following three facts are equivalent

1. the embedding Dé’Q(Q) — LY(Q) is continuous;
2. the embedding Dé’2(Q) — LY(Q) is compact;

2
3. weq € L2 7(9).
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Moreover, we have the double-sided estimates

2=y

(4.1) 1< (Q)(/wg—z”dx>”< 2—7 (2_q>2
' = q ¢ Ty—2(¢-1) \2-v/ "

where Ao () is the optimal Poincaré constant defined in (1.6).

Proof. As announced above, the equivalence 1. <= 2. is already known, see also [3, Theorem 1.2]
for a different proof. It is sufficient to prove the equivalence 1. <= 3.

Let us suppose that the embedding Dé’Q(Q) — L7(Q) is continuous. As always, we set Bgr(0)
the ball of radius R centered in 0, Qr = QN Br(0) and wr = wy0,. Then by testing (2.3) with

w% for some 5 > 1, we get

B+q—1 2 \°
fpirte=n(555) ),
2 \? 1 5
o) Aaa) </QR“’R2 i)
2

2 b1, %
_'_1) )\Q’W(Q) (/QR’LUR dl‘) .

2
dx

B+1
2
C'U}R

By choosing®

from the previous estimate we get

2 = 2 2-¢\2 1
(o) " <2 (2)
o Ty=2(g—1) \2-7/ X4(Q)

By Fatou’s Lemma, we can take the limit as R goes to 400 and get the desired integrability of
wq.0, together with the upper estimate in (4.1).

A

2
Suppose now that w, o € LﬁW(Q), this implies that wy o < 400 almost everywhere in 2. We
take u € C§°(Q2), then by Hoélder’s inequality and Lemma 4.1 we have

2 2
|7 (2-9) ©? ’ 220y R
/ ’(10|'7 d"L’ = / w wq7Qq 2 dx S p— dx wqu’Y dx
0 Q" Q w, g 0

)

ol 2—y

3 2-q =
< (/ \V(p\zdm> </ wljgf dx) .
Q Q 7

We conclude by density of C5°(£2) in Dé’2(ﬂ) that the embedding ’D(l)’Q(Q) — L7(Q) is continuous.
Moreover, we also obtain the lower bound in (4.1). O

The following result generalizes [3, Theorem 1.3] and [4, Theorem 9], by allowing any Lane-
Emden densities in place of the torsion function.

3Observe that B > 1 thanks to the fact that ¢ < v < 2.
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Proposition 4.3. Let 1 < g < 2 and let @ C RN be an open set. Then we have that
M) >0 = weo e L7Q).

Moreover, we have that

1

2—q 1

29—
(4.2) M(Q)72 < wgollze) < <2Nc2 ((20) q+4>> M (Q)77,
where C is the same constant appearing in (A.1).

Proof. We suppose that wgo € L°°(€2). This in particular implies that wg o < 400 almost every-
where in Q. Then for any ¢ € C§°(Q2) we have that

2 %02 2
_ —q
/go dx—/ 5= Wa.0 dx
0 Q wy g

2
¥ 2— 2—
( | dx) [ e T X P
2w, Q

IN

the last inequality being due to Lemma 4.1. This shows that
wen € L) for1<g<2 = A1(92) >0,

together with the lower bound in (4.2).

The converse implication is more involved and we adapt the proof of [4, Theorem 9], which deals
with the case ¢ = 1. Without loss of generality we can suppose 2 to be bounded and smooth;
indeed, the general case can be then covered by considering a family of smooth bounded sets
approaching ) from inside.

For ease of notation we set w := w, o and we suppose that w(0) = ||wl| e (q). This can be done
up to translating 2. Moreover we can extend w to 0 outside 2. Since 0f) is regular, we get by
means of Hopf’s Lemma that the extended function, which we still denote by w, satisfies

(4.3) — Aw < wi™,
in the weak sense. Let R > 0 to be fixed, and let ¢ be a cut-off Lipschitz function such that

0<(¢<1, (¢=1inBg(0), (¢=0inRY\ Byr(0), \vqg%.

From the variational characterization of A;(€2), we have

(4.4) (@) < /Q|V(UJC)]2da: /Q(\wa2c2+2wg<w;,vg> 4 ‘VC|2w2> d
. 1 < _ |

| weras [ vt

By using the positive test function w ¢? into the weak formulation of (4.3), we get that

/Q]Vw|2C2dx+2/ng(Vw,VQda:—/Q(Vw,V(wCZ))dxg/qugzda;.
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Thus, by recalling that w attains its maximum in 0 and using the properties of ¢, from (4.4) we
obtain that

2 2 q 2 d
(4'5) )\1(9) < A<|v<| w” +w C) i <2NwN w(0)2RN—2+w(0)qRN.

- / w? P dx - / w? dx
Q Br(0)

We use now the local L>® — L? estimate of Lemma A.1 to handle the denominator. Indeed, by
(A.1) with oo = 2 we have that

2 0\ 2
/ w? dz > wy RY 1 w(0) — <R> o .
Br(0) ¢ 2

By spending this information in (4.5), we end up with
—2 2 q
<oV R~ w(0)* +w(0)

(e ()7)

(2-0)/2
R—2 (20 ,
2C

A1(Q)

By choosing

we obtain the inequality

(@) <2t w;lofj—q (111 (2 C>2_q + 1) ’

and thus )
9 5—q
w(0) < <2Nc2 ((20) q+4>)2 (=3
This concludes the proof. O

Remark 4.4 (Super-homogeneous embeddings). A closer inspection of the proof reveals that with
exactly the same argument we can prove the following stronger statement: for every 1 < g < 2 and
2 <~ < 2%, we have that

(4.6) Ay(2) >0 = wyo € L7(Q),
where
2 =N _3 for N >3 and 2" =400, for N € {1, 2}.
Observe that (4.6) implies in particular that
(4.7) D) = LA(Q) =  Dy*(Q) = LV(Q), for2 <y <2

For the implication =, it is sufficient to reproduce the proof above, using the variational charac-
terization of Ag,(Q2) and the L> estimate (A.1), this time with o = .

For the converse implication, it is sufficient to use the Gagliardo-Nirenberg interpolation inequal-
ity (see for example [3, Proposition 2.6])

</ |u|” dm) T<c (/ |u]2dx> </ ]Vu\%lm) ,
RN RN RN
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where C' = C(N,v) > 0 and

2\ N .
d=11——) —, 2 <y <2,
v) 2

This shows that if Dé’2(Q) — L%(Q) is continuous, then Dé’g(ﬂ) — L7(Q) is continuous as well.
We leave the details to the interested reader.

We point out that the equivalence (4.7) can also be found in [13, Theorem 15.4.1]. The proof
there is different.

We conclude this section with the following simple result which we record for completeness.

Proposition 4.5. Let 1 < g < 2 and let Q C RN be an open set such that the embedding Dé’Q(Q) —
L1(Q) is continuous. Then the embedding D(l)’z(Q) s L?(Q) is compact.

Proof. We already know by Theorem 4.2 that the continuity of the embedding Dé’Z(Q) — L1(Q)
is equivalent to its compactness. Then it is sufficient to use the Gagliardo-Nirenberg inequality

; i
</ \u!%ix) <C </ ]u\qdm> ’ (/ ]Vu%lm) ,
RN RN RN

where C = C’(N, q) > 0 and
q 2N
(1 ) (

2) (2—q)N+2q
This guarantess that every bounded sequence {uy}nen C Dé’2(Q) strongly converging in L4(),
strongly converges in L2(Q) as well. This gives the desired conclusion. ([

Remark 4.6. The converse implication of the previous proposition does not hold. Indeed, let
{ri}ien C R be a sequence of strictly positive numbers, such that

o0 2
2 4N
lim 7, =0 and er’” = +o0, for every 1 < < 2.

For example, one could take r; = 1/log(2+1). We then define the sequence of points {x; };en C RY
by

g 0,...,0),
Tit1 = (Ti—i-m_,_l,o,...,()) + x;,
and the disjoint union of balls

Q= B, ().
1=0

Thanks to the choice of the radii r; we have

for every € > 0, there exists R > 0

o
wgo € L*() and such that [wallze@\By) < €,

thus the embedding D(l)’2(Q) < L?() is compact, see [3, Theorem 1.3].
On the other hand, wqg ¢ LY(Q2) for every v € [1,4+00) (see [3, Example 5.2]). Thus, by
Theorem 4.2, Dé’2(Q) is not continuously embedded in any LY(Q), with 1 <~ < 2.
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5. HARDY-LANE-EMDEN INEQUALITIES FOR SETS WITH POSITIVE SPECTRUM

We want to generalize Theorem 3.1 and prove that the Hardy-Lane-Emden inequality (3.1) holds
true on any open set 2 C RY with positive spectrum, i.e. such that the constant A;(Q) defined in
(1.7) is positive.

We need an expedient result which has some interest by itself.

Proposition 5.1. Let 1 < g < 2 and let @ C RN be an open set with positive spectrum. Then
Vwga € L .(Q2) and wyq is a local weak solution of the Lane-Emden equation

_ a1
(5.1) —Awgo =w, g,
i.e. we have

/(qu@, V)de = / wgal pdx, for every ¢ € ’Dé’Q(Q’) and Q' € Q.
Q Q 7

Proof. Let wgr be the Lane-Emden function of Q N Br(0) and let ' € Q. We aim to show that
there exists a constant C' > 0 such that

(5.2) / \Vwg|?dz < C, for every R > 0.
Q/

Indeed, this entails that Vwp weakly converge (up to extracting a sequence) in L?(£)') to a vector
field Z € L?*(Q). The assumption A\;(€2) > 0 implies that w,q € L*(f2), by Proposition 4.3.
Then by recalling that 0 < wr < wgq, it is not difficuly to see that Z must coincide with the
distributional gradient Vwg o (see for example [3, Proposition 3.6]).

In particular, for every ¢ € C5°(€') the identity

/Q(VwR,V@d:c:/ﬂw?{lcpdx

passes to the limit and we are done. The fact that we can allow test functions ¢ € Dé’Q(Q’ ) follows
by density.

Thus we are left to show that (5.2) holds true. Let Q' € Q" € Q and take n € C§°(Q") a standard
cut-off function, with n = 1 on ' and |Vn| < C/dist(2,Q”). Then, for R > 0 large enough, we
test the Lane-Emden equation satisfied by wg with ¢ = wrn?. This yields

/QVwR\anda;:/anwg{dx—Q/Qan<VwR,Vn>dx

1
§/772w}1_2dx+/ |VwR|2n2dac+2/Vn|2w%dw.
Q 2 Ja Q

Since by construction we have wr < wg.0, we deduce that

4C
2 2
/, Vwg|? de < 2 / wg,gd$+w/” w0 d-

By recalling that wq, o € L*(Q2), we get (5.2) from the previous estimate. O

Theorem 5.2. Let 1 < ¢ < 2 and let Q@ C RY be an open set with positive spectrum. Then for
every u € C§°(2) and § > 0 we still have (3.1).
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Proof. Let ' € Q and ¢ € C5°(Q). Since wg € H(Y) by the previous result, we can use
©%/(wq + €) as a test function in (5.1). Then we can repeat word by word the proof of Theorem
3.1 to show that (3.1) holds for any ¢ € C§°(Y'). The conclusion then follows by arbitrariness of
e O

6. LOWER BOUNDS FOR THE GROUND STATE ENERGY

For a negative potential V € LIQOC(Q), we go back to our initial task and consider the operator

Haov = —A+ V. We already observed that Hqy is symmetric and self-adjoint, with domain
D(Hq,v) defined in (1.3). We recall the notation from the Introduction

Qov () = /Q Vol du + /Q VP, e D(Hay),
and we set

@)= it foove) s [ =1},

ueC§e(Q
We need the following expedient result which asserts that under suitable assumptions on the po-
tential V', the infimum in the definition of A\;(€2; V') can be equivalently taken upon D(l)’z(ﬂ).

2
loc

Lemma 6.1. Let Q C RY be an open set with positive spectrum, and let V € L2 (Q) be a negative

potential. We further suppose that there exists a constant C > 0 such that®

(6.1) / V| ?dae < C’/ Vl|? dz, for every ¢ € C5°(9).
Q Q
Then
A(Q; V)= inf {QQ,V(@) : / (p2 dr = 1}
Q

$€D;* ()

Proof. Since C§°(2) C Dé’Q(Q), it is straightforward to see that

A (Q;V) > inf {QQ,V(‘P) : /9902da::1}.

¢eDy*(Q)

In order to prove the reverse inequality, we take ¢ € Dé’Q(Q) with unit L? norm and a sequence
{@n}nen C C°(2) converging to ¢ in Dé’2(Q). Observe that since A1(€2) > 0, this in particular
implies that {@y,}nen converges strongly in L?(f2) as well. From the definition of \1(Q;V), we

obtain that
/|Vg0n|2dx+/V<p?de
M(Q;V) < 22 X

lon|? d
Q

, for every n € N.

We observe that

lim/|chn]2dx:/\V<p2d:c and lim/]gon]dezl.

4This is equivalent to require that for every ¢ € Cg° (), the L2 .(Q) function |V| ¢ belongs to the topological dual

D=12(Q) of Dy*(Q), with

kg “’HD—Lz(m < Clieloyz o
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In order to handle the term containing V', we first observe that by Fatou’s Lemma and density of
C3e () in Dé’Q(Q), inequality (6.1) extends to the whole D(l)’2(Q). Then we use that

3 3
’/Vwidfc—/Vsozda: < (/ |V‘(§0n_80)2dx> (/ IVI(son+s0)2dw>
Q Q Q Q
1
<C (/ |V<pn—Vg0|2d:c>2
Q
1 1
2 2 2 2
(/ Venl dx) +</ Vel dm) ]
Q Q

thanks to Holder and Minkowski inequalities, together with the hypothesis on V. If we use the
.12 .
convergence in D;“(§2), we obtain that

lim V]cpn2da::/ V ||? d,
Q

n—oo 0

which gives the desired conclusion. O
The following is the main result of the paper.

Theorem 6.2. Let Q C RY be an open set with positive spectrum and let V € LlOC(Q). For an
exponent 1 < q < 2, we suppose that

Vw%

Wq,0

(6.2) 0o>V>- ) a.e. in .

Then the spectrum o(Ha,v) of Ha,v is positive and we have
: 1 _
info(Hay) = (V) 2 5 lwg0llfq
Proof. We prove separately that
1 _ .
M(2V) > 5 lwa0ll52q) and inf o(Hoy) = M (V).

We first observe that assuming A;(€2) > 0, implies the validity of the Hardy-Lane-Emden inequality

03) g [ [
4 Ja

Wq,0
Indeed, this follows from Theorem 5.2 W1th 6 = 2. Thanks to hypothesis (6.2), we thus obtain

1 2
= / %daﬁ S/ V@]Qdac—i-/ V p?dz, for p € C3°(2).
2 Jow, g Q Q

2
1
<P2d:r—|—2/ o dx</|V<P\2d90 for ¢ € C3°(€).

Also observe that wgo € L>(Q), thanks to Proposition 4.3. In particular, we get the following
lower bound for the quadratic form
1

Qa.v(p) > — for every ¢ € C5°(Q2) with / ©?dr = 1.
2 gl 0

By arbitrariness of ¢, this gives the lower bound on A\ (92; V).
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We now prove that

info(Hay) = M (Q; V).
To see this, we first observe that by self-adjointness (see [16, Theorem 2.20]) we have that

info(H = inf Q :/ 2da;:1}.
(Hay) 9ED(Ha,v) { v () 0"
By recalling that C§°(2) C ©(Ha,v), this immediately gives
info(Ho,v) < inf {QQ,V(S@) : / orde = 1} =M (V).
p€eCE (D) Q

In order to prove the reverse inequality, we make use of Lemma 6.1. For this, we need to prove
that our potentials V' satisfy (6.1). But this easily follows from (6.3) and (6.2), which gives that

/Q|V] ©? dx < /Q |Ve|? dz, for every ¢ € C3°(2).

We can thus apply Lemma 6.1 and obtain that

M(V) = inf {Qg,v(so):/gsfdle}

v€D*(Q)
< inf Q :/ de—l}—infaH ,
oeD (o) { Qv (®) o e (Ha,v)
where we also used that D(Hqy) C H(Q) = Dé’z(Q), see Remark 2.1. This concludes the
proof. O

By using the L* estimate of Proposition 4.3, we also get the following explicit lower bound on
A1(92; V), in terms of a dimensional constant and A;(€2).

Corollary 6.3. Under the assumptions of Theorem 6.2, we also have

1 1
infU(HQy) = )\1(9; V) > —

2 onee ((26)2_q +4>

where C > 0 is the same constant appearing in (A.1).

Remark 6.4 (The choice of §). The result of Theorem 6.2 follows by chosing 6 = 2 in (3.1). One
may wonder why we limited ourselves to this choice only. In order to clarify this point, we start by
rewriting (3.1) as

A1(Q),

1 2 1/1 2
/ ’ZL dxﬁ/\Vu]zda:—i—(—l) / Vwga ul? dz.
0 Jo w, o 0 o \0 Ql w0
This implies that for every potential V' such that
1/1 2
(6.4) V2<1> ‘qu@ , a.e. in
o \o Wq,0

we have that

1 Juf? 2 2
= s dr < [ [Vul"dz+ [ V|ul"da.
0 Jow, g Q Q
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FIGURE 1. The limit potential in a ball of radius 1.

In particular, we get the following lower bound

1
Qa,v(p) >

B BT g for every ¢ € C§°(Q2) with / ©dr=1.
d ||wq,QHLoo(Q) Q

Observe that the right-hand side in (6.4) is pointwise minimal when § = 2. This explains our
choice.

7. APPLICATIONS

In this section, we compute the limit potential appearing in (6.4) in some particular cases and
give the relevant lower bound on the ground state energy A1 (£2; V). In the following examples we
take ¢ = 1, i.e. we use the torsion function.

7.1. N—dimensional ball. Let us take Q = B1(0) C R", then

1 — |z|?
wo(r) = 2]|V’ , x € B1(0),
and thus
2 2
1| Vwel” 7]
4w [ (1—]z)?
Thus for every V € L2 () such that
|z[?
> =
e R
from Theorem 6.2 we get
1
M V) > ——— = N.

~ 2||wallLe(q)
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7.2. An infinite slab. We now consider the set Q = (—1,1) x RV~1. We first need to compute
its torsion function. This is the content of the next

Lemma 7.1. Let Q = (—1,1) x RN=1 ¢ RN, Then its torsion function is given by
! 1- :E% / N-1
’UJQ(CC:[,CC):T, (z1,2') € (=1,1) x R,

Proof. We set
QR = (_1’ 1) X (_R) R)Nilv
then we notice that

wo = lim wg,.
R—+o00 @r

That is, we can approximate 2 by the sets Qr and not only by 2 N Br(0), in order to construct
wg. This follows since

wo = lim w = lim w
[ QNBr(0) Rsoo QNB2r(0)>

and the fact that by the comparison principle

WONBR(0) < WQr < WANB,x(0)
for R > 1. Let
1—a2?
2 )
and notice that w is a classical solution in £ of —Aw = 1, vanishing on 9f2.
Observe that w > wg,, for any R > 0, thanks to the comparison principle. Thus

w(z,z') = (z1,2') € (—1,1) x RV-L,

w > wo = lim wg,.
- R—+o0 Qr

To get the reverse inequality, we observe that, again by the comparison principle, wg, > wgj.
Here &g is the ellipsoid inscribed in @ g, given by

2|2
SRZ{(xl,x')ERN xt 4 ‘R|2 :1},

and it is immediate to check that

|2’
B R2 1-— l’% — R2
Yer T R2 (N —1) 2
This gives
> 1 =
wa 2 i e =
and thus the desired conclusion. O
Let us take Q = (—1,1) x RN=1 then
1 ‘ng 2 o
4 | wq (1—22)%
Thus for every potential V € L (€2) such that
il

> P —
0>V(zy,2) > A=)
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still by Theorem 6.2 we get

FIGURE 2. Approximating an infinite slab.

7.3. A rectilinear wave-guide. Finally, we want to consider a set of the form 2 = w x R, where
w C R¥1is an open bounded set with Lipschitz boundary. Again, we first identify its torsion
function.

Lemma 7.2. Let Q = w x R C RY. Then its torsion function is given by
(7.1) wo(2', xn) = we(x), (', zn) €w xR
where w,, stands for the torsion function of the set w in RN~
Proof. We divide the proof in four steps.
Step 1. In this step, we prove that for every £ > 0

wo(r,zy + 1) = wo(r', zN), (2, zN) € w x R,

i.e. the torsion function does not depend on the xx variable.

To see this, let us suppose for simplicity that w C (=R, Ro)¥ !, and take R > Ry. We set
Qr =N (-R,R)N and wg = wg,. Then
(7.2) wo(r, oy + ) = Rlim wgr(z',zy + 0).

—+00
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We now observe that if we further set Qr = QN ((—R, RYN-1x (-R—, R—K)) and wr ¢ = wqp,
then by construction we have that

(7.3) wre(r',xn) = wr(2' 2y + 0).

On the other hand, for every R > max{/{, Ry} we have that Qr—s C Qry C Q2r. Thus by the
comparison principle

(7.4) RETOO wr (2, zy) = wo(r', zyN).

Eventually, (7.2), (7.3) and (7.4) imply the claim.
Step 2. Here we prove that
wq € H'(w x (=R, Ry)), for every Ry > 0,

which enforces the general result of Lemma 5.1.
We set as before Qr = QN(—R, R)N and call wg = wg,. We fix Ry > 0 and consider R > Ry+1.
We then take a one-dimensional cut-off function n supported on [—Rg — 1, Ro + 1] such that

OSTISL n:lon [_R(]vRO]v 77/§1
In the equation verified by wg, we insert the test function
(' an) = wr(@',an) n*(zN)-

After some standard manipulations, we get

/ ]VwRPndeSC/ wr N’ de
wX(—Ro—1,Rp+1) wx(—Ro—1,Ro+1)

+C / w || da.
wX(—Ro—1,Ro+1)

By recalling that 0 < wg < wgq and that® wg € L>®(), from the previous argument we get
/ [Vuwnf? dr < C o] Bo el =@ (Ihwnl (o) +1).
wx(—Ro,Ro)

for every R > 1. This gives a uniform H' estimate on w x (— Ry, Ro) that we can take to the limit
and obtain the desired Sobolev regularity of wq.

Step 3. We now prove that for every Ry > 0, the torsion function wq solves the mixed boundary
value problem

—Au = 1, inwx (=R, Ro),
(7.5) u = 0, ondwx (—Ry,Rp),
uzy = 0, onwx{—Rp, Ro}.
We first observe that wq is a solution of the equation in w x (—Rjp, Ro). Indeed, it is sufficient to
pass to the limit in the equation satisfied by wg and use the uniform H'! estimate above.

As for the boundary conditions, we observe that the Neumann one follows since wq does not
depend on the z variable, by Step 1. The compactness of the trace operator

H'(w x (=Ry, Ry)) — L*(d(w x (—Ry, Ry)),

5The set 2 is bounded in every direction orthogonal to the zy axis, thus it is classical to see that A;(Q2) > 0.
Then wq € L*°(Q) by Proposition 4.3.
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wx (=R,R)

2R

FIGURE 3. A rectilinear wave-guide.

and the uniform H' estimate of Step 2 for wg imply the Dirichlet condition on the lateral boundary.
Step 4. In order to conclude, it is sufficient to observe that by Step 3 wq and w,, both solve (7.5).
Since the solution to the latter is unique, this gives the desired conclusion (7.1). O

When the cross-section w C RV~ of the wave-guide has a particular geometry, we can explicitely
compute wg and thus the limit potential (6.2). For example, in the case that the cross-section is a
(N — 1)—dimensional ball, i.e. when

Q={z' eRV"!: |2/| <1} xR,

then by Lemma 7.2 we have that

1— |2
/ /
= — 1
and thus
Vwg |? o |2’ |2
wo | (- 2/2)*
As before, we get that for every V € LZ () such that
|’ |?
o>V>—-—
T (A=)
it holds that
1
M V)> ———— =N-1.

7 2 |lwallLe ()
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APPENDIX A. A LOCAL L® ESTIMATE FOR LANE-EMDEN DENSITIES
We recall that the volume of the unit ball in R is given by
aN/2
WN = —————
NTIr(N2+ 1)

where I' is the usual Gamma function. For N > 3, we denote by

2
. 2%
TN = sup (/ |’U/‘2 d$> . HVU||L2(RN) =1,.
ueCge (RN) RN

the optimal constant in the Sobolev inequality for Dé’z(]RN ), i.e. the lowest number C' > 0 such

that
>
(/ Jul* dz) §C/ |Vul|® de,
RN RN

holds for any u € C§°(RY). We recall that this is given by (see [15])

T =7 N (N —2) <Féj(vj\/§)>ﬁ

In Section 4, we needed a local L*° estimate for weak subsolutions of the Lane-Emden equation.
The proof is standard routine in Elliptic Regularity Theory, our main concern is in the explicit
expression of the constant C appearing in the estimate. For this reason, we provide a detailed
proof.

Lemma A.1. Let A >0 and 1 < ¢ < 2. Let u € HL ()N L2.(Q) be a positive function such that

loc

/(Vu, V)dr < A / ult pdr,
Q

for every positive ¢ € H}(B) and every ball B @ Q. Then for every ball Bg, € Q and every o > 2
we have

ca) o (M)
(A1) lull o (3, ) < € ][ e d +<4> RT7 |
Br,

where the constant C > 0 is given by

N (N—2)

4N 8 vy
/WN m <640TN> y fOT’N Z 3,
C= v 640 2(;{—2)
2~)7-2 72 N =2
e () e
4+/10, for N =1.

Here vy is any number larger that 2 and \o,(By) is the Sobolev-Poincaré constant defined in (1.6).
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Proof. We divide the proof in three cases, depending on the dimension N.

Case N > 3. We take 0 < 7 < R <1 and a pair of concentric balls B, C Br € €2. We use as a
test function

o =n"(u+9)",

where 0 > 0, # > 1 and 7 is a standard cut-off function, supported on Br and constantly 1 on B,,
such that
1
Vnl < ——.
Vil < —

With standard manipulations, we obtain that

2
/‘V(u—i—é)ﬁ;l ’ n?dx < <ﬂ;1> /|V77|2(u—|—5)6+1dx

2
—I—)\Z <6—2i_1> /n2 (u—|—5)ﬁ+q_1daj.
4 (B+1)?
()

2 1
2dx <4 [erq—?]/ u+6) 1 dz,
TS m ot

‘We now observe that

IN

2
(u+ 6)PH=1 < (u+ )Pt 592 and <>

thus we get that

/’V(u+ 5) 5

for some universal C > 0. We add on both sides the term

[ 190w 5)°
and we obtain that

/‘v((uw)‘;éln)f dz <10 [(R_lry+mq—2} /B (u + 8)P+ da.

We then use Sobolev inequality on the left-hand side, so as to obtain

(A.2) </B <(u + 5)%)2* dm) - <107 [(R_lr)z + )\(5‘1‘2] /B (u+ 6)P* da.

R

We now introduce the sequence of diverging exponents
Bi+1 2%\ .
Vi=——=|—=1, eN,
T 2 !
and the sequence of shrinking radii

Ry —ro
9

R, =79+ R 1€ N.
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We get the iterative scheme

1 1

0y, 2941 40 o]\ 27 1

Riq1

1

20,
x(/ (u+6)wida:> .
Bg,

Before launching the Moser’s iteration, it is time to declare our choice of 0 > 0: we take it to be

1

(A.3) 5= (\(Ro — r9)?)7 7.

Thus we get that

1

1
29,41 1 T m ) 1
(“+®w””“> <(im mp) w0

7o,
X (/ (u+ §)27 dat) :
Br,

We start from 7 = 0 and iterate infinitely many times. We end up with the estimate

it+1

N

(6407v) * }
lu+ 6l pe(p,,) <ON ———Fx / (u+6)2dx |
(Ro—r0)2 \/Br
with
AN N (N-2)
(W:(N_Q

In particular, by taking ro = Ry/2, we obtain with simple manipulations that

1

N 2
[ull Lo (B, ) < VN Cn (640TN> ! (7@ u? dx) +4
Ro

We now recall the definition (A.3) of , thus the previous estimate rewrites as

N

HUHL"O(BRO/z) < Vwn Cn (160TN) !

By Jensen’s inequality, we can eventually replace the L? norm on the right-hand side by any L
norm with o > 2.

Case N = 2. The proof runs as before, the only difference is that we now use Sobolev-Poincaré
inequality for the embedding Dé’z(BR) — L7(BpR), in place of Sobolev inequality. Here + is any



28 BRASCO, FRANZINA, AND RUFFINI

exponent larger than 2. Thus, in place of (A.2) we now get

(, (s 0s) ) < 200 [ o] J, st

We used the notation

o) = win { [ 1o ellmg =1}
’U,G'Z)O7 (BR) Br

Accordingly, we modify the definition of the exponents 1J; as follows

ﬂi:ﬁi—Fl:(l)i’ i €N,

2 2
then we still take the sequence of shrinking radii
Ro —
R, =179+ OQZ.TO, 1€ N.

We get the iterative scheme

(/.

1

1
29541 4t 29,
(u+0)*"+1 da < %0 + A7 (9,77
)‘2,“/ ( 2

- (Bry) L(Fo—r0)
1
29,
X / (u+ 6)2% da ,
B,
where we also used that
Ao~ (BRr;) > A2(BR,), for every i € N.

We still take ¢ as in (A.3). After infinitely many iterations, we now get

_ 0

(640,x27(13R0)—1>2<”*”

i+ g0 5,y < C i (wto)ds) .
(Ro —10)72 Br,

N|=

with
1
0, = (29)77 7.
Finally, we observe that (recall that we are in dimension N = 2)
4
AQ?’Y(BRO) = Rg /\277(B1)7
thus by taking ro = Ry/2 we obtain

=

. S
Jll o0 (55 ) < Co (6402, (B1) 1) 707 (é <u+5>2dx)

By recalling the definition of §, we get the conclusion.

Ro

Case N = 1. This is the simplest case. We take the test function
o =1 (u+9),
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where 7 is a standard cut-off function as above, associated with a pair of concentric intervals of
width 2rg < 2 Rg. For simplicity, we suppose them to centered at the origin. By proceeding as
before, we arrive at

/RO |((u+8) ) |* dx < 10 ! X592 RO( 8)*d
u+90)n r < 5 T B ] / U+ x.
—Ro (RO - TO)Q —Ro

We observe that by Sobolev embedding in dimension 1 we have that

Ro 12 1 2
. [((w+8)n)|" do > TRo [[(w+6) 1l oo (— Ry, Ro)

> 1 2
= T_RO HuHLoo(fTQ,T‘Q)'

We still make the choice (A.3) for d, then we get that

Ro 2
ooy < B (07200

Ro =710 \J-R,

By using Minkowski inequality and recalling the definition of 4, we conclude by taking ro = Ry/2.
O
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