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SUMMARY 

A conversion process for the imitation of human dual-arm motion by a humanoid robot is presented. The 

conversion process consists of an imitation algorithm and an algorithm for generating human-like motion 

of the humanoid. The desired motions in Cartesian and joint spaces, obtained from the imitation algorithm, 

are used to generate the human-like motion of the humanoid. The proposed conversion process improves 

existing techniques and is developed with the aim to enable imitating of human motion with a humanoid 

robot, to perform a task with and/or without contact between hands and equipment. A comparative 

analysis shows that our algorithm, which takes into account the situation of marker frames and the 

position of joint frames, ensures more precise imitation than previously proposed methods. The results of 

our conversion algorithm are tested on the robot ROMEO through a complex “open/close drawer” task. 

 

KEYWORDS: Motion capture system; dual arm manipulation; imitation algorithms; humanoid robot, 
motion planning. 

 

1. Introduction  

The imitation process is an interesting and fast method for teaching robots new motion skills. The motion 
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learning process is based on the repetition of observed motions. Once a human observes a task being 

carried out for the first time, they are usually capable of immediately performing the same action. In 

robotics, this process is more complex and can be interpreted in different ways, such as: the imitation 

learning process and the motion imitation process [1]. The imitation learning process is aimed at 

understanding the characteristics of human motions, based on data collected from multiple observations of 

the demonstrated action. On the other hand, the motion imitation process is based on the imitation of 

human movements without any analysis of the characteristics of the human motion. In this paper we 

consider the latter approach and propose an algorithm based on how the robot imitates human motion, by 

utilizing recorded data obtained from a marker-based motion capture system.  

Today, there are numerous techniques for recording and analyzing human motions. Human motions can be 

tracked by a number of different motion capture systems, such as inertial, optical, magnetic, acoustic or 

mechanical. The type of motion capture system used depends on the volume of measurements taken, the 

required resolution, the characteristics of the motion recorded and the environment in which the motion is 

performed. Acoustic [2], inertial [3] and magnetic [4] motion capture systems are able to record outdoor 

and indoor human motions. The most commonly used techniques for recording human movement are 

marker-based and marker-less motion capture systems. Comparative analyses of different motion capture 

systems are given in references [5-7]. In order to record a 3D model of human motion, including the 

position and orientation of the required segments and joints, in this research we used an ART 

marker-based motion capture system. 

The imitation process can be defined in Cartesian space and/or joint space [8]. In Cartesian space, the 

motions of the hands, head, or feet are recorded and a geometric inverse model of the humanoid can be 

used to achieve the task. In joint space, the objective is to enable the robot to replicate joint motions of the 

human, following the human configuration. This last objective is conventionally used for the imitation 



3 
 

process and allows for human-like behavior, especially in the presence of a redundant robot. If a human 

(or a robot) has to achieve the same task in Cartesian space as another human of different body size, they 

have to modify the motion of the joints while keeping the end-effector (hands, feet or head) in the same 

Cartesian position. Since the human (or robot) is a kinematic redundant structure, the same end-effector 

trajectories are feasible for different joint trajectories. The main idea of the research was to achieve these 

joint trajectories so they fit the motion of human joints as much as possible while keeping the required 

end-effector motion in Cartesian space. Therefore, joint trajectory tracking was the object of optimization, 

while end-effector trajectory tracking was an imposed constraint in the optimization process. It should be 

noted that depending on the task being analyzed, various components in Cartesian space can be taken into 

account (position, or position and orientation of the hands). In the case of a task that involves contact 

between hands and equipment, the position and orientation of the hand should be included as a constraint 

in the optimization process, whereas in a task without contact between hands and equipment, following of 

the position of the hands is required. In short, to imitate a dual-arm human motion, where the robot 

interacts with the environment using its hands and exhibits human-like motion behavior, the imitation 

process needs to include mimicking of human motion in the joint and Cartesian spaces. 

The human motion imitation problem can be solved at the kinematic or the dynamic level. In Ott et al. [9], 

the robot imitated human motions by using dynamic equations. Based on measurements of marker 

positions, they define a Cartesian control approach to real-time imitation of a human’s upper body. Virtual 

springs connected the measured marker positions and corresponding points on the humanoid robot. Since 

additional difficulties arise in the process of motion imitation by a humanoid robot, such as joint velocity 

and torque limits, Suleiman et al. [10] also use dynamic equations to formulate a recursive optimization 

algorithm for imitating human motion. It permits the imitation of upper-body human motion by using the 

physical capabilities (joint, velocities, torques) of a humanoid robot. Huang et al. [11] present an 

algorithm that provides humanoid motion which is very similar to human motion and satisfies kinematic 
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constraints and dynamic stability. Jamisola et al. [12] show modular task-space dynamic formulations for 

a dual arm controlled as a single manipulator. They used existing kinematic and dynamics models of each 

of the stand-alone manipulators to arrive at the overall dynamics of the single end-effector dual-arm.  The 

treatment of a dual-arm as a single end-effector manipulator through the use of the relative Jacobian 

affords a drastic increase in the null-space dimension and lesser constraints in the task space.  This 

approach was tested for dual-arm manipulation tasks which did and did not require coordination between 

hands. 

The human motion imitation problem is addressed at the kinematic level by Ude et al. [13, 14]. They 

propose a method for transforming the recorded 3D position of the markers into high dimensional 

trajectories of the humanoid robot joints based on twist representation. The human body was modeled as a 

scaled model of the humanoid robot. They established relationships between the motion of the robot’s 

joints and the motion of the markers by using B-spline wavelets and large-scale optimization techniques. 

The method was applied offline to a humanoid robot called DB. Ayusawa et al. [15, 16] propose a 

gradient-based method for simultaneous identification of the geometric parameters of a human skeletal 

model and calculation of inverse kinematics by using information about the recorded positions of markers. 

In order to define the geometric parameters, as segment lengths, and the positions of the markers relative 

to the robot segments, they introduced virtual translation of joints. In the present research, the problem of 

human motion imitation was studied at the kinematic level. 

According to the state of the art of the imitation process, we additionally explored: 

• Imitation of the upper-body human motion by the humanoid, where the motion consists of phases 

without and/or with hand contact with the environment and a transition strategy between these two 

types of motion. 
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• An analytical imitation algorithm based on the Jacobian matrix (instead of the standard 

optimization algorithm presented in our previous research [17]), which is capable of real time 

extraction of Cartesian motions and joint motions that can be used by the humanoid.  

In the present research, human-to-humanoid motion conversion is divided into two parts. In the first part, 

we used the information provided by the motion capture system and analytically defined the imitation 

algorithm to acquire the desired motion of the humanoid in the task and joint spaces. The algorithm is 

based on the markers positioned on a scaled model of the humanoid (virtual markers), which follow the 

motion of markers (real markers) placed on the human. The intermediate use of a scaled model of the 

humanoid presented by Ude et al. [14] permits the size of the robot to be adapted to the size of the human 

that has accomplished the task and thus to record the coherent joint and Cartesian motions. Since the task 

of the imitation algorithm proposed in the present paper is to generate a motion where the hands and the 

environment are in contact, precise imitation of the hand motions is important. This imitation algorithm 

incorporated not only marker motion but also joint motion measurement, in order to increase the robot’s 

imitation accuracy. Instead of twists in our kinematic model, the modified Denavit and Hartenberg (DH) 

convention was used to simplify modeling [18]. The imitation algorithm is based on the kinematic 

structure of the humanoid and can be used in real time. 

In the second part of the conversion, the motion imitation of the scaled robot model was used to generate a 

human-like motion on the robot ROMEO in its real size (1.40 m tall) and in the same environments. The 

strategy differed depending on whether a contact with the environment did or did not exist during the 

studied phase of motion. When there was contact with the environment, the hand motions were defined to 

achieve the contact and the robot hand motions had to be the same as those of the human. During the phase 

without contact, priority was given to motion that appeared visually close to human motion and was based 

on similar joint motions of the humanoid robot with respect to the human. Hand motions can be modified 
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since they are not constrained by equipment. As such, if contact motion is observed, hand motion in 

Cartesian space is perceived as a constraint while joint positions in joint space are the object of the 

optimization process. Contrarily, if contact free motion is observed, the optimization process focuses on 

both hand motion in Cartesian space and joint positions in joint space, and different priorities can be set. 

The approach exploited in this research is elaborated in Section 4. Conversion from human to humanoid 

motion is analyzed for a complex task that consists of both types of motion. A transition strategy for 

motion with and without contact is introduced. Since the task is motion imitation with contact between 

hands and equipment, the technique proposed by Ude is unable to generate these types of motions for the 

robot. The advantage of the proposed conversion algorithm over existing algorithms is precise imitation of 

the position and orientation of human hand motions, which is necessary to perform the task. The results of 

the conversion algorithm were tested on the ROMEO robot in the same environment as that of the human.  

The following paragraphs present kinematic parameters and their correlations for each model instance in 

the conversation process (human and graphical/digital representation – avatar, scaled model of the 

humanoid, and ROMEO). An overview of the entire human-to-humanoid motion conversion process is 

provided in Section 2. Each step of the conversion process is explained in detail. 

 

Fig. 1. Models in the human-to-humanoid motion conversation process and related parameters 

The conversion process for human-to-humanoid motion imitation is directly related to the transformation 

process from kinematic human parameters to those of the humanoid. To that end, three kinematic models 

were used: kinematic model of the human graphical/digital representation (avatar), scaled kinematic 
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model of the ROMEO robot, and kinematic model of the real-size ROMEO robot (see Fig. 1). These 

models were represented by their parameters in Cartesian space and joint space, as indicated in Fig. 1. The 

conversion process started with the kinematic model of the human body, which was automatically 

generated by the motion capture system. This digital/graphical representation of the human body was 

denoted as the avatar model. The avatar model contained twenty spherical joints (60 degrees of freedom 

(DoFs) in total), to define its kinematic model. The avatar segment sizes which corresponded to those of 

the human were estimated by the motion capture system. To enable human motion imitation by a 

humanoid robot, ROMEO was selected because it is a humanoid with 37 DoFs, but its segment sizes differ 

from those of a human. In order to make a connection between the avatar and the humanoid kinematic 

model, an intermediate model, called a scaled model of the humanoid, was defined. The scaled model of 

the humanoid had the same kinematic structure as ROMEO (37 DoFs) and the same segment sizes as 

those in the avatar model.  

The conversion from the avatar to the model of the humanoid in Cartesian and joint spaces was described 

by equations, to facilitate understanding of the scaling process. Considering the avatar model, Eq. (1) 

relates generalized joint coordinates ( hq ) and hand position and orientation in Cartesian space:  

h h hX J q=             (1) 

For dual-arm manipulation, hX represents the position and orientation of both human hands, and hJ is the 

Jacobian matrix of the avatar model. The dimension of vector hq  contains 60 elements that correspond to 

the avatar’s 60 DoFs. However, to enable conversion from the recorded human motion to the generated 

ROMEO robot motion, the scaled kinematic model of ROMEO was used to represent the human body 

model. To that end, the scaled robot model had 37 DoFs and segment dimensions equal to human. The 

imitation algorithm, based on the scaled model of the humanoid, was defined with the ultimate goal of 
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generating human-like motion of the humanoid in joint space. The marker trajectories and the joint 

positions in Cartesian space obtained for the avatar model were translated to the scaled model of the 

humanoid. Consequently, this information was input into the imitation algorithm to obtain the human 

motion in joint space srq . Accordingly, the human hand motions in Cartesian space generated by the 

scaled model of ROMEO were calculated from the equation: 

h sr srX J q=      (2)  

where srJ is the Jacobian matrix of the scaled model of ROMEO. For humanoid robot control, the joint 

motion srq  is useful but the motions of the hand, which are in contact with the environment, are 

mandatory. Since this information was not directly measured by instrumentation, it was defined via Eq. 

(2) based on the joint motion resulting from the imitation process and the Jacobian matrix srJ . To arrive at 

human motion of the humanoid robot ROMEO, joint motion srq  can be played on the robot. However, the 

motion of the robot’s hands in Cartesian space, resulting from joint motion srq , was defined by the 

equation: 

robot robot srX J q=      (3) 

where robotJ is the Jacobian matrix of the ROMEO model and robotX is the position and orientation of 

ROMEO’s hands in Cartesian space. The scaling factors between models of different segment sizes were 

integrated through the Jacobian matrices robotJ  and srJ . The motion of the robot’s hands in Cartesian 

space ( robotX ) was different from the motion of human hands hX  since the segment sizes of the human 

and the robot were not the same. Therefore, the motion of the robot’s hands generated in this manner can 

only be used for a motion without contact between hands and equipment. If the motion involves such a 

contact, the motion of the robot’s hands has to be the same as that of the human in Cartesian space: 
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robot hX X=      (4) 

Thus, in contact tasks where the motion of the robot’s hands has to be the same as of human hands in 

Cartesian space, and where, additionally, human motion needs to be imitated in joint space, the 

generalized robot coordinates ( robotq ) can be defined by the inverse kinematic algorithm (5). The inverse 

kinematic algorithm is the object of optimization, as explained in Section 4. 

( )robot robot h robot robot srq J X I J J q+ += + −    (5)  

 
Here, robotJ +  represents the pseudo-inverse of the matrix robotJ  and I  is the identity matrix. 

The paper is organized as follows. Section 2 presents the conversion steps from human to humanoid 

motion and the basic characteristics of the robot and the capture motion system. Section 3 proposes our 

imitation algorithm that converts data obtained from the capture motion system into joint trajectories of 

the scaled robot model. The imitation process starts with the definition of the humanoid robot kinematic 

model. The motion generation algorithm for the real robot ROMEO, which takes into account the output 

from the imitation algorithm, is given in Section 4. The conversion process was tested for the dual arm 

“open/close drawer” task and the results are presented in Section 5. 

 

2. Conversion Steps from Human to Humanoid Motion  

Regardless of the motion capture system, the conversion from human to humanoid motion can be 

represented in four steps: the first step is recording of human motion; in the second, a digital/graphical 

representation of the human body (avatar) is defined according to the data acquired by the motion capture 

system; in the third step a human-size kinematic model of the robot (scaled humanoid model) is defined and 

the imitation algorithm used to obtain motions in the joint and Cartesian spaces of the humanoid; and the 
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fourth step concerns the generation of ROMEO’s motion (with and without contact), using the output from 

the imitation algorithm. An overview of the conversion from human to humanoid motion is given in Fig. 

2.  
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Fig. 2. The process of conversion from human to humanoid motion 
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The motion capture system is able to recognize and find relations between the actor’s body segments in 

consecutive frames and provide a graphical representation of the actor (avatar) in a virtual environment 

[19] (see Fig. 2, step 1). The kinematic model of the avatar graphically represented the human body and 

included 60 DoFs (20 joints with 3 DoFs per joint). Since the kinematic model of the humanoid, which 

was used in the imitation process, had 37 DoFs in total (fewer DoFs than the avatar), the model of the 

avatar could not be used directly and a reduced model that enabled human to humanoid motion replication 

had to be adopted. 

An adult human body has 206 bones linked by different types of joints, which can be flexible. The 

imitation process needs to be based on the effective kinematic model of the humanoid robot, consistent 

with its joint mobility and size. Many humanoid robots of a size close to that of a human have several 

DoFs, e.g. at least 7 DoFs per arm and 6 DoFs per leg (see Fig. 3). A humanoid robot with these 

characteristics, such as the humanoid robot ROMEO, can be used for accurate human motion imitation. 

The closer the kinematic model of the humanoid is to the model of a human as regards the size, joint limits 

and kinematic model, the better the imitation. 

The transformation of the kinematic model of the avatar to the model of ROMEO is described on two 

levels. At the first level, the simplification of the kinematic model was taken into account, so the kinematic 

model of the avatar (which had 60 DoFs) was reduced to the model of the robot ROMEO (37 DoFs). This 

kinematic model, which had the same segment size as that of the avatar model and the number of DoFs 

equal to those of ROMEO, was defined as a scaled model of ROMEO. Therefore, the scaled model of 

ROMEO was used in the imitation algorithm to define human motion in joint space. The output of the 

imitation algorithm was coherent motions in joint space and Cartesian space for the scaled model of 

ROMEO. At the second level, the difference in body segments between the human and ROMEO was 

taken into account in order to imitate human motion with the real model of ROMEO. Imitation was 
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implemented with the algorithm for human-like motion generation. At this level, the motion defined in 

joint and Cartesian spaces provided by the imitation algorithm was non-coherent (using the real size of 

ROMEO) and the algorithm favored the motion defined in joint or Cartesian space depending on whether 

the task did or did not involve contact with the environment. 

 

2.1. Robot ROMEO 

The humanoid robot ROMEO has been developed by Aldebaran Robotics (see Fig. 3). ROMEO is 1.4 

meters tall and has 37 DoFs, including 7 DoFs per arm, 6 DoFs per leg, 2 DoFs for each eye, 1 DoF for 

each foot, 2 DoFs for the neck, 2 DoFs for the head, and 1 DoF for the spine [20].  

 

Fig. 3. Robot ROMEO and its kinematic model 
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Dual arm manipulation of the robot was analyzed in this research. To that end, an extended kinematic 

model of ROMEO’s upper body was used. The model contained 19 DoFs and an additional 3 DoFs in the 

trunk, which emulated leg motion (3 prismatic (see Fig. 4)).  

 

2.2. ART Motion Capture System 

The ART motion capture system consists of a hybrid suit of 17 sets of markers relative to the feet, shins, 

thighs, shoulders, upper arms, forearms, hands, head, hip, back, and torso (see Fig. 2). A set of 8 infrared 

(IR) cameras is used to record markers motions. The motion capture hardware is supported by DTrack 

software and ART Human software is used for tracking and reproducing the motion of the actor in a virtual 

environment. DTrack software acquires 2D marker positions using information from each IR camera and 

provides the transformation matrices of each marker (position and orientation of the marker) relative to 

different local frames attached to the body parts with respect to the global reference frame. ART Human 

software uses the information provided by DTrack and provides a direct link between motion of the human 

subject and motion of the 3D graphical model of the human (avatar) in real-time. ART Human estimates 

the locations of the human joint frames and the human segment size using marker information. The digital 

human representation, the avatar model, is created in this manner [19]. The flowchart showing how the 

motion capture system works is depicted in Fig. 2, step 2. The sampling frequency for data acquisition is 

set to 100Hz.  

 

3. The Imitation Process 

The information provided by the motion capture system can be used to define the characteristics of the 

human body and its motion in the task space. In the previous decades, the focus of some research papers 
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has been on estimating a kinematic model of the human body using data obtained by the motion capture 

systems [21, 22]. In this research, we used data obtained by the ART motion capture system to scale the 

kinematic model of the robot ROMEO to the characteristics of the actor. 

The motion capture system always automatically generates the avatar model as a 3D graphical 

representation of the human. Each avatar joint is represented as spherical. Therefore, the avatar model has 

60 DoFs to represent human motion. The kinematic model of ROMEO was used to imitate human motion 

in joint space. Therefore, the kinematic representation of the human body was reduced from the avatar 

model to the kinematic model of ROMEO. Since the information obtained from the motion capture system 

(such as the position and orientation of real markers and the position of joints) is defined according to the 

model of the human-size avatar performing the recorded action, the kinematic model of ROMEO was 

scaled to the size of the human. In that manner it was possible to calculate human motion in joint space. 

An initialization process was introduced with the aim of defining the initial configuration of the actor and 

to scale the size of ROMEO to the size of the actor and attach virtual markers to the scaled model of 

ROMEO. The initial configuration of ROMEO (see Fig. 4(a)) is proposed as the initial configuration of 

the actors (arms horizontally extended forward, with palms facing the floor (see Fig. 4(b))), because it is 

well defined and easily achievable.  
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Figure 4. The scaling process: (a) extended kinematic model of the robot ROMEO in its basic 
configuration; (b) extended kinematic model of ROMEO scaled to the dimensions of a human in the initial 

configuration, with markers and marker frames 

Since the kinematic model of ROMEO was taken as the kinematic model of a human, the size of the 

robot’s segments had to be scaled to the size of the actor’s limbs. The dimensions of the human segments 

were calculated by taking the mean Euclidian distance between two adjacent joints and using several 

samples from the recorded data, when the actor retained the initial configuration. The dimensions of the 

paired segments located on the left and right sides of the body, assumed to be identical, were calculated by 

taking the mean value of the estimated segment dimensions on the right and left sides for each actor. The 

scaling factor SF  for each segment was calculated as the ratio of the actor segment length humanL  to 

ROMEO segment length robotL , human

robot

LSF
L

=   

The position of the real marker relative to the corresponding proximal frame of the actor’s joint and the 

dimensions of the segments were calculated and assumed constant in the scaled model of the humanoid. In 

reality, this quantity varies during motion of the actor due to unmodeled joints of the human and motion of 

the skin. The unmodeled joints in the shoulders are responsible for vertical displacement of the shoulders 
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and the real markers attached to the shoulders (see Fig. 5). Although the markers are firmly attached to the 

body segments, the distance between a real marker and its proximal joint is not constant due to the motion 

of the skin. This phenomenon is the most obvious in the case of hand and shoulder markers. An error 

occurs and a perfect imitation of human motion by the scaled kinematic model of the humanoid is not 

possible. Virtual marker fames were defined according to real marker frames in the initial configuration, 

during the initialization process. Details about the calculation of virtual markers frames are provided in the 

Appendix. The imitation algorithm was used to calculate the joint configuration of the scaled model of 

ROMEO, in order to minimize the matching error between the virtual and real markers and the matching 

error between the joint positions of the human to the joint positions of the scaled model of ROMEO.  

 

Figure 5. Displacement of the shoulders and real markers attached to the shoulders during motion. 
 

3.1. Imitation algorithm for the scaled model of the robot 

In this section, an analytical imitation algorithm based on the Jacobian matrix capable of real time 

extraction of Cartesian motions and joint motions is introduced. The imitation algorithm was formulated 

as an optimization algorithm (6), which calculated the generalized coordinates of the joints (t )imitation iq  

for the scaled model of ROMEO, for each time sample it  ,  with [ ]1i N∈ , where N  is the number of time 

samples of the recorded motion.  
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( )( ) minimitation i
q

q t = ζ          (6) 

The criterion function ζ , which should be minimized, was comprised of the error between the position of 

the frames attached to the actor joint ajP and those of the scaled model of the humanoid rjP ; the error 

between the position of the real marker frames rmP and virtual marker frames vmP ; and the error in 

orientation between the real marker frames rmR  and virtual marker frames vmR  in the way proposed in 

Eqs. (7) and (8). Since the precision of orientation measurement was lower than that of position 

measurement, and the orientations of the proximal segments were implicitly taken into account via their 

effect on distal joint positions and markers, the orientations of the proximal frames were disregarded in the 

minimization criterion. Only the orientations of the distal segments were included.  

The optimization criterion is: 

2( , )it qζ = ε               (7) 

where 

    

( )
( )

( )
( )

( )
( )

( ) ( )

( ) ( )

( , )

( , )
( , )

( ) ( )

( ) ( )

LeftHand

RightHand

LeftHand LeftHand

RightHand RightHand

rm vmi

aj rji

rvm i
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rvm i

aj i rj

aj i rj

P t P q

P t P q

e t q

t q
e t q

P t P q

P t P q

⎡ ⎤α −
⎢ ⎥
⎢ ⎥β −⎢ ⎥
⎢ ⎥

γ Δ⎢ ⎥
⎢ ⎥

ε = ⎢ ⎥γ Δ⎢ ⎥
⎢ ⎥
⎢ ⎥δ −⎢ ⎥
⎢ ⎥
δ −⎢ ⎥
⎣ ⎦

         (8) 

where α  , β , γ and δ  are the weighting factors for the errors in marker positions, joint positions, hand 

marker orientations, and hand joint positions, respectively; ( )rm iP t  and ( )aj iP t are the vectors of the 

recorded real marker positions and proximal actor joints at time sample it , respectively; ( )vmP q  and 

( )rjP q are the vectors of the positions of the virtual markers and proximal robot joints in the current joint 

configuration q : 
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( )LeftHandaj iP t and ( )RightHandaj iP t are the positions of the left and right actor hand joints at time sample it , 

respectively; ( )LeftHandrjP q and ( )RightHandrjP q are the positions of the left and right robot hand joints in the 

current joint configuration q ; and 
LeftHandrvmeΔ and 

RightHandrvmeΔ are the orientation errors between the 

real and virtual markers attached to the left and right hands (distal markers) at time sample it  and in joint 

configuration q , respectively. The orientation errors were represented in terms of quaternions. The 

rotation matrices, ( )LeftHandrm iR t  and ( )LeftHandvmR q  (which express the real and virtual marker orientations 

of the left hand, respectively), can be rewritten in terms of quaternions as 

1 2 3 4( ) ( ) ( ) ( )LeftHand LeftHand LeftHand LeftHand LeftHandrm rm i rm i rm i rm iQ Q t Q t Q t Q t⎡ ⎤= ⎢ ⎥⎣ ⎦
 and 

1 2 3 4( ) ( ) ( ) ( )l LeftHand LeftHand LeftHand LeftHandvm vm i vm i vm i vm iQ Q t Q t Q t Q t⎡ ⎤= ⎢ ⎥⎣ ⎦
, respectively where 

1 ( )rm LeftHandLeftHand rm iQ tη = , 2 3 4( ) ( ) ( )
rm LeftHand LeftHand LeftHandLeftHand

T

rm i rm i rm ie Q t Q t Q t⎡ ⎤= ⎣ ⎦ , 1 ( )vm LeftHandLeftHand vmQ qη = , 

and 2 3 4( ) ( ) ( )
vm LeftHand LeftHand LeftHandLeftHand

T

vm vm vme Q q Q q Q q⎡ ⎤= ⎣ ⎦ . The orientation error 
LeftHandrvmeΔ was calculated 

using Eq. [22]: 

( , ) ( ) ( )

( ) ( ) ( ( )) ( )

LeftHand vm rmLeftHand LeftHand

rm vm rm vmLeftHandLeftHand LeftHand LeftHand

rvm i i

i i

e t q q e t

t e q S e t e q

Δ = η ⋅ −

η ⋅ − ⋅
     (9) 

where ( )S ⋅  is the skew-symmetric operator of the vector. 

The orientation error of the right hand 
RightHandrvmeΔ  was calculated in the same way. 
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The minimization criterion is quadratic. The configuration at time sample it  can be expressed as the 

configuration at time 1it −  plus the change in configuration qΔ . Thus, the criterion can be expressed as a 

function of qΔ : 

1 1 1( , ) ( , ( ) ) ( , ( )) ( , ( ))i i imitation i i imitation i i imitation it q t q t q t q t t q t q− α − β −ε = ε +Δ = ε +ε Δ    (10) 

where vector 1( , ( ))i imitation it q tα −ε  can be evaluated based on Eq. (8), and matrix 1( , ( ))i imitation it q tβ −ε  based 

on its derivative. The analytical expression for qΔ  is deduced for the optimality condition 

( )21( , ( ) )
0

i imitation it q t q

q q

−∂ ε +Δ∂ζ = =
∂Δ ∂Δ

, so that: 

1 1( , ( )) ( , ( ))i imitation i i imitation iq t q t t q t+
β − α −Δ = −ε ⋅ε        (11) 

where 1( , ( ))i imitation it q t +
β −ε represents the pseudo inverse of the matrix 1( , ( ))i imitation it q tβ −ε . More details 

about vectors 1( , ( ))i imitation it q tα −ε  and matrix 1( , ( ))i imitation it q tβ −ε are provided in the Appendix.  

Factors α ,β , γ and δ  in the imitation algorithm assigned different desired levels of precision for joint 

and marker tracking. The values of the weighting factors were set heuristically. Since contact tasks require 

high precision of the hand positions and orientations in Cartesian space, weighting factors δ (hand position 

weighting factor) and γ (hand marker orientation) had significantly higher values than other factors. 

However, the weighting factor γ should be set to slightly less than δ, since orientation measurement 

precision is lower than that of position measurement. The positions of proximal (shoulder and elbow) 

joints in Cartesian space is less important than the Cartesian position of the hand joints, but they still have 

a significant effect on the similarity between recorded human motion and generated humanoid motion. 

The associated weighting factor was β. The similarity between the recorded human motion and the 

generated humanoid motion was depicted by marker position as well, but with the aim of reducing the 

effect of skin motion (which directly influences the motion of the markers), weighting factor α had to be 

set to the lowest value. Accordingly, the weighting factors were selected as follows: α =1, β =2, 10γ =  
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and δ=20.  

The actor motion in Cartesian space hX  was re-calculated using  (t )imitation iq  and the direct geometric 

scaled model of the ROMEO robot. Furthermore, the orientation of the hands’ joints, which was unknown 

from the data obtained by the motion capture system, was also calculated in this manner. A comparative 

analysis of the recorded hand positions and the position calculated by the imitation algorithm is given in 

Section 5. 

 

4. From Imitation Results to Motion of Robot ROMEO  
The motion obtained with the previously described imitation algorithm could not be used directly by the 

humanoid robot ROMEO because joint limitations had not been taken into account. If joint motion 

( )imitationq t  is used directly by ROMEO, the motion in Cartesian space will not be preserved and thus 

contact with the environment will not be achieved. On the other hand, if Cartesian motion is used, human 

skill will not be preserved. Therefore, we propose different strategies depending of the existence of 

contact with the environment or not. A contact with the environment is assumed to exist via the hands of 

the robot. The case of contact with another body part may be considered in a similar way. A transition 

strategy will also be proposed between the contact and no contact phases. 

During a motion with contact, the motion of the actor’s hands was constrained by the characteristics of the 

equipment. In [24], we elaborated the types of contact constraints and the corresponding mathematical 

representations. Here we studied the case in which the robot should do the task in the same environment as 

that of humans, with the same type of contact. The moment when the robot’s hands established contact 

with the equipment was calculated using the hand positions of the scaled model of the robot and the known 

position of the equipment. To that end, the hand coordinates of the scaled robot model and the equipment 

coordinates were represented in the same referent frame. For the phase of contact, the robot’s hands should 

be able to follow the same motion in Cartesian space as the actor’s hands. A necessary condition for 



22 
 

performing the task by the robot is that the trajectories of the actor’s hands (for the phase of contact) are 

within the workspace of the robot. The workspace of ROMEO was defined according to the robot segment 

size and the joint limits as proposed in [25, 26]. If this condition is satisfied, when the robot is initially in 

the same place as the actor, the actor’s motion will be easily achieved by ROMEO. Otherwise, a new 

initial position and orientation of the robot need to be calculated for the task to become feasible. In the 

latter case, the transformation matrix that describes the displacement of the robot is taken into account, in 

order to modify the desired motion of the robot’s hands accordingly.  

 

4.1. Inverse kinematic algorithm as a tool for human-like motion generation 

The human motion imitation process requires the robot to be able to perform a task like a human. Since the 

structure of ROMEO is designed with redundant features, the same motion as that of human hands can be 

obtained for different arm configurations. By using the inverse kinematic algorithm, the recorded human 

joint motion can be imitated by ROMEO. The minimized difference between the current joint trajectories 

( )robotq t and joint trajectories ( )imitationq t obtained with the imitation algorithm for the scaled robot model 

2( ) ( )robot imitationq t q t− was included in the inverse kinematic algorithm as an additional criterion: 

1

1

( ) ( ) ( )( ( ) ( ))
( ) ( ) ( )

robot i robot i robot robot robot i imitation i

robot i robot i robot i

dq t J dX t I J J q t q t
q t q t dq t

λ+ +
−

−

= − − −
= +

      (12) 

where robotJ λ+  is the damped least-square inverse of the Jacobian matrix robotJ  and damping factor 

0.003λ = (see [27]), which was introduced with the aim of solving the discontinuity problem of the 

pseudoinverse solution for a singular configuration; robotJ + is the pseudo-inverse of the Jacobian matrix 

robotJ  of ROMEO, calculated for the robot size; I  is the identity matrix; and ( )idX t  is the position and 

orientation variation between the desired trajectories of the robot’s hands ( )d
robot iX t  and the current 

position and orientation of the robot’s hands 1( ( ))c
robot robot iX q t − , calculated by the direct geometric model 
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using the real size of the robot: 

1( ) ( ) ( ( ))d c
i robot i robot robot idX t X t X q t −= −         (13) 

The desired trajectories of the robot’s hands d
robotX  have to be the same as the motion of human hands in 

Cartesian space hX . The joint limits were included in the inverse kinematic algorithm by using the internal 

clamping loop that checked and removed the joints that reached their upper or lower joint limits min
robotq  and 

max
robotq , respectively. If a joint reached the limit, the joint value was clamped to the limit value. The elements 

of the Jacobian matrix J  and identity matrix I  related to the clamped joint were set to zero. In this 

manner, any further motion of the clamped joint is prevented. The inverse kinematic algorithm continues 

to initiate other joints in order to reach the desired values for the hands. The inverse kinematic algorithm 

with a clamping loop is explained in detail in Baerlocher et al. [28]. 

The primary task of the inverse kinematic algorithm was to follow the desired hand trajectories ( )d
robot iX t . 

If motion involved contact between hands and equipment, the robot needed to use the same equipment and 

manipulate it in the same way as a human. The desired motions of the robot’s hands were defined in the 

imitation algorithm, calculating the hand position and orientation using ( )imitationq t  and the direct 

geometric model of the scaled ROMEO. However, it is important to note that ( )imitationq t  was defined for 

a scaled model of the robot and that Jacobian matrix J used here was calculated for the real size of 

ROMEO. Parameters ( )imitationq t  and ( )d
robot iX t  were not consistent, thus the secondary task was not 

achieved and ( )robotq t  differed from ( )imitationq t . 

 

4.2. Motion of robot hands without contact 

A robot is not able to simultaneously follow recorded hand and joint motions since the robot size and joint 

limits and those of a human are not the same. When there is no contact with the environment, it may be 
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preferable to follow human joint motions rather than human Cartesian motions, in order to express human 

skills. 

However, to keep the same control approach with and without contact with the environment, and to take 

into account the joint limits, we used a slightly modified Eq. (12): 

( ) 1( ) ( ) ( ( ))c c
i robot imitationModif i robot robot idX t X q t X q t −= −       (14) 

where ( )imitationModif iq t  is the modified value of ( )imitationq t , since the value of  ( )imitationq t  can be outside 

the robot’s joint limits. The modification was implemented using the algorithm proposed by Safonova et al. 

[29]. In this manner, ( )( )c
robot imitationModif iX q t  was inside the workspace of the robot and the desired motion 

in the joint and Cartesian spaces was coherent and consistent with the dimensions of the humanoid robot. 

The joint limits were also taken into account. 

 

4.3. Transition strategy connecting motions with and without contact 

For a motion with or without contact of the hands with the environment, we proposed the algorithm given 

by Eqs. (12) and (14). The difference between the two cases is in the manner used to define the desired 

Cartesian motion. As a consequence, we propose a transition strategy based on rescaling the size of the 

robot to the size of the actor. The transition strategy starts during the motion without contact, if the 

position of the robot’s hands relative to the object to be contacted reaches a prescribed vicinity. Here we 

assumed the prescribed vicinity was a sphere of 0.1 m radius. During transition, the sizes of the robot 

segments on the model were linearly modified to reach the sizes of the actor. The hand trajectories were 

calculated for the incrementally rescaled model of the robot by using the value of ( )imitationModif iq t , which 

corresponds to this part of the motion. The transition strategy was over when the size of the rescaled model 

of the robot was the same as that of the actor and the value of ( )imitationModif iq t  was the same as that 

corresponding to the sample when the contact between the actor’s hands and the equipment was achieved. 
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A connection between the hands and the equipment was therefore made. 

The desired trajectories of the robot’s hands can be processed further. In order to smooth trajectories of the 

robot’s hands, we applied the Savitzky–Golay filter which is based on fitting consecutive sub-sets of 

adjacent data points with a low-degree polynomial by the linear least squares method [30].  

 

4.4. Handling collision 

This research also addressed dual-arm motions performed by actors. Any actor naturally avoids collision 

with equipment and self-collision. Since we used data generated by the imitation algorithm, which 

characterize human skills, to generate motion of the robot it is expected that the robot, similarly to the 

actor, will avoid self-collision. Also, the trajectories of the robot’s hands during the contact phase of the 

motion were the same as those of a human, thus collision with the equipment was eliminated. Collisions 

did not occur in the tested motion. In other cases, collision avoidance could be included in the generation 

of humanoid motion using the techniques developed in [31-33]. The vision-based path planning method 

for dual-arm end-effector features proposed by Qu et al. [34] is also a useful tool for precise pose 

alignment of two objects, which is the position and orientation of the hands and equipment in our case. 

5. Results  
In this section we will analyze the results of the imitation algorithm and the conversion process for the 

“open/close drawer” task. “Open/close drawer” is a complex motion which consists of motions with and 

without contact. Initially, the motion was without contact until the actor touched the drawer. The task 

continued with a motion with contact, during which the actor performed the drawer opening and closing 

functions. In order to show the general characteristics of the imitation algorithm, we tested it on a set of 7 

different dual-arm tasks, each performed by 19 actors, and present the corresponding results. The results 

obtained with the imitation algorithm are compared with those of the numerical algorithm proposed by 

Ude [13, 14]. The imitation algorithm proposed by Ude is a numerical optimization approach based on 
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following the 3D position of markers physically attached to the human body, with markers placed on the 

scaled robot model. That imitation algorithm has been developed for imitating free human motion (motion 

without contact) and, consequently, precise imitation of the hand joints was not required. 

 

5.1. Simulation results of the imitation algorithm 

The imitation algorithm proposed in this paper was designed to give the highest priority to hand position 

and orientation tracking, to ensure that the task was properly done. According to the results for the 

“open/close drawer” task presented here (see Fig. 6, color blue), our imitation algorithm produced the 

same motion of the actor’s hands as the scaled model of the ROMEO robot. The highest normed errors in 

following the actor’s hand trajectories were about 4 mm.  
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Figure 6. Orientation and position errors between the recorded motion and the motion generated by our 
(analytical) imitation algorithm (blue scale) and the numerical imitation algorithm proposed by Ude [13] 
(red scale): (a) normed orientation errors 

RightHandrvmeΔ and
LeftHandrvmeΔ of the right and left hand markers 

in quaternion; and (b) normed position errors ( ) ( )aj i rj iP t P t−   of the arm joints in meters. 
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Since the robot model had enough DoFs, the imitation algorithm performed well when following hand 

orientations. Bigger errors in following the shoulder and elbow joint motions (larger amplitude around 25 

mm) were the results of simplifying the kinematic model of the human by using the model of the robot 

ROMEO. To highlight the performance of the proposed imitation algorithm, the results are compared with 

the numerical algorithm proposed by Ude et al. [13, 14] and shown in Fig. 6, red scale. Since Ude’s 

numerical algorithm is based on following 3D marker positions, the errors in following the joint position 

and orientation are bigger compared to our imitation algorithm (see Fig. 6). In [14], big errors in following 

hand joint position and orientation would not allow ROMEO to achieve contact between hands and 

equipment and the task would not be accomplished. On the other hand, errors in following the position of 

the real marker with the virtual marker obtained with the algorithm proposed by Ude are smaller compared 

with the results of our imitation algorithm, since hand position tracking is of the highest priority in our 

algorithm (see Fig. 7).  

 

Fig. 7. Normed position errors in following real marker rmP with virtual marker vmP obtained with our 

(analytical) imitation algorithm (blue scale) and the numerical imitation algorithm proposed by Ude [13] 
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(red scale), in meters. 

Although the algorithm proposed by Ude ensures a small error when the 3D position of the markers is 

followed, precise following of the position and orientation of the hand joints is not guaranteed. The 

reasons are the calculation of the transformation matrix between real markers and the closest proximal 

joint, which is not so precise, and the fact that this transformation matrix may change due to skin motion. 

It is apparent that our algorithm allows better tracking of the hand motion compared with the algorithm 

proposed by Ude and also ensures correct tracking to the pose of the shoulder and elbow that characterize 

the shape of the arm (i.e. its configuration). 

Summing up, the hand trajectories generated through our imitation algorithm can be used as a desired 

robot motion in the conversion process, in the inverse kinematic algorithm for the task with and without 

contact between hands and equipment. 

The imitation algorithm was tested on a set of different dual-arm motions (“rotation of valves”, “rotation 

of canoe paddles”, “inflating a mattress with a pump”, “open/close drawer”, “rotation of a steering wheel”, 

“cutting with knife” and “grating food”), each performed by 19 actors. The quality of imitation of one 

motion was represented as 
... ...( ), ( )( )

a i N r i Nhand handP t P tdΕ = µ , the mean value of the Euclidian distance 

between the recorded positions of the hand joints 
handaP and those obtained with our imitation algorithm 

handrP  for all samples of the motion. In order to present the general performance of the imitation algorithm 

for each actor, we calculated ( )Eµ  and the mean value of E  for all the motions performed by each actor. 

The general characteristics of our imitation algorithm for each actor expressed by ( )Eµ  and the imitation 

algorithm proposed by Ude are shown in Fig. 8. 
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Figure 8. Quality of imitations of right and left hand motions of 19 actors, expressed by ( )Eµ , obtained by 

our (analytical) algorithm (blue) and the numerical algorithm proposed by Ude (red). 

The results show that our imitation algorithm has average errors in following the desired hand positions of 

about 3 mm for most actors. For some actors, these errors are somewhat bigger, about 5 mm. The reason is 

a large disparity between the simplified human model represented by ROMEO and the kinematic model of 

the real actor (confidence in the distance between joints). 

 

5.2. ROMEO robot motion simulation and experimental results  

The conversion process is based on the results obtained from the imitation algorithm, which are applied in 

the algorithm for humanoid motion generation. The trajectories of the hand motions obtained for the 

scaled robot model by using the imitation algorithm are shown in Fig. 9(b). Since the size of the robot was 

not equivalent to the size of the actor, the desired hand trajectories during the motion without contact were 

outside the robot’s workspace and the robot was unable to perform the motion. Therefore, the hand 

motions generated with the imitation algorithm had to be additionally modified according to the robot’s 
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characteristics, as proposed in our algorithm for humanoid motion. The generated trajectories of the 

robot’s hands during the motion with and without contact, as well as the transition strategy, are shown in 

Fig. 9(c). 

 

Figure 9. “Open/close drawer” task performed by the actor and the robot: (a) Actor during the task: 

simulation model of the robot and calculated trajectories of the robot’s hands, (b) in the imitation 

algorithm, and c) in the algorithm for humanoid motion generation. 
 
The trajectories depicted in cyan are the motions without contact with equipment, obtained as proposed in 

Section 4.2; the trajectories in magenta represent the motions obtained with the transition strategy when 

the contact between the hands and equipment was calculated according to the algorithm proposed in 

Section 4.3; and dark blue represents the trajectories of the actor’s hands during motion with contact. The 

desired trajectories of the robot’s hands are based on the results of the actor’s motion from the imitation 

algorithm and/or the motion of the robot’s arms imitating human motion. Therefore, the robot’s hand 

motion was free of both collision with equipment and self-collision, like the recorded human motion. The 

experimental results of the actor’s “open/close drawer” motion and the same motion performed by 

ROMEO are shown in Fig. 10. The robot and the actor performed the task in the same environment. The 

height of the robot was less that the height of the actor. Consequently, the robot performed the task at the 
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level of its chest, whereas the actor did so at waist level. ROMEO had conventional hands with flexible 

fingers, which were not actuated and the robot was required to just open and close hands. This was the 

reason why the drawer was ajar at the beginning of the experiment. With a robot that has complex hands 

with actuated joints, the contact between the hands and the drawer would have been possible with the 

drawer closed, exactly in the same manner as the actor performed the task. 

 

 

Fig 10. Snapshot of the “open/close drawer” motion performed by: (a) the actor; (b) and the robot 

ROMEO. The robot was able to perform the same task under the same conditions as the actor.  

6. Conclusion 

A conversion process for the imitation of dual-arm human motion, utilizing the upper body, has been 

presented. It consists of an imitation algorithm and an algorithm for humanoid motion generation. The 

imitation algorithm, defined for a scaled model of the robot ROMEO, is based on virtual markers which 

follow real marker motions and incorporates additionally recorded joint motions. The imitation algorithm 
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is based on the analytical expression of Jacobian matrices and is able to define the expected motion of the 

scaled robot in real time. Compared to existing algorithms, our imitation algorithm provides better 

accuracy of motion imitation in Cartesian space. Precise imitation of hand motion in Cartesian space is 

essential for a task where the hands come into contact with the environment. The algorithm for humanoid 

motion generation is based on an inverse kinematic algorithm whose objective is to follow the desired 

robot hand motions and, at same time, ensure that the motion of the humanoid resembles human motion 

behavior. Since our task involved motion which included phases with and without contact between hands 

and equipment, we additionally defined an algorithm for the transition between the phases. Therefore, by 

way of an important contribution of this work, the proposed conversion algorithm is suitable for human 

motion imitation by a humanoid for a task with and without contact, as well as complex tasks that involve 

both types of motion, which other imitation algorithms are not. The results of our conversion process were 

experimentally tested on the real robot ROMEO. Ultimately, one can say that the proposed conversion 

methodology can be used as a universal and robust algorithm for human-to-humanoid motion conversion, 

regardless of the type of dual-arm motion or the characteristics of the actor.  
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Appendix 

The imitation algorithm proposed in this paper addresses an optimization problem which has an analytical 

solution for the value ( )imitation iq t  at each time sample it , minimizing the criterion function given by Eq. 

(7). Since the initial configuration of the robot, initq , is calculated in the initialization process and the initial 

positions of the robot’s joints and virtual markers are known, the current value ( )imitation iq t  can be calculated 

incrementally by using 1( )imitation iq t −  calculated in the previous iteration 1( ) ( )imitation i imitation iq t q t q−= +Δ .Therefore, 

the criterion function, ( ( ))iq tε , can be expressed as a function of qΔ : 
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( )
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1
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      (A1) 

The current position of the thk  robot joint is represented by the relation  

1 1( ( )) ( ( )) ( ( ))k k krj i rj imitation i rj imitation iP q t P q t J q t q− −= + Δ      (A2) 

where { }k LeftShoulder RightShoulder LeftElbow RightElbow∈ . ( )krjJ q  is the Jacobian matrix of the 
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thk proximal robot joint, calculated analytically with SYMORO+ software [35]. The current position of the 

thl  virtual marker is calculated from the equation 

1 1( ( )) ( ( )) ( ( ))l l lvm i vm imitation i vm imitation iP q t P q t J q t q− −= + Δ      (A3) 

where { }l LeftUpperArm RightUpperArm LeftForeArm RightForeArm LeftHand RightHand∈ .  

( )lvmJ q is the Jacobian matrix of the thl  virtual marker calculated from equation 

1
3

33
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nn n l

l n

nn
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rjrj rj vm
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, where 
nrjA  is the orientation matrix of the closest proximal 

frame attached to joint 
nrjT  via transformation matrix n

l
rj

vmT , and n
l

rj
vmP  is a skew-symmetric matrix 

defined by a component of the vector n
l

rj
vmP . The current orientation of the virtual markers on the left 

hand is calculated in the same way as the position 

1 1( ( )) ( ( )) (4 : 7, ( ))
LeftHand LeftHand LeftHandvm i vm imitation i Qvm imitation iQ q t Q q t J q t q− −= + Δ . ( )

LeftHandQvmJ q is the Jacobian matrix of the 

left-hand virtual marker represented in terms of quaternion and calculated using 

equation 3 3 3 3

4 3
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and 

1 2 3 4( ) ( ) ( ) ( )
LeftHand LeftHand LeftHand LeftHand LeftHand

T

vm vm vm vm vmQ Q q Q q Q q Q q⎡ ⎤= ⎣ ⎦ . The current orientation of the virtual marker 

on the right hand is calculated in the same way. 

According to the previous equations, vector 1( , ( ))i imitation it q tα −ε  and matrix 1( , ( ))i imitation it q tβ −ε  from Eq. 

(10) take the form: 
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vmJ is the vector of the Jacobian matrices for all virtual markers and rjJ  is the vector of the Jacobian 

matrices for all the proximal robot joints. qΔ  is calculated according to Eqs. (11), (A4), and (A5). The 

initial guess for the imitation algorithm at the first sample is taken to be the initial configuration, initq , of 

the scaled model of the robot. In future samples of the imitation algorithm, the solution from the previous 

sample 1( )imitation iq t − is used as the initial guess for the current iteration in the optimization algorithm. The 

values of the cost function cannot be zero due to large differences between the kinematic models of the 

human and the humanoid. 

The position and orientation of the virtual markers are defined from the scaled model of the robot in the 

initial configuration. The virtual marker frame (with transformation matrix
lvmT ) is attached to the body, 

where it is fixed and connected with the closest proximal frame attached to the joint ( )nrj initT q via 

transformation matrix n
l

rj
vmT . The virtual marker holds the mean values of the real marker transformation 

matrices 1..( )l initrm i nT t =  in initn  time instances of the actor’s initial configuration. A transformation matrix 

n
l

rj
vmT  is calculated for each joint and remains unchanged in the imitation algorithm.  


