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Asymptotic preserving discretisation of a Jin–Xin model with

implicit equilibrium manifold on a bounded domain

Nicolas Seguin ∗ Magali Tournus †

Abstract

In this paper, we design and analyze a numerical scheme which approximates a Jin–Xin
linear system with implicit equilibrium on a bounded domain. This scheme relaxes toward the
asymptotic limit of the linear system. The main properties of the limiting scheme are that it
does no require to invert the implicit function defining the manifold, and that it provides an
accurate discretization of the boundary conditions.

Key-words: Asymptotic Preserving scheme, Hyperbolic Relaxation, Boundary layer.
Subject Classifications: 65N08, 65N12, 35L10, 35L65.

1 Introduction

The Jin–Xin model, introduced in [11], is a 2×2 linear hyperbolic system with a nonlinear dissipative
source term which writes ∂tsε + ∂xwε = 0,

∂twε + ∂xsε =
1

ε
(f(sε)− wε).

When the source term becomes infinitely sharp, i.e. when ε→ 0, the conservation law

∂tρ+ ∂xf(ρ) = 0.

is obtained, under the subcharacteristic condition |f ′| 6 1. Then, the system can be viewed as
a dissipative approximation of entropy weak solutions of conservation laws. A large literature is
dedicated to this convergence, see for instance [14], [16], [1], [18]. . . In its usual formulation, the
equilibrium manifold is explicit, and is given by {w = f(s)}.

In [19, 20], a model is introduced and analyzed for the evolution of the concentration of chemical
species dissolved in a fluid moving along the loop of Henle in the human kidney. It corresponds to
a countercurrent exchanger, i.e. a U-shaped circuit, made of two parallel tubes in which a fluid is
flowing in opposite directions, connected at one of their ends. In the first tube, fluid moves with
positive velocity 1 and has a concentration denoted by uε(x, t), whereas in the other tube, fluid
moves with negative velocity −1 and has a concentration denoted by vε(x, t). The positive constant
ε is the characteristic time associated with the chemical exchanges between the two tubes through
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†Aix Marseille Université, CNRS, Centrale Marseille, I2M UMR 7373, 13453, Marseille, France. Email: magali.

tournus@centrale-marseille.fr.

1

nicolas.seguin@univ-rennes1.fr
nicolas.seguin@univ-rennes1.fr
magali.tournus@centrale-marseille.fr
magali.tournus@centrale-marseille.fr


the medullary interstitial region. A nonlinear function h encodes the dynamics of the exchange.
The governing equations finally are

∂tuε + ∂xuε =
1

ε
(h(vε)− uε),

∂tvε − ∂xvε =
1

ε
(uε − h(vε)).

(1)

This system also admits the alternative form, by defining sε = uε + vε and wε = uε − vε,∂tsε + ∂xwε = 0,

∂twε + ∂xsε =
2

ε

(
h(sε − wε)

2
− (sε + wε)

2

)
.

(2)

Formally, this system converges when ε→ 0 towards the conservation law

∂t(h(v) + v) + ∂x(h(v)− v) = 0. (3)

This implicit equation is well-posed as soon as the flux h(v)−v can be uniquely defined as a function
of the unknown h(v)+v, following the Kruzhkov’s theory [13]. This will be the case in our study, see
assumptions below. However, from the numerical point of view, it is not straightforward to obtain
a convergent and conservative numerical scheme for equation (3) starting with a classical scheme
for (1) and letting ε go to 0, without inverting the flux h(v) − v (with respect to v or h(v) + v).
This will be the first goal of our study.

As mentioned above, the countercurrent exchanger model is completed by specific boundary
conditions. Denoting the domain by [0, L], with L > 0, the initial-boundary value problem (IBVP)
writes 

∂tuε + ∂xuε =
1

ε
(h(vε)− uε), t > 0, x ∈ [0, L],

∂tvε − ∂xvε =
1

ε
(uε − h(vε)), t > 0, x ∈ [0, L],

uε(0, t) = ub, vε(L, t) = αuε(L, t), t > 0,

(uε, vε)(x, 0) = (u0, v0)(x), x ∈ [0, L],

(Sε)

where the reflection capacity α is assumed to be in (0, 1), ub ∈ R and initial conditions (u0, v0) are
of bounded variations

u0 ∈ BV ([0, L]), v0 ∈ BV ([0, L]). (4)

Some results of this paper are stated under the additional technical assumption that the initial
conditions are at equilibrium

u0(x) = h(v0(x)), x ∈ [0, L]. (5)

The IBVP for the Jin–Xin model has been studied by several authors, see [1], [5], [22], [23]. . . More
specifically, the well-posedness and the asymptotic analysis of the IBVP (Sε) are given in [17].

In order to understand the IBVP when ε → 0, let us provide the assumptions on function h:
there exists two positive constant β 6 µ such that

1 < β 6 h′(v) 6 µ, and h(0) = 0. (6)

As a consequence, the function
f : h(v) + v 7→ h(v)− v (7)
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is increasing. Following the classical theory of IBVP for conservation laws provided in [2], only the
boundary condition at x = 0 persists, and the limit IBVP is thus

∂t(h(v) + v) + ∂x(h(v)− v) = 0, t > 0, x ∈ [0, L],

h(v(0, t)) = ub, t > 0,

(h(v) + v)(x, 0) = (h(v0) + v0)(x), x ∈ [0, L].

(S0)

The convergence of solutions of (Sε) to solutions of (S0) is provided in [17]. We complement in the
present paper the analysis of [17] showing the existence of a relaxation boundary layer at x = L if
the intersection between the equilibrium manifold

Meq = {(u, v) ∈ R2 | u = h(v)}

and the boundary manifold
Mb = {(u, v) ∈ R2 | v = αu}

is empty. In this paper, the goal is to obtain and analyze a numerical scheme which fits with the
limit (S0) and which is a accurate discretization of the boundary conditions of (S0), using three-
point schemes. At x = 0, the approximation of the boundary condition is classical, using a ghost
cell and imposing inside the Dirichlet value. At x = L, in order to avoid any numerical boundary
layer, the easiest way is to obtain the upwind scheme when ε→ 0, which does not depends on any
ghost cell since f ′ > 0. We also show by numerical tests that this numerical treatment also provides
an accurate approximation of the relaxation boundary layer on coarse mesh.

Let us sum up the requirements we presented on the approximation of the IBVP (Sε):

1. Provide a first-order approximation of the relaxation system (Sε) without any nonlinear in-
version of the function h.

2. When ε→ 0, obtain a first-order approximation of the IBVP (S0),

• without the use of any nonlinear inversion of the function f defined by (7),

• with an upwind discretisation of the flux f .

An asymptotic preserving scheme (Sε,∆) is usually defined as a convergent scheme for the system
(Sε), which tends to become a convergent scheme (S∆) for the limiting equation as ε goes to zero.
In other words, an asymptotic preserving scheme is a scheme (Sε,∆) such that the following diagram
is commutative.

(Sε) (S0)

(Sε,∆) (S∆)

1 ∆→ 0

2 ε→ 0

3 ε→ 0

4 ∆→ 0
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In the specific context of time-explicit numerical schemes, a necessary condition is that the CFL
condition for (Sε,∆) is uniform in ε.

A first idea to build an asymptotic preserving scheme is to use a splitting method [6]. The
scheme (S∆) we obtain at the limit is highly diffusive, and generates a numerical boundary layer
at x = L. The alternative method we use in the present paper is based on the use of well-balanced
schemes, introduced by [8] and developed in [7] for the sake of asympptotic preserving scheme. The
main idea is to cleverly approximate the source term in order to end up with the wanted discretized
version of the flux at the limit. In our context, let us point out that

the term
∆t

ε+ ∆x
behaves like


∆t

ε
as ∆x goes to zero,

∆t

∆x
as ε goes to zero.

(8)

This work fits into the more general problem of building AP schemes with constraint on the limiting
scheme (S). After the pionneering work [12], the authors of [3] developed a somewhat generic method
to make optional the choice of the numerical scheme in the asymptotic regime ε = 0. Properties
of stability and convergence are automatically given by the construction provided in [3], as the
scheme they obtain at the limit can be seen as a convex combination of well-known schemes. Our
specific problem cannot be directly solved using their method since it provides us with a scheme
that requires to invert h. Since the scheme is built by hand and does not correspond to any classical
scheme at the limit, we are left with analyzing its basic properties by hand as well.

The oultline of the paper is the following. In Section 2, we provide the definitions of the
solutions of the IBVP’s (Sε) and (S0) and the associated well-posedness and asymptotic results.
We also describe the relaxation boundary layer which appears as soon as Meq∩Mb = ∅. In Section 3,
we design a numerical scheme which fulfills all the above-mentioned requirements, and state the
main results of convergence, showing the asymptotic compatibility of the approach (the so-called
asymptotic preserving property [10]). Sections 4 and 5 are dedicated to the proofs of convergence
of the scheme, respectively when ε > 0 and when ε = 0. The last section contains numerical results
including comparison with the classical splitting method.

2 Well-posedness, zero-relaxation limit, and relaxation boundary
layer

In all the following, we assume that assumption (6) is fulfilled, so that function f defined by (7)
exists and is increasing.

2.1 Definitions and existing results

Let us provide the definition of weak solutions of the relaxation IBVP (Sε), regardless of their
smoothness.

Definition 1. Consider any initial data (u0, v0) satisfying (4), and ε > 0. A weak solution of the
IBVP (Sε) is a couple of functions (uε, vε) ∈ C

(
(0, T ); L1[0, L]

)
∩ L∞ ([0, T ];BV [0, L]) such that

for all (Φ,Ψ) ∈ C1([0, T ]× [0, L])2 satisfying Φ(x, T ) = Ψ(x, T ) = 0 and Ψ(0, t) = 0, the following
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equality holds∫ T

0

∫ L

0

[
uε∂tΦ + vε∂tΨ + uε∂xΦ− vε∂xΨ

]
dx dt = −1

ε

∫ T

0

∫ L

0
(h(vε)− uε) (Φ−Ψ) dx dt

−
∫ T

0
ubΦ(0, t) dt−

∫ T

0
uε(L, t)

[
αΨ(L, t)− Φ(L, t)

]
dt−

∫ L

0

[
Φ(x, 0)u0(x) + Ψ(x, 0)v0(x)

]
dx.

(9)

The first result is the well-posedness of the relaxation IBVP (Sε).

Theorem 1 (Well-posedness of the relaxation IBVP [19]). Under assumption (6), there is a unique
weak solution to the relaxation IBVP (Sε), in the sense of Definition 1.

Now, let us define the entropy weak solutions of the zero-relaxation limit, following the theories
provided in [13] and [2].

Definition 2. Consider u0, v0 satisfying (4) and (5) and vb ∈ R. An entropy weak solution to (S0)
is a function v ∈ C

(
(0, T ); L1[0, L]

)
∩ L∞ ([0, T ];BV [0, L]) such that

1. for all non negative Φ ∈ C1([0, T )× (0, L)), and for all k ∈ R,∫ T

0

∫ L

0

[
|h(v) + v − (h(k) + k)|∂tΦ + |h(v)− v − (h(k)− k)|∂xΦ

]
dx dt

+

∫ L

0
|h(v0(x)) + v0(x)− (h(k) + k)|Φ(x, 0) dx > 0, (10)

2. for all k in the interval I(v(0, t), ub)

sign
(
h(v(0, t)) + v(0, t)− (h(ub) + ub)

)(
h(v(0, t))− v(0, t)− (h(k)− k)

)
6 0. (11)

Existence and uniqueness of such entropy solution follows from the theory developed in [2]. We
state the following result of convergence partially proved in [17].

Theorem 2 (Convergence [17]). We assume (4), (5) and (6). Consider a family of solutions
(uε, vε)ε>0 to the relaxation IBVP (Sε). Then there exists a function v which is an entropy weak
solution to (S0) in the sense of Definition 2 such that

uε −→
ε→0

h(v), vε −→
ε→0

v, L1([0, L]× [0, T ]).

The outline of the proof is as follows. First, a dissipative formulation for (Sε) is obtained.
Combined with L∞ estimates for uε and vε, this proves that (uε−h(vε)) goes to zero in L1([0, T ]×
[0, L]) (see [9]). The dissipative formulation also implies that the weak solution (uε, vε) to the linear
system (Sε) satisfies the following entropy formulation: for all non negative Φ ∈ C1([0, T ]× [0, L])
such that Φ(., T ) = 0, and for all k ∈ R,∫ T

0

∫ L

0

[
(|uε − h(k)|+ |vε − k|)∂tΦ + (|uε − h(k)| − |vε − k|)∂xΦ

]
dx dt

+
2

ε

∫ T

0

∫ L

0
|uε − h(vε)|Φ(x, t) dx dt+

∫ L

0

[
|u0(x)− h(k)|+ |v0(x)− k|

]
Φ(x, 0) dx

+

∫ T

0

[
|ub − h(k)| − |vε(0, t)− k|

]
Φ(0, t)dt−

∫ T

0

[
|uε(L, t)− h(k)| − |αuε(L, t)− k|

]
Φ(L, t)dt

> 0. (12)
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The non-linear formulation (12) is then passed to the limit: non linear-quantities |uε − h(k)| and
|vε − k| converges towards |h(v) − h(k)| and |v − k| for some v ∈ L∞ ([0, T ]× [0, L]) using BV
estimates obtained in [17]. By considering test functions Φ satisfying Φ(0, t) = Φ(L, t) = 0, and
letting ε go to zero in (12), we obtain that v satisfies the first item of Definition 2. Then, we use
the same method as in [15], i.e. we consider for any g ∈ C1([0, T ]) sequences of test functions Φm

such that ∂xΦm(x, t) converges toward g(t)δ(x = 0) and we let m go to infinity, which proves that
v satisfies the second item of Definition 2.

2.2 Study of the relaxation boundary layer

This section is devoted to the existence of the boundary layer in the framework of continuous
solutions. We first state that the solution (uε, vε) to (Sε) is uniformly bounded from above and
below.

Proposition 1 (Uniform L∞ bounds). We assume (4) and (6). Then, there exists umin, vmin, umax
and vmax which depend on ub, u

0, v0, α, β and µ such that the solution (uε, vε) to (Sε) satisfies the
following estimates

0 < umin 6 uε(t, x) 6 umax, 0 < vmin 6 vε(t, x) 6 vmax, a.e.(x, t) ∈ [0, L]× [0, T ].

We prove here Proposition 1. For Ub > 0, we introduce the stationary system

dUε
dx

(x) =
1

ε

[
h(Vε(x))− Uε(x)

]
,

−dVε
dx

(x) =
1

ε

[
Uε(x)− h(Vε(x))

]
,

Uε(0) = Ub, Vε(L) = αUε(L).

(13)

It was proved in [19] that (13) admits a unique solution and that this solution is continuously
differentiable and non-negative. The proof of Proposition 1 is based on the following Lemma.

Lemma 1. We assume (6). Then, there are four scalar numbers umin, umax, vmin and vmax de-
pending on Ub, α, β, µ such that the solution (Uε, Vε) to (13) satisfies

0 < umin 6 Uε(x) 6 umax, 0 < vmin 6 Vε(x) 6 vmax, x ∈ [0, L], ε > 0. (14)

Let us prove Lemma 1.

Proof. First Step. A bound from below for Uε − Vε.
We add the two lines of (13) and obtain

d

dx
(Uε−Vε)(x) = 0 which implies that Uε(x)−Vε(x) does

not depend on x. Then, since Uε(0)−Vε(0) = Ub−Vε(0) 6 Ub and Uε(L)−Vε(L) = (1−α)Uε(L) > 0,
we have

0 6 Uε − Vε 6 Ub. (15)

We now here that Uε − Vε is uniformly bounded from below by some kmin > 0. Let us assume
by contradiction that ∀ε0 > 0, ∀δ > 0, ∃ε < ε0 such that Uε − Vε < δ. We pick 0 < δ <

min

{
β − 1

µ
Ub, (1− α)Ub

}
and ε0 > 0. Consider ε < ε0 such that Uε − Vε < δ. Then, for ε < ε0,

we have
(1− α)Uε(L) = Uε(L)− Vε(L) < δ.
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We also have

dUε
dx

(0) =
1

ε
{h (Vε(0))− Uε(0)} > 1

ε
{h (Vε(0))− Vε(0)− δ} using Uε(0)− Vε(0) < δ

>
1

ε
{(β − 1)Vε(0)− δ} , using (6)

>
1

ε
{(β − 1)(Ub − δ)− δ} > 0 since δ <

β − 1

β
Ub.

The function Uε is continuous, Uε(L) <
δ

1− α
6 Ub, Uε(0) = Ub and

dUε
dx

(0) > 0, then, there exists

xε ∈ (0, L) such that Uε(xε) = maxx∈[0,L]{Uε(x)}. Then
dUε
dx

(xε) = 0, and the first line of (13)

implies h (Vε(xε)) = Uε(xε). Then we have

Uε(xε)− Vε(xε) = h (Vε(xε))− Vε(xε) > (β − 1)Vε(xε) = (β − 1)h−1(Uε(xε)) >
β − 1

µ
Ub,

which contradicts Uε(xε)−Vε(xε) < δ for δ <
β − 1

µ
Ub. Then, by contradiction, there is kmin > 0

such that
kmin < Uε − Vε, ε > 0. (16)

We denote Kε := Uε − Vε.
Second Step. Uniform bounds for Uε and Vε.

Existence of umax. We have Uε(0) = Ub, and from (15) we deduce that Uε(L) 6
Ub

1− α
. If we

assume that Uε reaches its maximal value at xε ∈ (0, L), then,

0 =
dUε
dx

(xε) =
1

ε

(
h(Uε(xε)−Kε)− Uε(xε)

)
,

and thus, using (6) and Kε 6 Ub,

Uε(xε) = h(Uε(xε)−Kε) > β (Uε(xε)−Kε) > βUε(xε)− βUb,

which is Uε(xε) 6
β

β − 1
Ub. Then in any case we can set umax = max

{
1

1− α
,

β

β − 1

}
Ub.

Existence of umin. Using (16) we have Uε(L) >
kmin
1− α

. If the minimum of Uε is reached at

xε ∈ (0, L), equation (13) gives again directly Uε(xε) = h(Uε(xε) − Kε) 6 µUε(xε) − µkmin, and

Uε(xε) >
µ

µ− 1
kmin. We also recall that Uε(0) = Ub. Then, in any case, we can then set umin =

min

{
kmin
1− α

,
kmin µ

µ− 1
, Ub

}
.

Existence of vmax. Vε(x) = Uε(x)−Kε 6 umax and we can set vmax = umax.
Existence of vmin. We have Vε(L) = αUε(L) > αumin. If we assume that Vε reaches its minimum
at x = 0, then, Vε is increasing at x = 0. Equation (13) then implies h(Vε(0)) − Ub > 0, and then

Vε(0) >
Ub
µ

. Now if we assume that Vε reaches its minimum at xε ∈ (0, L), we have
d

dx
Vε(xε) = 0

and then h(Vε(xε)) = Uε(xε) which implies Vε(xε) >
umin
µ

. In any case, we can set vmin =

min

{
umin
µ

,
Ub
µ
, αumin

}
. This ends the proof of Lemma 1.
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The comparison principle in [19] gives that 0 6 u0(x) 6 Uε(x) and 0 6 v0(x) 6 Vε(x) implies
0 6 uε(t, x) 6 Uε(x) and 0 6 vε(t, x) 6 Vε(x).

The choice Ub = max{ub, ‖u0‖L∞ , ‖v0‖L∞} ends the proof of Proposition 1.
The solution uε, vε is then uniformly contained in the rectangle [umin, umax] × [vmin, vmax]. As

depicted on Figure 2.2, depending on ub, u
0, v0, α, β, µ but not on ε, either Mb ∩Meq = ∅, or

there exists (uI , vI) ∈ [umin, umax]× [vmin, vmax] such that Mb ∩Meq = {(uI , vI)}. In the first case,
a boundary layer appears.

Mb ∩Meq = ∅ Mb ∩Meq = {(uI , vI)}

Figure 1: Plot of the two equilibrium manifolds. Either Meq (blue) intersects Mb (red) inside
[umin, umax]× [vmin, vmax](right), either it does not (left).

Proposition 2 (Existence of the boundary layer). We assume (6). Assuming that Mb ∩Meq = ∅,
and that the solution (uε, vε) to (Sε) is continuous with respect to x, then there exists D > 0,
independent of ε, and η(ε) > 0 such that

|h(vε(x, t))− uε(x, t)| > D, t ∈ [0, T ], x ∈ [L− η(ε), L].

Proof. Proposition 1 shows that Mb and Meq are the graphs of two continuous functions, respectively
v = αu and v = h−1(u), defined on the compact set [umin, umax] and which do not intersect. Then
there exists m > 0 which does not depend on ε such that

∀(x0, yb) ∈Mb, ∀(x0, yeq) ∈Meq, |yeq − yb| > m.

Thus for all t ∈ [0, T ], we have

|uε(L, t)− h(vε(L, t))| = |uε(L, t)− h(αuε(L, t))| > β|h−1(uε(L, t))− αuε(L, t)| > βm,

since (uε(L,t), h
−1(uε(L, t))) ∈Meq and (uε(L, t), αuε(L, t)) ∈Mb. Since uε, vε and h are continuous,

this implies that there exists η that may depend on ε such that |h(vε−uε)| > βm/2 for |x−L| < η,
and Proposition 2 holds for D = βm/2.

3 Construction of an Asymptotic Preserving scheme and main
results

In the context of the finite volume schemes framework, we consider a mesh of N disjoint cells
Ck, k ∈ [[1, N ]]. Let ∆x be the size of each cell and let ∆t be the time step. The final time is
denoted by T , and the number of iterations is denoted by nf , so that nf∆t = T . The approximated
value of the function ρ(x, t) for x ∈ Ck and t ∈ [(n− 1)∆t, n∆t] is denoted by ρnk .
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3.1 Construction of the scheme

We detail here the requirements we impose on the numerical schemes.

R-1. For simplicity, the scheme (Sε,∆) is explicit, and its stencil contains 3 points.

R-2. The scheme (Sε,∆) is upwind in the sense that the fluxes u and −v are computed using only
a one-sided approximation to the derivative.

R-3. The scheme (S∆) is upwind in the sense that at each time step, the updated value of the
conservative quantity ρn+1

k only depends on {ρn` , ` 6 k}.

Based on remark (8), we consider a class of schemes of the form
un+1
ε,k = unε,k −

∆t

∆x

[
unε,k − unε,k−1

]
+

∆t

ε+ ∆x
Su(un, vn),

vn+1
ε,k = vnε,k −

∆t

∆x

[
− vnε,k+1 + vnε,k

]
− ∆t

ε+ ∆x
Sv(un, vn),

(17)

where Su and Sv are two ways to discretize the source term. Both Su and Sv should be consistent
with h(v)− u. The sum of the equations of (17) for ε = 0 is

un+1
ε,k + vn+1

ε,k = unε,k + vnε,k −
∆t

∆x

[
unε,k − unε,k−1 + vnε,k − vnε,k+1 − Su + Sv

]
. (18)

The condition R-3 then leads us to impose that the discretization of the flux is

unε,k − unε,k−1 + vnε,k − vnε,k+1 − Su + Sv = h(vnε,k)− vnε,k − (h(vnε,k−1)− vnε,k−1).

Since we restricted ourselves to linear upwind schemes with a three-point stencil, there exists 3 real
numbers a, b, c such that{

Su = h(vnε,k−1)− unε,k−1 − avnε,k+1 + bvnε,k − cvnε,k−1,

Sv = h(vnε,k)− unε,k + (1− a)vnε,k+1 + (b− 2)vnε,k + (1− c)vnε,k−1.
(19)

Among the class of numerical schemes (17) which satisfy (19), one can check that the ones which
are stable in L∞ ∩ BV are those where a, b and c satisfy a = 0, b = c, 1 6 b 6 β. The schemes we
select are then written for 1 6 b 6 β

un+1
ε,k − u

n
ε,k

∆t
+
unε,k − unε,k−1

∆x
=

1

ε+ ∆x

(
h(vnε,k−1)− unε,k−1 + bvnε,k − bvnε,k−1

)
,

vn+1
ε,k − v

n
ε,k

∆t
+
vnε,k − vnε,k+1

∆x
= − 1

ε+ ∆x

(
h(vnε,k)− unε,k + vnε,k+1 + (b− 2)vnε,k + (1− b)vnε,k−1

)
,

un0 = ub, vn0 = h−1(ub), vnN+1 = αunN .
(20)

For simplicity, we focus on the case b = 1 and define the scheme for k ∈ [[1, N ]] and n ∈ N

un+1
ε,k − u

n
ε,k

∆t
+
unε,k − unε,k−1

∆x
=

1

ε+ ∆x

(
h(vnε,k−1)− unε,k−1 + vnε,k − vnε,k−1

)
,

vn+1
ε,k − v

n
ε,k

∆t
+
vnε,k − vnε,k+1

∆x
= − 1

ε+ ∆x

(
h(vnε,k)− unε,k + vnε,k+1 − vnε,k

)
,

un0 = ub, vn0 = h−1(ub), vnN+1 = αunN .

(Sε,∆)

The scheme (Sε,∆) satisfy R-1, R-2 and R-3. The sequence of following results states that the
AP diagram is commutative.
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3.2 Convergence results

For all ε > 0, let us define the following functions

uε,∆(x, t) =
∑
n∈N

∑
k∈[1,N ]

unε,k1[n∆t,(n+1)∆t)×Ck
(x, t),

vε,∆(x, t) =
∑
n∈N

∑
k∈[1,N ]

vnε,k1[n∆t,(n+1)∆t)×Ck
(x, t),

(21)

where the sequence (uε,∆, vε,∆) is given by the scheme (Sε,∆).

Theorem 3. Assuming (4), (6), and the CFL condition µ∆t 6 ∆x, the approximate solution
(uε,∆, vε,∆) defined in (21) satisfies

‖uε,∆ − uε‖L1((0,T )×[0,L]) →
∆→0

0, ‖vε,∆ − vε‖L1((0,T )×[0,L]) →
∆→0

0.

where (uε, vε) is the unique solution of (Sε).

The scheme (S∆) is obtained by setting ε = 0 in (Sε,∆), and enables us to build a sequence
(unk , v

n
k ) , k ∈ [0, N ], n > 0. Let us define

u∆(x, t) =
∑
n∈N

∑
k∈[1,N ]

unk1[n∆t,(n+1)∆t)×Ck
(x, t),

v∆(x, t) =
∑
n∈N

∑
k∈[1,N ]

vnk1[n∆t,(n+1)∆t)×Ck
(x, t).

(22)

Theorem 4. Assuming (4), (5), (6), and the CFL condition µ∆t 6 ∆x, the approximate solution
(u∆, v∆) defined in (22) satisfies

‖u∆ − h(v)‖L1((0,T )×[0,L]) →
∆→0

0, ‖v∆ − v‖L1((0,T )×[0,L]) →
∆→0

0,

where v is the unique solution of (S0).

We prove in the next section that the schemes (Sε,∆) are convergent for all ε > 0, and that they
relax toward an upwind convergent scheme when ε goes to zero. In Section 2, we stated the results
that justify the arrow 2 of the diagram. We focus here on arrows 1 , 3 and 4 .

4 Convergence of the relaxation scheme (Sε,∆) as ∆→ 0

This section is devoted to the proof of Theorem 3. To avoid cumbersome notations, we drop the
indices ε in the quantities unε,k and vnε,k. Throughout Propositions 3, 4, and 5, we prove uniform
estimates on the functions uε,∆ and vε,∆ that enables us to pass to the limit using strong compact-
ness.

Proposition 3 (Conservation, monotonicity and positivity).
We assume (4), (6). Then the sequence scheme (Sε,∆) satisfies the following properties:

i) The quantity unk + vnk is preserved, i.e. there exists a numerical flux (Gn
k+ 1

2

)i,n such that

un+1
k + vn+1

k = unk + vnk −
∆t

∆x

(
Gn
k+ 1

2

−Gn
k− 1

2

)
, k = k ∈ [[1, N ]], n ∈ N.

10



ii) Under the Courant-Friedrichs-Levy condition

∆t 6
∆x

µ
, (23)

the scheme (Sε,∆) is monotone in the sense that we can write{
un+1
k = G(unk−1, u

n
k , v

n
k−1, v

n
k )

vn+1
k = H(unk , v

n
k−1, v

n
k , v

n
k+1),

where G and H are non-decreasing functions with respect to each of their variables.

iii) The scheme (Sε,∆) preserves positivity:

if ∀k ∈ [1, N ], u0
k > 0, v0

k > 0, then ∀n > 0, ∀k ∈ [[1, N ]], unk > 0, vnk > 0.

Proof. We first write the scheme in a conservative form:

un+1
k = unk−

∆t

∆x

[
unk − unk−1 +

∆x

2(∆x+ ε)

(
(h(vnk )− unk + vnk+1 − vnk )− (h(vnk−1)− unk−1 + vnk − vnk−1)

)]
+

∆x

2(∆x+ ε)

[
h(vnk ) + h(vnk−1)− (unk + unk−1) + vnk+1 − vnk−1

]
,

vn+1
k = vnk−

∆t

∆x

[
vnk − vnk+1 +

∆x

2(∆x+ ε)

(
(h(vnk−1)− unk−1 + vnk − vnk−1)− (h(vnk )− unk + vnk+1 − vnk )

)]
− ∆x

2(∆x+ ε)

[
h(vnk ) + h(vnk−1)− (unk + unk−1) + vnk+1 − vnk−1

]
,

(24)
which proves (i). To prove the monotonicity property (ii), let us write the scheme under the form

un+1
k =

[
1− ∆t

∆x

]
unk +

[∆t

∆x
− ∆t

∆x+ ε

]
unk−1 +

∆t

∆x+ ε

[
h(vnk−1)− vnk−1

]
+

∆t

∆x+ ε
vnk := G(unk−1, u

n
k , v

n
k−1, v

n
k ),

vn+1
k =

[
1− ∆t

∆x
+

∆t

∆x+ ε

]
vnk +

[∆t

∆x
− ∆t

∆x+ ε

]
vnk+1 −

∆t

∆x+ ε
h(vnk ) +

∆t

∆x+ ε
unk

:= H(unk , v
n
k−1, v

n
k , v

n
k+1).

(25)

For any ∆x > 0, ∆t > 0, it is clear from the assumptions on h that G is non-decreasing with
respect to unk−1, vnk−1, vnk , and that H is non-decreasing with respect to vnk−1, vnk+1, vnk . By the CFL
condition (23) and since µ > 1, we have ∆t < ∆x, which also implies that G is non-decreasing with
unk and

∂H

∂vnk
(unk , v

n
k−1, v

n
k , v

n
k+1) =

∂

∂vnk

[
1− ∆t

∆x
+

∆t

∆x+ ε

]
vnk −

∆t

∆x+ ε
h(vnk )

>
[
1− ∆t

∆x
+

∆t

∆x+ ε
− µ ∆t

∆x+ ε

]
.

> 1− µ∆t

∆x
> 0.

In conclusion the scheme is monotone provided that the stability condition (23) is satisfied.
Finally, we notice that G(0, 0, 0, 0, 0, 0) = H(0, 0, 0, 0, 0, 0) = 0, and the positivity (iii) follows

directly from the monotonicity (ii).
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We first prove L∞ estimates that are useful to prove BV estimates.

Proposition 4 (L∞ estimate). We assume (4), (6), the CFL condition (23) and ∆x < (1 − α)ε.
Then there exists a function M such that the solution (unk , v

n
k ) to the scheme (Sε,∆) satisfies

∀n > 0, ∀k ∈ [[1, N ]], unk 6M(ε, ‖u0‖L∞ , ‖v0‖L∞), vnk 6M(ε, ‖u0‖L∞ , ‖v0‖L∞).

We start with the following lemma which states the existence of a super-solution.

Lemma 2 (Existence of a super-solution). We assume (6) and we fix ∆x 6 (1 − α)ε. For any
δ > 0, there exists Ub > ub depending on δ, a pair of vectors (U, V ) ∈ RN+1 × RN+2 which may
depend on ε, and a function M̄ : R+ × R+ → R+ such that

Uk − Uk−1 =
∆x

∆x+ ε

[
h(Vk−1)− Uk−1 + Vk − Vk−1

]
, k ∈ [[1, N ]],

Vk − Vk+1 =
∆x

∆x+ ε

[
− h(Vk) + Uk − Vk+1 + Vk

]
, k ∈ [[0, N ]],

U0 = Ub, VN+1 > αUN ,

(26)

and
δ 6 Uk 6 M̄(δ, ε), δ 6 Vk 6 M̄(δ, ε), k ∈ [[1, N ]]. (27)

Proof of Lemma 2. We denote by r = ∆x/(∆x + ε). We have 0 < r < 1 − α. To prove Lemma 2,
we are decoupling the difficulties. We first prove the existence of solutions for the system

Uk − Uk−1 = r
[
h(Vk−1)− Uk−1 + Vk − Vk−1

]
, k ∈ [[1, N ]],

Vk − Vk+1 = r
[
− h(Vk) + Uk − Vk+1 + Vk

]
, k ∈ [[0, N ]],

U0 = Ub, VN+1 = Vb,

(28)

where Vb ∈ R+ and Ub ∈ R+ are given, using a fixed point argument. Then, we use a shooting
method to prove that there is at least one value for Vb for which the solution to (28) satisfies
VN+1 > αUN , which makes it a solution to (26) as well. In the last step, we prove that we can
always find Ub(δ) the estimates (27).

Step 1. Existence of a solution for (28). We fix Ub > ub and Vb ∈ R+. We build here a
solution (U, V ) to (28) by defining U as a fixed point of the following operator Φ : RN+1 → RN+1

(once the vector U is defined, the vector V is directly deduced from the second line of (28)). Given
Ū ∈ RN+1, we define U := Φ[Ū ] as the unique solution of the system

Uk − Uk−1 = r
[
h(Vk−1)− Uk−1 + Vk − Vk−1

]
, k ∈ [[1, N ]],

Vk − Vk+1 = r
[
− h(Vk) + Ūk − Vk+1 + Vk

]
, k ∈ [[0, N ]],

U0 = Ub, Ū0 = Ub, VN+1 = Vb.

(29)

We prove here that for any M such that Ub 6 h(M) and Vb 6 M, we have Φ
(

[0, h(M)]N+1
)
⊂

[0, h(M)]N+1. Indeed, let us assume Ū ∈ [0, h(M)]N+1. We define (V0, . . . , VN ) as the unique vector
satisfying the second line of (29) and VN+1 = Vb. Let us assume that for some k ∈ [[0, N ]], we have
0 6 Vk+1 6M (true for k = N), then the second line of (29) gives us

(rh+ (1− r)Id)Vk = rŪk + (1− r)Vk+1, k ∈ [[0, N ]],

12



which implies
0 6 Vk 6M, (30)

since (rh + (1 − r)Id) is invertible and monotone. By induction, estimate (30) holds for any
k ∈ [[0, N ]]. We now define U by the first line of (29) and U0 = Ub. For k = 0, we have the estimate
0 6 Uk 6 h(M). The first line of (29) gives for any k ∈ [[0, N ]]

Uk+1 = (1− r)Uk + r(h− Id)Vk + rVk+1. (31)

By induction, this directly implies, for all k ∈ [[0, N − 1]],

0 6 Uk+1 6 h(M).

We can now apply the Brouwer fixed point theorem to conclude that Φ admits at least one fixed
point U . We notice that for any of these fixed points U , the couple (U, V ) where V is defined by
the second line of (28), is a solution to (28), which guarantees the existence of a solution to (28).
This solution satisfies

0 6 Uk 6 h(M), 0 6 Vk 6M, (32)

for any M such as Ub 6 h(M) and Vb 6M , and, moreover,

Vk+1 − Vk = Uk+1 − Uk, k ∈ [[0, N − 1]]. (33)

From now on, for each Ub > ub, Vb ∈ R+, we choose a solution to (29) obtained through the
process described in Step 1 and denote it by (U, V ).

Step 2. An intermediate estimate on the solution. We prove here an estimate on the
solution to (28) defined in Step 1. We have

Vk+1 = Vk +
r

1− r
h(Vk)−

r

1− r
Uk 6

1− r + rµ

1− r
Vk.

By direct induction,

Vk >

(
1− r

1− r + rµ

)N+1−k
VN+1. (34)

Since (
1− r

1− r + rµ

)N+1−k
=
(

1 +
µ

ε
∆x
)N+1−k

6
(

1 +
µ

ε
∆x
)N+1

6 exp
(µ
ε

)
, (35)

we conclude combining (34) and (35) that

Vk > exp
(
−µ
ε

)
Vb, k ∈ [[0, N ]]. (36)

Step 3. The shooting method. We fix Ub > ub. We define the shooting function P as
P : Vb 7→ αUN −Vb, where UN is defined as the N -th component of the vector U selected in Step 1.
We prove here that there exists Vb ∈ R+ such that P (Vb) 6 0, i.e. such that the (selected) solution
to (28) is a solution to (26) as well. We have

P (Vb) = αUN − VN+1 = αUN − UN + UN − VN + VN − VN+1.

Using (33) and (28), we obtain

P (Vb) = (α− 1)UN + U0 − V0 −
r

1− r
h(VN ) +

r

1− r
UN

=

(
α− 1 +

∆x

ε

)
UN + U0 − V0 −

r

1− r
h(VN ).

13



Since − r

1− r
h(VN ) < 0, and since

(
α− 1 +

∆x

ε

)
UN 6 0 for ∆x 6 ε(1 − α), we have P (Vb) < 0

as soon as U0 − V0 < 0, i.e. as soon as

Vb > Ub exp
(µ
ε

)
,

using (36). As a conclusion, for any Ub > ub and Vb satisfying Vb > Ub exp
(µ
ε

)
, any solution to

(28) is a solution to (26).
Step 4. Estimates from below and from above for the super-solution. We fix Ub > ub

and Vb = Ub exp
(µ
ε

)
+ 1 and denote by (U, V ) the solution to (26) we selected in Step 1. We prove

now that if we choose Ub large enough so that

α

(
ε

L+ ε

)2

exp
(
−µ
ε

)
Ub = δ,

then (27) is guaranteed. Indeed, using the first line of (26), we obtain by direct induction

Uk > (1− r)kUb > (1− r)N+1Ub, k ∈ [[1, N ]], (37)

and using (36) we have

VN+1 > αUN+1, Vk > exp
(
−µ
ε

)
VN+1, k ∈ [[0, N ]]. (38)

Combining (37) and (38), we deduce, since α < 1 and exp
(
−µ
ε

)
< 1,

min

{
min

k∈[[1,N ]]
Uk, min

k∈[[1,N+1]]
Vk

}
> α exp

(
−µ
ε

)
(1− r)N+1Ub.

Using N∆x = L, we have

(1− r)N+1 =

(
1− ∆x

∆x+ ε

)N+1

=

(
Nε

L+Nε

)N+1

,

and since N →
(

Nε

L+Nε

)N+1

is increasing, we have

(1− r)N+1 >

(
ε

L+ ε

)2

,

and thus

min

{
min

k∈[[1,N ]]
Uk, min

k∈[[1,N+1]]
Vk

}
> δ.

According to Step 1, for M such that Vb 6M and Ub 6 h(M), we have

0 6 Uk 6 h(M), 0 6 Vk 6M, k ∈ [[1, N ]]. (39)

Then, estimate (27) holds for

M̄(δ, ε) = 1 +

(
L+ ε

ε

)2

exp

(
2µ

ε

)
δ.

This ends the proof of Lemma 2.
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Proof of Proposition 4. Consider the approximations (unk)k,n and (vnk )k,n given by (Sε,∆). We denote
by (Uk)k∈[0,N ] and (Vk)k∈[0,N+1] the vectors of RN given by Lemma 2 and corresponding to δ :=
max{‖u0‖L∞ , ‖v0‖L∞}. Let us assume that for some n > 0, we have for all k ∈ [[1, N ]], unk 6 Uk and
vnk 6 Vk. This is true for n = 0 since u0

k = u0(k∆x) 6 δ 6 Uk and v0
k = v0(k∆x) 6 δ 6 Vk. Since

the scheme (Sε,∆) is monotone, we have{
un+1
k = G(unk−1, u

n
k , v

n
k−1, v

n
k ) 6 G(Uk−1, Uk, Vk−1, Vk)

vn+1
k = H(unk , v

n
k−1, v

n
k , v

n
k+1) 6 H(Uk, Vk−1, Vk, Vk+1),

(40)

where G and H are defined in (24). Since Uk, Vk satisfy (26), we have{
G(Uk−1, Uk, Vk−1, Vk) 6 Uk

H(Uk, Vk−1, Vk, Vk+1) 6 Vk.
(41)

The combination of (41) and (40) leads to

un+1
k 6 Uk, vn+1

k 6 Vk, k ∈ [[1, N ]].

By induction on n, we have then

unk 6 Uk, vnk 6 Vk, k ∈ [[1, N ]], n > 0,

and thus the result follows from Lemma 2 withM(ε, ‖u0‖L∞ , ‖v0‖L∞) = M̄(max{‖u0‖L∞ , ‖v0‖L∞}, ε).

We define

TV (un) =
N−1∑
k=0

|unk+1 − unk |, TV (vn) =
N−1∑
k=0

|vnk+1 − vnk |.

Proposition 5 (spatial BV estimate). We assume (4) and (6). Under the CFL condition (23) and
assuming ∆x < (1− α)ε, for unk and vnk given by the scheme (Sε,∆), there exists K such that

TV (un) + TV (vn) 6 TV (u0) + TV (v0) + T K(ε, ‖u0‖L∞ , ‖v0‖L∞).

Proof. We first write

N−1∑
k=0

|un+1
k+1 − u

n+1
k |+

N∑
k=0

|vn+1
k+1 − v

n+1
k | =

N−1∑
k=1

∣∣∣un+1
k+1 − u

n+1
k |+

N−1∑
k=1

∣∣∣vn+1
k+1 − v

n+1
k |︸ ︷︷ ︸

M∑
k

+
∣∣∣un+1

1 − ub
∣∣∣+
∣∣∣vn+1

1 − v0

∣∣∣︸ ︷︷ ︸
M0

We consider separately the terms M∑
k

and M0.
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Step 1: M∑
k
. Using the numerical scheme (Sε,∆) for 1 6 k 6 N − 1, we have

|un+1
k+1 − u

n+1
k | 6

∣∣∣ (1− ∆t

∆x

)
(unk+1 − unk)

∣∣∣+

(
∆t

∆x
− ∆t

∆x+ ε

)
|unk − unk−1|+

∆t

∆x+ ε
|vnk+1 − vnk |

+
∆t

∆x+ ε

∣∣∣h(vnk )− h(vnk−1)− (vnk − vnk−1)
∣∣∣

|vn+1
k+1 − v

n+1
k | 6

∣∣∣ (1− ∆t

∆x
− ∆t

∆x+ ε

)
(vnk+1 − vnk )− ∆t

∆x+ ε
(h(vnk+1)− h(vnk ))

∣∣∣
+

(
∆t

∆x
− ∆t

∆x+ ε

)
|vnk+2 − vnk+1|+

∆t

∆x+ ε
|unk+1 − unk |.

Under the CFL condition (23) which guarantees the positivity of the coefficients, the terms of M∑
k

can be reorganized the following way

M∑
k
6
N−1∑
k=1

(
1− ∆t

∆x
+

∆t

∆x+ ε

)
|unk+1 − unk |+

N−2∑
k=0

(
∆t

∆x
− ∆t

∆x+ ε

)
|unk+1 − unk |

+

N−1∑
k=1

(
1− ∆t

∆x
+ (2− µ)

∆t

∆x+ ε

)
|vnk+1 − vnk |

+
N−2∑
k=0

(µ− 1)
∆t

∆x+ ε
|vnk+1 − vnk |+

N∑
k=2

(
∆t

∆x
− ∆t

∆x+ ε

)
|vnk+1 − vnk |.

which is

M∑
k
6
N−2∑
k=1

|unk+1 − unk |+
N−2∑
k=2

|vnk+1 − vnk |+
(

∆t

∆x
− ∆t

∆x+ ε

)
|un1 − ub|

+

(
1− ∆t

∆x
+

∆t

∆x+ ε

)
|unN − unN−1|+

(
1− ∆t

∆x
+

∆t

∆x+ ε

)
|vn2 − vn1 |

+

(
1 + (1− µ)

∆t

∆x+ ε

)
|vnN − vnN−1|+ (µ− 1)

∆t

∆x+ ε
|vn1 − v0|+

(
∆t

∆x
− ∆t

∆x+ ε

)
|αunN − vnN |.

(42)
Step 2: M0. The term corresponding to k = 0 is treated the following way

M0 =

∣∣∣∣(1− ∆t

∆x

)
un1 +

(
∆t

∆x
− ∆t

∆x+ ε

)
ub +

∆t

∆x+ ε
[h(v0)− v0] +

∆t

∆x+ ε
vn1 − ub

∣∣∣∣
+

∣∣∣∣(1− ∆t

∆x
− ∆t

∆x+ ε

)
vn1 +

(∆t

∆x
− ∆t

∆x+ ε

)
vn2 −

∆t

∆x+ ε
h(vn1 )

+
∆t

∆x+ ε
un1 − v0

∣∣∣,
we rearrange the terms and plug the equality ub = h(v0)

M0 =

(
1− ∆t

∆x

)
|un1 − ub|+

∆t

∆x+ ε
|vn1 − v0|+

(
∆t

∆x
− ∆t

∆x+ ε

)
|vn2 − vn1 |+

∆t

∆x+ ε
|un1 − ub|

+
∣∣∣ (1− ∆t

∆x

)
(vn1 − v0)− ∆t

∆x+ ε
(h(vn1 )− h(v0))

∣∣∣.
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and thus

M0 6

(
1− ∆t

∆x
+

∆t

∆x+ ε

)
|un1 − ub|+

(
∆t

∆x
− ∆t

∆x+ ε

)
|vn2 − vn1 |

+

(
1− ∆t

∆x
+ (1− µ)

∆t

∆x+ ε

)
|vn1 − v0|.

(43)

We combine now (42)and (43) to obtain

N−1∑
k=0

[
|un+1
k+1 − u

n+1
k |+ |vn+1

k+1 − v
n+1
k |

]
6
N−1∑
k=0

[
|unk+1 − unk |+ |vnk+1 − vnk |

]
+K(ε, ‖u0‖L∞ , ‖v0‖L∞)∆t,

(44)

whereK(ε, ‖u0‖L∞ , ‖v0‖L∞) = (α+1)M(ε, ‖u0‖L∞ , ‖v0‖L∞), since Proposition 4 implies
ε

ε+ ∆x
|αunN−

vnN | 6 (α+ 1)M(ε, ‖u0‖L∞ , ‖v0‖L∞). Proposition 5 follows by immediate induction.

Proof. (of Theorem 3) We use the following lemma.

Lemma 3 (Theorem 2.4. [4]). Consider a sequence of functions u∆ : [0,+∞)× [0, 1]→ R with the
following properties:

1. TV(u∆(t, .)) 6 C, |u∆(t, x)| 6M, ∀(t, x) ∈ [0, T ]× [0, L]

2.

∫
[0,L]
|u∆(t, x)− u∆(s, x)|dx 6 L1|t− s|+ L2∆, ∀s, t > 0,

then, there exists a function u ∈ L∞([0, T ]× [0, L])∩C((0, T ); L1([0, L])), such that TV (u(t, .)) 6 C
and

lim
∆→0

u∆ = u, L1([0, T ]× [0, L]).

In [4], Theorem 2.4 is stated for L2 = 0, but the proof can be easily adapted for L2 6= 0. We
now prove Theorem 3. Consider the sequence of functions (u∆, v∆) defined in (21). Using the
first item of Lemma 3 is satisfied. Fix t < s. There exists n and m natural numbers such that
t ∈ [n∆t, (n+ 1)∆t) and s ∈ [m∆t, (m+ 1)∆t). Then, using (Sε,∆) and Proposition 5, we have

∫
[0,L]
|u∆(t, x)− u∆(s, x)|dx =

N∑
k=1

∆x|unk − umk | 6
m−1∑
`=n

N∑
k=1

∆x|u`+1
k − u`k|

6 ∆t

m−1∑
`=n

N∑
k=1

{
|u`k − u`k−1|+

∆x

ε

∣∣∣h(v`k−1)− u`k−1

∣∣∣+
∆x

ε

∣∣∣v`k − v`k−1

∣∣∣}

6 ∆t
m−1∑
`=n

{
TV (u0) + TV (v0) + TK(ε, ‖u0‖L∞ , ‖v0‖L∞)

+
3 + µ

ε
M(ε, ‖u0‖L∞ , ‖v0‖L∞)

}
6 L(|t− s|+ ∆t),

with

L = TV (u0) + TV (v0) + TK(ε, ‖u0‖L∞ , ‖v0‖L∞) +
3 + µ

ε
M(ε, ‖u0‖L∞ , ‖v0‖L∞).
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Thus, the second item of Lemma 3 is satisfied as well, which guarantees the existence of uε and
vε in L∞([0, T ]× [0, L])∩C((0, T ); L1([0, L])), such that TV (uε(t, .)) and TV (vε(t, .)) are finite, and
such that

lim
∆→0

uε,∆ = uε, lim
∆→0

vε,∆ = vε, L1([0, T ]× [0, L]).

We do not detail the fact that the limit (uε, vε) is a weak solution to the linear system (Sε),
but similar (and easier) arguments developed in next section when proving that (u, v) is the unique
entropy solution to (S0) can be applied.

5 Convergence of the equilibrium scheme (S∆)

In this section, we focus on the equilibrium scheme. The goal is to prove Theorem 4. It is allowed
to allocate the value 0 to the parameter ε in the scheme (Sε,∆). The scheme obtained for ε = 0 gives
us two sequences unk and vnk . We prove here that the sequences obtained are a good discretization
of the solution to the system (S0). We denote by

λ =
∆t

∆x
.

The scheme we obtain at the limit can be written, for k ∈ [[1, N ]] and n > 0, as
vn+1
k = vnk − λ

(
h(vnk )− unk

)
,

un+1
k = unk − λ

(
unk − vnk − (h(vnk−1)− vnk−1)

)
,

h(v0
k) = u0

k, k ∈ [1, N ], un0 = ub, h(vn0 ) = ub,

(S∆)

or equivalently, using the intermediate variable snk := unk + vnk , as

sn+1
k = snk − λ

(
h(vnk )− vnk − (h(vnk−1)− vnk−1)

)
, (45)

vn+1
k = vnk − λ(h(vnk )− unk), (46)

un+1
k = sn+1

k − vn+1
k , (47)

h(v0
k) = u0

k, k ∈ [1, N ], un0 = ub, h(vn0 ) = un0 , n > 0. (48)

The scheme (S∆) provides a solver for the system S which does not require to invert the non-
linear function h at each time step. The scheme can be interpreted the following way. Let us assume
that the quantities unk , v

n
k are given for a time step n and recall that snk = unk + vnk . The variable

sn+1
k is updated using (45), which discretizes the scalar equation ∂t(u+v)+∂x(h(v)−v) = 0. Then,

we aim to define vn+1
k := h−1(unk) without inverting h. This is approximately done with step (46),

that may be seen as an approximation of the first iteration of the Newton iteration scheme solving
h(x) = unk with the inital guess x = vnk . Note that this would be exactly the first iteration of the
Newton iteration scheme in the case where λ = (h′(vnk ))−1.

Let us now prove that the solution to the scheme (S∆) converges toward the entropy solution
of S. To do so, we first prove monotonicity and a priori BV bounds on u∆, v∆ to guarantee the
convergence of the sequence toward a couple (u, v) using Helly theorem. To make sure that the
limit is the entropy solution to S, we then adapt the proof of the Lax–Wendroff theorem to our
case.
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Let us define the functions

Uλ(u, v̄, v) = u− λ(u− v − h(v̄) + v̄), (49)

Vλ(u, v) = v − λ(h(v)− u), (50)

so that the numerical scheme (S∆) can be rewritten

un+1
k = Uλ(unk , v

n
k−1, v

n
k ), (51)

vn+1
k = Vλ(unk , v

n
k ). (52)

Lemma 4 (Monotonicity of the numerical scheme). We assume (4) and (6). Under the CFL
condition (23), the numerical scheme (S∆) is monotone, in the sense that

1. It preserves constant solutions at equilibrium: for all v ∈ R+,

h(v) = Uλ(h(v), v, v),

v = Vλ(h(v), v).
(53)

2. The functions Uλ and Vλ are nondecreasing with respect to each variable.

Proof. The first item of Lemma 4 is clear. To prove the second item, we rewrite Uλ and Vλ as

Uλ(u, v̄, v) = u(1− λ) + λv + λ(h(v̄)− v̄), (54)

Vλ(u, v) = λu+ (v − λh(v)). (55)

Clearly λ > 0, (h− Id)by assumption and the CFL condition (23) can be written as 1− λ > 0.
This implies that Uλ is increasing. Besides, assuming (23), one has (Id−λh)′ = 1−λh′ > 1−λµ > 0,
then w(Id− λh) is increasing. This implies that Vλ is increasing.

Lemma 5 (A priori bounds). We assume (4), (6) and the CFL condition (23). Then the following
estimates are satisfied for the sequences (unk) and (vnk ) defined by (S∆).

1. L∞ bounds. For n > 0 and k ∈ [[1, N ]],{
m 6 v0

k 6M

h(m) 6 u0
k 6 h(M)

=⇒

{
m 6 vnk 6M

h(m) 6 unk 6 h(M).
(56)

2. BV bounds. For n > 0,

TV (un + vn) 6 TV (un) + TV (vn) 6 TV (u0) + TV (v0). (57)

Proof. The L∞ bounds follow directly from the monotonicity of the scheme. Indeed, assuming
m 6 v0

k 6M and h(m) 6 u0
k 6 h(M), we have

h(m) = Uλ(h(m),m,m) 6 Uλ(u0
k, v

0
k−1, v

0
k) 6 Uλ(h(M),M,M) = h(M)

and

m = Vλ(h(m),m) 6 Vλ(u0
k, v

0
k) 6 Vλ(h(M),M) = M.
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The property is then true for n = 1 since u1
k = Uλ(u0

k, v
0
k−1, v

0
k), v

1
k = Vλ(u0

k, v
0
k), and is easily

generalized by induction. To obtain the BV bounds we notice that we have directly from the
definition of the total variation and using a triangle inequality and (23) that

TV (un+1) 6 (1− λ) TV (un) + λµ TV (vn),

TV (vn+1) 6 λ TV (un) + (1− λµ) TV (vn).

Summing the two lines, we get

TV (un+1) + TV (vn+1) 6 TV (un) + TV (vn),

which proves Lemma 5.

Lemma 6 (Discrete entropy inequalities). We assume (4), (6) and the CFL condition (23). Then
there exists C > 0 such that the numerical approximations unk and vnk obtained by the scheme (S∆)
satisfiy the following discrete entropy inequality for n > 0 and k ∈ [[1, N ]][

|un+1
k + vn+1

k − (h(κ) + κ)| − |unk + vnk − (h(κ) + κ)|
]

+ λ
[
Gnk+1/2 −G

n
k−1/2

]
6 0 (58)

where
Gk+1/2 = h(vnk>κ)− vnk>κ− (h(vnk ⊥ κ)− vnk ⊥ κ) (59)

Proof. We recall that

a>b = max(a, b), a ⊥ b = min(a, b), |a− b| = a>b− a ⊥ b.

We have

(un+1
k + vn+1

k )>(h(κ) + κ) 6 un+1
k >h(κ) + vn+1

k >κ

and the monotonicity of Uλ and Vλ implies that

un+1
k >h(κ) + vn+1

k >κ 6 Uλ(unk>h(κ), vnk−1>κ, vnk>κ) + Vλ(unk>h(κ), vnk>κ). (60)

Rearranging the terms of (60) leads to

(un+1
k + vn+1

k )>(h(κ) + κ) 6 unk>h(κ) + vnk>κ− λ{h(vnk>κ)− vnk>κ− (h(vnk−1>κ)− vnk−1>κ)}
(61)

and for the same reason we have

(un+1
k + vn+1

k ) ⊥ (h(κ) + κ) > unk ⊥ h(κ) + vnk ⊥ κ− λ{h(vnk ⊥ κ)− vnk ⊥ κ− (h(vnk−1 ⊥ κ)− vnk−1 ⊥ κ)}
(62)

The subtraction of (62) to (61) gives[
|un+1
k + vn+1

k − (h(κ) + κ)| − |unk + vnk − (h(κ) + κ)|
]

+ λ
[
Gnk+1/2 −G

n
k−1/2

]
6 0,

The result of Lemma 6 thus holds.
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We define for all vector (uk)k∈Z

‖u‖1 = ∆x
N∑
k=1

|uk|.

Lemma 7 (Control of the deviation with respect to equilibrium). We assume (4), (6) and the CFL
condition (23). Then there is C < 1 such that the discrepancy to equilibrium for the numerical
approximations unk and vnk obtained by the scheme (S∆) is controlled in the L1 norm by

‖h(un)− vn‖1 6 Cn‖h(u0)− v0‖1 + (µ− 1)∆x
1− Cn

1− C
sup

06m6n−1
(TV (vm) + 2|vm|). (63)

In particular, since λ 6
1

µ
and µ > 1, we have −1 < C < 1.

Proof. The Rolle’s theorem gives us the existence of ξnk ∈ (vnk , v
n+1
k ) such that

h(vn+1
k ) = h(vnk ) + h′(ξnk ) (vn+1

k − vnk ), (64)

Combinig (64) with (S∆) gives us

h(vn+1
k )− un+1

k = {1− λ(1 + h′(ξnk ))} (h(vnk )− unk) + λ {h(vnk )− h(vnk−1)− (vnk − vnk−1)}

We use a triangle inequality, multiply by ∆x and sum from 1 to N to get

‖h(vn+1)− un+1‖1 6 C‖h(vn)− un‖1 + (µ− 1)∆x (TV (vn) + |vn1 − vn0 |),

which implies the estimate (63) by induction on n.

Proposition 6 (Convergence of the numerical scheme). We assume (4), (5), (6) and the CFL
condition (23), then the sequence of numerical approximations (unk , v

n
k )k,n obtained through Scheme

(S∆) converges towards (u, v) ∈ C
(
(0, T ); L1[0, L]

)
∩L∞ ([0, T ];BV [0, L]) in L1

loc when ∆t→ 0, up
to a subsequence.

Proof. of Proposition 6. We apply the same method used for Theorem 3. The sequences (u∆)∆

and (v∆)∆ satisfy the estimate 1 required for applying Lemma 3 (see Lemma 5) and we have, using
(45) and Lemma 5,∫

[0,L]
|s∆(t, x)− s∆(τ, x)|dx =

N∑
k=1

∆x|snk − smk | 6
m−1∑
`=n

N∑
k=1

∆x|s`+1
k − s`k|

6
m−1∑
`=n

∆t

N∑
k=1

{
(h− Id)(vnk )− (h− Id)(vnk−1)

}
6 (µ− 1)

(
TV (u0) + TV (v0)

)m−1∑
`=n

∆t

6 Ls(|t− τ |+ ∆t),
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with Ls = (µ− 1)
(
TV (u0) + TV (v0)

)
. We also have using (45) and Lemma 7∫

[0,L]
|v∆(t, x)− v∆(τ, x)|dx =

N∑
k=1

∆x|vnk − vmk | 6
m−1∑
`=n

N∑
k=1

∆x|v`+1
k − v`k|

6
m−1∑
`=n

∆t

N∑
k=1

{
h(v`n)− u`k

}
6

m−1∑
`=n

∆t
N∑
k=1

1

µ

2

1− C
(
TV (u0) + TV (v0)

)
6 Lv(|t− τ |+ ∆t),

with Lv =
1

µ

2

1− C
(
TV (u0) + TV (v0)

)
. Thus, since u∆ = s∆ − v∆, we have the same type of

estimate for u∆ and Lemma 3 guarantees the existence of u and v belonging to L∞([0, T ]× [0, L])∩
C((0, T ); L1([0, L])), such that TV (u(t, .)) 6 C, TV (v(t, .)) 6 C and such that

lim
∆→0

u∆ = u, lim
∆→0

v∆ = v, L1([0, T ]× [0, L]).

We prove now that the limit v is an entropy solution to (S0) and that u = h(v) almost everywhere.
To do so, we assume first that the problem is posed on the whole space line, i.e. that x ∈ R. We
begin by rewriting the discrete entropy inequality we proved on Lemma 6

∆x
[
|un+1
k + vn+1

k − (h(κ) + κ)| − |unk + vnk − (h(κ) + κ)|
]

+ ∆t
[
Gnk+1/2 − Gnk−1/2

]
6 0. (65)

Let us consider a nonnegative test function ϕ ∈ C∞c ([0, T ]× R), with T > 0. We introduce

ϕnk =
1

∆x

∫ xi+1/2

xi−1/2

ϕ(n∆t, x) dx.

We multiply (65) by ϕnk and sum over n ∈ N and k ∈ [1, N ]. Therefore, if we define

A∆t = ∆x
∑
n∈N

∑
k∈Z

[
|un+1
k + vn+1

k − (h(κ) + κ)| − |unk + vnk − (h(κ) + κ)|
]
ϕnk , (66)

B∆t = ∆t
∑
n∈N

∑
k∈Z

[
Gnk+1/2 −G

n
k−1/2

]
ϕnk , (67)

the discrete inequality entropy becomes

A∆t +B∆t 6 0. (68)

The goal is to pass inequality (68) to the limit as ∆t goes to zero and to check that v satisfies the
classical continuous entropy inequality associated with (S0). Let us begin with proving that

A∆t → A0 =: −
∫

R+

∫
R
|h(v)+v−(h(κ)+κ)|∂tϕ dx dt−

∫
R
|u0+v0−(h(κ)+κ)|ϕ(0, x) dx when ∆t→ 0.

First, we split A∆t into two parts: A∆t = Ā∆t + Ã∆t, with

Ā∆t = ∆x
∑
n∈N

∑
k∈Z

[
|h(vn+1

k ) + vn+1
k − (h(κ) + κ)| − |h(vnk ) + vnk − (h(κ) + κ)|

]
ϕnk ,

Ã∆t = ∆x
∑
n∈N

∑
k∈Z

[
R(un+1

k , vn+1
k , κ)−R(unk , v

n
k , κ)

]
ϕnk ,
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with
R(u, v, κ) = |u+ v − (h(κ) + κ)| − |h(v) + v − (h(κ) + κ)|.

The convergence of Ā∆t is classical. Indeed, using the Abel rule (discrete integration by part),

Ā∆t = −∆x
∑
k∈Z

[
|h(v0

k) + v0
k − (h(κ) + κ)|ϕ0

k +
∑
n∈N

|h(vn+1
k ) + vn+1

k − (h(κ) + κ)|(ϕn+1
k − ϕnk)

]
= −

∫
R

[
|h(v∆t(0, x)) + v∆t(0, x)− (h(κ) + κ)|ϕ(0, x) dx

−
∫

R

∫
R+

|h(v(t+ ∆t, x)) + v(t+ ∆t, x)− (h(κ) + κ)|ϕ(t+ ∆t, x)− ϕ(t, x)

∆t
dt dx

Since the two terms converge strongly, we obtain

Ā∆t → −
∫

R+

∫
R
|h(v) + v − (h(κ) + κ)|∂tϕ dx dt−

∫
R
|h(v0) + v0 − (h(κ) + κ)|ϕ(0, x) dx

when ∆t→ 0. We obtain for Ã∆t by similar calculations

Ã∆t = −∆x
∑
k∈Z

R(u0
k, v

0
k, κ)ϕ0

k −∆x
∑
k∈Z

∑
n∈N

R(un+1
k , vn+1

k , κ)(ϕn+1
k − ϕnk)

which is equal to

−
∫

R
R(u∆t(0, x), v∆t(0, x), κ)ϕ(0, x)dx−

∫
R

∫
R+

R(u∆t(t+ ∆t), v∆t(t+ ∆t), κ)
ϕ(t+ ∆t, x)− ϕ(t, x)

∆t
dt dx.

It is straightforward that

−
∫

R
R(u∆t(0, x), v∆t(0, x), κ)ϕ(0, x)dx→ −

∫
R

[
|u0+v0−(h(κ)+κ)|−|h(v0)+v0−(h(κ)+κ)|

]
ϕ(0, x) dx

while for the last term, we have∣∣∣∣∫
R

∫
R+

R(u∆t(t+ ∆t), v∆t(t+ ∆t), κ)
ϕ(t+ ∆t, x)− ϕ(t, x)

∆t
dt dx

∣∣∣∣
6 ‖∂tϕ‖L∞(R+×R)(µ+ 1)T sup

t>0
‖u∆t − h(v∆t)‖L1(R)(t),

which tends to 0 when ∆t→ 0 using Lemma 7. Gathering all these results gives us A∆t → A0.
Let us now focus on B∆t. One may first remark that

Gnk+1/2 = h(vnk>κ)− vnk>κ− (h(vnk ⊥ κ)− vnk ⊥ κ)

since h is increasing. Therefore, we have

B∆t = −∆t
∑
n∈N

∑
k∈Z

Gk−1/2 (ϕnk − ϕnk−1)
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which is equal to

−
∫

R+

∫
R

{
(h(v∆t(n∆t, x)>κ)− v∆t(n∆t, x)>κ−(h(v∆t(n∆t, x) ⊥ κ)− v∆t(n∆t, x) ⊥ κ)

ϕ(n∆t, x)− ϕ(n∆t, x−∆x)

∆x

}
dx dt

and tends toward

−
∫

R+

∫
R
(h(v∆t>κ)− v∆t>κ− (h(v∆t ⊥ κ)− v∆t ⊥ κ)(t, x) ∂xϕ(t, x) dx dt.

As this stage, we have proved that any limit of the numerical scheme (S∆) satisfies the entropy
inequalities (10), restricting the support of ϕ to [0, T ) × (0, L). Concerning the second point of
Definition 2, one can use the Otto’s formalism and invoke a more general result of convergence, see
for instance [21].

This ends the proof to Theorem 4.

6 Numerical illustrations

We now present some numerical results which illustrate the good behavior of our numerical scheme.
We only focus on the case of a linear source term

h(v) = µv,

with µ = 3, and the boundary conditions are

uε(0, t) = 1 and vε(L, t) = αuε(L, t),

with α = 0.1 and L = 1. We choose the same initial data for all experiments:

∀x ∈ (0, L), uε(x, 0) = uε(x, 0) = 1.

Let us note that this initial data is neither compatible with the left boundary condition, nor with
the equilibrium u = h(v). As a result, we expect to see a right-going wave initiated by the left
boundary condition and also a boundary layer at the right boundary.

We compare our numerical scheme (called the AP scheme in the sequel) with the classical
splitting method, using an implicit Euler method for the source term:{

u
n+1/2
k = unk − λ(unk − unk−1)

v
n+1/2
k = vnk + λ(vnk+1 − vnk ){
un+1
k = u

n+1/2
k + ∆t

ε (h(vn+1
k )− un+1

k )

vn+1
k = v

n+1/2
k + ∆t

ε (un+1
k − h(vn+1

k ))

(69)

where the second part can be explicitly solved since the source term is linear. In all the numerical
tests, we used

∆t = ∆x/3.
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Figure 2: Comparison of the AP scheme and of the splitting method with a reference solution for
several mesh sizes: 50 (up), 200 (center), 800 (bottom) — u+ v vs. space.25



6.1 Different mesh sizes for the relaxation model

The first test illustrates the accuracy of both schemes according to the number of cells: we use
successively 50, 200 and 800 cells, while ε = 10−2 and T = 1.

In Figure 2, one can check that both schemes seem to converge towards the same profile, the
reference solution, which has been computed using the AP scheme with 3000 cells. The splitting
method is clearly more diffusive than the AP scheme, in particular when the number of cells is
small. The wave and the boundary layer are better approximated by the AP scheme.

6.2 Behavior of the relaxation boundary layer

In this test, we study how the numerical schemes approximate the boundary layer at the right
boundary. To do so, we use a final time T equal to 5 which corresponds to a stationary solution.
Three values of ε are used: 10−1, 10−2 and 10−5. The number of cells is 100 for all the tests, so
that when ε = 10−5, one may expect an under-resolved boundary layer.

In Figure 3, we have plotted the results provided by the schemes, and a reference solution
computed by the AP scheme with 1000 cells. Let us mention that we represent only the right part
of the domain in order to better see the differences. For ε = 10−1, the profiles provided by the
two numerical schemes are similar but one can note that the point at the right boundary given by
the AP scheme is significantly greater than the points obtained by the splitting method and the
reference solution. When ε is equal to 10−2, this difference increases. However, the shape of the
boundary layer is much better approximated by the AP scheme than by the splitting method. The
case of ε = 10−5 leads to much larger discrepancies. The boundary layer of the reference solution
is so tiny that it cannot be seen, so that in the figure, one can only see a constant state. The AP
scheme provides the same constant state, this is due to its upwind nature when ε is very small. On
the contrary, the splitting method leads to a large numerical boundary layer, which would remain
even for ε = 0. The only way to make it disappear would be to let the number of cells tend to
infinity.

6.3 Numerical results for the equilibrium case

We now investigate the behavior of both schemes when ε = 0, using different numbers of cells.
Results are plotted at time T = 1. Up and at the center of Figure 4, the results of the splitting
method and of the AP scheme are shown, for the unknown u+ v. One can check that no boundary
layer is present with the AP scheme. The splitting method, which still suffer from a dependence of
the right boundary condition, provides a numerical boundary layer at the right, which reduces when
the number of cells increases. Moreover, since the AP scheme is an upwind scheme when ε = 0, it
is less diffusive and more accurate that the splitting method.

The figure at the bottom represents |h(v)−u| in order to understand of the results are far from
the equilibrium. Since the AP scheme is fully explicit and do not use the inverse of function h, one
cannot expect to be exactly at the equilibrium. The gap from the equilibrium appears near the
discontinuity and disappears when the number of cells increases.
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Figure 3: Comparison of the AP scheme and of the splitting method with a reference solution for
several values of ε: 10−1 (up), 10−2 (center), 10−5 (bottom) — u+ v vs. space.29



Figure 4: Results provided by the splitting method (left: u+ v) and by AP scheme (center: u+ v,
right: |h(v)− u|), for several mesh sizes: 50, 200, 1000, 5000 cells.30
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