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Abstract

The EGFR (epidermal growth factor receptor) is involved in the oncogenesis of many tumors. In addition to the full-length
EGFR (isoform a), normal and tumor cells produce soluble EGFR isoforms (sEGFR) that lack the intracellular domain. sEGFR
isoforms b, c and d are encoded by EGFR variants 2 (v2), 3 (v3) and 4 (v4) mRNA resulting from gene alternative splicing.
Accordingly, the results of EGFR protein expression analysis depend on the domain targeted by the antibodies. In
meningiomas, EGFR expression investigations mainly focused on EGFR isoform a. sEGFR and EGFRvIII mutant, that encodes
a constitutively active truncated receptor, have not been studied. In a 69 meningiomas series, protein expression was
analyzed by immunohistochemistry using extracellular domain targeted antibody (ECD-Ab) and intracellular domain
targeted antibody (ICD-Ab). EGFRv1 to v4 and EGFRvIII mRNAs were quantified by RT-PCR and EGFR amplification revealed
by MLPA. Results were analyzed with respect to clinical data, tumor resection (Simpson grade), histological type, tumor
grade, and patient outcome.Immunochemical staining was stronger with ECD-Ab than with ICD-Ab. Meningiomas
expressed EGFRv1 to -v4 mRNAs but not EGFRvIII mutant. Intermediate or high ECD-Ab staining and high EGFRv1 to v4
mRNA levels were associated to a better progression free survival (PFS). PFS was also improved in women, when tumor
resection was evaluated as Simpson 1 or 2, in grade I vs. grade II and III meningiomas and when Ki67 labeling index was
lower than 10%.Our results suggest that, EGFR protein isoforms without ICD and their corresponding mRNA variants are
expressed in meningiomas in addition to the whole isoform a. EGFRvIII was not expressed. High expression levels seem to
be related to a better prognosis. These results indicate that the oncogenetic mechanisms involving the EGFR pathway in
meningiomas could be different from other tumor types.
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Introduction

Meningiomas are the second most common primary intracra-

nial tumor [1]. According to the World Health Organization

(WHO) classification, they consist of grade I (meningothelial,

psammomatous, fibroblastic, angiomatous and transitional); grade

II (atypical, chordoid and clear cells), which have a high rate of

recurrence; and grade III tumors (anaplastic, papillary, rhabdoid),

which are highly malignant. Meningiomas infiltrating adjacent

brain tissue are considered to be grade II [2].

Epidermal growth factor receptor gene (EGFR/ErbB1) is a

member of the ErbB receptor tyrosine kinase family. EGFR

overexpression has been reported in a majority of human tumors

[3,4,5,6]. Recent therapeutic agents that target EGFR such as

monoclonal antibodies and small-molecule tyrosine kinase inhib-

itors constitute an important progress in various cancer treatments

[7,8,9,10].

EGFR is composed of three main domains: an extracellular

domain (ECD), a transmembrane domain (TMD), and an

intracellular domain (ICD). In addition to the full-lenght

transmembrane forms, soluble EGFR (sEGFR) isoforms, that

comprised solely the ECD portions of the receptor, have been

detected in normal and malignant cells, in tissues, and in biological

fluids [11,12]. These sEGFR proteins can be either generated by

alternative mRNA splicing events or via proteolytic cleavage of the

receptor [13,14]. EGFR gene alternative splicing leads to four

transcripts: EGFR variants 1, 2, 3 and 4 (v1, v2, v3 and v4,

respectively) mRNA that encode 170-kDa whole receptor and 60-

kDa [15], 80-kDa [16,17] and 110-kDa [18] sEGFR isoforms,

respectively. Another 110-kDa soluble EGFR isoforms known as

PI-sEGFR are produced by proteolytic cleavage triggered in part

by metalloproteases [11,12,19,20]. In addition, an aberrant

translocation event was found in A431 vulvar carcinoma cell line

resulting in the expression of a 115-kDa sEGFR [21]. Circulating

sEGFR level have been used as prognosis and theragnosis

predictive markers in the serum of patients with cervical [22],

colorectal [23], ovarian and breast [24,25,26,27]. The predictive
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value of sEGFR was also studied directly in tumor tissues from

cervical or lung cancer [28,29].

Since alternative splicing can produce different isoforms, it is

critical to know which epitope recognize the antibodies when

studying EGFR protein expression. Indeed, others and we

reported strong difference in immunohistochemical labeling

according to the EGFR domain, ECD or ICD, targeted by

primary antibodies [5,28,30].

In meningiomas, the role of EGFR signaling pathway in tumor

genesis and the usefulness of EGFR investigation in regard to

prognosis and/or theragnosis assessment remain unclear and

discrepancies exist. Some studies reported higher EGFR protein

levels in grade I and grade II meningiomas compared to grade III

meningiomas [31,32]. Smith et al. reported shorter survival times

for patients having atypical meningiomas with low EGFR protein

levels [33]. Depending on studies, the percentage of meningiomas

that overexpress EGFR varied from 40 to 100%,

[31,34,35,36,37,38,39]. In addition, the nature of the cells

(endothelial or tumor cells), expressing EGFR protein has also

been discussed [34,38,40,41]. The lack of consensus in meningi-

omas regarding EGFR can be attributed to primary antibodies

used in immunohistochemistry (IHC) [30,42] or to primer

locations when RT-PCR approaches were used. sEGFR have a

potential role in activating or inhibiting the EGFR pathway and

their expression pattern can be of major interest for potential

therapeutic applications in meningioma [43,44].

In addition to EGFR overexpression, EGFR gene amplification

is another common genetic alteration found in glioma, non small

cells lung cancers or colorectal tumors. However, in meningiomas

no such alteration was described [40]. EGFR amplification is often

associated with the expression of a constitutively active EGFRvIII

mutant, in which a portion of ECD is missing. EGFRvIII has been

detected in glioblastomas [45], breast, ovarian, prostate or lung

cancers [46,47] but never studied in meningiomas.

In the present study, we investigated the EGFR expression

pattern of meningiomas. EGFR isoforms were assessed on IHC

with EGFR ECD-Antibody (ECD Ab) that recognized all isoforms

and with ICD-Antibody (ICD-Ab) that recognized only isoform a

(EGFR full length receptor) and EGFRvIII. We then investigated

their corresponding mRNA levels by Quantitative RT-PCR

(EGFR v1, v2, v3, v4 and vIII mutant mRNAs). Finally, EGFR

gene amplification was assessed by Multiplex Ligation-dependant

Probe Amplification (MLPA). These data were analyzed with

respect to tumor grade and to patient outcome. To our knowledge,

it is the first report on meningiomas that compared the difference

in IHC staining between ECD and ICD EGFR antibodies and

that studied the expression level of mutant EGFRvIII and sEGFR-

encoding transcripts.

Material and Methods

Patients and Tissue Samples
We studied 69 meningiomas obtained from adult patients

undergoing surgery at Limoges Dupuytren University Hospital

between 1995 and 2009. All samples were used in accordance with

French bioethics laws regarding patient information and consent.

Ethics approval was obtained from the ‘‘comité médico-scientifi-

que de la tumorothèque de l’Hôpital Dupuytren’’, the bioethics

committee of our hospital. Before storage in the tumor bank,

samples are anonymized when received in the Pathology

Department and only the number of anonymity, age and sex are

provided to users. Out of 69 patients, 38 underwent surgery for

intracranial meningiomas from 1996 to 2004. In agreement with

our bioethics committee’s procedure, no information was given to

and no written or verbal consent was obtained from these patients

because samples were already collected and referred to research

prior the French bioethical law (2004). From 2005, the new

French law on Bioethics applies. The law states that patients 1)

must be informed of the possible use of their samples for research

purposes 2) should not have expressed their refusal to the use of

their samples for research purposes. However, the law does not

specify whether the information or the refusal must be collected

verbally or in a written form. Thus in our Institution, patients who

underwent surgery are verbally informed and only in cases of

refusal their written opposition is recorded. In that case, samples

are no longer eligible for research purposes. This procedure has

been validated and implemented by the bioethics committee of our

Institution.

Clinical, radiological, therapeutic and survival data were

obtained by a retrospective query. In 67 cases, surgical resection

could be evaluated according to the Simpson grade which was

determined from the surgical records [48]. No patients had

received EGFR-targeted chemotherapy. At the time of resection,

tumor samples were fixed in 4% formalin, embedded in paraffin

and sections were stained with hemalum phloxin saffron. A part of

the surgical specimen was snap frozen and stored at 280uC. The

histological tumor types and grade of meningiomas were

determined according to the WHO classification. Histologically

benign meningiomas but presenting a brain invasion were

classified as grade II [2]. In cases where a preoperative

embolization was performed (height tumors), we interpreted the

presence of necrosis as secondary to embolization and not as true

tumor necrosis.

Quantitative RT-PCR
Total RNA extraction. Before RNA extraction, hemalum

phloxin-stained sections of the frozen tissue were prepared and

examined to ensure that the tissue samples were located in

representative areas of the tumors. Tumor tissue (5 to 30 mg) was

incubated with 1 mL QiazolH solution (Qiagen, Courtaboeuf,

France) and CK14 ceramic beads (Ozyme) and pulverized two

times for 40 sec each at 6,500 rpm in Precellys 24 homogenizer

(Ozyme). Homogenized tissues were lysed and RNA purification

was performed according to the manufacturer’s protocol (‘‘RNeasy

lipid tissue kit’’, Qiagen). A DNase I digestion step was included

for each extraction to prevent contamination of the RNA by

genomic DNA. RNA concentration and purity was estimated by

spectrophotometry (NanoDrop ND1000, Labtech France). RNA

quality was assessed by capillary electrophoresis (Bioanalyzer

2100, Agilent Technologies) and only RNAs with an integrity

number .6 were used for analysis. Eight patients were excluded

from analysis due to the absence of tumor tissue or to RNA

degradation after extraction.

Quantitative and Qualitative RT-PCR
Complementary DNA (cDNA) was synthesized from 2 mg of

total RNA using the Transcriptor First Strand cDNA SynthesisH
kit (Roche) and hexamer primers according to manufacturer’s

protocol. Primers sequence and locations were carefully selected to

amplify EGFRv1-vIII, EGFRv2, EGFRv3, EGFRv4, EGFRvIII

and hypoxanthine phosphoribosyl transferase (HPRT) as previ-

ously described [5]. For quantitative PCR of v1, v2, v3, v4

transcripts, HPRT was used to normalize results, based on

previous comparative experiments. Specific amplification of

EGFRvIII mRNA was considered as qualitative for the following

reason: the 59 forward primer was designed to overlap exon1-

exon8 boundary for specificity purpose but PCR generated primer

dimers that did not allow accurate quantification. However, on the

Meningiomas and EGFR Expression
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Figure 1. ECD-Ab and ICD-Ab targeting. EGRF gene contains 30 exons and generates 5 different mRNAs. Variant 1 mRNA encodes the whole
EGFR isoform a. Alternative splicing generates variant mRNAs 2, 3, and 4 that encode sEGFR isoforms b, c and d respectively. EGFRvIII mutant mRNA
with a 801 bp (exons 2–7) deletion produces EGFR vIII that lack amino acids 2 to 273. ECD-Ab targets EGFR extracellular domain and recognizes
sEGFR and vIII mutant, whereas ICD-Ab targets EGFR intracellular domain and recognizes EGFR isorform a and vIII mutant.
doi:10.1371/journal.pone.0037204.g001

Table 1. Distribution according to histopathological type and grade.

All Grade Ia Grade IIa Grade IIIa

w. brain inv. w/o. brain inv. w. brain inv. w/o. brain inv. w. brain inv. w/o. brain inv.

n 69 0 29 14 19 5 2

Tumor histology

Microcystic 1 – 1 – – – –

Fibrous 9 – 9 – – – –

Transitional 18 – 13 5 – – –

Meningothelial 14 – 6 8 – – –

Clear cells 1 – – – 1 – –

Atypical 12 – – 1 11 – –

Chordoid 7 – – – 7 – –

Malignant 7 – – – – 5 2

aTumors with or without brain invasion (w. brain inv. and w/o. brain inv.) were distinguished.
doi:10.1371/journal.pone.0037204.t001

Meningiomas and EGFR Expression
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PCR fusion profile, EGFRvIII specific products were detectable

down to 10 copies. PCR were performed on a Rotor Gene

thermocycler (Corbett Research) using the ‘‘Light Cycler Fast

Start DNA Master SYBR Green I’’ kit (Roche). All targets were

amplified in the presence of 3 mM MgCl2 and 0.5 mM primers.

The mRNA levels were quantified using the DDCt method

((Ctsample2Ctcalibrator)interest gene2(Ctsample2Ctcalibrator)reference gene),

modified according to Pfaffl [49], with efficiency correction by the

Rotor Gene Software, and were expressed in relative arbitrary

units (R.A.U.). For each interest gene, values were normalized as

follows: Samplex mRNA rate = Raw Samplex mRNA rate/

mean1Rn raw mRNA rate.

Multiplex Ligation-Dependent Probe Amplification
(MLPA) Procedure and Data Processing

EGFR gene amplification was studied using the MLPA

technique with the SALSA P105 (MRCHolland, http://www.

eurogentest.org/uploads/1247475007479/MLPA_validation re-

port_TJ_version1_2009 0710.pdf). MLPA was performed on

35/69 patients randomly selected in grade I (14/29) and grade

II (14/33) tumors, and in all grade III meningiomas (7/7). Four

normal control DNA samples, isolated from blood of healthy

volunteers, were included in MLPA experiment and for data

processing. Probes contained in MLPA SALSA P105 hybridized

11 of the 30 exons of EGFR gene, and also contained 8 control

probes located on chromosome without known abnormalities in

meningiomas. Probe sequences and location are available on the

manufacturer site.

MLPA was performed as described by the manufacturer with

minor modifications. Briefly, DNA (30 ng) was dissolved in 5 ml of

TE-buffer (10 mmol/L Tris, pH 8.2, 1 mmol/L ethylenediamine-

tetraacetic acid, pH 8.0), denatured, and subsequently cooled to

25uC. After adding the probe mix, the sample was denatured, and

the probes were allowed to hybridize (16 hours at 60uC). After

ligation of both probe pairs and inactivation of ligase, PCR was

performed in a volume of 50 ml containing 10 ml of the ligation

reaction mixture using the PTC 200 thermal cycler (MJ Research

Inc., Waltham, MA) (35 cycles of denaturation at 95uC for 30

seconds, annealing at 60uC for 30 seconds, and extension at 72uC
for 1 minute with a final extension of 20 minutes at 72uC).

Fragments were separated and quantified by electrophoresis on an

ABI 3130 XL capillary sequencer (Applied Biosystems, Foster

City, CA) and Genemapper analysis (Applied Biosystems).

Data analysis was performed in Excel using a ‘‘in house’’

method modified from Jeuken et al., 2006 [50] : first, the fraction

of each peak was calculated by dividing the peak area value of

each probe amplification product by the combined value of the

control probes within the sample, to compensate for PCR

efficiency of the individual samples. Subsequently this relative

peak value or so-called probe fraction is divided by the mean

probe fraction of this fragment within the included reference

DNAs, generating the normalized peak value or the so-called

probe ratio.

Values obtained for six negative samples (blood samples Nu1–3

and glioma samples Nu4–6 with unamplified EGFR) were used as

reference to set theoretical threshold [51] at 0.5 to identify DNA

losses and at 2 for DNA gains. Based on values obtained for a

glioma sample with an amplified EGFR (sample Nu8), polysomy or

amplification was concluded when values above 2 was reached for

all EGFR exons.

Immunohistochemistry
After representative areas of tumor tissue were selected using

hemalum phloxin saffron-stained sections, five mm-thick sections

were cut from paraffin-embedded blocks. Sections were incubated

with Ki67 antibody (clone MiB-1, DakoCytomation, Glostrup,

Denmark; 1/200e), EGFR ECD-Ab (clone 3C6, Ventana Medical

System, France; pure) and EGFR ICD-Ab (clone EGFR.25,

Novocastra Laboratories, United Kingdom; 1/500e), (Figure 1).

Sample slides were processed automatically (BenchMark XT ICH/

ISH, Ventana Medical Systems, USA) according to protocols

supplied by the antibody manufacturers. For each section, we

recorded the type of cell expressing EGFR protein, the percentage of

labeled cells, the labeling intensity and the resulting Hirsch score as

previously described [52,53,54,55,56,57]. For Ki67 labeling index,

10% of labeled cells was taken as a cut-off value for analyses.

Statistical Analyses
Statistical analyses were performed with StatViewH 5.0 (SAS

Institute, Inc., Cary, NC, U.S.A.) and PAST 2.08 b (http://folk.

uio.no/ohammer/past, [58]) software. A correlation between

quantitative variable was assessed with Pearson r test. Fisher’s

exact test was used to assess differences between nominal variables.

Means variations according to variables were compared with the

Student-t test. Progression free survival (PFS) and overall survival

(OS) were analyzed by Kaplan-Meier and median PFS or OS

medians were compared with the non-parametric logrank. Results

for which p,0.05 were considered to be statistically significant.

Results

Tumor Characteristics
Histopathological features of the 69 meningiomas are given in

Table 1. Tumors locations were cerebral convexity (n = 39), falx

(n = 5), parasagittal (n = 5), paratentorial (n = 1) regions and skull

Table 2. Relationship between tumor grade, demographic
data, Simpson grade, absence or presence of tumor necrosis
and Ki67 labeling index.

All Grade I Grade II Grade III p

N 69 29 33 7

Age (median) 56.8 57 58.2 48.2 ,0.05

Sex

Men 26 7 13 6 0.01

Women 43 22 1 1

Simpson Grade

1 22 8 13 1 0.1

2 36 19 14 3

3 4 1 3 0

4 5 1 2 2

n.a. 2 - 1 1

Tumor Necrosis

Yes 18 3 9 6 0.0008

No 43 22 20 1

Preoperative
embolization

8 4 4 -

Ki67 Labeling
Index

,10% 55 29 25 1 ,0.0001

$10% 14 0 8 6

doi:10.1371/journal.pone.0037204.t002

Meningiomas and EGFR Expression
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base (n = 19). They were not related to tumor grade (data not

shown). Relationship between demographical data, histological

grade, Simpson grade, presence or absence of tumor necrosis and

Ki67 labeling index is indicated in Table 2.

Immunohistochemical Detection of EGFR Proteins
ECD-Ab and ICD-Ab targeted extracellular and intracellular

EGFR domain respectively (Figure 1). Labeling localizations were

slightly different according to manufacturer indications (Figure 1).

ECD-Ab stained membrane and cytoplasm of tumor cells (Figure 2

A and C) while staining with ICD-Ab was almost always restricted

to the cytoplasm (Figure 2 B and D). In three cases, a staining was

observed in both endothelial and tumor cells with the ECD-Ab.

As shown on immunohistochemical sections (Figure 2A, B, C, D),

staining intensity, percentage of stained cells and resulting Hirsch

Scores were significantly higher for ECD-Ab than those obtained

with ICD-Ab (p,0.0001, Figure 2E). All meningiomas were labeled

with ECD-Ab, 78% (54/69 cases) of them having a strong labeling

(Table 3). In contrast, only 45% of the tumors were labeled with ICD-

Abandallof thempresentedonly lowor intermediate labeling.Allbut

Figure 2. EGFR immunohistochemistry. (A and B) Grade I transitional meningioma and (C and D) grade II chordoid meningioma: tumor cells
showed a very strong labeling, membranous and cytoplasmic, with ECD-Ab (A and C) while rare cells were labeled, mainly within the cytoplasm, with
the ICD-Ab (B and D); (E) Labeling parameters are presented for ECD-Ab and ICD-Ab.
doi:10.1371/journal.pone.0037204.g002

Table 3. Comparison for ECD-Ab and ICD-Ab score labeling.

ECD-Aba

+++ ++ + No

ICD-Aba +++ – – – –

++ 3 – – –

+ 24 3 1 –

No 27 8 3 –

aECD-Ab and ICD-Ab labeling was expressed as Hirsch score: strong (+++, score
301–400), intermediate (++, score 201–300), low (+, score 1–200), no expression
(No, score 0).
doi:10.1371/journal.pone.0037204.t003

Meningiomas and EGFR Expression
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one tumors stained with ICD-Ab had intermediate or strong ECD-

Ab staining, whereas tumors with low or intermediate ECD-Ab

labeling were not or very lightly stained with ICD-Ab.

ECD-Ab and ICD-Ab labeling score was not associated with

patient age, sex, absence or presence of tumor necrosis, brain

invasion and tumor grade (Table 4). We observed that ICD-Ab

Table 4. Relationship between immunohistochemical EGFR detection and clinicopathological parameters.

n ECD-Ab Hirsch Score ICD-Ab Hirsch Score

Mean ± SD p Mean ± SD p

All 69 367.7673.4 23.5658.8

Sex

Male 26 366.5679.6 .0.99 28670.7 0.4

Female 43 366.7669.9 16643.8

Age (years)

#56.8 34 360.9673.6 0.5 18.5650.6 0.8

.56.8 35 372.6673.3 22.6660.4

Simpson Grade

1 22 354.1685.3 0.3 (1 vs.3 or 4) 17.5646.2 0.06 (1 vs. 4)

2 36 373.1666.8 0.4 (2 vs. 1 or 3) 11.7639 0.01 (2 vs. 4)

3 4 40060 606120 0.08 (2 vs. 3)

4 5 356698.4 746102.9

Brain Invasion

Yes 19 371.6671.3 0.7 1.864.5 0.08

No 50 364.8674.4 27.6663.6

Tumor Necrosis

Yes 43 356.7690.3 0.6 31669.2 0.4

No 18 369.3670.3 18.4653.5

Histological Grade

I 29 382.8638.4 0.1 (I vs. II) 23.2652.9 0.3 (I vs. III)

II 33 355.2691.1 0.2 (I vs. III) 22.4662.9 0.4 (II vs. III)

III 7 354.3685.4 0.661

Ki67 Labeling Index

,10% 55 377.8656.2 0.01 17.3646.9 0.3

$10% 14 322.96110.6 33.3681.5

doi:10.1371/journal.pone.0037204.t004

Figure 3. Expression of EGFR variant mRNA. EGFR v1, v2, v3 and v4 mRNA levels were expressed in R.A.U.
doi:10.1371/journal.pone.0037204.g003

Meningiomas and EGFR Expression

PLoS ONE | www.plosone.org 6 May 2012 | Volume 7 | Issue 5 | e37204



labeling score tended to be lower in Simpson grade 1 and 2. ECD-

Ab labeling was inversely related to Ki67 labeling index (p = 0.01)

(Table 4).

EGFRv1, v2, v3, v4 and EGFRvIII Mutant mRNA Levels and
their Association with other Tumor Variables

All meningiomas expressed EGFR v1, v3 and v4 mRNA

whereas only 50% of the tumors expressed EGFRv2 mRNA.

Table 5. MLPA results for EGFR gene amplification.

N6 Type Ex 1 Ex 2 Ex 3 Ex 4 Ex 5 Ex 6 Ex 7 Ex 8 Ex 13 Ex 16 Ex 22

1 Negative control 1.13 0.90 0.91 1.36 1.03 0.51 0.82 0.84 1.01 1.40 1.37

2 Negative control 1.55 0.83 1.00 1.31 1.13 0.50 0.91 0.98 0.94 1.79 1.34

3 Negative control 1.46 1.08 0.98 1.66 1.03 0.38 0.94 1.01 0.88 1.59 1.41

4 Negative control 1.62 1.92 1.54 1.88 1.39 0.60 1.48 1.34 1.70 1.75 2.19

5 Negative control 1.21 0.67 0.74 1.32 1.04 0.84 0.82 1.23 1.00 1.28 1.05

6 Negative control 1.27 2.34 1.57 1.89 1.24 0.66 1.63 1.74 1.78 1.65 1.74

7 Positive control 32.47 30.97 32.07 33.89 28.50 26.44 26.05 35.51 28.88 31.53 30.17

8 Grade I 1.83 1.33 1.24 1.41 1.28 0.61 1.07 1.23 1.22 1.87 1.50

9 Grade I 1.47 0.55 0.80 1.21 0.92 0.50 0.93 1.07 0.95 1.17 0.89

10 Grade I 1.59 0.56 0.75 1.11 1.10 0.77 1.04 1.24 1.27 1.30 0.74

11 Grade I 1.35 0.67 0.74 1.09 1.00 0.57 0.83 1.04 1.00 1.20 0.90

12 Grade I 1.34 0.75 0.70 1.09 1.10 0.64 0.90 0.99 0.95 0.99 0.87

13 Grade I 1.42 0.60 0.75 1.07 1.17 0.92 0.98 0.92 0.99 1.24 1.06

14 Grade I 1.49 0.62 0.61 0.89 0.88 0.48 0.73 0.71 0.83 1.00 1.15

15 Grade I 0.75 0.35 0.61 0.57 0.73 0.40 0.48 0.64 0.58 0.63 0.58

16 Grade I 1.75 0.65 0.91 1.22 1.28 0.72 0.98 1.04 0.93 1.31 1.36

17* Grade I 1.08 0.61 0.87 1.31 1.02 0.64 0.93 1.00 0.89 1.39 0.84

18* Grade I 1.26 0.62 0.68 0.96 0.84 0.54 0.78 0.91 0.93 0.65 0.75

19 Grade I 1.53 0.79 1.10 1.62 1.24 0.75 1.05 1.31 1.19 1.31 1.31

20 Grade I 1.12 1.07 0.84 1.24 1.05 0.60 0.79 0.98 0.83 1.42 1.33

21 Grade II 1.36 0.61 0.72 1.21 1.00 0.71 0.96 0.89 0.99 1.15 0.96

22 Grade II 1.58 0.48 0.67 0.83 1.11 0.89 0.95 1.13 1.20 1.01 0.97

23 Grade II 1.56 0.61 0.86 1.31 1.29 0.81 1.23 1.23 1.30 1.34 1.13

24 Grade II 2.45 1.22 1.27 1.89 1.79 1.29 1.62 1.69 1.89 1.46 1.83

25 Grade II 1.35 0.52 0.83 1.19 1.35 0.85 1.04 1.24 1.37 0.93 1.21

26 Grade II 1.40 0.46 0.63 0.84 0.89 0.50 0.81 0.79 1.04 0.92 0.92

27 Grade II 1.04 0.32 0.45 0.72 0.70 0.39 0.63 0.74 0.60 0.67 0.59

28 Grade II 1.46 0.67 0.86 1.30 0.93 0.57 0.93 1.07 0.97 1.15 1.10

29 Grade II 1.67 0.63 1.01 1.25 0.89 0.79 1.04 1.20 0.88 1.33 0.94

30 Grade II 1.25 0.52 0.75 1.07 0.83 0.88 1.00 1.17 1.19 0.93 0.85

31 Grade II 1.47 0.90 0.99 1.35 1.05 0.84 1.06 1.25 1.27 1.43 1.05

32 Grade II 1.52 0.64 1.17 1.35 1.10 0.92 1.15 1.47 1.11 1.17 1.09

33 Grade II 1.27 0.80 1.07 1.29 1.00 0.77 0.89 1.31 1.17 1.22 1.09

34 Grade II 1.37 0.55 0.87 0.99 1.05 1.11 1.17 1.50 1.27 0.93 0.86

35 Grade II 2.23 0.77 0.93 1.24 1.43 1.86 2.18 2.75 2.22 1.57 1.12

36 Grade III 0.76 0.37 0.34 0.73 0.64 0.48 0.63 0.56 0.61 0.67 0.44

37 Grade III 1.02 0.34 0.52 0.81 1.12 0.83 1.03 0.90 1.16 0.93 0.92

38 Grade III 0.76 0.30 0.62 0.88 1.33 1.24 1.14 1.02 0.86 0.96 0.99

39 Grade III 1.35 0.74 0.74 1.34 0.95 0.67 1.09 1.27 1.05 0.85 0.95

40 Grade III 2.18 1.12 1.09 1.94 1.47 1.00 1.58 2.01 1.64 1.87 1.33

41 Grade III 2.47 1.12 1.36 1.77 1.90 1.39 1.95 2.48 1.71 1.51 1.61

42 Grade III 1.10 0.77 0.97 1.20 0.86 0.64 0.88 1.43 0.85 0.75 0.80

Negative controls were healthy volunteers blood (Nu1–3) or glioma with no EGFR amplification as validated by a standard FISH technic (Nu4–6). Positive control was
glioblastoma harboring EGFR amplification as validated by a standard FISH technic (Nu7). *Cases Nu17 and 18 were chosen to illustrate MLPA results on figure 4. Lack of
amplification was concluded for 2.Ratio,0.5, and amplification for ratio .3 (bold values). 2,Ratio.0.5 were considered as not interpretable (underlined values).
doi:10.1371/journal.pone.0037204.t005
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Results indicated the following rank of magnitude EGFR v4.

EGFR v3. EGFRv1. EGFR v2 (Figure 3). Moreover, except for

EGFRv2 mRNA, each EGFR variant mRNA levels were

straightly correlated with each other (p,0.0001, data not shown).

The EGFRvIII mutant mRNA was never detected.

There was no significant association between any variant

mRNA levels with demographic variable, Simpson grade, brain

invasion, tumor type and grade or Ki67 labeling index (results not

shown).

MLPA Results for EGFR Amplification
MLPA results are given in the Table 5. Examples of the MLPA

profiles are presented in Figure 4. Values ,0.5 or .2 did not

reflect a loss or a gain when found only on certain exon and were

considered as not interpretable, probably due to variability in

DNA quality. Compared to a glioma sample with an amplified

EGFR, none of the analyzed meningiomas showed EGFR gene

amplification.

Relationship with Tumor Progression Free Survival and
Overall Survival

At the time of our analysis, the tumors of nine patients had

recurred (out of 69) and were all grade III meningiomas. PFS was

significantly better for women and for patients having Simpson

grade 1 and 2 tumors, grade I vs. grade II vs. grade III tumors and

for meningiomas with a KI67 labeling index less than 10%

(Table 6; Figure 5A, B, C). Taken individually, the expression of

each mRNAs variant was not significantly link to PFS (Table 6).

However, when mRNAs variant expression was analyzed as a

whole, high levels were correlated with a better PFS (Figure 5D;

Table 6). A better PFS were also found with patients whose tumors

were strongly labeled with ECD-Ab. No such link could be drawn

with ICD-Ab (Figures 5E and 5F respectively). Regarding OS,

Simpson grade 1 and 2, absence of brain invasion, grade I and II,

and Ki67 labeling index less than 10% were related with a better

prognosis (Table 6).

Discussion

Epidermal Growth Factor Receptor is involved in many tumors,

with alterations ranging from protein overexpression, gene

amplification, and gene mutation. EGFR is also alternatively

spliced giving rise to four different isoforms, three of which lacking

tyrosine kinase domain. In meningiomas, the second most

common intracranial tumor, EGFR expression analysis gave

conflicting results particularly on IHC, depending on the antibody

used. Hence, the usefulness of EGFR as a potential prognosis or

theragnosis marker is questionable.

In this study we described the EGFR-based profiling of

meningiomas. EGFR was analyzed at protein, genetic, and

transcriptomic levels. Results were confronted to histological and

clinical data.

Figure 4. EGFR gene amplification. Genomic DNAs from glioma with and without EGFR amplification were used as positive and negative controls
respectively. Two examples of results obtained for meningioma are presented.
doi:10.1371/journal.pone.0037204.g004
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In a 69 meningiomas series, we showed that IHC analysis

revealed an ECD-Ab staining significantly stronger than that with

the ICD-Ab. Whereas ICD-antibodies only target whole EGFR

and the EGFRvIII mutant, the ECD-antibodies also detect

sEGFR like isoforms b, c and d as shown by Halle and coworkers

in cervical cancers [28]. Our IHC results suggest that meningi-

omas express other EGFR isoforms than the whole receptor, but

do not indicate which ones. However, transcriptional analysis of

EGFR variants indicated that all isoforms were present in our

series (see below).

Our findings clearly show that IHC data should be interpreted

according to the antibody used to investigate EGFR expression.

Antibodies directed against the EGFR ECD do not recognize the

same isoforms as antibodies directed against the ICD and this

might explain the discrepancies found in the literature concerning

EGFR expression. EGFR has been reported to be expressed in

meningiomas at frequencies greater than 60%

[31,34,35,36,37,38,39] and even as high as 100% [59], which is

similar to our results with ECD-Ab but not with ICD-Ab. These

findings are not only reported in meningiomas but have also been

described in other tumor types and with other EGFR antibodies

[5,28,30,60,61,62].

In addition to whole EGFR, tumor cells express sEGFR

proteins that can be generated by alternative mRNA splicing

events [13,14,15,16,18], via proteolytic cleavage of the receptor

[11,12,13,20] or by aberrant translocation events [21]. In our

series, we found that meningiomas expressed the alternatively

spliced mRNA transcripts v2, v3 and v4. That suggests that the

EGFR b, c and d isoforms are likely to be produced by

meningiomas and supports our immunohistochemical results.

These results suggest that the EGFR signaling pathway, including

EGFR mRNA variant expression, could be involved in meningi-

omas oncogenesis. However, we did not find any specific mRNA

expression pattern that correlated with the histological tumor type

and grade.

EGFR gene amplification, associated or not to EGFRvIII

mutant expression, is frequently observed in other tumors like

gliomas [5,52,63,64,65,66], lung cancers [67,68], breast [69], and

prostate adenocarcinomas [70]. EGFR gene amplification and

EGFRvIII transcripts were not detected in our series, indicating

that they are not involved in meningiomas oncogenesis.

Regarding the roles of the EGFR pathway in oncogenesis, the

expression pattern of this receptor in meningiomas seems

somewhat paradoxical. The EGFR pathway is known to play

important roles in cell proliferation, resistance to apoptosis,

adhesion, motility, invasion and angiogenesis, all of which are

characteristic features of tumor progression. Consequently, EGFR

overexpression in many tumors, such as head and neck

carcinomas, is associated with malignancy and more aggressive

phenotypes [71]. These characteristics represent the basis of anti-

EGFR targeted therapies used in clinical oncology. Conversely, in

our series of meningiomas, high levels of EGFR expression were

associated with a better clinical outcome, as previously reported

[31,32]. Physiopathological mechanisms of EGFR expression

remain poorly understood and different hypotheses have been

proposed. It has been suggested that the EGFR pathway in

meningiomas is stimulated by an autocrine/paracrine mechanism

that occurs in association with other control systems [31,72]. The

ultimate result is that EGFR pathway activity is either positively or

negatively regulated. Thus, activation of the EGFR pathway could

represent a first step in meningiomas oncogenesis, whereas

transformation in more aggressive tumors and/or the development

of primary grade III meningiomas could result from additional

oncogenic mechanisms.

The roles of the different EGFR isoforms are largely unknown

in tumor pathology. Albitar et al. reported isoform expression in

cell cultures of endometrial adenocarcinoma [73]. Some studies

indicate that soluble isoforms could regulate EGFR signaling in

normal [17] and in tumor tissues [74]. Truncated EGFR isoforms

have been shown to decrease cellular proliferation in vitro [16,75].

The mechanisms responsible for growth inhibition could be

competitive binding of EGFR ligands by the soluble isoforms

[76,77] and formation of inactive heterodimers between different

isoforms, which competitively prevent the formation of functional

holoreceptors and reduce intracellular kinase activity [74]. In our

series, the presence of EGFR mRNAs suggests that a particular

regulatory mechanism of EGFR signaling could exist in menin-

giomas. Patients whose tumors produced high levels of v1–v4

mRNAs presented a better PFS. Moreover, improved PFS was

associated with a strong or intermediate ECD-Ab staining but not

with ICD-Ab labeling. That might indicate that truncated isoforms

could act as negative regulators.

Prognosis and theragnosis predictive values have been shown

for sEGFR levels in blood and in tumor tissues of certain cancers

[22,23,24,25,26,27,28,29]. These isoforms may compete with

active, membrane-bound receptors for the binding of therapeutic

Table 6. OS and PFS according to clinical, pathological and
molecular parameters.

PFSa OSb

Median
(months)

p Median
(months)

p

Age

#56.8/.56.8 nr/nr 0.82 nr/nr 0.3

Gender

Male/Female 45.8/nr 0.002 nr/nr 0.4

Simpson Grade

1/2/3/4 nr/nr/3.6/15.2 ,0.0001 nr/nr/nr/19.2 0.03

Brain Invasion

No/yes nr/nr 0.67 nr/nr 0.003

Histological Grade

I vs. II vs. III nr/nr/37 n.a. nr/nr/19.2 0.01

Ki67 Labeling Index

,10% vs. $10% nr 15.54 ,0.0001 nr nr 0.03

ECD-Ab (Hirsch Score)

Low vs. Interm vs. High 15.9/nr/nr 0.04 19.2/nr/nr n.a.

ICD-Ab (Hirsch Score)

No vs. Low vs. Interm nr/nr/nr 0.2 nr/nr/nr n.a.

EGFR variant mRNA Levelsc

EGFRv1 Weak vs. Strong nr/nr 0.5 nr/nr 0.4

EGFRv2 Weak vs. Strong nr/nr 0.9 nr/nr 0.5

EGFRv3 Weak vs. Strong nr/nr 0.1 nr/nr 0.5

EGFRv4 Weak vs. Strong nr/nr 0.4 nr/nr 0.1

SEGFRv1v2v3v4 Weak vs.
Strong

51.3/nr 0.04 nr/nr 0.5

aProgression free survival (PFS).
bOverall survival (OS).
cMedian values were used as cut-off to determinate weak and strong levels for
each variant or sum (S) of all variants.
doi:10.1371/journal.pone.0037204.t006
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Figure 5. Patient PFS according to clinical and biological parameters. Probability of progression free durvival (PFS) was expressed in months,
according to Simpson grade (A), histological tumor grade (B), Ki67 labeling index (C), EGFRv1v2v3v4 mRNA levels (D), ECD-Ab labeling (E), and ICD-Ab
labeling (F).
doi:10.1371/journal.pone.0037204.g005
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antibodies, which could thus explain why some EGFR-targeted

therapies failed [61,78,79]. In meningiomas, intracellular EGFR

inhibitors, like Gefitinib or Erlotinib have been shown to be

inefficient [43]. Regarding our results, this could be due to an

overexpression of sEGFR rather than entire EGFR isoforms, since

these inhibitors are ineffective on EGFR isoforms that lack the

ICD.

Finally, several studies have shown that treatment outcomes,

with regards to EGFR, are also dependent on serum ligand levels.

Several reports showed relation between circulating EGF and

patient treatment outcomes in different types of cancers. However,

we think that quantifying serum ligand levels goes beyond the

scope of our study. First, our study was retrospective and patient

serums were not available. We focused our work on the analysis of

EGFR isoform expression. Second, the purpose of the present

article was to show that like a number of other tumors (lung,

ovarian, breast, gliomas), meningiomas expressed EGFR isoforms

other than the whole one (isoform a), and this may have important

implications in the assessment of EGFR expression, particularly by

immunohistochemistry, or for the development of new therapies.

In conclusion, we observed that, in addition to the entire EGFR

isoform a (HER1), meningiomas expressed EGFR receptors

lacking the ICD that was sustained by the strong expression of

the EGFR transcripts encoding sEGFR isoforms. No EGFR gene

amplification was detected and we did not found any mutant vIII

expression. Furthermore, a better prognosis was associated to a

strong staining with an antibody targeted against the ECD and

high EGFR transcript levels. This suggests that the oncogenetic

mechanisms involving the EGFR gene pathway in meningiomas

could be different from other tumor types.

Dupuytren University Hospital Tumor Bank Ethics
Committee

Dominique Bordessoule, Hélène Chable, François Denis, Jean

Feuillard, Alain Gainant, Isabelle Hérafa, François Labrousse,
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