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Abstract— The 1-norm is a good convex regularization for the

recovery of sparse vectors from under-determined linear measure-

ments. No other convex regularization seems to surpass its sparse

recovery performance. How can this be explained? To answer this

question, we define several notions of “best” (convex) regulariza-

tion in the context of general low-dimensional recovery and show

that indeed the 1-norm is an optimal convex sparse regularization

within this framework.

1 Introduction

We consider the observation model in a Hilbert space H (with

associated norm ‖ · ‖H):

y = Mx0 (1)

where M is an under-determined linear operator, y is a m-

dimensional vector and x0 is the unknown. We suppose that x0

belongs to a low-dimensional model Σ (a union of subspaces).

We consider the following minimization program.

x∗ ∈ arg min
Mx=y

R(x) (2)

where R is a regularization function. A huge body of work

gives practical regularizations ensuring that x∗ = x0 for sev-

eral low-dimensional models (in particular sparse and low rank

models, see [5] for a most complete review of these results) and

convex regularizations. The operator M is generally required

to satisfy some property (e.g., the restricted isometry property

(RIP)) to guarantee recovery. In this work, we aim at finding

the “best” convex regularization for exact recovery of x0 ∈ Σ.

Best regularization with respect to a low dimensional

model. We describe the framework to define what is the

“best” regularization in a set of convex functions C that was

initiated in [8] (This work is a follow-up of this article1). If we

do not have prior information on M , we want to build a com-

pliance measure AΣ(R) that summarizes the notion of good

regularization with respect to Σ and maximize it

R∗ ∈ argmax
R∈C

AΣ(R). (3)

In the sparse recovery example studied in this article, the exis-

tence of a maximum of AΣ(R) is verified. However, we could

ask ourselves what conditions on AΣ(R) and C are necessary

and sufficient for the existence of a maximum, which is out of

the scope of this article.

Compliance measures. When studying recovery with a reg-

ularization function R, two types of guarantees are generally

used: uniform and non-uniform. To describe these recovery

guarantees, we use the following definition of descent vectors.

1The full version of [8] with proofs is avalaible at

https://hal.inria.fr/hal-01720871

Definition 1.1 (Descent vectors). For any x ∈ H, the collec-

tion of descent vectors of R at x is

TR(x) := {z ∈ H : R(x+ z) ≤ R(x)} . (4)

We write TR(Σ) :=
⋃

x∈Σ TR(x). When R is convex these

sets are cones. Recovery is characterized by descent vectors

(recall that x∗ is the result of minimization (2)):

• Uniform recovery: Let M be a linear operator. Then “for all

x0 ∈ Σ, x∗ = x0” is equivalent to TR(Σ) ∩ kerM = {0}.

• Non-uniform recovery: Let M be a linear operator and x0 ∈
Σ. Then x∗ = x0 is equivalent to TR(x0) ∩ kerM = {0}.

Hence, a regularization function R is “good” if TR(Σ) leaves a

lot of space for kerM to not intersect it (trivially). In dimension

n, if there is no orientation prior on the kernel of M , the amount

of space left can be quantified by the “volume” of TR(Σ)∩S(1)
where S(1) is the unit sphere with respect to ‖ · ‖H. Hence,

in dimension n, we define a compliance measure for uniform

recovery as:

AU
Σ(R) := 1−

vol (TR(Σ) ∩ S(1))

vol(S(1))
. (5)

More precisely, here, the volume vol(E) of a set E is the

measure of E with respect to the uniform measure on the

sphere S(1) (i.e. the n − 1-dimensional Haussdorf measure

of TR(Σ) ∩ S(1)). When looking at non-uniform recovery for

random Gaussian measurements, the quantity
vol(TR(x0)∩S(1))

vol(S(1))
represents the probability that a randomly oriented kernel of di-

mension 1 intersects (non trivially) TR(x0). The highest prob-

ability of intersection with respect to x0 quantifies the lack of

compliance of R, hence we can define:

ANU
Σ (R) := 1− sup

x∈Σ

vol (TR(x) ∩ S(1))

vol(S(1))
(6)

Note that this can be linked with the Gaussian width and sta-

tistical dimension theory of sparse recovery [3, 1]. In infinite

dimension, the volume of the sphere S(1) vanishes, making

the measures above uninteresting. However, [7] and [6] show

that we can often come back to a low-dimensional recovery

problem in an intermediate finite (potentially high dimensional)

subspace of H. Adapting the definition of S(1) to this subspace

allows to extend these compliance measures.

While it was shown that the ℓ1-norm is indeed the best

atomic norm for AU
Σ(R) and ANU

Σ (R) in the minimal case of

1-sparse recovery for n = 3 in [8], extending these exact calcu-

lations to the case of k-sparse recovery in dimension n seems

out of reach.

Compliance measures based on the RIP. For uniform re-

covery, another possibility is to use recovery results based on

the restricted isometry property. They have been shown to be

adequate for multiple models [7], to be tight in some sense

https://hal.inria.fr/hal-01720871


for sparse and low rank recovery [4], to be necessary in some

sense [2] and to be well adapted to the study of random opera-

tors [6].

Definition 1.2 (RIP constant). Let Σ be a union of subspaces

and M be a linear map, the RIP constant of M is defined as

δ(M) = sup
x∈Σ−Σ

∣

∣

∣

∣

‖Mx‖2H
‖x‖2H

− 1

∣

∣

∣

∣

, (7)

where Σ−Σ (differences of elements of Σ) is called the secant

set.

It has been shown that if M has a RIP with constant δ <

δΣ(R) on the secant set Σ−Σ, with δsuffΣ (R) being fully deter-

mined by Σ and R [7], then uniform stable recovery is possible.

The explicit constant δsuffΣ (R) is only sufficient (and sharp in

some sense for sparse and low rank recovery). An ideal RIP

based compliance measure would be to use a sharp RIP con-

stant δ
sharp

Σ (R) (unfortunately, it is an open question to derive

analytical expressions of this constant for sparsity and other

low-dimensional models) defined as:

δ
sharp

Σ (R) := inf
M :kerM∩TR(Σ) 6={0}

δ(M). (8)

It is the best RIP constant of measurement operators where uni-

form recovery fail. When δ
sharp

Σ (R) increases, R permits re-

covery of Σ for more measurement operators M (less stringent

RIP condition). Hence δ
sharp

Σ (R) can be viewed as a compli-

ance measure:

ARIP
Σ (R) = δ

sharp

Σ (R). (9)

The lack of practical analytic expressions for δ
sharp

Σ (R) limits

the possibilities of exact optimization with respect to R. We

propose to look at two RIP based compliance measures:

• A measure based on necessary RIP conditions [4] which

yields sharp recovery constants for particular operators, e.g.,

A
RIP,nec
Σ (R) = δnecΣ (R) := inf

z∈TR(Σ)\{0}
δ(I −Πz). (10)

where Πz is the orthogonal projection onto the one-

dimensional subspace span(z) (other intermediate necessary

RIP constants can be defined). Another open question is

to determine whether δnecΣ (R) = δ
sharp

Σ (R) generally or for

some particular models.

• A measure based on sufficient RIP constants for recovery,

i.e. AΣ(R)RIP,suff = δsuffΣ (R) from [7].

Note that we have the relation

δsuffΣ (R) ≤ δ
sharp

Σ (R) ≤ δnecΣ (R). (11)

To summarize, instead of considering the most natural RIP-

based compliance measure (based on δ
sharp

Σ (R) ), we use

the best known bounds of this measure. Moreover, in [7,

Lemma 2.1], it has been shown that given a coercive convex

regularization R, there is always a atomic norm ‖ · ‖A (al-

ways convex) with atoms A included in the model such that

T‖·‖A
(Σ) ⊂ TR(Σ).

Definition 1.3. The atomic “norm” induced by the set A is

defined as:

‖x‖A := inf {t ∈ R+ : x ∈ t · conv(A)} (12)

where conv(A) is the closure of the convex hull of A.

This implies that AU
Σ(‖ · ‖A) ≥ AU

Σ(R). In consequence,

we look for best regularisations in the set CΣ := {R : R(x) =
‖x‖A,A ⊂ Σ,maxa∈A ‖a‖2 = 1}.

2 Optimality of the ℓ
1-norm for RIP-

based compliance measures

We set Σ = Σk and H = R
n with k ≥ 1 and n ≥ 3. Hence

Σ− Σ = Σ2k. It is possible to show [8]:

arg max
R∈CΣ

A
RIP,nec
Σ (R) = arg min

R∈CΣ

BΣ(R) (13)

where BΣ(R) := sup
z∈TR(Σ)\{0}

‖zTc
2
‖2

2

‖zT2
‖2

2

and T2 is a notation

for the support of 2k biggest coordinates in z, i.e. for all

i ∈ T2, j ∈ T c
2 , we have |zi| ≥ |zj|.

Similarly to the necessary case, we can show

arg max
R∈CΣ

A
RIP,suff
Σ (R) = arg min

R∈CΣ

DΣ(R) (14)

where DΣ(R) := sup
z∈TR(Σ)\{0}

‖zTc‖2

Σ

‖zT ‖2

2

and T denotes the sup-

port of the k biggest coordinates of z. The norm ‖ · ‖Σ is the

atomic norm generated by the set of atoms Σ ∩ S(1). Remark

the similarity between the fundamental quantity to optimize for

the necessary case and the sufficient case, BΣ(R) and DΣ(R),
this leads us to think that our control ofARIP

Σ (R) is rather tight.

Optimizing BΣ(R) and DΣ(R) for R ∈ CΣ gives the result:

Theorem 2.1. Let n ≥ 2k, Σ = Σk, H = R
n and CΣ = {R :

R(x) = ‖x‖A,A ⊂ Σ,maxa∈A ‖a‖2 = 1}. We have

‖ · ‖1 ∈ arg max
R∈CΣ

A
RIP,nec
Σ (R).

‖ · ‖1 ∈ arg max
R∈CΣ

A
RIP,suff
Σ (R).

(15)

Note that contrary to [8] where multiples of the ℓ1-norm

where the sole maximizers of these compliance measures

among weighted ℓ1-norm, unicity among atomic norms has yet

to be proven.

3 Discussion and future work

We have shown that, not surprisingly, the ℓ1-norm is an optimal

convex regularization for sparse recovery within this frame-

work. The important point is that we could explicitly quan-

tify a notion of good regularization. This is promising for the

search of optimal regularizations for more complicated low-

dimensional models such as “sparse and low rank” models or

hierarchical sparse models. We also expect similar results for

low-rank recovery and the nuclear norm as technical tools are

very similar.

We used compliance measures based on (uniform) RIP re-

covery guarantees to give results for the general sparse recov-

ery case, it would be interesting to do such analysis using (non-

uniform) recovery guarantees based on the statistical dimension

or Gaussian width of the descent cones [3, 1].

Finally, while these compliance measures are designed to

make sense with respect to known results in the area of sparse

recovery, one might design other compliance measures tailored

for particular needs (e.g. structured operatorsM ), in this search

for optimal regularizations.
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