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THE ROLE OF THE HARDY TYPE

INEQUALITIES IN THE THEORY OF

FUNCTION SPACES

PETRU MIRONESCU(1),(2)

June 12, 2018

ABSTRACT. We illustrate the crucial importance of the Hardy type inequalities in

the study of function spaces, especially of fractional regularity. Immediate appli-

cations include Sobolev and Morrey type embeddings, and properties of the super-

position operator f 7→ Φ◦ f . Another fundamental consequence is the trace theory

of weighted Sobolev spaces. In turn, weighted Sobolev spaces are useful in the

regularity theory of the superposition operators. More involved applications, that

we present in the final section, are related to Sobolev spaces of maps with values

into manifolds.

1 INTRODUCTION

Fractional regularity function spaces, in particular Sobolev spaces W s,p with

non integer s, have attracted considerable interest in the latest years, for example in

connection with fractional processes and operators. Typical and classical questions

related to these spaces are their embeddings, the properties of the superposition

operators f 7→ Φ ◦ f , or the possibility of giving a meaning to the pullback f ♯ω
when ω is an alternate object, e.g. a form.

One of our purposes is to present a user-friendly introduction to fractional

Sobolev spaces and their analysis. This text is an elementary and, to a significant

extent, self-contained presentation of these topics. The main thread is the effec-

tiveness of the Hardy type inequalities in the study of the aforementioned proper-

ties. Fractional Sobolev spaces are at the intersection of two important classes of

Keywords. Hardy inequalities, Sobolev spaces, fractional Sobolev spaces, Sobolev and Morrey

embeddings, Nemitzkii operators, maps with valued into manifolds, differential forms, pullback
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function spaces: Besov spaces and Triebel-Lizorkin spaces; see e.g. Triebel [55,

Chapters 2–4] for an overview of the theory of these function spaces. In order to

establish the properties of these general classes, one usually has to use relatively

advanced tools in analysis (linear or nonlinear interpolation theory, Littlewood-

Paley theory, etc.). As we will see below, completely elementary arguments, many

of them based on Hardy type inequalities, suffice in the case of fractional Sobolev

spaces. This is not the first relatively elementary introduction to fractional Sobolev

spaces; see e.g. Di Nezza, Palatucci and Valdinoci [22]. However, we think that

the systematic use of the Hardy type inequalities provides the basis for a unified

approach that may be of interest even to the expert reader.

The results in Sections 2, 3 and in the first part of Section 5 are well-known

since the 60’s. Few proofs in these sections are either classical or possibly known to

experts, but we also present a significant number of new proofs. We gave references

whenever we were aware of the use of similar arguments in the literature. In the

other sections, we present more recent results, some of them with new proofs.

In order to keep the reading as smooth as possible, a final appendix gathers

some calculations which, though essential in the proofs, are not in line with the

main type of arguments we present here.

This text is not a survey of the subject; the references list is very limited. The

interested reader may google the keywords and find the huge literature existing on

these topics.
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were written during a long term visit at the Simion Stoilow Institute of Mathemat-

ics of the Romanian Academy. I thank the Institute and the Centre Francophone en

Mathématiques in Bucharest for their support on that occasion.

NOTATION

1. All the functions we consider in R
n are implicitly assumed to be Borel mea-

surable.

2. x∨ y := max{x,y}, x∧ y := min{x,y}. (Warning: “∧” will also be used for

the exterior product vector of vectors in R
2, see item 19 below.)

3. When x∈R
n, |x| stands for the (standard) Euclidean norm of x. The standard

scalar product is denoted 〈x,y〉, x,y ∈ R
n.
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4. Br(x) is the Euclidean open ball of center x ∈R
n and radius r > 0.

5. When ρ : Rn → R and ε > 0, we set ρε(x) := ε−nρ(x/ε), ∀x ∈ R
n.

6. A standard mollifier is a function ρ ∈C∞
c (R

n) with ρ ≥ 0 and
´

Rn ρ = 1. We

often assume in addition that supp ρ ⊂ B1(0).

7. |A| is the Lebesgue measure of a Borel set A ⊂ R
n.

8.

 

A

f stands for the average of f on A. Typically, A⊂R
n, and then

 

A

f (x)dx :=

1

|A|

ˆ

A

f (x)dx.

9. Almost everywhere (a.e.) for some function f is understood with respect to

the Lebesgue (or Hausdorff) measure of the underlying space.

10. When f : Rn →R, M f (x) is the (standard uncentered) maximal function of

f at x, i.e.,

M f (x) := sup

{
 

B

| f (y)|dy; B ball in R
n such that x ∈ B

}
.

When f is defined on (0,∞) ⊂ R, we consider only balls (=intervals) con-

tained in (0,∞).

11. “→֒” stands for continuous embeddings of Banach spaces X and Y : X →֒ Y

indicates that X is continuously embedded into Y .

12. In many estimates, it is crucial to indicate the dependence of constants on

various parameters. The notation we use is explained in Remark 2.

13. We use several notation for partial derivatives of a function f . The “abstract”

one is ∂ α f , with α ∈ N
n. (We denote |α | := α1 + · · ·+αn the total number

of derivatives). In concrete cases, we rather write ∂1∂2 f for the second order

partial derivative, once with respect to x1, once with respect to x2, etc.

14. If Ω ⊂ R
n is an open set, m ≥ 1 is an integer and 1 ≤ p < ∞, we let

W m,p(Ω) := { f ∈ Lp(Ω); ∂ α f ∈ Lp(Ω), ∀α ∈N
n with |α | ≤ m},

W
m,p
loc (Ω) := { f ∈ L

p
loc(Ω); ∂ α f ∈ L

p
loc(Ω), ∀α ∈ N

n with |α | ≤ m}.

15. For f ∈W
m,p

loc (Ω), we let |Dmu| := ∑
α∈Nn

|α |=m

|∂ α u|.
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16. We set Rn+1
+,∗ := R

n × (0,∞) and R
n+1
+ := R

n × [0,∞).

17. ⌈s⌉ denotes the smallest integer k ≥ s.

18. S
k is the unit Euclidean sphere in R

k+1.

19. a∧b stands for the vector product of vectors a,b ∈ R
2:

(a1,a2)∧ (b1,b2) := a1 b2 −a2 b1 ∈ R.

More generally, if a ∈ R
2 and b ∈ R

m ×R
m, we set

(a1,a2)∧ (b1,b2) := a1 b2 −a2 b1 ∈ R
m.
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2 HARDY INEQUALITIES

2.1 INTEGER ORDER INEQUALITIES

The “standard” Hardy inequality asserts that for every 1 < p < ∞ and every f ∈
W 1,p((0,∞)) such that f (0) = 0 we have

ˆ ∞

0

| f (x)|p

xp
dx ≤

(
p

p−1

)pˆ ∞

0

| f ′(x)|p dx. (2.1)

If we set, with f as above above, g := | f ′| : (0,∞)→ [0,∞], then (2.1) follows

from

ˆ ∞

0

x−p

(
ˆ x

0

g(u)du

)p

dx ≤

(
p

p−1

)pˆ ∞

0

(g(u))p du. (2.2)

In turn, (2.2) is a member of the following family of estimates, commonly

referred to as the “Hardy inequalities”; see e.g. Hardy, Littlewood and Pólya [29,

Section 9.9].

LEMMA 1. Let 1 ≤ q < ∞, 0 < r < ∞ and let g be a nonnegative measurable

function on (0,∞). Then we have “Hardy’s inequality at 0”

ˆ ∞

0

x−r−1

(
ˆ x

0

g(u)du

)q

dx ≤
(q

r

)q
ˆ ∞

0

u−r+q−1(g(u))q du (2.3)

and “Hardy’s inequality at ∞”

ˆ ∞

0

xr−1

(
ˆ ∞

x

g(u)du

)q

dx ≤
(q

r

)q
ˆ ∞

0

ur+q−1(g(u))qdu. (2.4)

5



Let us recall, following Stein and Weiss [51, Lemma 3.14, pp. 196-197], a

proof of the above inequalities.

PROOF OF LEMMA 1. We rely on Jensen + Fubini. More specifically, for x > 0

the measure µx := ur/q−1 du/Cx, with Cx := (q/r)xr/q, is a probability on (0,x).
Jensen’s inequality applied on (0,x) to the convex function Φ(s) := sq, s ≥ 0, and

to the probability measure µx yields

(
ˆ x

0

g(u)du

)q

= (Cx)
q

(
ˆ x

0

g(u)u1−r/q dµx

)q

≤ (Cx)
q

ˆ x

0

(g(u))q uq−r dµx

= (Cx)
q−1

ˆ x

0

(g(u))q uq−r+r/q−1 du.

(2.5)

Multiplying (2.5) by x−r−1, integrating over x and using Fubini’s theorem, we

find that the left-hand side of (2.3) does not exceed

(q

r

)q−1
ˆ ∞

0

ˆ ∞

u

x−1−r/q dx(g(u))q uq−r+r/q−1 du

=
(q

r

)q
ˆ ∞

0

(g(u))q u−r+q−1 du,

and therefore (2.3) holds.

In order to obtain (2.4), we proceed as above, starting from the probability

measure νx := u−r/q−1 du/Dx on (x,∞), with Dx := (q/r)x−r/q.

REMARK 1. Far-reaching extensions of Lemma 1 yield necessary and sufficient

conditions for the validity of estimates of the form

ˆ ∞

0

(
ˆ x

0

g(u)du

)q

dµ(x)≤C

(
ˆ ∞

0

(g(u))p dν(u)

)q/p

, (2.6)

for 1 ≤ p,q < ∞, g : (0,∞) → [0,∞) and ν , µ Radon measures on (0,∞), as well

as the value of the best constant C in (2.6). See the exposition of this subject by

Maz’ya [34, Sections 1.3.2–1.3.3], and the historical comments there [34, p. 63].

2.2 THREE BASIC FRACTIONAL ORDER INEQUALITIES

The above Hardy inequalities involve f and its derivative f ′. Fractional order

versions of these inequalities involve f and the average rate of change ( f (x)−
f (y)/(x− y) (in place of f ′(x)). We present here three basic lemmas, that we will

interpret later in terms of fractional Sobolev spaces W s,p.
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LEMMA 2 (FRACTIONAL HARDY INEQUALITY). Let 1 ≤ p < ∞, 0 < λ < ∞,

λ 6= 1, and f : (0,∞)→ R.

Assume that

ˆ ∞

0

| f (x)|p

xλ
dx < ∞. (2.7)

Then, for some finite constant C =Cp,λ , we have

ˆ ∞

0

| f (x)|p

xλ
dx ≤C

ˆ ∞

0

ˆ ∞

0

| f (x)− f (y)|p

|x− y|1+λ
dxdy. (2.8)

In particular, (2.7)–(2.8) hold when f ∈C∞
c ([0,∞)) and 0 < λ < 1, respectively

when f ∈C∞
c ([0,∞)), f (0) = 0 and 1 < λ < p+1.

REMARK 2. In the above and in what follows, C denotes a generic finite positive

constant independent of f or other relevant objects, whose value may change with

different occurrences. If we want to specify what C depends on, we use subscript

indices; e.g., in the above C = Cp,λ indicates that C depends on p and λ (but not

on f ).

We also write “A . B” instead of “A ≤ C B”, provided the constant C does

not depend on f or other relevant objects. The notation “A ≈ B” indicates that

A . B . A.

The proof of Lemma 2 we present below is inspired by [14, Proof of Lemma

F.2]. It only uses the triangle inequality!

PROOF. We have

| f (x)|p ≤ 2p−1| f (y)|p +2p−1| f (x)− f (y)|p. (2.9)

We divide (2.9) by α x1+λ , and integrate over x > 0 and α x < y < 2α x. Here,

the constant α > 0 will be chosen later. Using Fubini’s theorem, we find that

ˆ ∞

0

| f (x)|p

xλ
dx ≤

2p−1 (2λ −1)αλ−1

λ

ˆ ∞

0

| f (y)|p

yλ
dy

+
2p−1

α

ˆ ∞

0

ˆ 2αx

αx

| f (x)− f (y)|p

x1+λ
dydx

≤
2p−1 (2λ −1)αλ−1

λ

ˆ ∞

0

| f (y)|p

yλ
dy

+Cα ,p,λ

ˆ ∞

0

ˆ ∞

0

| f (x)− f (y)|p

|x− y|1+λ
dxdy.

(2.10)
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Here,

Cα ,p,λ :=
2p−1

α
sup

0<αx<y<2αx

|x− y|1+λ

x1+λ

=
2p−1

α
(|1−α |∨ |2α −1|)1+λ < ∞.

(2.11)

We now pick α such that
2p−1 (2λ −1)αλ−1

λ
≤

1

2
. Since λ 6= 1, this is possible

provided α > 0 is: sufficiently large when λ < 1, respectively sufficiently small

when λ > 1. For such α , (2.10) yields
ˆ ∞

0

| f (x)|p

xλ
dx ≤

1

2

ˆ ∞

0

| f (y)|p

yλ
dy+Cα ,p,λ

ˆ ∞

0

ˆ ∞

0

| f (x)− f (y)|p

|x− y|1+λ
dxdy,

and thus (2.8) holds with C := 2Cα ,p,λ , thanks to the assumption (2.7).

REMARK 3. Let us note that when λ > 1 we may choose α < 1/2. This implies

that, when we estimate, by the above procedure, the integral

ˆ a

0

| f (x)|p

xλ
dx in terms

of an integral involving the quotient
| f (x)− f (y)|p

|x− y|1+λ
(where this time a is finite), it

suffices to consider, in (2.9), only values of y in the interval (0,a). Therefore, the

proof of Lemma 2 (but not its statement) leads to the following version of Lemma

2.

COROLLARY 1. Let 1 ≤ p < ∞, 1 < λ < ∞, 0 < a ≤ ∞, and f : (0,a)→ R.

Assume that
ˆ a

0

| f (x)|p

xλ
dx < ∞. (2.12)

Then, for some finite constant C =Cp,λ (independent of a!), we have
ˆ a

0

| f (x)|p

xλ
dx ≤C

ˆ a

0

ˆ a

0

| f (x)− f (y)|p

|x− y|1+λ
dxdy. (2.13)

LEMMA 3 (HARDY IMPLIES MORREY). Let 1 ≤ p < ∞, 1 < λ < p+1 and let

I ⊂ R be an interval. Assume that f : I → R satisfies
ˆ

I

ˆ

I

| f (x)− f (y)|p

|x− y|1+λ
dxdy < ∞. (2.14)

Then f equals a.e. some continuous function g.

Assuming that f itself is continuous, we have, for every a,b ∈ I such that a < b,

| f (b)− f (a)|p ≤Cp,λ (b−a)λ−1

ˆ b

a

ˆ b

a

| f (x)− f (y)|p

|x− y|1+λ
dxdy. (2.15)
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PROOF. Assume first that f is smooth on [a,b]. By Corollary 1, we have

ˆ b

a

| f (x)− f (a)|p

(x−a)λ
dx ≤Cp,λ

ˆ b

a

ˆ b

a

| f (x)− f (y)|p

|x− y|1+λ
dxdy, (2.16)

and similarly

ˆ b

a

| f (x)− f (b)|p

(b− x)λ
dx ≤Cp,λ

ˆ b

a

ˆ b

a

| f (x)− f (y)|p

|x− y|1+λ
dxdy. (2.17)

Let J := ((2a+b)/3,(a+2b)/3). When x ∈ J, we have

| f (b)− f (a)|p

(b−a)λ
≤2p−1

(
| f (x)− f (a)|p

(b−a)λ
+

| f (x)− f (b)|p

(b−a)λ

)

≤2p−1

(
| f (x)− f (a)|p

(x−a)λ
+

| f (x)− f (b)|p

(b− x)λ

)
.

(2.18)

Using (2.16)–(2.18), we find that

| f (b)− f (a)|p

(b−a)λ−1
=3

ˆ

J

| f (b)− f (a)|p

(b−a)λ
dx

≤Cp,λ

ˆ

J

(
| f (x)− f (a)|p

(x−a)λ
+

| f (x)− f (b)|p

(b− x)λ

)
dx

≤Cp,λ

ˆ b

a

ˆ b

a

| f (x)− f (y)|p

|x− y|1+λ
dxdy,

whence (2.15) for smooth f .

We next remove the smoothness assumption. We note that (2.14) implies that

ˆ

I

| f (x)− f (y)|p

|x− y|1+λ
dx < ∞ for some y ∈ I,

so that f ∈ L
p
loc(I). Fix some compact interval K ⊂ I and set ε0 := dist(K,∂ I)/2.

Consider a standard mollifier ρ ∈ C∞
c ((−1,1)) and set, for 0 < ε < ε0, fε(x) :=

f ∗ρε(x), ∀x ∈ K. Then fε is smooth in K. By the first part of the proof, for every

a,b ∈ K such that a < b we have

| fε(b)− fε(a)|
p ≤Cp,λ (b−a)λ−1

ˆ b

a

ˆ b

a

| fε(x)− fε(y)|
p

|x− y|1+λ
dxdy. (2.19)

We claim that

ˆ b

a

ˆ b

a

| fε(x)− fε (y)|
p

|x− y|1+λ
dxdy ≤

ˆ b+ε

a−ε

ˆ b+ε

a−ε

| f (x)− f (y)|p

|x− y|1+λ
dxdy. (2.20)
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Indeed, let, for g : (A,B)→ R,

∆1
hg(x) := g(x+h)−g(x), ∀h ∈ (0,B−A), ∀x ∈ (A,B−h). (2.21)

Then

ˆ B

A

ˆ B

A

|g(x)−g(y)|p

|x− y|1+λ
dxdy = 2

ˆ B−A

0

‖∆1
hg‖p

Lp((A,B−h))

h1+λ
dh. (2.22)

Next, we have

∆1
h fε(x) = ∆1

h

(
ˆ ε

−ε
f (·− y)ρε(y)dy

)
(x) =

ˆ ε

−ε
∆1

h f (x− y)ρε(y)dy,

and thus, for 0 < h < b−a, we have

‖∆1
h fε‖Lp((a,b−h)) ≤

ˆ ε

−ε
‖∆1

h f (·− y)‖Lp((a,b−h)) ρε(y)dy

=

ˆ ε

−ε
‖∆1

h f‖Lp((a−y,b−h−y)) ρε(y)dy

≤

ˆ ε

−ε
‖∆1

h f‖Lp((a−ε ,b−h+ε))ρε(y)dy

=‖∆1
h f‖Lp((a−ε ,b−h+ε)).

(2.23)

We obtain (2.20) from (2.22) and (2.23).

We conclude as follows. From (2.19) and (2.20), we have | fε(b)− fε(a)| ≤
C(b− a)α , with α := (λ − 1)/p > 0 and C independent of a,b,ε . We find that

fε satisfies a uniform Hölder estimate on K, and thus converges when ε → 0, up

to a subsequence and an additive constant, to some Hölder continuous function g.

Since, on the other hand, we have fε → f in L
p
loc(I) as ε → 0, we find that f = g

a.e. Assuming that f = g, we obtain (2.15) by passing to the limits in (2.19) and

using (2.20).

LEMMA 4 (HARDY IMPLIES SOBOLEV). Let 1 ≤ p < ∞, 0 < λ < 1, and f :

(0,∞)→ R. Let q := p/(1−λ ) ∈ (p,∞).
Assume that
ˆ ∞

0

| f (x)|p

xλ
dx < ∞. (2.24)

Then

ˆ ∞

0

| f (x)|q dx ≤Cp,λ

(
ˆ ∞

0

ˆ ∞

0

| f (x)− f (y)|p

|x− y|1+λ
dxdy

)q/p

. (2.25)
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The proof we present below relies on a decomposition method that goes back

to Hedberg [30], and has been widely used since then. This kind of technique is

consubstantial with the interpolation theory.

PROOF. We may assume that the right-hand side of (2.25) is finite. Set

G(x) :=

ˆ ∞

0

| f (x)− f (y)|p

|x− y|1+λ
dy and M :=

ˆ ∞

0

G(x)dx. (2.26)

We will establish the following point estimate

| f (x)| ≤Cp,λ Mλ/pG(x)(1−λ)/p, ∀x > 0, (2.27)

which clearly implies (2.25).

We may assume that x satisfies G(x)< ∞. We first prove that we have

ˆ ∞

x

| f (y)|p

(y− x)λ
dy < ∞ (2.28)

and thus (by Lemma 2)

ˆ ∞

x

| f (y)|p

(y− x)λ
dy ≤Cp,λ M. (2.29)

Indeed, let us note that, by (2.24), we have

ˆ ∞

x+1

| f (y)|p

(y− x)λ
dy < ∞.

On the other hand, if G(x)< ∞ then

ˆ x+1

x

| f (x)− f (y)|p

(y− x)1+λ
dy < ∞, and thus for

any such x we have

ˆ x+1

x

| f (y)|p

(y− x)λ
dy ≤ 2p−1

ˆ x+1

x

(
| f (x)− f (y)|p

(y− x)1+λ
+

| f (x)|p

(y− x)λ

)
dy < ∞;

here, we use the assumption λ < 1.

Therefore, (2.28) and (2.29) hold for any x such that G(x)< ∞, as claimed.

Let ε > 0 and set

fε(x) :=

 x+ε

x

f (y)dy =
1

ε

ˆ x+ε

x

f (y)dy, ∀x > 0,∀ε > 0.
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On the one hand, we have (using (2.29))

| fε(x)|
p ≤ε−p

(
ˆ x+ε

x

| f (y)|dy

)p

≤ ελ−p

(
ˆ x+ε

x

| f (y)|

(y− x)λ/p
dy

)p

≤ελ−p

ˆ x+ε

x

| f (y)|p

(y− x)λ
dy

(
ˆ x+ε

x

dy

)p−1

≤Cp,λ ελ−1

ˆ x+ε

x

| f (y)|p

(y− x)λ
dy ≤Cp,λ ελ−1 M.

(2.30)

Similarly, we have

| f (x)− fε(x)|
p ≤ε−p

(
ˆ x+ε

x

| f (x)− f (y)|dy

)p

≤ε1+λ−p

(
ˆ x+ε

x

| f (x)− f (y)|

(y− x)(1+λ)/p
dy

)p

≤ε1+λ−p

ˆ x+ε

x

| f (x)− f (y)|p

(y− x)1+λ
dy

(
ˆ x+ε

x

dy

)p−1

≤ελ G(x).

(2.31)

By (2.30) and (2.31), we find that

| f (x)| ≤Cp,λ

(
ε (λ−1)/p M1/p + ελ/p(G(x))1/p

)
. (2.32)

We next “optimize” (2.32) by choosing ε := M/G(x) and obtain (2.27).

2.3 FURTHER DEVELOPMENTS

FACT 1. In the previous section, one can clearly work in R instead of (0,∞).

FACT 2. The extensions of the results in the previous section to R
n with arbitrary

n ≥ 1 are obtained starting from the following version of Lemma 2.

LEMMA 5. Let 1 ≤ p < ∞, 0 < λ < ∞, λ 6= n, and f : Rn → R.

Assume that
ˆ

Rn

| f (x)|p

|x|λ
dx < ∞. (2.33)

Then, for some finite constant C =Cp,λ ,n, we have

ˆ

Rn

| f (x)|p

|x|λ
dx ≤C

ˆ

Rn

ˆ

Rn

| f (x)− f (y)|p

|x− y|n+λ
dxdy. (2.34)

12



In order to prove (2.34), one divides (2.9) by |x|n+λ and integrates over x ∈ R
n

and y ∈ Bα |x|/2(3α x/2), for appropriate α ≪ 1 (when λ > n), respectively α ≫ 1

(when λ < n).

FACT 3. When λ > n, we may replace in (2.34) Rn with suitable subsets of Rn;

this is similar to Remark 3 and Corollary 1. More specifically, fix some constants

k > 0 and α0 < 1/2. Assume that Ω ⊂ R
n is a set such that for every x ∈ Ω and

0 < α < α0 we have

|Bα |x|/2(3α x/2)∩Ω| ≥ k αn, ∀x ∈ Ω, ∀0 < α < α0. (2.35)

Then we may reproduce the proof of (2.34) (explained above) and obtain the

following local version of Lemma 5.

LEMMA 6. Let Ω ⊂ R
n satisfy (2.35) for some constants k > 0 and α0. Let

1 ≤ p < ∞ and λ > n. Let f : Ω → R. Assume that

ˆ

Ω

| f (x)|p

|x|λ
dx < ∞. (2.36)

Then, for some finite constant C =Cp,λ ,n,k,α0
, we have

ˆ

Ω

| f (x)|p

|x|λ
dx ≤C

ˆ

Ω

ˆ

Ω

| f (x)− f (y)|p

|x− y|n+λ
dxdy. (2.37)

In particular, if Ω is a ball having 0 on its boundary, then we may choose k and

α0 independent of Ω, and thus (2.37) holds with a constant C =Cp,λ ,n.

FACT 4. By straightforward adaptations of the proofs of Lemmas 3 and 4, and

using Lemma 6 in a ball, we obtain the following

LEMMA 7. Let 1 ≤ p < ∞ and n < λ < ∞ be such that λ < p+ 1. Assume that

f : Rn → R satisfies

ˆ

Rn

ˆ

Rn

| f (x)− f (y)|p

|x− y|n+λ
dxdy < ∞. (2.38)

Then f equals a.e. some continuous function g.

Assume that f itself is continuous. For every a,b ∈ R
n, let c := (a+b)/2 and

r := |a−b|/2. Then

| f (b)− f (a)|p ≤Cp,λ ,n(b−a)λ−n

ˆ

Br(c)

ˆ

Br(c)

| f (x)− f (y)|p

|x− y|n+λ
dxdy. (2.39)
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More generally, let p and λ as above and let Ω⊂R be an open set. If f : Ω→R

satisfies

ˆ

Ω

ˆ

Ω

| f (x)− f (y)|p

|x− y|n+λ
dxdy < ∞, (2.40)

then f equals a.e. some continuous function g.

Assuming f continuous, let a,b ∈ Ω be such that Br(c) ⊂ Ω (with c and r as

above). Then (2.39) holds.

The higher dimensional analogue of Lemma 4 is

LEMMA 8. Let 1 ≤ p < ∞, 0 < λ < n, and f : Rn → R. Let q := (np)/(n−λ ) ∈
(p,∞).

Assume that
ˆ

Rn

| f (x)|p

|x|λ
dx < ∞. (2.41)

Then

ˆ

Rn

| f (x)|q dx ≤Cp,λ ,n

(
ˆ

Rn

ˆ

Rn

| f (x)− f (y)|p

|x− y|n+λ
dxdy

)q/p

. (2.42)

FACT 5. Let λ ≥ p. Assuming that g is a smooth function on an interval I ⊂R and

that x is a point in I, we have (by Taylor’s formula at x)

ˆ

I

|g(x)−g(y)|p

|x− y|1+λ
dy = ∞ possibly unless g′(x) = 0,

and therefore, for smooth g, we have

ˆ

I

ˆ

I

|g(x)−g(y)|p

|x− y|1+λ
dxdy = ∞ unless g is constant. (2.43)

Comparing (2.43) (with g := fε ) with (2.20), we obtain the following result,

stated below in dimension n; this was obtained with different arguments in [5] (see

Corollaries 4 and 5 there).

LEMMA 9. Let 1 ≤ p < ∞ and p ≤ λ < ∞. Let f : Rn → R satisfy

ˆ

(0,1)n

ˆ

(0,1)n

| f (x)− f (y)|p

|x− y|n+λ
dxdy < ∞.

Then f is constant a.e.
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Therefore, although Lemmas 2 and 3 (respectively 5 and 7) are stated for larger

ranges of λ , we may always assume that λ < p, for otherwise the hypotheses of the

lemmas are fulfilled only by f ≡ 0. For example, in Lemma 7 the relevant range is

n < p < ∞ and n < λ < p.

FACT 6. Let λ , p and q be as in Lemma 4. Assume that we know in advance that

f ∈ Lq. Then it is possible to obtain (2.25) without using Hardy’s inequality. I

know the beautiful argument below from Brezis [8]; it holds in any dimension, but

I present it only in R.

LEMMA 10 ([8]). Let 1 ≤ p < ∞, 0 < λ < 1, and f : (0,∞) → R. Let q :=
p/(1−λ ) ∈ (p,∞).

Assume that f ∈ Lq((0,∞)). Then

ˆ ∞

0

| f (x)|q dx ≤Cp,λ

(
ˆ ∞

0

ˆ ∞

0

| f (x)− f (y)|p

|x− y|1+λ
dxdy

)q/p

. (2.44)

PROOF. Let G(x) be as in (2.26) and set N := ‖ f‖Lq < ∞. We will establish the

following point estimate

| f (x)| ≤ 2Nλ G(x)(1−λ)/p, ∀x > 0, (2.45)

which implies (2.44).

With fε as in the proof of Lemma 4, we have

| fε(x)| ≤ ε−1

ˆ x+ε

x

| f (y)|dy ≤ ε−1/q

(
ˆ x+ε

x

| f (y)|q dy

)1/q

≤ ε (λ−1)/pN.

(2.46)

By (2.31) and (2.46), we find that

| f (x)| ≤ ε (λ−1)/p N + ελ/p(G(x))1/p. (2.47)

Choosing ε := N p/G(x) in (2.47), we obtain (2.45).

FACT 7. In Lemmas 2 and 5, we have assumed that λ 6= n. If we are in the range

λ < p (for otherwise these results are empty, by Lemma 9), then the condition

λ 6= n is necessary for the validity of Lemmas 2 and 5. In order to prove this fact

e.g. when n = 1 (and thus 1 < p < ∞) we will construct a family ( f ε )0<ε<1 such

that
ˆ ∞

0

ˆ ∞

0

| f ε(x)− f ε(y)|p

|x− y|2
dxdy ≤C, ∀ε ∈ (0,1), (2.48)
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and

ˆ ∞

0

| f ε(x)|p

x
dx → ∞ as ε → 0. (2.49)

The existence of such a family implies that the conclusion of Lemma 2 does

not hold when λ = 1 and 1 < p < ∞.

In order to define f ε , we start from a (fixed) function f ∈C1([0,∞)) such that

f (x) ≡ 1 on [0,1] and f (x)≡ 0 when x ≥ 2. We then set

f ε(x) :=

{
x/ε , if 0 ≤ x ≤ ε

f (x), if x > ε
, ∀0 < ε < 1.

Since f is Lipschitz and bounded, we have

ˆ ∞

0

ˆ ∞

0

| f (x)− f (y)|p

|x− y|2
dxdy .

ˆ 2

0

ˆ ∞

3

1

|x− y|2
dxdy

+

ˆ 2

0

ˆ 3

0

|x− y|p

|x− y|2
dxdy := K < ∞.

(2.50)

Using the fact that f ε = f on [ε ,∞), we find that

ˆ ∞

0

ˆ ∞

0

| f ε(x)− f ε(y)|p

|x− y|2
dxdy .K +

ˆ ε

0

ˆ ∞

0

| f ε(x)− f ε(y)|p

|x− y|2
dxdy

.K +

ˆ ε

0

ˆ ∞

2ε

1

|y− x|2
dxdy

+

ˆ ε

0

ˆ ε

0

|x/ε − y/ε |p

|x− y|2
dxdy

+

ˆ ε

0

ˆ 2ε

ε

|1− y/ε |p

|x− y|2
dxdy :=C < ∞;

(2.51)

here, we use the convergence and the scale invariance of the last three integrals in

(2.51). It follows that (2.48) holds.

On the other hand, by monotone convergence we find that

lim
ε→0

ˆ ∞

0

| f ε (x)|p

x
dx =

ˆ ∞

0

| f (x)|p

x
dx = ∞,

so that (2.49) holds.
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FACT 8. The method presented in the proof of Lemma 2 allows to obtain a weak

form of the standard Hardy inequality, more specifically the existence, for 1 < p <
∞, of some Cp such that for every f ∈W 1,p((0,∞)) satisfying f (0) = 0 we have

ˆ ∞

0

| f (x)|p

xp
dx ≤Cp

ˆ ∞

0

| f ′(x)|p dx. (2.52)

This time, we use, in addition to the triangle inequality, the Hardy-Littlewood

maximal function theorem, asserting that for 1 < p < ∞ and g ∈ Lp((0,∞)) the

(uncentered) maximal function M g of g satisfies

‖M g‖Lp ≤Cp ‖g‖Lp . (2.53)

(The idea of the use of the maximal inequalities in similar contexts goes back to

Hedberg [30].)

In order to obtain (2.52), we let 0 < α < 1 to be determined later and start from

| f (x)|p ≤2p−1| f (αx)|p +2p−1| f (αx)− f (x)|p

≤2p−1| f (αx)|p +2p−1

(
ˆ x

αx

| f ′(y)|dy

)p

≤2p−1| f (αx)|p +2p−1 (1−α)p xp
(
M f ′(x)

)p
.

(2.54)

Dividing (2.54) by xp and integrating over x, we find that
ˆ ∞

0

| f (x)|p

xp
dx ≤ (2α)p−1

ˆ ∞

0

| f (y)|p

yp
dy+2p−1 (1−α)p ‖M f ′‖p

Lp . (2.55)

If we let α < 1/2 in (2.55) and use (2.53) with g := f ′, we obtain (2.52), at least

when f ∈C∞
c ([0,∞)). The general case follows from the density of C∞

c ([0,∞)) into

W
1,p

0 ((0,∞)).

FACT 9. We present here a variant of (2.52). Let I ⊂R be an open interval and let

f ∈W 1,p(I). Assume that f vanishes at each finite endpoint of I. Then
ˆ

I

| f (x)|p

[dist(x,∂ I)]p
dx ≤Cp

ˆ

I

| f ′(x)|p dx. (2.56)

Indeed, if I = R there is nothing to prove. If I is a half-line, then (2.56) is

equivalent to (2.52). Finally, assume that I = (a,b), with a,b ∈ R. Arguing as in

Remark 3, the proof of (2.52) (but not the inequality (2.52) itself) leads to

ˆ b

a

| f (x)|p

(x−a)p
dx ≤Cp

ˆ b

a

| f ′(x)|p dx, (2.57)

ˆ b

a

| f (x)|p

(b− x)p
dx ≤Cp

ˆ b

a

| f ′(x)|p dx. (2.58)
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We obtain (2.56) using (2.57), (2.58) and the fact that

dist(x,∂ I) = (x−a)∧ (b− x), ∀x ∈ (a,b).

3 FRACTIONAL SOBOLEV SPACES

3.1 ONE DIMENSIONAL SPACES AND EMBEDDINGS

As in Section 2, we first focus on the one dimensional setting. When 0 < s < 1,

1 ≤ p < ∞ and f : R→ R, the W s,p-semi-norm of f is

| f |W s,p = | f |W s,p(R) :=

(
ˆ

R

ˆ

R

| f (x)− f (y)|p

|x− y|1+sp
dxdy

)1/p

. (3.1)

Similarly, we set, for every open interval I ⊂ R,

| f |W s,p(I) :=

(
ˆ

I

ˆ

I

| f (x)− f (y)|p

|x− y|1+sp
dxdy

)1/p

. (3.2)

One then defines

W s,p(R) := { f : R→ R; f ∈ Lp(R) and | f |W s,p < ∞}, (3.3)

equipped with the “natural” norm

‖ f‖p
W s,p := ‖ f‖p

Lp + | f |pW s,p ; (3.4)

the definition of W s,p(I) is similar.

W s,p(R) is a “fractional Sobolev” or Slobodeskii space.

We now interpret the results in Section 2.2 in terms of fractional Sobolev

spaces.

LEMMA 11. Let 0 < s < 1 and 1 ≤ p < ∞ be such that sp < 1. Then

ˆ

R

| f (x)|p

|x|sp
dx ≤Cs,p | f |

p
W s,p , ∀ f ∈W s,p(R). (3.5)

PROOF. Let f ∈ W s,p(R). Since | f |W s,p < ∞, for a.e. z ∈ R we have

ˆ

R

| f (x)− f (z)|p

|x− z|1+sp
dx < ∞. (3.6)
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Set A := {z ∈ R; (3.6) holds}. We note that A is dense in R (since it is a full

measure set). By the proof of (2.28) and the fact that f ∈ Lp(R), we have

ˆ

R

| f (x)|p

|x− z|sp
dx < ∞, ∀z ∈ A. (3.7)

By Lemma 2 and Fact 1, we obtain

ˆ

R

| f (x)|p

|x− z|sp
dx ≤Cs,p | f |

p
W s,p , ∀z ∈ A. (3.8)

Consider now a sequence (zk)⊂A such that zk → 0. Applying (3.8) with z= zk,

letting k → ∞ and using Fatou’s lemma, we find that (3.5) holds.

From Lemmas 4 and 11 and Fact 1, we derive the following

COROLLARY 2. Let 0 < s < 1 and 1 ≤ p < ∞ be such that sp < 1. Set q :=
p/(1− sp) ∈ (p,∞). Then W s,p(R) →֒ Lq(R). More specifically, we have

‖ f‖Lq ≤Cs,p| f |W s,p , ∀ f ∈W s,p(R). (3.9)

By Lemma 9, our next result is equivalent to Lemma 3.

COROLLARY 3. Let 0 < s < 1 and 1 ≤ p < ∞ be such that sp > 1. Assume that

f : I → R satisfies | f |W s,p(I) < ∞. Then f equals a.e. some continuous function g.

Assuming that f itself is continuous, we have, for every a,b ∈ I such that a < b,

| f (b)− f (a)|p ≤Cp,λ (b−a)λ−1| f |p
W s,p((a,b)). (3.10)

3.2 HIGHER DIMENSIONAL SPACES AND EMBEDDINGS

When 0 < s < 1, 1 ≤ p < ∞ and f : Rn → R, the W s,p-semi-norm of f is

| f |W s,p = | f |W s,p(R) :=

(
ˆ

Rn

ˆ

Rn

| f (x)− f (y)|p

|x− y|n+sp
dxdy

)1/p

=

(
ˆ

Rn

ˆ

Rn

| f (x+h)− f (x)|p

|h|n+sp
dxdh

)1/p

.

(3.11)

Similarly, we set, for every open set Ω having “some smoothness” (e.g. bounded

Lipschitz domain, or a convex set)

| f |W s,p(Ω) :=

(
ˆ

Ω

ˆ

Ω

| f (x)− f (y)|p

|x− y|n+sp
dxdy

)1/p

. (3.12)
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One then defines

W s,p =W s,p(Rn) := { f : Rn → R; f ∈ Lp(Rn) and | f |W s,p < ∞}, (3.13)

equipped with

‖ f‖p
W s,p := ‖ f‖p

Lp + | f |pW s,p ; (3.14)

the definition of W s,p(Ω) is similar.

REMARK 4. A warning. One can use (3.12) to define W s,p(Ω) for any Ω. The

drawback of this is that the definition will coincide with other reasonable possible

definitions of W s,p(Ω) only when Ω is sufficiently smooth (in particular bounded

Lipschitz, or convex). We will not discuss this point here. However, we call the at-

tention of the reader to the fact that whenever we consider the semi-norm | |W s,p(Ω),

we implicitly assume that either Ω is Rn (and then we simply write | |W s,p), or Ω is

bounded Lipschitz, or convex.

As in Section 3.1, we obtain the following.

LEMMA 12. Let 0 < s < 1 and 1 ≤ p < ∞ be such that sp < n. Then

ˆ

Rn

| f (x)|p

|x|sp
dx ≤Cs,p | f |

p
W s,p , ∀ f ∈W s,p(Rn). (3.15)

COROLLARY 4. Let 0 < s < 1 and 1 ≤ p < ∞ be such that sp < n. Set q :=
(np)/(n− sp) ∈ (p,∞). Then W s,p(Rn) →֒ Lq(Rn). More specifically, we have

‖ f‖Lq ≤Cs,p| f |W s,p , ∀ f ∈W s,p(Rn). (3.16)

COROLLARY 5. Let 0 < s < 1 and 1 ≤ p < ∞ be such that sp > n. Assume that

f : Ω → R satisfies | f |W s,p(Ω) < ∞. Then f equals a.e. some continuous function g.

Assuming that f itself is continuous, set, for a,b ∈ Ω, c := (a+b)/2 and r :=
|a−b|/2. If Br(c)⊂ Ω, then

| f (b)− f (a)|p ≤Cp,λ (b−a)λ−n| f |p
W s,p(Br(c))

. (3.17)

3.3 AN ELEMENTARY EMBEDDING

One should see W s,p as a space of functions “having up to s derivatives in Lp”. With

this interpretation in mind, it is reasonable to expect the validity of the following

result.
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LEMMA 13. Let 0 < s1 < s2 < 1 and 1 ≤ p < ∞. Then we have

W 1,p(Rn) →֒W s2,p(Rn) →֒W s1,p(Rn) →֒ Lp(Rn). (3.18)

PROOF. The last embedding is clear. The embedding W s2,p →֒W s1,p follows from

| f |pW s1 ,p =

ˆ

|h|<1

ˆ

Rn

| f (x+h)− f (x)|p

|h|n+s1 p
dxdh

+

ˆ

|h|≥1

ˆ

Rn

| f (x+h)− f (x)|p

|h|n+s1 p
dxdh

≤

ˆ

|h|<1

ˆ

Rn

| f (x+h)− f (x)|p

|h|n+s2 p
dxdh

+2p−1

ˆ

|h|≥1

‖ f‖p
Lp

|h|n+s1 p
dh . | f |pW s2,p +‖ f‖p

Lp .

Finally, we prove that W 1,p →֒W s2,p. If f ∈W 1,p, then

‖ f (·+h)− f‖Lp =
∥∥∥[ f (·+ t h)]t=1

t=0

∥∥∥
Lp

=

∥∥∥∥
ˆ 1

0

∇ f (·+ t h) ·hdt

∥∥∥∥
Lp

≤

ˆ 1

0

‖∇ f (·+ t h)‖Lp dt |h|

=‖∇ f‖Lp |h|,∀h ∈ R
n.

(3.19)

Using (3.19), we find that

| f |pW s2 ,p =

ˆ

|h|<1

ˆ

Rn

| f (x+h)− f (x)|p

|h|n+s2 p
dxdh

+

ˆ

|h|≥1

ˆ

Rn

| f (x+h)− f (x)|p

|h|n+s2 p
dxdh

≤

ˆ

|h|<1

‖∇ f‖p
Lp |h|p

|h|n+s2 p
dh

+2p−1

ˆ

|h|≥1

‖ f‖p
Lp

|h|n+s1 p
dxdh . ‖∇ f‖p

Lp +‖ f‖p
Lp .

This completes the proof of Lemma 13.
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3.4 HOMOGENEOUS SPACES

Sobolev spaces are often used in connection with optimal Sobolev and Morrey

embeddings. In this perspective, it is convenient to consider larger spaces, that

contain the original Sobolev ones, and satisfy the same embedding properties. In

order to motivate what follows, let us briefly recall what happens in the context of

Sobolev spaces W 1,p =W 1,p(Rn). When p > n, we see that the Morrey estimate

| f (x)− f (y)| ≤C |x− y|1−n/p ‖∇ f‖Lp , ∀ f ∈W 1,p, ∀x,y ∈ R
n (3.20)

involves only ‖∇ f‖Lp , and an inspection of its proof shows that the estimate holds

for f in the larger space { f : Rn → R; ‖∇ f‖Lp < ∞}. (Strictly speaking, in (3.20)

we have to replace f by its continuous representative.)

When p = n, there is no “optimal embedding” to look at.

When 1 ≤ p < n, the optimal Sobolev embedding

‖ f‖L(np)/(n−p) ≤C‖∇ f‖Lp , ∀ f ∈W 1,p, (3.21)

does not hold solely under the assumption ∇ f ∈ Lp. Indeed, it suffices to see that

f ≡ 1 does not satisfy (3.21). However, the conclusion (3.21) holds if we require

that “ f is small at infinity” in an appropriate sense. There are several possible

definitions of the smallness, and they all yield the same “homogeneous space”

Ẇ 1,p = Ẇ 1,p(Rn).

LEMMA 14. Let 1 ≤ p < n and let q := (np)/(n− p). Set

X1 := the closure of C∞
c (R

n) equipped with the norm f 7→ ‖∇ f‖Lp , (3.22)

X2 :=

{
f : Rn → R; ∇ f ∈ Lp(Rn) and

ˆ

Rn

| f (x)|p

|x|p
dx < ∞

}
, (3.23)

X3 := { f : Rn → R; ∇ f ∈ Lp(Rn) and f ∈ Lq} , (3.24)

X4 :=

{
f : Rn → R; ∇ f ∈ Lp(Rn) and lim

R→∞

 

BR(0)
f = 0

}
. (3.25)

Then X1 = X2 = X3 = X4. Moreover, if we endow X j, j = 1, . . . ,4, with its

“natural” norm

‖ f‖p
X1

:= ‖∇ f‖p
Lp , ‖ f‖p

X2
:= ‖∇ f‖p

Lp +

ˆ

Rn

| f (x)|p

|x|p
dx,

‖ f‖p
X3

:= ‖∇ f‖p
Lp +‖ f‖p

Lq , ‖ f‖p
X4

:= ‖∇ f‖p
Lp ,

then these norms are equivalent. In particular, each X j is complete.
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We denote Ẇ 1,p one of the spaces X j, j = 1, . . . ,4, with its natural norm.

PROOF. When f ∈C∞
c (R

n), we have

f (r ω) =− [ f (t ω)]t=∞
t=r =−

ˆ ∞

r

[∇ f (t ω)] ·ω dt, ∀r > 0, ∀ω ∈ S
n−1,

and thus

| f (r ω)| ≤

ˆ ∞

r

|∇ f (t ω)|dt,∀r > 0, ∀ω ∈ S
n−1. (3.26)

Using (3.26) and Hardy’s inequality at infinity (2.4) (with r := n− p, q := p

and g(u) := |∇ f (uω)|), we find that

ˆ

Rn

| f (x)|p

|x|p
dx =

ˆ

Sn−1

ˆ ∞

0

rn−p−1| f (r ω)|p drdsω

.

ˆ

Sn−1

ˆ ∞

0

rn−1|∇ f (r ω)|p drdsω =

ˆ

Rn

|∇ f (x)|p dx.

(3.27)

We find that (3.27) holds for every f ∈ X1, and thus X1 →֒ X2 with norm equiv-

alence.

If f ∈ Lq(Rn), then limR→∞

ffl

BR(0)
f = 0, by Hölder’s inequality applied to f in

BR(0). We find that X3 →֒ X4. By a similar argument, we have X2 →֒ X4.

Assume now that f ∈ X4. Since ∇ f ∈ Lp, we have f ∈ L
q
loc(R

n). Set fR :=
ffl

BR(0)
f . Since

´

BR(0)
( f − fR) = 0, we have, by the local Sobolev embedding,

ˆ

BR(0)
| f (x)− fR|

q dx ≤C

(
ˆ

BR(0))
|∇ f (x)|p dx

)q/p

. (3.28)

Note that C = Cp,n does not depend on R, by the scale invariance of (3.28).

Letting R → ∞ in (3.28) and using Fatou’s lemma, we find that f ∈ X3 and that

X4 →֒ X3.

In order to complete the proof of the lemma, it suffices to prove that X3 →֒ X1.

Let f ∈ X3. Let ρ ∈C∞
c (R

n) be a standard mollifier; thus ρ ≥ 0 and
´

Rn ρ = 1. Set

fε := f ∗ρε . Then

‖ fε‖Lp = ‖ f ∗ρε‖Lp ≤ ‖ f‖Lp‖ρε‖L1 = ‖ f‖Lp

and similarly ‖∇ fε‖Lp ≤ ‖∇ f‖Lp .

Consider now some ψ ∈ C∞
c (R

n) such that ψ = 1 in B(0,1) and supp ψ ⊂
B(0,2). Set

ψε(x) := ψ(εx) and gε := ψε fε = ψε ( f ∗ρε). (3.29)
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Then gε ∈ C∞
c (R

n). We claim that gε → f in X3 as ε → 0. (This implies that

f ∈ X1 and that X3 →֒ X1.) Indeed, on the one hand we have fε → f in Lq as ε → 0,

and therefore, by dominated convergence,

‖ f −gε‖Lq ≤ ‖(1−ψε) f‖Lq +‖ψε ( f − fε)‖Lq

. ‖(1−ψε) f‖Lq +‖ f − fε‖Lq → 0 as ε → 0.

On the other, using the fact that ∇ fε → ∇ f in Lp as ε → 0 and that

|∇ψε(x)| .

{
ε , if 1/ε < |x|< 2/ε ,

0, otherwise
,

we obtain, via Hölder’s inequality, that

‖∇ f −∇gε‖Lp ≤ ‖(1−ψε)∇ f‖Lp +‖ψε (∇ f −∇ fε)‖Lp +‖ fε ∇ψε‖Lp

. ‖(1−ψε)∇ f‖Lp +‖∇ f −∇ fε‖Lp + ε‖ fε‖Lp({1/ε<|x|<2/ε})

. ‖(1−ψε)∇ f‖Lp +‖∇ f −∇ fε‖Lp +‖ fε‖Lq({1/ε<|x|<2/ε})

→ 0 as ε → 0.

This final estimate completes the proof of the lemma.

By analogy with the case of Ẇ 1,p, we define the homogeneous space Ẇ s,p =
Ẇ s,p(Rn) as one of the spaces X j, j = 1, . . . ,4, below, with its natural norm.

LEMMA 15. Let 0 < s < 1 and 1 ≤ p < ∞ be such that sp < n and let q :=
(np)/(n− sp). Set

X1 := the closure of C∞
c (R

n) equipped with the norm f 7→ | f |W s,p , (3.30)

X2 :=

{
f : Rn → R; | f |W s,p < ∞ and

ˆ

Rn

| f (x)|p

|x|sp
dx < ∞

}
, (3.31)

X3 := { f : Rn → R; | f |W s,p < ∞ and f ∈ Lq} , (3.32)

X4 :=

{
f : Rn → R; | f |W s,p < ∞ and lim

R→∞

 

BR(0)
f = 0

}
. (3.33)

Then X1 = X2 = X3 = X4. Moreover, if we endow X j, j = 1, . . . ,4, with its

“natural” norm

‖ f‖p
X1

:= | f |pW s,p , ‖ f‖p
X2

:= | f |pW s,p +

ˆ

Rn

| f (x)|p

|x|p
dx,

‖ f‖p
X3

:= | f |pW s,p +‖ f‖p
Lq , ‖ f‖p

X4
:= | f |pW s,p ,

then these norms are equivalent. In particular, each X j is complete.
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PROOF. The embedding X1 →֒ X2 with equivalence of norms follows from Lemma

5. The embedding X2 →֒ X3 and the estimate

‖ f‖X3
. ‖ f‖X1

≤ ‖ f‖X2
, ∀ f ∈ X2,

are established via Lemma 8.

The embedding X3 →֒ X4 follows from Hölder’s inequality.

In order to establish the embedding X4 →֒ X3, we rely on the following result,

whose proof is postponed to the appendix.

LEMMA 16. Let 0 < s < 1, 1 ≤ p < ∞ and R > 0. Let

YR :=

{
f : BR(0)→ R; | f |W s,p(BR(0)) < ∞ and

 

BR(0)
f = 0

}
.

Then there exists an extension operator PR on YR such that:

1. PR f ∈W s,p(Rn), ∀ f ∈YR.

2. PR f = f on BR(0), ∀ f ∈ YR.

3. |PR f |W s,p ≤Cs,p,n | f |W s,p(BR(0)), ∀ f ∈ YR.

(The main point in the above result is that the constant in item 3 does not depend

on R.)

Granted Lemma 16, we proceed as follows. Let f ∈ X4. Let us note that

f ∈ L
p
loc(R

n) (since | f |W s,p < ∞). Set

fR :=

 

BR(0)
f , (3.34)

so that f − fR ∈ YR. Applying Lemma 16 to f − fR and Corollary 2 to PR( f − fR),
we find that

‖ f − fR‖Lq(BR(0)) ≤ ‖PR( f − fR)‖Lq ≤C | f |W s,p . (3.35)

Letting R → ∞ in (3.35), we find that f ∈ X3 and that X4 →֒ X3.

Finally, let f ∈ X3. Let, as in the proof of Lemma 14, gε := ψε fε . As there,

in order to find that X3 →֒ X1 and to complete the proof of the lemma, it suffices

to prove that gε → f in X3 as ε → 0. The fact that gε → f in Lq follows as in the

proof of Lemma 14. It this remains to prove that |gε − f |W s,p → 0 as ε → 0. This

is the content of Lemma 17 below, whose proof is postponed to the appendix.
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LEMMA 17. Let 0 < s < 1 and 1 ≤ p< ∞ be such that sp < n. Set q := (np)/(n−
sp). Let f : Rn → R be such that | f |W s,p < ∞ and f ∈ Lq. Define gε as in (3.29).

Then |gε − f |W s,p → 0 as ε → 0.

REMARK 5. Augusto Ponce [46] suggested to me another possible definition of

Ẇ s,p as follows. If f “vanishes at infinity”, then for every δ > 0 the set {x ∈
R

n; | f (x)| > δ} has finite measure. It is thus natural to consider the space

X5 := { f : Rn → R; | f |W s,p < ∞ and |{x ∈ R
n; | f (x)| > δ}|< ∞, ∀δ > 0},

with the semi-norm ‖ f‖p
X5

:= | f |pW s,p .

If 0< s < 1 and 1 ≤ p< ∞ are such that sp < n, then X5 = X1. Indeed, if f ∈X1

then f ∈ Lq and thus f ∈ X5, by Markov’s inequality. Conversely, let f ∈ X5. We

want to prove that f ∈ X1. In view of Lemma 15, this amounts to fR → 0 as R → ∞,

where fR is as in (3.34). We argue by contradiction an assume that | fRk
| ≥ 2δ > 0

along a sequence Rk → ∞. By (3.35), we have ‖ f − fR‖Lq(BR(0)) ≤C =C f , and thus

for every t > 0 and R > 0 we have (using Markov’s inequality)

|{x ∈ BR(0); | f (x)− fR| ≤ t}| ≥ |BR(0)|−
Cq

tq
. (3.36)

We apply (3.36) with t = δ and R = Rk. We find that

|{x ∈ BRk
(0); | f (x)| > δ}| ≥ |{x ∈ BRk

(0); | f (x)− fRk
| ≤ δ}|

≥ |BRk
(0)|−

Cq

δ q
→ ∞ as k → ∞,

(3.37)

and therefore |{x ∈ R
n; | f (x)| > δ}| = ∞. This contradiction completes the proof

of the equality X5 = X1.

An inspection of the above proof is the the analogous equality “X5 = X1” still

holds for s = 1.

For more advanced considerations on homogeneous spaces and their realiza-

tions, see e.g. Bourdaud [1].

3.5 SLICING (I)

It will often be more convenient to work in R with functions of one variable instead

of working in R
n. This is possible thanks to a “Fubini type” property stated below.

Such a property is reminiscent of the fact that, if f ∈ Lp(R2), then for a.e. y ∈R we

have f (·,y) ∈ Lp(R). For simplicity, we state our next result in R
n, but analogous

ones hold in sufficiently smooth open sets Ω⊂R
n. Given x∈R

n and j ∈{1, . . . ,n},

we use the notation x̂ j := (x1, . . . ,x j−1,x j+1, . . . ,xn) ∈R
n−1.
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LEMMA 18. Let 0 < s < 1 and 1 ≤ p < ∞. Then for every f : Rn → R we have

| f |p
W s,p(Rn) ≈

n

∑
j=1

ˆ

Rn−1

| f (x1, . . . ,x j−1, ·,x j+1, . . . ,xn)|
p

W s,p(R) dx̂ j. (3.38)

The proof of the lemma is presented in the appendix.

REMARK 6. Other forms of slicing are possible. Instead of fixing (n− 1) vari-

ables and considering functions of one variable, one may fix (n− k) variables and

consider functions of k variables. Then the analogue of (3.38) holds. This can be

established by copying the proof of Lemma 18. See also Section 3.7.

3.6 HIGHER ORDER SPACES

There are several possible reasonable definitions of higher order fractional Sobolev

spaces W s,p. Consider for example some s ∈ (1,2) and write s = 1+σ with 0 <
σ < 1. A first possible definition of W s,p(R) is

W s,p =W s,p(R) := { f : R→ R; f ∈W 1,p and f ′ ∈W σ ,p}. (3.39)

Another possibility consists of defining W s,p via adapted higher order average

rates of change. Recalling that when 0 < s < 1 spaces are defined via the first order

rates ( f (x)− f (y))/(x− y), one may consider seconder order rates. It is actually

more convenient to use, instead of rates of change, slightly different quantities. We

consider the first order variation ∆1
h f (x) := f (x+ h)− f (x), and then the second

order variation given by

∆2
h f (x) := ∆1

h(∆
1
h f )(x) = f (x+2h)−2 f (x+h)+ f (x).

Higher order variations are defined by induction: we let

∆M
h := ∆1

h ◦ · · · ◦∆1
h︸ ︷︷ ︸

M times

.

For 1 < s < 2, one may try the following alternative to (3.39).

W s,p =W s,p(R) :=

{
f : R→ R; f ∈ Lp and

ˆ

Rn

ˆ

Rn

|∆2
h f (x)|p

|h|n+sp
dxdh < ∞

}
.

(3.40)

It turns out that the definitions (3.39) and (3.40) lead to the same space and

to equivalent “natural” norms. The situation is similar in higher dimensions and
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for higher order derivatives. For simplicity, we justify the equality of spaces and

the equivalence of norms only when n = 1 and 1 < s < 2, but with more work

arguments can be adapted to the general case. We refer the interested reader to [55,

Section 2.6.1] for a comprehensive list of equivalent definitions of W s,p with non-

integer s. Since we want to keep this text of reasonable length, in the next sections

we will take for granted the equivalence of some of these characterizations.

It will be useful later to have at least one definition of W s,p(Rn). We adopt the

following one. Let s > 0 be a non-integer and let 1 ≤ p < ∞. Let M > s be an

integer, and define

| f |pW s,p = | f |p
W s,p(Rn) :=

ˆ

Rn

ˆ

Rn

|∆M
h f (x)|p

|h|n+sp
dxdh. (3.41)

Strictly speaking, this semi-norm depends not only on s, p and n, but also on

M. However, in order to keep notation simple we omit the dependence on M. We

let

W s,p =W s,p(Rn) := { f : Rn → R; f ∈ Lp and | f |W s,p < ∞},

equipped with the “natural” norm

‖ f‖p
W s,p := ‖ f‖p

Lp + | f |pW s,p . (3.42)

Spaces on sufficiently smooth domains Ω are defined similarly. The double

integral in x and h is performed over the set

{(x,h) ∈ Ω×R
n; [x,x+Mh]⊂ Ω}.

Let us note that the standard space W s,p with 0 < s < 1 corresponds to the

choice M = 1. Incidentally, our above discussion reveals that we could have defined

W s,p with 0< s< 1 via higher order variations. In order to illustrate this, we present

in the appendix a proof of the equality of the spaces W s,p(R) with 0< s< 1, defined

in one dimension via first, respectively second order variations; see Lemma 38.

We next justify the equivalence of the definitions (3.39) and (3.40). Our result

in this direction is the following.

LEMMA 19. Let 1 < s < 2 and 1 ≤ p < ∞. Let σ := s−1 ∈ (0,1). Set

Z1 := { f : R→ R; f ∈ Lp and | f |W s,p < ∞},

Z2 := { f : R→ R; f ∈W 1,p and 〈 f 〉W s,p := | f ′|W σ ,p < ∞},
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equipped respectively with the norms

‖ f‖p
Z1

:= ‖ f‖p
Lp + | f |pW s,p ,

‖ f‖p
Z2

:= ‖ f‖p
Lp + 〈 f 〉p

W s,p .

Then Z1 = Z2, with equivalence of norms.

In the above, | |W s,p is the semi-norm given by (3.41) with n = 1 and M = 2.

We define W s,p =W s,p(R) as one of the spaces Z1, Z2 with its norm.

The main ingredient in the proof of Lemma 19 is the following.

LEMMA 20. Let 1 < s < 2 and 1 ≤ p< ∞. Let σ := s−1 ∈ (0,1). Let f ∈C1(R).
Then we have

| f |W s,p . 〈 f 〉W s,p . (3.43)

Assuming that 〈 f 〉W s,p < ∞, we also have

〈 f 〉W s,p . | f |W s,p . (3.44)

PROOF OF LEMMA 20. The proof relies only on a Hardy type inequality!

Step 1. Proof of (3.43)

Let us note the identity

∆2
h f (x−h) =

ˆ h

0

[ f ′(x+ t)− f ′(x− t)]dt. (3.45)

Using (3.45) and the Hardy inequality at 0 (2.3), we find that

ˆ

R

|∆2
h f (x−h)|p

|h|1+sp
dh .

ˆ

R

| f ′(x+ t)− f ′(x− t)|p

|t|1+σ p
dt, ∀x ∈ R. (3.46)

Integrating (3.46) over x, we obtain (3.43).

Step 2. Proof of (3.44)

This time we start from the identity

∆2
ε f (x) =

ˆ x+2ε

x+ε
f ′(t)dt −

ˆ x+ε

x

f ′(t)dt. (3.47)

Let k be a large integer to be chosen later. Using (3.47), we find that

k−1

∑
j=0

∆2
ε f (x+ jε) =

ˆ x+(k+1)ε

x+kε
f ′(t)dt −

ˆ x+ε

x

f ′(t)dt. (3.48)
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Identity (3.48) is equivalent to

f ′(x+ kε)− f ′(x) =
1

ε

k−1

∑
j=0

∆2
ε f (x+ jε)

−
1

ε

ˆ ε

0

( f ′(x+ kε + t)− f ′(x+ kε))dt

+
1

ε

ˆ ε

0

( f ′(x+ t)− f ′(x))dt.

(3.49)

Taking absolute values in (3.49), we find that

| f ′(x+ kε)− f ′(x)| ≤
1

|ε |

k−1

∑
j=0

|∆2
ε f (x+ jε)|

+
1

|ε |

∣∣∣∣
ˆ ε

0

( f ′(x+ kε + t)− f ′(x+ kε))dt

∣∣∣∣

+
1

|ε |

∣∣∣∣
ˆ ε

0

( f ′(x+ t)− f ′(x))dt

∣∣∣∣ .

(3.50)

If we raise (3.50) to the pth power, divide by |ε |1+σ p, integrate over x and ε
and perform in the left-hand side integral the change of variable h := kε , we find

that

〈 f 〉p
W s,p ≤Cs,p,k | f |

p
W s,p

+Cs,p k−σ p

ˆ

R

ˆ

R

|ε |−1−sp

∣∣∣∣
ˆ ε

0

( f ′(x+ t)− f ′(x))dt

∣∣∣∣
p

dxdε .
(3.51)

We now apply in (3.51) the Hardy inequality (2.3) to the integral in ε (with x

fixed) and find that

〈 f 〉p
W s,p ≤Cs,p,k | f |

p
W s,p +Cs,p k−σ p 〈 f 〉p

W s,p . (3.52)

Finally, if we choose k sufficiently large then Cs,p k−σ p < 1/2. For such k,

(3.52) combined with the assumption 〈 f 〉W s,p < ∞ yields (3.44).

PROOF OF LEMMA 19. Let us note that we have Z j →֒ Lp, j = 1,2, and thus it

suffices to prove the norm equivalence for f : R→ R, f ∈ Lp.

Step 1. Norm equivalence for f ∗ρε

Set fε := f ∗ρε , where ρ is a standard mollifier. We will prove that ‖ fε‖Z1
≈‖ fε‖Z2

(with constants independent of ε). Indeed, on the one hand (3.43) implies that

‖ fε‖Z1
. ‖ fε‖Z2

.

30



For the opposite inequality, we claim that fε ∈ Z2, and thus 〈 fε〉W s,p < ∞. (This

implies the validity of (3.44) for fε and completes Step 1.) We actually claim that

( fε)
(m) ∈ Lp, ∀m ∈ N, (3.53)

and

|( fε)
(m)|W t,p < ∞, ∀m ∈ N, ∀ t ∈ (0,1). (3.54)

Indeed, (3.53) follows from

‖( fε)
(m)‖Lp = ‖ f ∗ (ρε)

(m)‖Lp ≤ ‖ f‖Lp ‖(ρε)
(m)‖L1 ≤Cm,p,ε‖ f‖Lp . (3.55)

Estimate (3.55) yields

∥∥∥∆1
h[( fε)

(m)]
∥∥∥

Lp
=

∥∥∥∥
[
( fε )

(m)(·+ τ)
]τ=h

τ=0

∥∥∥∥
Lp

=

∥∥∥∥
ˆ h

0

( fε)
(m+1)(·+ τ)dτ

∥∥∥∥
Lp

≤|h|‖( fε )
(m+1)‖Lp ≤Cm,p,ε |h|‖ f‖Lp .

(3.56)

Using (3.55) and (3.56), we find that

|( fε)
(m)|pW t,p =

ˆ

|h|<1

ˆ

R

∣∣∆1
h[( fε)

(m)](x)
∣∣p

|h|1+t p
dxdh

+

ˆ

|h|≥1

ˆ

R

∣∣∆1
h[( fε )

(m)](x)
∣∣p

|h|1+t p
dxdh

≤Cm,p,ε‖ f‖p
Lp

(
ˆ

|h|≤1

dh

|h|1−(1−t)p
+

ˆ

|h|>1

dh

|h|1+t p

)

≤Cm,p,ε‖ f‖p
Lp ,

whence (3.54).

Step 2. A control for ‖ f ′‖Lp

Assuming f ∈C1, we will control ‖ f ′‖Lp in terms of 〈 f 〉W s,p and ‖ f‖Lp . The start-

ing point is the identity

f ′(x) = f (x+1)− f (x)−

ˆ 1

0

[ f ′(x+ t)− f (x)]dt,

which implies, in conjunction with Hölder’s inequality, that

‖ f ′‖Lp ≤ 2‖ f‖Lp +

ˆ 1

0

‖∆1
t f ′‖Lp dt . ‖ f‖Lp + 〈 f 〉W s,p . (3.57)
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Step 3. ε → 0

Assume first that f ∈ Z2. Using the identity ∆1
h( f ′ ∗ρε) = (∆1

h f ′)∗ρε , we find that

‖∆1
h( f ′ ∗ ρε)‖Lp ≤ ‖∆1

h f ′‖Lp , and therefore 〈 fε〉W s,p ≤ 〈 f 〉W s,p . Using Step 1, we

obtain

| fε |W s,p . | f |W s,p , ∀ε > 0. (3.58)

We next argue as follows. Since f ∈ Lp, awe have fε → f in Lp as ε → 0 and

thus, for fixed h, we have ‖∆2
h fε‖Lp → ‖∆2

h f‖Lp as ε → 0. Combining this with

Fatou’s lemma and letting ε → 0 in the uniform estimate (3.58), we find that

| f |W s,p ≤ liminf
ε→0

| fε |W s,p . 〈 f 〉W s,p , ∀ f ∈ Z2, (3.59)

and in particular that Z2 →֒ Z1.

For the opposite inequality, let f ∈ Z1. We will prove that

f ′ ∈ Lp (3.60)

and

〈 f 〉W s,p ≤Cs,p| f |W s,p . (3.61)

The key fact is the following variant of Lemma 17 (or, more precisely, of esti-

mate (7.20) established during its proof), whose proof is postponed to the appendix.

LEMMA 21. Let f ∈ Z1. Assume that ρ is an even mollifier. Then we have | fε −
f |W s,p → 0 as ε → 0.

Granted Lemma 21, we proceed as follows. Consider a sequence ε j ց 0 such

that

| fε0
|W s,p ≤ 2 | f |W s,p and | fε j

− fε j−1
|W s,p ≤ 2− j | f |W s,p , ∀ j ≥ 1, (3.62)

‖ fε0
‖Lp ≤ 2‖ f‖Lp and ‖ fε j

− fε j−1
‖Lp ≤ 2− j ‖ f‖Lp , ∀ j ≥ 1. (3.63)

Combining Step 1 with (3.62), we find that

〈 fε0
〉W s,p + ∑

j≥1

〈 fε j
− fε j−1

〉W s,p . | f |W s,p . (3.64)

From (3.57), (3.62), (3.64) and Step 1, we obtain

‖( fε0
)′‖Lp + ∑

j≥1

‖( fε j
− fε j−1

)′‖Lp . ‖ f‖W s,p . (3.65)
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Since, on the other hand, we have f = fε0
+∑ j≥1( fε j

− fε j−1
) in Lp, we find

from (3.65) that f ′ = ( fε0
)′ +∑ j≥1( fε j

− fε j−1
)′ ∈ Lp and that ‖ f ′‖Lp . ‖ f‖W s,p .

This is a quantitative form of (3.60).

Finally, arguing as for (3.58), we have

〈 fε〉W s,p . | fε |W s,p ≤ | f |W s,p , ∀ε > 0. (3.66)

Since now we know that f ′ ∈ Lp, we may rewrite (3.66) as

| f ′ ∗ρε |W σ ,p . | f |W s,p , ∀ε > 0. (3.67)

We now let ε → 0 in (3.67) (using f ′ ∗ ρε → f ′ in Lp as ε → 0 and Fatou’s

lemma, as in the proof of (3.59)), and obtain (3.61).

Granted Lemma 21, the proof of Lemma 19 is complete.

3.7 SLICING (II)

We discuss here the extension of Lemma 18 to higher order spaces W s,p, possibly

with integer s. The first remark is that in general, Lemma 18 does not hold for

large s. Indeed, a famous construction due to Ornstein [45] exhibits a compactly

supported function f = f (x,y) :R2 →R such that f ,∂1∂1 f ,∂2∂2 f ∈ L1 but ∂1∂2 f 6∈
L1. Thus for this f we have

∞ = ‖ f‖W 2,1(R2) 6.

ˆ

R

‖ f (x, ·)‖W 2,1(R)dx+

ˆ

R

‖ f (·,y)‖W 2,1(R) dy < ∞.

There exists however a form of slicing which holds for all regularity exponents

s > 0, integer or not; see e.g. [4, formula (D.3)]. This is explained in our next

result, whose proof is postponed to the appendix.

If f : Rn → R and ω ∈ S
n−1, let ω⊥ denote the hyperplane orthogonal to ω ,

i.e., ω⊥ := {x ∈ R
n; 〈x,ω〉 = 0}, and consider the partial functions f x

ω given by

f x
ω(t) := f (x+ t ω), ∀ω ∈ S

n−1, ∀x ∈ ω⊥, ∀ t ∈ R. (3.68)

LEMMA 22. Let s ≥ 0 and 1 ≤ p < ∞. Then

‖ f‖p

W s,p(Rn) ≈

ˆ

Sn−1

ˆ

ω⊥
‖ f x

ω‖
p

W s,p(R) dxdω , ∀ f : Rn → R. (3.69)

When s is not an integer, we also have

| f |p
W s,p(Rn) ≈

ˆ

Sn−1

ˆ

ω⊥

| f x
ω |

p

W s,p(R) dxdω , ∀ f : Rn → R. (3.70)

(Strictly speaking, the integral in x ∈ ω⊥ is with respect to the (n−1)-dimensional

Hausdorff measure on ω⊥.)
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4 SUPERPOSITION OPERATORS

4.1 OVERVIEW

For Φ = Φ(t) : R→ R and f : Rn → R, we set TΦ f := Φ ◦ f . TΦ is a “superposi-

tion” or “Nemitzkii” operator. We discuss here the following question. Given some

function space X , which is the regularity (common to all f ) of TΦ f with f ∈ X ?

A related question is the following: given this time two function spaces, X and Y ,

which are the functions Φ such that TΦ f ∈ Y , ∀ f ∈ X? These are natural ques-

tions when dealing e.g. with nonlinear partial differential equations or nonlinear

nonlocal equations.

One could consider more general Φ’s, depending not only on t, but also on the

space variable x, but already the case of an “autonomous” Φ is difficult and not

completely understood, even in the case where Y = X .

There exists an important literature on the subject. The interested reader may

consult the monograph of Runst and Sickel [47, Chapter 5] for a detailed account of

the results available in the mid 90’s, and the vivid partial description by Bourdaud

and Sickel [3] of the more recent developments. We focus in what follows on

several results in whose proofs the Hardy type inequalities play a crucial role.

Before proceeding, and in order to warn the reader that life in Sobolev spaces

is more complicated than the one in spaces of continuous functions, let us state

without proof some relevant results in this context.

1. The first one is merely an exercise. If Φ : R→R is Lipschitz with Φ(0) = 0, and

if 0 < s < 1 and 1 ≤ p < ∞, then TΦ maps continuously W s,p(Rn) into W s,p(Rn).

2. It is slightly more difficult to see that, under the same assumptions on Φ, TΦ

also maps W 1,p(Rn) into W 1,p(Rn). It turns out (but this is a delicate result due

to Marcus and Mizel [33]) that, for such Φ, TΦ is continuous from W 1,p(Rn) into

itself.

3. The above results suggest that if Φ is sufficiently smooth (smoothness depending

on s), then TΦ maps W s,p(Rn) into W s,p(Rn). However, the following result, due

to Dahlberg [17], ruins such expectations. Let n ≥ 3 and 1 < p < n/2. If TΦ maps

W 2,p into itself, then Φ(t) = ct, ∀ t ∈R, for some constant c. (The converse clearly

holds, also.)

4. Assume that n ≥ 2 and that p > n/2 (this assumption on p goes in the opposite

direction with respect to Dahlberg’s result). If Φ ∈ C2(R) and Φ(0) = 0, then TΦ

maps W 2,p into itself. We will come back to this (and more) in Section 5.2.

The above suggest that, when Y = X =W s,p, the interesting range is s > 1, and

that for such s additional conditions may be necessary either on f , or on the triple

(s, p,n), even if Φ is sufficiently smooth.
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4.2 MAPPING PROPERTIES OF f 7→ | f |

The following beautiful result is due to Bourdaud and Meyer [2].

THEOREM 1. Let 1 ≤ p < ∞ and 1 < s < 1+1/p. Then f 7→ | f | maps W s,p(Rn)
into itself.

A preliminary result, before proceeding to the proof of the theorem.

LEMMA 23. Let f ∈W
1,1
loc (R

n). Then | f | ∈W
1,1
loc (R

n) and

∂ j| f |= (sgn f )∂ j f , ∀ j = 1, . . . ,n. (4.1)

In one dimension, this result was essentially known to de la Vallée Poussin

[18]. In a more generally form, it is proved in Serrin and Varberg [49]. The n-

dimensional version appears e.g. in Gilbarg and Trudinger [27, Lemma 7.6]. One

can pass from one dimension to n dimensions via a standard slicing argument in

W 1,p (see e.g. Ziemer [57, Theorem 2.1.4]), and thus the heart of the matter is the

validity of (4.1) in one dimension. We give in the appendix a very simple proof of

this equality.

For more complicated Φ’s, the chain rule for Φ◦ f is more delicate to establish.

The chain rule and its higher-order analogue, the Faà di Bruno formula, play an

essential role in the study of the superposition operators; see e.g. Dincă and Isaia

[19, 20, 21].

The proof below of Theorem 1 is a variant of the one in [2].

PROOF OF THEOREM 1. Write s = 1+σ , with 0 < σ < 1/p. It will be conve-

nient to use on W s,p the following norm, suggested by Lemma 18 and equivalent

to the usual ones:

〈〈 f 〉〉p
W s,p :=‖ f‖p

Lp +‖∇ f‖p
Lp

+
n

∑
j=1

ˆ

Rn−1

|∂ j f (x1, . . . ,x j−1, ·,x j+1, . . . ,xn)|
p

W σ ,p(R) dx̂ j.
(4.2)

(The equivalence of norms is obtained by combining Lemma 18 with [54, Section

2.3.8, Theorem, pp. 58-59].)

In view of Lemma 23 and of (4.2), in order to obtain the conclusion of the

theorem it suffices to obtain the estimate

||g|′|W σ ,p(R) . |g′|W σ ,p(R), ∀g ∈W s,p(R). (4.3)
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To summarize, up to now we have reduced the proof of the theorem to the one

of (4.3), which is equivalent to
ˆ

R

ˆ

R

|(sgn g(x))g′(x)− (sgn g(y))g′(y)|p

|x− y|1+σ p
dxdy

.

ˆ

R

ˆ

R

|g′(x)−g′(y)|p

|x− y|1+σ p
dxdy, ∀g ∈W s,p(R).

(4.4)

Clearly, whenever g(x)g(y) > 0, the integrands on both sides of (4.4) coincide.

On the other hand, if g(x) = g(y) = 0 then the integrand on the left-hand side

vanishes. Therefore, it suffices to consider only couples (x,y) such that

g(x)g(y) ≤ 0 and (g(x),g(y)) 6= (0,0).

For such a couple (x,y), we use the estimate

|(sgng(x))g′(x)− (sgn g(y))g′(y)|

≤ |(sgng(x))g′(x)|+ |sgn g(y))g′(y)|.
(4.5)

In view of (4.5) and by symmetry, in order to obtain (4.4) it thus suffices to

establish the estimate
ˆ

g(x)>0

ˆ

g(y)≤0

|g′(x)|p

|x− y|1+σ p
dxdy

.

ˆ

R

ˆ

R

|g′(x)−g′(y)|p

|x− y|1+σ p
dxdy, ∀g ∈W s,p(R).

(4.6)

Set U := {x; g(x) > 0} and write U as a disjoint union of open intervals, U =
∪ jI j. If x ∈ I j for some j, then

ˆ

g(y)≤0

1

|x− y|1+σ p
dy ≤

ˆ

y6∈I j

1

|x− y|1+σ p
dy ≤

Cs,p

[dist(x,∂ I j)]σ p
. (4.7)

In view of (4.7), in order to prove (4.6) it suffices to establish the estimate
ˆ

I j

|g′(x)|p

[dist(x,∂ I j)]σ p
dx ≤Cs,p

ˆ

I j

ˆ

I j

|g′(x)−g′(y)|p

|x− y|1+σ p
dxdy. (4.8)

When I j is unbounded, (4.8) is follows from the fractional Hardy inequality

(3.5) applied to g′ in W σ ,p(I j) (recall that σ p < 1).

When I j = (a j,b j) is bounded, we start by noting that g(a j) = g(b j) = 0, and

thus
´

I j
g′(t)dt = 0. We may now apply Lemma 16 and obtain the existence of

some h ∈W σ ,p(R) such that h = g′ on I j and

|h|W σ ,p(R) . |g′|W σ ,p(I j). (4.9)
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Applying the fractional Hardy inequality (3.5) to h and using (4.9), we find that

ˆ

I j

|g′(x)|p

[dist(x,∂ I j)]σ p
dx .

ˆ

I j

|g′(x)|p

(x−a j)σ p
dx+

ˆ

I j

|g′(x)|p

(b j − x)σ p
dx

≤

ˆ

R

|h(x)|p

|x−a j|σ p
dx+

ˆ

R

|h(x)|p

|x−b j|σ p
dx

.

ˆ

I j

ˆ

I j

|g′(x)−g′(y)|p

|x− y|1+σ p
dxdy.

Therefore, (4.8) holds. This completes the proof of the theorem.

4.3 MAPPING PROPERTIES OF f 7→ | f |a, 0 < a < 1

Let Φ(t) := |t|a, ∀ t ∈ R, where 0 < a < 1. Since Φ is even, concave on [0,∞) and

Φ(0) = 0, we have

|Φ(t)−Φ(τ)|= |Φ(|t|)−Φ(|τ |)| ≤ Φ(|t|− |τ |),

and thus

|Φ(t)−Φ(τ)|1/a ≤ [Φ(|t|− |τ |)]1/a = ||t|− |τ || ≤ |t − τ |, ∀ t,τ ∈R. (4.10)

Let 0 < s < 1 and let f ∈W s,p(Rn). In view of (4.10), we have

|Φ( f (x))−Φ( f (y))|p/a ≤ | f (x)− f (y)|p, ∀x,y ∈ R
n, (4.11)

and therefore

|| f |a|
p/a

W as,p/a ≤ | f |pW s,p , ∀ f ∈W s,p. (4.12)

Using (4.12), we easily find that TΦ maps W s,p into W as,p/a, ∀0 < s < 1, ∀1 ≤
p < ∞, ∀0 < a < 1.

When s = 1, the analogous conclusion does not follow from (4.11). This case

is covered by the following result [39].

THEOREM 2. Let 0 < a < 1 and 1 < p < ∞. Then f 7→ | f |a maps W 1,p into

W a,p/a.

REMARK 7. The conclusion of the theorem is wrong when p = 1 [39].

On the other hand, it is not known what happens in W s,p with s > 1. The

following conjecture seems plausible. Let 1 ≤ p < ∞, 1 < s < 1+ 1/p and let

0 < a < 1. Then f 7→ | f |a maps W s,p into W as,p/a.
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We present below a variant of the proof of Theorem 2 in [39].

PROOF OF THEOREM 2. More generally, we consider an increasing concave

homeomphism Φ : [0,∞)→ [0,M) and seek for an inequality of the form

ˆ

Rn

ˆ

Rn

Ψ(|Φ(| f (x)|)−Φ(| f (y)|)|)

|x− y|n+p
dxdy

.

ˆ

Rn

|∇ f (x)|p dx, ∀ f ∈W 1,p(Rn).

(4.13)

We will determine an appropriate increasing function Ψ : [0,M)→ [0,∞) (de-

pending on the nonlinearity Φ) such that (4.13) holds and such that, in the special

case where Φ(t) = ta, we have Ψ(t) =Ct p/a. Assuming that (4.13) holds for these

particular Φ and Ψ, we find that

|| f |a|
p/a

W as,p/a . ‖∇ f‖p
Lp ,∀ f ∈W 1,p(Rn),

and this easily implies that

‖| f |a‖
p/a

W as,p/a . ‖ f‖p

W 1,p , ∀ f ∈W 1,p(Rn),

and leads to the conclusion of the theorem.

It will be more instructive not to give the formula defining Ψ from the begin-

ning, but to derive it from a series of calculations. Let us note that a necessary

condition for the validity of (4.13) is Ψ(0) = 0. Indeed, if Ψ(0) 6= 0, then (4.13)

with f ≡ 0 is wrong.

Step 1. Slicing

Assume that we are able to prove (4.13) in dimension one. If we apply this es-

timate to f x
ω (defined in (3.68)), integrate over ω ∈ S

n−1 and x ∈ ω⊥ and use the

equivalences (7.42) and (7.44), we obtain that (4.13) holds in R
n.

Therefore, from now on we work in one dimension.

Step 2. Replacing f by | f |
Clearly, the left-hand side of (4.13) does not change if we replace f by | f |. Nor

does the right-hand side, by Lemma 4.1. We may thus assume, in what follows,

that f ∈W 1,p(R; [0,∞)).

Step 3. Use of a Hardy type inequality

Let f ∈W 1,p(R; [0,∞)). Assuming Φ, Ψ sufficiently smooth in order to ensure the
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validity of the next calculations, we have

ˆ

R

ˆ

R

Ψ(|Φ( f (x))−Φ( f (y))|)

|x− y|1+p
dxdy

= 2

ˆ

R

ˆ

f (y)< f (x)

Ψ(Φ( f (x))−Φ( f (y)))

|x− y|1+p
dydx

= 2

ˆ

R

ˆ

f (y)< f (x)

[−Ψ(Φ( f (x))−Φ(t))]
t= f (x)
t= f (y)

|x− y|1+p
dydx

= 2

ˆ

R

ˆ f (x)

0

Φ′(t)

ˆ

f (y)<t

Ψ′(Φ( f (x))−Φ(t))

|x− y|1+p
dydtdx.

(4.14)

Consider now, for 0 < t < M, the open set Ut := {x ∈R; f (x)> t}. We decom-

pose, for each fixed t, Ut = ∪I j,t , with I j,t mutually disjoint open intervals. Note

that Ut has finite measure (by Markov’s inequality) and thus each I j,t has finite

length. By (4.14), we have

ˆ

R

ˆ

R

Ψ(|Φ( f (x))−Φ( f (y))|)

|x− y|1+p
dxdy

= 2

ˆ M

0

Φ′(t)

ˆ

Ut

ˆ

f (y)<t

Ψ′(Φ( f (x))−Φ(t))

|x− y|1+p
dydxdt

= 2

ˆ M

0

Φ′(t)∑
j

ˆ

I j,t

ˆ

f (y)<t

Ψ′(Φ( f (x))−Φ(t))

|x− y|1+p
dydxdt

≤ 2

ˆ M

0

Φ′(t)∑
j

ˆ

I j,t

ˆ

R\I j,t

Ψ′(Φ( f (x))−Φ(t))

|x− y|1+p
dydxdt

.

ˆ M

0

Φ′(t)∑
j

ˆ

I j,t

Ψ′(Φ( f (x))−Φ(t))

[dist(x,∂ I j,t )]p
dxdt.

(4.15)

We next intend to apply the Hardy inequality (2.56) to the inner integral
´

I j,t
. . .dx

in (4.15). For that purpose, we write

Ψ′(Φ( f (x))−Φ(t)) = [(Ψ′(Φ( f (x))−Φ(t)))1/p

︸ ︷︷ ︸
gt (x)

]p = [gt(x)]
p. (4.16)

We note that, at the endpoints of I j,t , we have f (x) = t. Therefore, if we assume

that Ψ′(0) = 0, then gt vanishes at the endpoints of I j,t . We are thus in position to
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apply (2.56) and find that

ˆ

R

ˆ

R

Ψ(|Φ( f (x))−Φ( f (y))|)

|x− y|1+p
dxdy

.

ˆ M

0

Φ′(t)∑
j

ˆ

I j,t

|(gt)
′(x)|p dxdt

=

ˆ M

0

Φ′(t)

ˆ

Ut

|(gt)
′(x)|p dxdt =

ˆ

R

ˆ f (x)

0

Φ′(t)|(gt)
′(x)|p dtdx.

(4.17)

We next note that

(gt)
′(x) =(Ψ′)1/p−1(Φ( f (x))−Φ(t))Ψ′′(Φ( f (x))−Φ(t))

× Φ′( f (x)) f ′(x).
(4.18)

Inserting (4.18) into (4.17), we obtain

ˆ

R

ˆ

R

Ψ(|Φ( f (x))−Φ( f (y))|)

|x− y|1+p
dxdy

.

ˆ

R

K( f (x))(Φ′)p( f (x)) | f ′(x)|p dx,

(4.19)

where we have set, for A > 0,

K(A) :=

ˆ A

0

Φ′(t)(Ψ′)1−p(Φ(A)−Φ(t)) |Ψ′′|p(Φ(A)−Φ(t))dt. (4.20)

Step 4. Choice of Ψ

In order to obtain (4.13) from (4.19)–(4.20), we seek for Ψ such that

K(A)(Φ′)p(A) =C ∈ (0,∞), ∀A > 0. (4.21)

We next manipulate (4.21) in order to derive the expression of Ψ. Set ξ :=
Φ−1 : [0,M) → [0,∞), so that ξ is convex and increasing. If we perform, in the

integral defining K(A), the change of variable τ := Φ(t) and we set B := Φ(A),
then

K(A) =

ˆ B

0

(Ψ′)1−p(B− τ) |Ψ′′|p(B− τ)dτ

=

ˆ B

0

(Ψ′)1−p(τ) |Ψ′′|p(τ)dτ .

(4.22)
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Since on the other hand we have Φ′(A) = 1/ξ ′(B), we find, using (4.22), that

(4.21) is equivalent to

ˆ B

0

(Ψ′)1−p(τ) |Ψ′′|p(τ)dτ =C (ξ ′)p(B), ∀0 < B < M. (4.23)

We may now differentiate (4.23) with respect to B and find that

(Ψ′)1−p(B) |Ψ′′|p(B) =C (ξ ′)p−1(B)ξ ′′(B). (4.24)

Assuming that Ψ is convex, we obtain from (4.24) that

[(Ψ′)1/p]′(B) =C (Ψ′)1/p−1(B)Ψ′′(B) =C (ξ ′)1−1/p(B)(ξ ′′)1/p(B). (4.25)

Using (4.25) and the assumption Ψ′(0) = 0, we determine (Ψ′)1/p, and thus

Ψ′. We next find Ψ from the formula Ψ′ and the necessary condition Ψ(0) = 0.

We end up with the fact that, up to a multiplicative constant, we have

Ψ(t) =

ˆ t

0

(
ˆ r

0

[ξ ′(τ)]1−1/p[ξ ′′(τ)]1/p dτ

)p

dr, ∀0 ≤ t < M. (4.26)

In the special case where Φ(t) = ta, we have ξ (t) = t1/a, and it is easy to see

that Ψ(t) =Ct p/a.

Step 5. A generalization of Theorem 2

It remains to give sufficient conditions on Φ in order to justify a posteriori the

above formal calculations. The bottom line is that the definition (4.26) has to make

sense. In order to achieve this, we assume that Φ is continuous concave with

Φ(0) = 0, that Φ is increasing (and thus a homeomorphism onto its image [0,M)),
and we require that its reciprocal ξ : [0,M)→ [0,∞) is twice differentiable and that

ξ ′′ ∈ L1
loc([0,M)). We thus guess the following extension of Theorem 2 (which

slightly generalizes [39, Theorem 1.3]).

THEOREM 3. Let Φ : [0,∞)→ [0,M) be an increasing concave homeomorphism.

Let ξ := Φ−1 : [0,M) → [0,∞). Assume that ξ is twice differentiable and that

ξ ′′ ∈ L1
loc([0,M)). Set

Ψ(t) =

ˆ t

0

(
ˆ r

0

[ξ ′(τ)]1−1/p[ξ ′′(τ)]1/p dτ

)p

dr, ∀0 ≤ t < M. (4.27)

Then
ˆ

Rn

ˆ

Rn

Ψ(|Φ(| f (x)|)−Φ(| f (y)|)|)

|x− y|n+p
dxdy

.

ˆ

Rn

|∇ f (x)|p dx, ∀ f ∈W 1,p(Rn).

(4.28)
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Step 6. Proof of Theorem 3

As explained above, it suffices to prove the validity of (4.28) for n = 1 and f ∈
W 1,p(R; [0,∞)).

From the assumptions of Theorem 3, we have ξ increasing and concave, and

thus

0 ≤ ξ ′(τ)≤ ξ ′(t), ∀0 ≤ τ ≤ t < M. (4.29)

On the other hand, since ξ ′ is differentiable and its derivative is locally summable,

we have

ξ ′(t) = ξ ′(τ)+

ˆ t

τ
ξ ′′(r)dr, ∀0 ≤ τ ≤ t < M; (4.30)

see e.g. Natanson [43, Chapter IX, § 7, Theorem 1]. In particular, we have

ξ ∈C1([0,M)). (4.31)

Using (4.29), (4.30) and Hölder’s inequality, we find that

ˆ r2

r1

[ξ ′(τ)]1−1/p[ξ ′′(τ)]1/p dτ

≤

(
ˆ r2

r1

ξ ′(τ)dτ

)1−1/p(ˆ r2

r1

ξ ′′(τ)dτ

)1/p

≤ (r2 − r1)
1−1/p ξ ′(r2), ∀0 ≤ r1 < r2 < M.

(4.32)

Estimate (4.32) implies that

[0,M) ∋ r 7→ F(r) :=

ˆ r

0

[ξ ′(τ)]1−1/p[ξ ′′(τ)]1/p dτ is continuous. (4.33)

From (4.27) and (4.33), we obtain that

Ψ ∈C1([0,M)), Ψ(0) = 0, Ψ′(0) = 0 (4.34)

and

Ψ′(t) = F p(t) =

(
ˆ t

0

[ξ ′(τ)]1−1/p[ξ ′′(τ)]1/p dτ

)p

, ∀ t ∈ [0,M). (4.35)

On the other hand, since ξ is an increasing differentiable homeomorphism,

we have ξ ′(t) > 0 for a.e. t ∈ [0,M). Combining this with (4.29), we find that

ξ ′(t)> 0, ∀ t ∈ (0,M), and thus (using also (4.31))

Φ ∈C1((0,∞)) and Φ′(t)> 0, ∀ t > 0. (4.36)
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The validity of (4.34) and (4.36) implies the one of (4.14).

We next note that

[ξ ′(τ)]1−1/p[ξ ′′(τ)]1/p

≤ (1−1/p)ξ ′(τ)+ (1/p)ξ ′′(τ)

≤ (1−1/p)ξ ′(t)+ (1/p)ξ ′′(τ), ∀0 ≤ τ < t < M,

and thus the integrand defining F in (4.33) is locally summable. From Lebesgue’s

differentiation theorem (see e.g. [43, Chapter IX, § 4, Theorem 2]), we find that

F ′ = [ξ ′]1−1/p[ξ ′′]1/p a.e. and in the distributions sense. (4.37)

On the other hand, (4.35) implies that the function gt defined in (4.16) is given

by

gt(x) = F(Φ( f (x))−Φ(t)), ∀0 < t < f (x). (4.38)

Using (4.36), (4.37), (4.38) and the chain rule in W
1,1
loc (see e.g. [49, Theorem

2]), we find that for every fixed t > 0 we have, a.e. and in the distributions sense,

(gt)
′(x) = F ′(Φ( f (x))−Φ(t))Φ′( f (x)) f ′(x). (4.39)

From (4.17), (4.37) and (4.39), we obtain the validity of (4.19), with

K(A) :=

ˆ A

0

Φ′(t)(F ′)p(Φ(A)−Φ(t))dt. (4.40)

In order to complete the proof, it remains to establish (4.21) for this K. The

change of variable τ := Φ(t) in (4.40) leads, as in (4.22), to

K(A) =

ˆ Φ(A)

0

(ξ ′)p−1(τ)ξ ′′(τ)dτ . (4.41)

On the other hand, the chain rule in W
1,1
loc yields

[(ξ ′)p]′ = p(ξ ′)p−1 ξ ′′ a.e. and in the distributions sense. (4.42)

Since ξ ′ is locally bounded and ξ ′′ is locally summable, we find from (4.41)

and (4.42) that

K(A) =C (ξ ′)p(Φ(A)), ∀A > 0. (4.43)

Identity (4.21) follows from (4.43) and the fact that Φ and ξ are reciprocal to

each other.

The proof of Theorem 3 (and, in particular, of Theorem 2) is complete.

REMARK 8. Step 6 is significantly simpler if we weaken the assumptions on ξ in

Theorem 3 to ξ ∈C2; see [39, proof of Theorem 1.3].
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5 TRACE THEORY OF WEIGHTED SOBOLEV SPACES

5.1 OVERVIEW

In order to establish further properties of the superposition operators TΦ, it will be

convenient to rely on a new tool: the trace theory of (weighted) Sobolev spaces.

A striking fact is that this theory is essentially a consequence of the Hardy type

inequalities, so that we have the following rough scheme

Hardy inequalities =⇒ traces of weighted spaces =⇒ properties of TΦ

(and more).

The general philosophy of the trace theory is that a function in a half-space

having some Sobolev regularity has a “trace” (“restriction”) on the boundary of the

half-space. Usually, this trace is defined by density, starting from smooth functions.

We will work only with continuous (and even better) functions, and in this setting

we will dispose of an equivalent but more tractable approach to the notion of trace.

First, some notation and the appropriate definition.

1. We set Rn+1
+,∗ := R

n × (0,∞) and R
n+1
+ := R

n × [0,∞).
2. A generic point in these sets will be denoted (x, t) or (x,ε), with x in R

n and t,ε
in (0,∞) or [0,∞).
3. Let F : Rn+1

+,∗ →R be a continuous function. We say that f : Rn →R is the trace

of F (implicitly understood: on R
n ∼R

n ×{0}) if

lim
ε→0

F(x,ε) = f (x) for a.e. x ∈ R
n. (5.1)

If (5.1) holds, then f is a.e. uniquely defined by (5.1), and we write f = trF .

4. Here is a fundamental example. Let ρ ∈ C∞
c (R

n) be a standard mollifier. Let

f ∈ L1
loc(R

n). Set

Ff (x,ε) := f ∗ρε(x), ∀x ∈R
n, ∀ε > 0. (5.2)

(Strictly speaking, Ff depends not only on f , but also on ρ , but in practice ρ will

be fixed independently of f and we omit this dependence.)

It is a standard exercise that Ff is smooth in R
n+1
+,∗ . A more delicate result is

that we have f = trFf . Equivalently, if f ∈ L1
loc(R

n) and ρ is a standard mollifier,

then we have

lim
ε→0

f ∗ρε(x) = f (x) for a.e. x ∈ R
n; (5.3)

see e.g. Stein [50, formula (16), p. 23, and Chapter I, Section § 8.16] when f ∈ Lp

for some p, but the arguments there hold also for f ∈ L1
loc.

44



We may now state (temporarily without proof) two basic results in the trace

theory of Sobolev spaces, due to Gagliardo [25].

THEOREM 4 (DIRECT TRACE THEOREM). Let 1 < p < ∞. Let F ∈C1(Rn+1
+,∗ )

and f : Rn → R be such that f = trF. Then

| f |W 1−1/p,p(Rn) ≤Cp,n ‖∇F‖Lp(Rn+1
+,∗ )

. (5.4)

THEOREM 5 (INVERSE TRACE THEOREM). Let f ∈ L1
loc(R

n). Let Ff be as in

(5.2). Then

‖∇Ff‖Lp(Rn+1
+,∗ )

≤Cp,n | f |W 1−1/p,p(Rn). (5.5)

Let us give an application of the above results to the study of TΦ. Although this

trivial application could have been obtained directly and with little effort, its proof

via Theorems 4 and 5 is instructive since it suggests a sound strategy that will be

useful in more difficult problems. Assume that we want to estimate |TΦ f |W 1−1/p,p

for some (at least C1) Φ and some f ∈ L1
loc(R

n). Consider Ff as in (5.2). Then

trTΦ(Ff ) = TΦ f . By Theorem 4, we have

|TΦ f |W 1−1/p,p . ‖∇TΦ(Ff )‖Lp . (5.6)

Assume now that Φ is Lipschitz. Then

|∇TΦ(Ff )|. |∇Ff | a.e. (5.7)

(this can be obtained e.g. from the chain rule).

From (5.5), (5.6) and (5.7), we obtain that |TΦ f |W 1−1/p,p . | f |W 1−1/p,p .

Let us pause and summarize the above strategy of proof. In order to estimate

TΦ f in W 1−1/p,p, we first estimate ‖∇TΦ(Ff )‖Lp . The direct theorem then yields

an estimate of TΦ f in W 1−1/p,p. Assume next that ‖∇TΦ(Ff )‖Lp is controlled by

‖∇Ff‖Lp . Then the inverse theorem allows to estimate ‖∇TΦ(Ff )‖Lp in terms of

| f |W 1−1/p,p . Combining the two, we estimate |TΦ f |W 1−1/p,p in terms | f |W 1−1/p,p . The

interesting point is that we estimate fractional semi-norms via calculations which

involve Lp norms of derivatives – and in general it is easier to deal with integer

derivatives instead of fractional ones. (The idea of increasing the space dimension

in order to establish mapping properties for TΦ appears already in [10].)

If we want to attack less academic problems, then we have to to have at our

disposal function spaces of Sobolev type having as traces W s,p maps for arbitrary

non-integer s, and not only for s = 1−1/p. This can be achieved, but the price to

pay is that we have to deal with weighted Sobolev spaces.
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The theory of weighted Sobolev spaces has been established in the 60’s. The re-

sults we present below are a light version of this theory, sufficient for our purposes.

They are included in more general results due to Uspenskiı̆ [56]. Before stating

them, let us recall that when s > 0 is non-integer and 1 ≤ p < ∞, we have defined

in (3.41) a semi-norm | |W s,p adapted to the space W s,p(Rn). This semi-norm de-

pends not only on s, p and n, but also on an integer M > s that will explicitly be

mentioned in the next statements.

Given M, set

MM := {(β ,0); β ∈ N
n and |β |= M}∪{(0, . . . ,0︸ ︷︷ ︸

n times

,M)} ⊂ N
n+1.

When M = 1, we have M1 = {α ∈ N
n+1; |α | = 1}. On the other hand, when

M ≥ 2, MM is clearly a strict subset of {α ∈ N
n+1; |α |= M}.

THEOREM 6 (DIRECT TRACE THEOREM (I)). Let s > 0 be non-integer and

let 1 ≤ p < ∞. Let M be an integer such that M ≥ s+1/p. Let F ∈CM(Rn+1
+,∗ ) and

f : Rn → R be such that f = trF. Then

| f |p
W s,p(Rn) ≤Cs,p,n ∑

α∈MM

ˆ ∞

0

ˆ

Rn

ε (M−s)p−1|∂ α F(x,ε)|p dxdε . (5.8)

Note the technical assumption M ≥ s+1/p, which is stronger than the natural

assumption M > s required to in order to define | |W s,p . As explained in the next

result, we may recover the condition M > s if we adopt a more restrictive notion of

trace.

THEOREM 7 (DIRECT TRACE THEOREM (II)). Let s > 0 be non-integer and

let 1 ≤ p < ∞. Let M be an integer such that M > s. Let F ∈ CM(Rn+1
+,∗ ) and

f : Rn → R be such that limε→0 F(·,ε) = f in L1
loc(R

n). Then

| f |p
W s,p(Rn) ≤Cs,p,n ∑

α∈MM

ˆ ∞

0

ˆ

Rn

ε (M−s)p−1|∂ α F(x,ε)|p dxdε . (5.9)

In particular, (5.9) holds for F ∈CM(Rn+1
+,∗ )∩C(Rn+1

+ ).

THEOREM 8 (INVERSE TRACE THEOREM). Let s > 0 be non-integer and let

1 ≤ p < ∞. Let M be an integer such that M > s. Let f ∈W s,p(Rn). Let Ff be as

in (5.2). Then

∑
α∈Nn+1

|α |=M

ˆ ∞

0

ˆ

Rn

ε (M−s)p−1|∂ α Ff (x,ε)|
p dxdε ≤Cs,p,n ‖ f‖p

W s,p(Rn). (5.10)
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When 0 < s < 1 and f ∈ L1
loc(R

n), we have the stronger conclusion

∑
α∈Nn+1

|α |=M

ˆ ∞

0

ˆ

Rn

ε (M−s)p−1|∂ α Ff (x,ε)|
p dxdε ≤Cs,p,n | f |

p

W s,p(Rn). (5.11)

REMARK 9. Theorems 4 and 5 are special cases of Theorems 6 and 8 (with 1 <
p < ∞, s = 1−1/p and M = 1).

REMARK 10. Estimate (5.10) still holds true – and this is a relatively difficult

result – when f ∈ Lp and we replace Ff by the harmonic extension of f , given by

the Poisson formula. For this and similar results, see [56], Taibleson [52, 53] and

the more modern treatment in [41].

We present below proofs of Theorems 6 and 7 which follow essentially [34,

pp. 512–513] and [41, proof of Theorem 1.3].

PROOF OF THEOREM 6. This result is a consequence of Theorem 7. In order

to justify this assertion, assume that we have established (5.8) for every M > s

and every F ∈ CM(Rn
+). Then we claim that, under the stronger assumption M ≥

s+1/p, we have (5.8) for every F ∈CM(Rn+1
+,∗ ). Indeed, we let δ > 0 and we apply

(5.8) to (x,ε) 7→ F(x,ε +δ ). We find that

|F(·,δ )|pW s,p ≤Cs,p,n ∑
α∈Nn+1

|α |=M

ˆ ∞

δ

ˆ

Rn

(ε −δ )(M−s)p−1|∂ α F(x,ε)|p dxdε . (5.12)

Letting δ → 0 in (5.12), we obtain (5.8) (using the definition of the trace and

Fatou’s lemma on the left-hand side, respectively the assumption (M− s)p−1 ≥ 0

and the monotone convergence theorem on the right-hand side).

PROOF OF THEOREM 7. Step 1. Proof of (5.9) for F ∈CM(Rn+1
+ )

This is the main step of the proof, and it consists (again!) of an application of a

Hardy type inequality.

For such F , have f (x) = F(x,0). The proof of (5.9) relies on the following

elementary lemma, whose proof is postponed to the appendix.

LEMMA 24. Let M > 0 be an integer. We set

|DMF(x,ε)| := ∑
α∈MM

|∂ α F(x,ε)|,∀x ∈ R
n, ∀ε ≥ 0.
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Let h ∈ R
n and set r := |h|. Then for every x ∈ R

n we have

|∆M
h f (x)|.rM

M

∑
j=1

ˆ M

0

tM−1|DMF(x+ th, jr)|dt

+ rM
M

∑
j=0

ˆ M

0

tM−1|DMF(x+ jh, tr)|dt.

(5.13)

Granted Lemma 24, we proceed to the proof of the theorem. Set g(ε) :=
‖DMF(·,ε)‖Lp(Rn). Integrating (5.13) in x, we obtain (with r := |h|)

‖∆M
h f‖Lp(Rn) . rM

M

∑
j=1

g( jr)+ rM

ˆ M

0

tM−1g(tr)dt

≈ rM
M

∑
j=1

g( jr)+

ˆ Mr

0

tM−1g(t)dt.

(5.14)

In view of (3.41) and (5.14), in order to establish (5.9) it suffices to prove that
ˆ

Rn

|h|(M−s)p−n [g( j|h|)]p dh ≤Cs,p,n,M, j

ˆ ∞

0

ε (M−s)p−1 [g(ε)]p dε (5.15)

and

ˆ

Rn

(
ˆ M|h|

0

tM−1g(t)dt

)p
dh

|h|n+sp
.

ˆ ∞

0

ε (M−s)p−1 [g(ε)]p dε . (5.16)

Passing to spherical coordinates and performing on the left-hand side of (5.15)

the change of variable ε := j |h|, we see that the two integrals in (5.15) are propor-

tional, and thus (5.15) holds.

Also in spherical coordinates, (5.16) amounts to

ˆ ∞

0

1

ε sp+1

(
ˆ Mε

0

tM−1g(t)dt

)p

dε .

ˆ ∞

0

ε (M−s)p−1 [g(ε)]p dε . (5.17)

In turn, after the change of variable δ := M ε on the left-hand side, (5.17)

follows from Hardy’s inequality at 0 (2.3) applied with r ❀ sp, q ❀ p and g(u)❀
εM−1 g(ε).

Granted Lemma 24, the proof of Step 1 is complete.

Step 2. Proof of (5.9) in the general case

Let η ∈C∞
c (R

n) be a standard mollifier. Let, for δ > 0,

Fδ (x,ε) :=

ˆ

Rn

F(x− y,ε)ηδ (y)dy, ∀x ∈ R
n, ∀ε > 0.

48



Then clearly

∂ αFδ (x,ε) =

ˆ

Rn

(∂ α F(x− y,ε))ηδ (y)dy, ∀α ∈ N
n+1, ∀x ∈R

n, ∀ε > 0,

and thus

‖∂ α Fδ (·,ε)‖Lp(Rn) ≤ ‖∂ α F(·,ε)‖Lp(Rn), ∀α ∈N
n+1, ∀ε ,δ > 0. (5.18)

We find that

∑
α∈MM

ˆ ∞

0

ˆ

Rn

ε (M−s)p−1|∂ α Fδ (x,ε)|
p dxdε

≤ ∑
α∈MM

ˆ ∞

0

ˆ

Rn

ε (M−s)p−1|∂ α F(x,ε)|p dxdε , ∀δ > 0.

(5.19)

On the other hand, we have

lim
εց0

Fδ (·,ε) = f ∗ηδ in L∞
loc(R

n),

and thus Fδ extends by continuity to R
n+1
+ by setting Fδ (x,0) := f ∗ηδ (x).

We next note that the proof of (5.9), and in particular, the proof of Lemma

24, still work if we weaken the assumption F ∈ CM(Rn+1
+ ) to F ∈ CM(Rn+1

+,∗ )∩

C(Rn+1
+ ). (Indeed, for such F we estimate ∆M

h F(x,τ), τ > 0, as in (5.13), then we

let τ → 0, and we recover the conclusion of Lemma 24.)

This observation implies that (5.9) holds for Fδ . Using this remark, (5.9) and

(5.18), we find that

| f ∗ηδ |
p

W s,p(Rn)
. ∑

α∈MM

ˆ ∞

0

ˆ

Rn

ε (M−s)p−1|∂ α Fδ (x,ε)|
p dxdε

≤ ∑
α∈MM

ˆ ∞

0

ˆ

Rn

ε (M−s)p−1|∂ α F(x,ε)|p dxdε .

(5.20)

We obtain (5.9) from (5.3), which implies that f ∗ηδ → f a.e. as δ → 0, Fatou’s

lemma, and (5.20).

REMARK 11. In the proof of Theorem 7, we did not use the assumption M > s!

However, when M ≤ s the theorem is of limited interest. Indeed, if F ∈CM(Rn+1
+,∗ ∩

CM(Rn+1) with M ≤ s and if the right-hand side of (5.9) is finite, then f is a polyno-

mial of degree ≤ M−1, and thus | f |W s,p = 0. This follows by combining the proof

of (5.9) (which holds, as we have noticed, also for M ≤ s) with [41, Proposition

5.1]. Thus, when M ≤ s, the information conveyed by (5.8) is merely | f |W s,p = 0.
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We now turn to the proof of Theorem 8. Its main ingredients are three simple

results, Lemmas 25, 26 and 27 below.

LEMMA 25. Let ξ ∈ L∞(Rn) be such that supp ξ ⊂ B1(0) and
´

Rn ξ = 0. Let

0 < s < 1 and 1 ≤ p < ∞. Given f ∈ L1
loc(R

n), set G f (x,ε) := f ∗ξε(x), ∀x ∈ R
n,

∀ε > 0. Then we have

ˆ ∞

0

ε−sp−1

ˆ

Rn

|G f (x,ε)|
p dxdε ≤Cs,p,n,ξ | f |

p

W s,p(Rn). (5.21)

PROOF. We have

|G f (x,ε)|=ε−n

∣∣∣∣
ˆ

|y|<ε
f (x− y)ξ (y/ε)dy

∣∣∣∣

=ε−n

∣∣∣∣
ˆ

|y|<ε
[ f (x− y)− f (x)]ξ (y/ε)dy

∣∣∣∣

.ε−n

ˆ

|y|<ε
|∆1

y f (x)|dy.

(5.22)

Using (5.22) and Hölder’s inequality, we find that

ˆ ∞

0

ε−sp−1

ˆ

Rn

|G f (x,ε)|
p dxdε

.

ˆ ∞

0

ε−sp−np−1

ˆ

Rn

(
ˆ

|y|<ε
|∆1

y f (x)|dy

)p

dxdε

.

ˆ ∞

0

ε−sp−n−1

ˆ

Rn

ˆ

|y|<ε
|∆1

y f (x)|p dy

=

ˆ

Rn

ˆ

Rn

ˆ ∞

|y|
ε−sp−n−1 |∆1

y f (x)|p dεdydx

=C

ˆ

Rn

ˆ

Rn

|y|−sp−n |∆1
y f (x)|p dydx =C | f |pW s,p ,

whence (5.21).

LEMMA 26. Let ρ ∈ C∞
c (R

n), f ∈ L1
loc(R

n) and Ff be given by (5.2). For every

α ∈ N
n+1 \ {0}, there exists some ξ = ξ α ∈ C∞

c (R
n) (depending on n, α and ρ)

such that:

1. supp ξ ⊂ supp ρ ,

2.
´

Rn ξ = 0,

3. ∂ αFf (x,ε) = ε−|α | f ∗ξε(x), ∀x ∈ R
n, ∀ε > 0.
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PROOF. The proof is by induction, based on the following calculations.

If a ∈ R and η ∈C∞
c (R

n), set H(x,ε) := ε−a f ∗ηε(x).

When j = 1, . . . ,n, we have

∂ jH(x,ε) = ∂ j

(
ε−a−n

ˆ

Rn

f (y)η((x− y)/ε)dy

)

= ε−a−n−1

ˆ

Rn

f (y)(∂ jη)((x− y)/ε)dy

= ε−a−1 f ∗ (∂ jη)ε .

(5.23)

When j = n+1 and thus ∂n+1 =
∂

∂ε
, we have

∂n+1H(x,ε) =− ε−a−n−1

ˆ

Rn

f (y)
n

∑
k=1

xk − yk

ε
(∂kη)((x− y)/ε)dy

− (a+n)ε−a−n−1

ˆ

Rn

f (y)η((x− y)/ε)dy

=−ε−a−1 f ∗ (aη +div(xη))ε .

(5.24)

On the other hand, we clearly have

ˆ

Rn

∂ jζ = 0 and

ˆ

Rn

divζ = 0, ∀ j = 1, . . . ,n, ∀ζ ∈C∞
c (R

n). (5.25)

The existence of ξ satisfying 1–3 follows easily by induction on |α |, using

(5.23)–(5.25).

When f has additional differentiability properties, we may improve the con-

clusion of Lemma 26 as follows.

LEMMA 27. Let m ∈ N, m ≥ 1. Assume that f ∈ W
m,1
loc (Rn). Let ρ ∈ C∞

c (R
n)

and let Ff be given by (5.2). Let α ∈ N
n+1 be such that |α | > m. Then there exist

ζ α ,β ∈C∞
c (R

n), ∀β ∈N
n with |β |= m (depending on n, α , β , ρ) such that:

1. supp ζ α ,β ⊂ suppρ ,

2.
´

Rn ζ α ,β = 0

and

∂ αFf (x,ε) = ε−|α |+m ∑
β∈Nn

|β |=m

(∂ β f )∗ (ζ α ,β )ε(x), ∀x ∈ R
n, ∀ε > 0. (5.26)
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PROOF. By (5.23) and (5.24), for j = 1, . . . ,n+1, we have

∂ jFf (x,ε) =
1

ε
f ∗

n

∑
k=1

(∂kψ j,k)ε(x), (5.27)

for appropriate ψ j,k ∈ C∞
c (R

n) such that supp ψ j,k ⊂ supp ρ . Using the fact that

(1/ε)(∂kψ j,k)ε = ∂k[(ψ j,k)ε ], we find from (5.27) that

∂ jFf (x,ε) =
n

∑
k=1

(∂k f )∗ (ψ j,k)ε(x). (5.28)

Starting from (5.28) and repeating the above argument, we find (by induction

on the length |γ | ≤ m) that for every γ ∈N
n+1 with |γ | ≤ m we have

∂ γFf (x,ε) = ∑
β∈Nn

|β |=|γ |

(∂ β f )∗ (ψγ ,β )ε(x) (5.29)

for some appropriate ψγ ,β ∈C∞
c (R

n) such that supp ψγ ,β ⊂ supp ρ .

We obtain properties 1, 2 and (5.27) from (5.29) and Lemma 26.

PROOF OF THEOREM 8. Step 1. Proof of (5.11)

Without loss of generality, we may assume that the mollifier ρ defining Ff in (5.2)

satisfies supp ρ ⊂ B1(0). If α ∈ N
n+1 is such that |α |= M, we write ∂ αFf (x,ε) =

ε−M f ∗ξε(x), as in Lemma 26. Using Lemma 25, we find that

ˆ ∞

0

ε (M−s)p−1

ˆ

Rn

|∂ αFf (x,ε)|
p dxdε =

ˆ ∞

0

ε−sp−1

ˆ

Rn

| f ∗ξε(x,ε)|
p dxdε

. | f |pW s,p ,

i.e., (5.11) holds.

Step 2. Proof of (5.10)

In view of Step 1, we may assume that s > 1. We write s = m+σ , with m ∈ N,

m ≥ 1, and 0 < σ < 1. We choose on W s,p(Rn) the norm

〈〈 f 〉〉p
W s,p := ‖ f‖p

Lp + 〈 f 〉p
W s,p , with 〈 f 〉p

W s,p := ∑
β∈Nn

|β |=m

|∂ β f |pW σ ,p .

When 1 < s < 2 and n = 1, we have proved that this norm is equivalent to the

standard one, given by (3.41)–(3.42); see Lemma 19. The same holds for any s, p

and M > s. However, we will not need the full strength of this assertion, but only

the weaker property

〈 f 〉W s,p . ‖ f‖W s,p , (5.30)
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for which we refer the reader to [54, Section 2.3.8, Theorem, pp. 58–59]. In view

of (5.30), in order to complete Step 2 it suffices to establish the estimate

∑
α∈Nn+1

|α |=M

ˆ ∞

0

ˆ

Rn

ε (M−s)p−1|∂ α Ff (x,ε)|
p dxdε ≤Cs,p,n ∑

β∈Nn

|β |=m

|∂ β f |pW σ ,p . (5.31)

By Lemmas 27 and 25, we have

∑
α∈Nn+1

|α |=M

ˆ ∞

0

ˆ

Rn

ε (M−s)p−1|∂ α Ff (x,ε)|
p dxdε

. ∑
α∈Nn+1

|α |=M

∑
β∈Nn

|β |=m

ˆ ∞

0

ˆ

Rn

ε−σ p−1|(∂ β f )∗ (ζ α ,β )ε(x)|
p dxdε

. ∑
β∈Nn

|β |=m

|∂ β f |pW σ ,p = 〈 f 〉p
W s,p ,

and thus (5.31) holds.

5.2 TWO APPLICATIONS TO SUPERPOSITION OPERATORS

We continue here the discussion initiated at the end of the Section 4.1. We let

s > 1 and seek for conditions ensuring that if f ∈W s,p(Rn), then TΦ f ∈W s,p. We

have noticed there that, even for smooth Φ, the conclusion TΦ f ∈W s,p may require

additional conditions either on f , or on the triple (s, p,n).
We present here two main results in this direction, together with a consequence.

(The interested reader may find in [41, Section 6] more applications of the trace

theory of weighted Sobolev spaces to the study of the mapping properties of TΦ.)

It turns out that these results hold also (but they are less interesting) for s ≤ 1. They

are equally true for integer s.

First, a notation. If s is real number, ⌈s⌉ denotes the smallest integer k ≥ s.

THEOREM 9. Let s > 0 and 1 ≤ p < ∞. Let M := ⌈s⌉. Let Φ ∈CM(R) be such

that Φ(0) = 0. Then TΦ maps W s,p ∩L∞(Rn) into itself.

COROLLARY 6. Let s > 0 and 1 ≤ p < ∞ be such that sp > n. Let M := ⌈s⌉. Let

Φ ∈CM(R) be such that Φ(0) = 0. Then TΦ maps W s,p(Rn) into itself.

THEOREM 10. Let s > 0 and 1 ≤ p < ∞ be such that sp = n. Let M := ⌈s⌉. Let

Φ ∈ CM(R) be such that Φ(0) = 0 and Φ( j) ∈ L∞, ∀ j = 1, . . . ,M. Then TΦ maps

W s,p(Rn) into itself.
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When s is an integer, Theorem 9 is due to Moser [42]. Its proof relies on the

Gagliardo-Nirenberg inequalities that we will recall below. The need of such in-

equalities in this context is obvious from the proof. When s is not an integer, there

are two standard proofs of Theorem 9. The first one uses the para-differential cal-

culus and an ingenious identity due to Meyer [36]. The second one is elementary,

but relies on a tedious identity which is quite difficult both to check and guess; see

Escobedo [23]. We will see below that when we prove this result using the theory

of weighted Sobolev spaces, we only need an obvious Gagliardo-Nirenberg type

inequality!

We start with some important results that we will use in the proof. First, let

us recall the following fundamental interpolation inequality, due to Gagliardo [26]

and Nirenberg [44].

LEMMA 28 (GAGLIARDO-NIRENBERG INEQUALITIES). Let 0 ≤ m1 < m <
m2 be integers, and 1 ≤ p1, p2 ≤ ∞. Define the number θ ∈ (0,1) by m = (1−

θ)m1 + θ m2 and let 1 ≤ p ≤ ∞ be given by
1

p
=

1−θ

p1

+
θ

p2

. Then, for some

C =Cm1,m2,m,p1,p2,n, we have

‖Dmu‖Lp ≤C‖Dm1u‖1−θ
Lp1 ‖Dm2 u‖θ

Lp2 , ∀u ∈C∞(Rn). (5.32)

In the above, we use the compact notation

|Dmu| := ∑
α∈Nn

|α |=m

|∂ α u|. (5.33)

When m = 0 (respectively m = 1), we write |u| instead of |D0u| (respectively

|∇u| instead of |D1u|).

We now present an interpolation inequality, of Gagliardo-Nirenberg type, in-

volving fractional Sobolev spaces; see [12] for the comprehensive list of the Gagliardo-

Nirenberg type inequalities valid in the full scale of Sobolev spaces.

LEMMA 29. Let 0 < t < s < ∞ be non-integers, and let 1 ≤ p < ∞. Let q :=
sp/t ∈ (p,∞) and θ := t/s ∈ (0,1). Then we have W s,p ∩ L∞(Rn) ⊂ W t,q(Rn).
More specfically, with C =Cs,t,p,n, we have

‖ f‖W t,q ≤C‖ f‖θ
W s,p ‖ f‖1−θ

L∞ ,∀ f ∈W s,p ∩L∞(Rn). (5.34)

PROOF. Let M > s be an integer, and let | |W s,p , | |W t,q be the semi-norms defined

via M as in (3.41). We consider on W s,p and W t,q the norms given by (3.42). Using

the inequalities

| f |q ≤ | f |p ‖ f‖q−p
L∞ and |∆M

h f |q . |∆M
h f |p ‖ f‖q−p

L∞ ,
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we immediately obtain (5.34).

We next state and establish two special cases of the Sobolev embeddings.

LEMMA 30. Let s > 0 and 1 ≤ p < ∞ be such that sp > n. Then W s,p(Rn) →֒ L∞.

PROOF. When s is an integer, see e.g. Brezis [9, Corollary 9.13].

Assume next that 0 < s < 1. By Corollary 5, we have

| f (y)− f (x)|. | f |W s,p , ∀ f ∈W s,p(Rn), ∀x ∈ R
n, ∀y ∈ B1(x). (5.35)

On the other hand, for every x ∈ R
n there exists some y ∈ B1(x) such that

| f (y). ‖ f‖Lp(B1(x)) ≤ ‖ f‖Lp . (5.36)

From (5.35) and (5.36), we obtain that | f (x)| . ‖ f‖W s,p , and thus W s,p →֒ L∞.

Finally, assume that s > 1 is non-integer. Write s = m+σ , with m ∈ N, m ≥ 1

and 0 < σ < 1. We consider on W s,p the norm 〈〈 f 〉〉p
W s,p := ‖Dm f‖p

Lp + |Dm f |pW σ ,p .

Let 0 < σ ′ < σ . By Lemma 13, we have W m+σ ,p →֒ W m+σ ′,p. Therefore, by

lowering σ if necessary, we may assume that sp > n and σ p 6= n.

Applying repeatedly Lemma 13, we find that W s,p →֒ W σ ,p. Thus, if σ p > n

then W s,p →֒W σ ,p →֒ L∞.

On the other hand, if σ p < n, then, by Corollary 4 applied to Dm f , we find that

W s,p →֒ W m,q, with q := (np)/(n −σ p). It is easy to see that mq > n, and thus

W s,p →֒W m,q →֒ L∞.

The proof of Lemma 30 is complete.

LEMMA 31. Let s > 1 and 1 ≤ p < ∞ be such that sp = n. Let 1 ≤ k < s be an

integer. Then W s,p(Rn) →֒W k,n/k.

PROOF. When s is an integer, see [9, Corollary 9.13].

Assume that s is non-integer and write as above s = m+σ . In view of [9,

Corollary 9.13], it suffices to obtain the conclusion when k = m. In that case, the

conclusion follows from Corollary 4 applied to Dm f .

In the proofs of the main results announced in this section, we will consider

only relatively small values of s (we take s ≤ 2). Although this limitation is not

important for the validity of the arguments, the reason is the following. We will

have to estimate Dm(Φ ◦ f ), with m := ⌈s⌉. In order to calculate Dm(Φ ◦ f ), we

rely on the Faà di Bruno’s formula for the higher order derivatives of composite

functions. This formula becomes cumbersome when m ≥ 3. Since, apart from

this complexification of the calculations, the arguments are similar for all s > 1,
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we took the party of limiting the arguments to 1 < s ≤ 2. We refer the interested

reader to [41, Section 6] for full proofs of the above results (using slightly different

arguments). In what follows, the case where s ≤ 1 is much easier; it was briefly

discusses at the beginning of the Section 4.1, and is left to the reader.

PROOF OF THEOREM 9 WHEN 1 < s ≤ 2. Step 1. Proof when s = 2

Let p > n/2. Let f ∈C∞(Rn). Consider a number r ≥ ‖ f‖L∞ . On the one hand we

clearly have |TΦ f | ≤ sup{|Φ′(t)|; |t| ≤ r}| f |, and thus

‖TΦ f‖Lp ≤ sup{|Φ′(t)|; |t| ≤ r}‖ f‖Lp . (5.37)

On the other hand, we have the pointwise inequality

|D2TΦ f |. sup{|Φ′(t)|; |t| ≤ r}|D2 f |+ sup{|Φ′′(t)|; |t| ≤ r}|∇ f |2. (5.38)

Using the Gagliardo-Nirenberg inequality (5.32) with m1 := 0, m2 := 2, m := 1,

p1 := ∞ and p2 := p, as well as (5.38), we find that

‖D2TΦ f‖Lp .sup{|Φ′(t)|; |t| ≤ r}‖D2 f‖Lp

+ sup{|Φ′′(t)|; |t| ≤ r}r‖D2 f‖Lp .
(5.39)

Using again the Gagliardo-Nirenberg inequalities, this time in conjunction with

(5.37) and (5.39), we find that

‖∇TΦ f‖Lp .sup{|Φ′(t)|; |t| ≤ r}‖ f‖
1/2
Lp ‖D2 f‖

1/2
Lp

+ sup{|Φ′(t)|; |t| ≤ r}1/2 sup{|Φ′′(t)|; |t| ≤ r}1/2

× r1/2 ‖ f‖
1/2
Lp ‖D2 f‖

1/2
Lp .

(5.40)

Consider now some f ∈W 2,p ∩L∞ and set r := ‖ f‖L∞ . Set fε := f ∗ρε , where

ρ is a standard mollifier. Note that ‖ fε‖L∞ ≤ ‖ f‖L∞ , ∀ε > 0. We may thus apply

(5.37), (5.39) and (5.40) to fε and obtain uniform Lp bounds for D jTΦ fε , j = 0,1,2.

By Fatou’s lemma, we find that D jTΦ f ∈ Lp, j = 0,1,2, and thus TΦ f ∈W 2,p (and

clearly TΦ f ∈ L∞.)

Step 2. Proof when 1 < s < 2

Let f ∈W s,p ∩L∞. Let Ff be as in (5.2). Since f ∈ Lp, we have Ff (·,ε)→ f in Lp

as ε → 0. On the other hand, we have |Ff | ≤ ‖ f‖L∞ , and thus

‖TΦFf (·,ε)−TΦ f‖Lp ≤sup{|Φ′(t)|; |t| ≤ ‖ f‖L∞}‖Ff (·,ε)− f‖Lp

→ 0 as ε → 0.
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Therefore, the function TΦFf has trace TΦ f in the stronger sense of Theorem 7.

In view of Theorem 7 it follows that, in order to prove that TΦ f ∈W s,p, it suffices

to prove that

TΦ f ∈ Lp, (5.41)

I :=

ˆ ∞

0

ˆ

Rn

ε (2−s)p−1|D2TΦFf (x,ε)|
p dxdε < ∞. (5.42)

(5.41) being clear, we proceed to the proof of (5.42). As in Step 1, using the

fact that ‖Ff ‖L∞ ≤ ‖ f‖L∞ , we obtain

I ≤C f

ˆ ∞

0

ˆ

Rn

ε (2−s)p−1|D2Ff (x,ε)|
p dxdε

+C f

ˆ ∞

0

ˆ

Rn

ε (2−s)p−1|∇Ff (x,ε)|
2p dxdε .

(5.43)

In view of (5.43), of Theorem 8 (applied twice) and of Lemma 29, we have

I ≤C f ‖ f‖p
W s,p +C f

ˆ ∞

0

ˆ

Rn

ε (2−s)p−1|∇Ff (x,ε)|
2p dxdε

=C f ‖ f‖p
W s,p +C f

ˆ ∞

0

ˆ

Rn

ε (1−s/2)(2p)−1|∇Ff (x,ε)|
2p dxdε

≤C f ‖ f‖p
W s,p +C f ‖ f‖2p

W s/2,2p ≤C f ‖ f‖p
W s,p .

(5.44)

This completes the proof of Theorem 9 when 1 < s ≤ 2.

PROOF OF COROLLARY 6. We combine Theorem 9 with Lemma 30.

PROOF OF THEOREM 10. By Lemma 31, we have W s,p →֒W s,p ∩W 1,sp. There-

fore, Theorem 10 is a special case of Theorem 11 stated and proved in the next

section.

5.3 SUPERPOSITION OPERATORS IN W s,p∩W 1,sp

Let us take a closer look at the proof of Theorem 9 when s = 2. It relies on the

following ingredients.

1. Φ( f ) ∈ Lp.

2. Φ′( f )D2 f ∈ Lp.

3. Φ′′( f ) |∇ f |2 ∈ Lp.

Let us now make the following assumptions on Φ: Φ ∈C2, Φ(0) = 0, Φ( j) is

bounded, j = 1,2. Then item 1 above holds if f ∈ Lp. Item 2 holds if f ∈ W 2,p.

Finally, item 3 holds if ∇ f ∈ L2p. By the Gagliardo-Nirenberg inequalities (5.32),
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the third requirement is satisfied if f ∈ W 2,p ∩ L∞. However, if we replace the

assumption f ∈W 2,p ∩L∞ by the weaker assumptions f ∈W 2,p and ∇ f ∈ L2p, we

still obtain the conclusion of Theorem 10 (with s = 2). These considerations and

Lemma 31 suggest the following improvement of Theorems 9 and 10.

THEOREM 11. Let s > 1 and 1 ≤ p < ∞. Let M := ⌈s⌉. Let Φ ∈CM(R) be such

that Φ(0) = 0 and Φ( j) ∈ L∞, ∀ j = 1, . . . ,M. Set

X := { f ∈W s,p(Rn); ∇ f ∈ Lsp}.

Then TΦ maps X into itself.

This result was initially obtained in [12], with a proof using Fefferman-Stein

type vector-valued maximal inequalities [24] and Littlewood-Paley theory. A more

elementary proof, using fractional maximal inequalities, was found by Maz’ya and

Shaposhnikova [35]. We present below a very natural proof, using trace theory. It

relies only on the maximal function theorem in Lp, p > 1, and on the following

simple observation.

LEMMA 32. Let g ∈ L1
loc(R

n) and η ∈C∞
c (R

n). Then

|g∗ηε(x)| ≤Cη M g(x), ∀x ∈ R
n, ∀ε > 0. (5.45)

PROOF. Let R > 0 be such that supp η ⊂ BR(0). Then

|g∗ηε(x)| ≤ sup |η |
1

εn

ˆ

BRε(x)
|g(y)|dy

=Cn sup |η |

 

BRε (x)
|g(y)|dy . M g(x),

whence (5.45).

The interested reader may find a useful generalization of (5.45) in [50, Chapter

II, Section 2.1, formula (16), p. 54].

PROOF OF THEOREM 11 WHEN 1 < s ≤ 2. The case where s = 2 has been

discussed at the beginning of this section. We may thus assume that 1 < s < 2. Let

f ∈W s,p be such that ∇ f ∈ Lsp. We have

|TΦ f | ≤ ‖Φ′‖L∞ | f | and |∇TΦ f | ≤ ‖Φ′‖L∞ |∇ f |,

so that f ∈ Lp and ∇ f ∈ Lp ∩Lsp.

Write s = 1+σ , with 0 < σ < 1. In view of the above, in order to complete the

proof of the theorem we have to prove that ∇TΦ f ∈W σ ,p. We fix some 1 ≤ j ≤ n,

58



and prove that g := ∂ jTΦ f = Φ′( f )∂ j f ∈W σ ,p. Let f 7→ Ff be the operator defined

in (5.2). Set

G(x,ε) :=FΦ′( f )(x,ε)∂ jFf (x,ε)

=FΦ′( f )(x,ε)F∂ j f (x,ε), ∀x ∈R
n, ∀ε > 0.

(5.46)

We let to the reader the proof of the fact that limε→0 G(·,ε) = g in Lp, and thus

that g is the trace of G in the strong sense of Theorem 7. Note also that 1−σ =
2− s. From these observations and Theorem 7, we find that, when 1 < s < 2, the

conclusion of Theorem 11 amounts to
ˆ ∞

0

ˆ

Rn

ε (2−s)p−1 |∇G(x,ε)|p dxdε < ∞. (5.47)

By (5.46) and the assumption that Φ′ ∈ L∞, we have

|∇G|. |D2Ff |+ |∇FΦ′( f )| |∇Ff |. (5.48)

The heart of the proof consists of estimating |∇FΦ′( f )| in two different ways. On

the one hand, since Φ′ is bounded, we have Φ′( f ) ∈ L∞ and therefore, by Lemma

26 item 3, we have

|∇FΦ′( f )(x,ε)| .
1

ε
, ∀x ∈ R

n, ∀ε > 0. (5.49)

On the other hand, using successively (5.26) with |α | = 1, the fact that Φ′′ is

bounded and Lemma 32, we obtain

|∇FΦ′( f )(x,ε)| . ∑
α∈Nn+1

|α |=1

∑
β∈Nn

|β |=1

|(∂ β f )∗ (ζ α ,β )ε(x)|

.M |∇ f |(x), ∀x ∈ R
n, ∀ε > 0.

(5.50)

Similarly, we have

|∇Ff (x,ε)| . M |∇ f |(x), ∀x ∈ R
n, ∀ε > 0. (5.51)

Combining (5.48)–(5.51) , we find that

|∇G(x,ε)|. |D2Ff (x,ε)|+

(
1

ε
∧M |∇ f |(x)

)
,

×M |∇ f |(x), ∀x ∈R
n, ∀ε > 0.

(5.52)
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Using (5.52), Theorem 8 and the maximal function theorem, we obtain
ˆ ∞

0

ˆ

Rn

ε (2−s)p−1 |∇G(x,ε)|p dxdε

.

ˆ ∞

0

ˆ

Rn

ε (2−s)p−1 |D2Ff (x,ε)|
p dxdε

+

ˆ ∞

0

ˆ

Rn

ε (2−s)p−1

(
1

ε
∧M |∇ f |(x)

)p

(M |∇ f |(x))p dxdε

=

ˆ ∞

0

ˆ

Rn

ε (2−s)p−1 |D2Ff (x,ε)|
p dxdε

+

ˆ

Rn

ˆ 1/M |∇ f |(x)

0

ε (2−s)p−1 (M |∇ f |(x))2p
dεdx

+

ˆ

Rn

ˆ ∞

1/M |∇ f |(x)
ε (2−s)p−1 ε−p (M |∇ f |(x))p dεdx

≈

ˆ ∞

0

ˆ

Rn

ε (2−s)p−1 |D2Ff (x,ε)|
p dxdε +

ˆ

Rn

(M |∇ f |(x))sp
dx

.‖ f‖p
W s,p +‖∇ f‖sp

Lsp .

This yields (5.47) and completes the proof of Theorem 11 when 1 < s < 2.

REMARK 12. Theorem 11 is, in some sense, optimal. Indeed, assume that f ∈
W s,p and that, for every Φ as in Theorem 11, we have TΦ f ∈ W s,p. In particular,

by taking Φ =id, we find that f ∈ W s,p. Similarly, we have sin f ,(cos f − 1) ∈
W s,p. Since sin f ,(cos f −1)∈ L∞, we find from the general form of the Gagliardo-

Nirenberg inequalities (see e.g. [12]) that sin f ,(cos f − 1) ∈ W 1,sp. Using the

chain rule for composite functions, we obtain cos f ∇ f ,sin f ∇ f ∈ Lsp, and thus

|∇ f | = |(cos f ,sin f ) ∇ f | ∈ Lsp. We have thus obtained that the assumptions on f

in Theorem 11 are essentially necessary.

6 MAPS WITH VALUES INTO MANIFOLDS

6.1 OVERVIEW

Let Σ be a smooth r-dimensional manifold and let ω be a smooth k-form on Σ.

If f : Rn → Σ is sufficiently smooth (say, f ∈ Cℓ for some ℓ ≥ 1), then we may

define the pullback f ♯ω of ω by f , which is a k-form of class Cℓ−1 on R
n. More

specifically, if (y1, . . . ,yr) is a system of local coordinates on Σ and if we write,

near f (a) with a ∈ R
n,

ω = ∑
1≤i1<...<ik≤r

αi1,...,ik (y)dyi1 ∧ ·· ·∧dyik ,
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then near a we have

ω = ∑
1≤i1<...<ik≤r

αi1,...,ik ( f (x))d fi1 ∧ ·· ·∧d fir

(with ( f1(x), . . . , fr(x)) the coordinates of f (x) in the coordinate system (y1, . . . ,yr)).

The question we address here is the possibility of defining f ♯ω when f has

less regularity, say f is not even C1. This is already an issue when we assume that

f ∈ W
1,p
loc (R

n). In that case, f ♯ω is well-defined a.e. as a k-form with measurable

coefficients. This form is a useful analytical object (a form distribution, or current)

only when its coefficients are in L1
loc. Since clearly the coefficients are in L

p/k

loc (R
n),

we find that f ♯ω is a current when p ≥ k. However, we will see below that in some

situations it is possible to define f ♯ω when f has a regularity below W
1,k
loc .

A thorough discussion about these topics would require a considerable amount

of auxiliary results. Therefore, we will focus on some results in this direction that

require little additional technology, and refer the interested reader to a series of

articles dealing with the case where Σ = S
r and ω is the canonical volume form on

S
r (or the Jacobian in R

r+1): Jerrard and Soner [31, 32], Hang and Lin [28], Brezis

and Nguyen [15], and also [6, 38, 7].

The arguments we present below rely on two types of ingredients: “ null La-

grangians” (or “cancellation phenomena”) and the trace theory. In order to make

clear the role of each ingredient, we start with continuous (or, more generally,

VMO ) maps, for which the null Lagrangians play a key role. We next turn to the

W s,p setting, which requires combining both tools. While the questions discussed

in Section 6.2 are rather simple and could have been tackled by other methods, the

approach we use to answer them will prove to be useful in the more complicated

situations investigated in Sections 6.3 and 6.4, and even beyond.

6.2 WINDING NUMBER (I)

We discuss here the possibility of defining through a convenient integral formula

the winding number of maps f : S1 → S
1. This turns out to be possible when f is

continuous (and even slightly less than continuous). We mention that it is possible

to extend this approach to higher dimensions, and define the degree of continuous

maps f : Sn → S
n via an integral formula similar to (6.18) below (see [37]).

Since at some point we would like to address this question in the context of

Sobolev maps and we want to avoid working with Sobolev spaces of maps defined

on manifolds, we rather consider maps f : R→ S
1. In order to further simplify the

discussion, we make the following assumption:

f ≡ 1 for |x| ≥ R = R f . (6.1)

61



Assume temporarily that f is continuous. Identifying f with a complex-valued

function, we may write f = eıϕ , with ϕ continuous and ϕ constant on (−∞,−R]
and on [R,∞). In addition, ϕ(−R),ϕ(R) ∈ 2πZ (since f (±R) = 1). Therefore, the

“winding number” (or “index”, or “degree”)

deg f :=
ϕ(R)−ϕ(−R)

2π
(6.2)

is an integer, and one can prove that this integer does not depend on the choice of

R as in (6.1) or on the specific continuous lifting ϕ .

Let us recall the following standard property of the degree:

if f ,g satisfy (6.1) and if | f −g|< 2, then deg f = degg. (6.3)

Assume next that f is smoother, say f ∈ C1. Then ϕ ∈ C1, and thus we have

f ′ = ıϕ ′ eıϕ . We claim that

ϕ ′ =
1

ı f
f ′ = f ∧ f ′. (6.4)

In the second equality in (6.4), we have identified f with an R
2-valued map,

and we let (a1,a2)∧ (b1,b2) := a2b1 −a1b2. In order to justify (6.4), we note that

1

ı f
f ′ =− ı f f ′ = f ∧ f ′− ı( f1 f ′1 + f2 f ′2) = f ∧ f ′;

the latter equality follows from the fact that

f1 f ′1 + f2 f ′2 =
1

2
(| f |2)′ = 0.

Let f satisfy

f ∈C1(R;S1) and f (x) ≡ 1,∀|x| ≥ R = R f . (6.5)

Combining (6.2) and (6.4), we recover the Cauchy formula

deg f =
1

2π

ˆ

R

f ∧ f ′, ∀ f as in (6.5). (6.6)

The connection between this formula and the pullback of forms is the follow-

ing. Let

ω :=
1

2π
(x1 dx2 − x2 dx1) =

1

2π
dθ
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denote the canonical volume form on S
1. Then

f ♯ω =
1

2π
( f1 f ′2 − f2 f ′1) =

1

2π
f ∧ f ′.

Therefore, (6.6) reads

deg f =

ˆ

R

f ♯ω = 〈 f ♯ω ,1〉, (6.7)

the latter quantity being the duality bracket between the compactly supported dis-

tribution f ♯ω and the smooth test function 1.

Starting from (6.7), one may address the question of the existence of the dis-

tribution f ♯ω when f is less than C1. We do not follow this route, for which

we refer the reader to [15]. We consider instead the more modest task of finding

an analogue of (6.7) valid when f is merely continuous. For this purpose we let

u = (u1,u2) : R2
+,∗ →R

2, u := Ff , with Ff as in (5.2). Although f is S1-valued, u is

merely R
2-valued, and not S1-valued (unless f ≡ 1). We let Ju denote the Jacobian

of u,

Ju = ∂1u∧∂2u = ∇u1 ∧∇u2.

The following formula goes back to Poincaré.

LEMMA 33. Let f ∈C2(R;S1) satisfy (6.5). Then

deg f =
1

π

ˆ

R2
+,∗

Ju. (6.8)

PROOF. By Lemma 27 (with m := 2), u extends to a map in C2(R2
+). On the other

hand, the assumption (6.5), Lemma 26 and Lemma 27 (with m := 1) lead to

|∇u(x1,x2)|.

{
0, if |x1| ≥ R+ x2

1∧ (1/(x2)
2), if |x1|< R+ x2

. (6.9)

In view of (6.9), we have

ˆ

R2
+,∗

|Ju|< ∞, (6.10)

lim
r→∞

ˆ

C+
r (0)

|∇u|dℓ= 0. (6.11)
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Here,

C+
r (0) := {x = (x1,x2) ∈ R

2; x2 > 0 and |x|= r}.

Since u ∈C2, the following two identities hold in R
2
+:

Ju = ∂1(u1 ∂2u2)−∂2(u1 ∂1u2), (6.12)

Ju = ∂2(u2 ∂1u1)−∂1(u2 ∂2u1). (6.13)

Combining (6.12) and (6.13), we find that

Ju =
1

2
[∂1(u∧∂2u)−∂2(u∧∂1u)]. (6.14)

Let Ωr := R
2
+,∗∩Br(0), r > 0, and let ν denote the unit outward normal to

∂Ωr. Note that, on (−r,r), we have ν = (0,−1). Using successively (6.10), (6.14),

(6.11) and (6.6), we find that

1

π

ˆ

R2
+,∗

Ju =
1

π
lim
r→∞

ˆ

Ωr

Ju =
1

2π
lim
r→∞

ˆ

Ωr

[∂1(u∧∂2u)−∂2(u∧∂1u)]

=
1

2π
lim
r→∞

ˆ

∂Ωr

[ν1(u∧∂2u)−ν2(u∧∂1u)]

=
1

2π
lim
r→∞

ˆ r

−r

[ν1(u∧∂2u)−ν2(u∧∂1u)]

=
1

2π
lim
r→∞

ˆ r

−r

u∧∂1u =
1

2π

ˆ R

−R

u∧∂1u

=
1

2π

ˆ R

−R

f ∧ f ′ = deg f .

This completes the proof of Lemma 33.

It will be convenient later to have a variant of Lemma 33, Lemma 34 below,

whose proof, very similar to the one of Lemma 33, is left to the reader.

LEMMA 34. Let f ∈ C2(R;S1) satisfy f (x) ≡ 1 for |x| ≥ R = R f . Let w ∈
C2(R2

+;R2) be any extension of f to R
2
+ such that

ˆ

R2
+,∗

|Jw|< ∞ (6.15)

and

lim
r→∞

ˆ

C+
r (0)

|∇w|dℓ= 0. (6.16)
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Then

deg f =
1

π

ˆ

R2
+,∗

Jw. (6.17)

Our next task, consisting of extending (6.17) to maps f which are merely con-

tinuous, is more subtle. Indeed, Lemma 34 asserts that, when f is smooth, deg f

can be calculated via any smooth extension w of f that has sufficient decay at in-

finity. In the case of a continuous f , one has to take care not only of the decay at

infinity, but also of the behavior of w near R.

We let Π : R2 → R
2 be an “approximate projection” onto S

1, i.e., a map satis-

fying

1. Π ∈C∞.

2. Π(x) = x/|x| ∈ S
1 when |x| ≥ 1/2.

Thus Π is the radial projection onto S
1 except near the origin, where it is mod-

ified in order to obtain a smooth function.

LEMMA 35. Let f ∈ C(R;S1) satisfy (6.1). Let u := Ff (as in (5.2)) and set

w := Π(u). Then

deg f =
1

π

ˆ

R2
+,∗

Jw. (6.18)

The proof of the lemma relies on a cancellation phenomenon described below.

PROOF. In view of (6.1), f is uniformly continuous. Therefore, there exists some

ε0 > 0 such that

|u(x,ε)− f (x)| ≤ 1/2, ∀x ∈ R,∀0 < ε ≤ ε0. (6.19)

In view of (6.19) and of the fact that | f |= 1, we find that

|u(x,ε)| ≥ 1/2, ∀x ∈ R,∀0 < ε ≤ ε0. (6.20)

In turn, (6.20) implies that

|w(x,ε)|= 1, ∀x ∈ R,∀0 < ε ≤ ε0, (6.21)

|w(x,ε)− f (x)| ≤ 1/2, ∀x ∈R,∀0 < ε ≤ ε0. (6.22)

Now comes the crucial observation. We claim that the Jacobian of a smooth

map g : Ω → S
1, with Ω ⊂ R

2, vanishes. Indeed, differentiating the identity |g|2 ≡
1, we find that g · ∂1g = 0 and g · ∂2g = 0. This implies that the vectors ∂1g and
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∂2g are both orthogonal to g, thus parallel. In conclusion, Jg = ∂1g∧ ∂2g = 0, as

claimed.

Using this observation and (6.21), we obtain the fundamental cancellation prop-

erty

Jw(x,ε) = 0, ∀x ∈R,∀0 < ε < ε0. (6.23)

On the other hand, the assumption (6.1) and Lemma 26 yield

|∇u(x1,x2)|.

{
0, if |x1| ≥ R+ x2

(1/(x2)
2), if |x1|< R+ x2

. (6.24)

Combining (6.23) and (6.24), we find that

ˆ

R2
+,∗

|Jw|< ∞, (6.25)

lim
r→∞

ˆ

C+
r (0)+{(0,ε0)}

|∇w|dℓ= 0. (6.26)

Using the cancellation property (6.23) and applying Lemma 34 in R× (ε0,∞),
we find that

1

π

ˆ

R2
+,∗

Jw =
1

π

ˆ

R×(ε ,∞)
Jw = deg(w(·,ε0)). (6.27)

Combining (6.3), (6.22) and (6.27), we obtain (6.18).

REMARK 13. We briefly explain here the possibility of defining deg f when f is

slightly less than continuous. In this context, a natural class of maps is the class

VMO of functions of “vanishing mean oscillations” (introduced by Sarason [48]),

and defined on R as follows.

VMO(R) :=

{
f ∈ L1

loc(R); lim
ε→0

sup
x∈R

 x+ε

x−ε

 x+ε

x−ε
| f (y)− f (z)| dydz = 0

}
.

We adopt the same notation as in Lemma 35. One may prove (see e.g. Brezis

and Nirenberg [16, formula (7)]) that if f : R→ S
1 satisfies f ∈ VMO , then u := Ff

satisfies

lim
ε→0

sup
x∈R

||u(x,ε)|−1| = 0, (6.28)
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or, equivalently, that |u(·,ε)| → 1 uniformly as ε → 0. Assume in addition that

f (x) ≡ 1 for |x| ≥ R = R f . Repeating the proof of Lemma 35, we obtain that there

exists some ε0 such that

1

π

ˆ

R2
+,∗

Jw = degw(·,ε), ∀0 < ε ≤ ε0. (6.29)

At this stage, we have the non-trivial information that the left-hand side of

(6.29) is an integer. But we cannot continue and claim that
1

π

ˆ

R2
+,∗

Jw = deg f .

Indeed, we have not defined deg f ! However, we may take this equality as the

definition of deg f . It is not difficult to see that this definition coincides with the one

in [16]. To summarize, maps in VMO(R;S1) satisfying f (x) ≡ 1 for |x| ≥ R = R f

have a well-defined degree. This degree can be calculated via the integral formula

deg f =
1

π

ˆ

R2
+,∗

Jw. (6.30)

6.3 WINDING NUMBER (II)

We return here to the Sobolev context and investigate the existence of deg f when

f : R→ S
1 has some Sobolev regularity. More specifically, we assume that

f (x)≡ 1 for |x| ≥ R = R f and f −1 ∈W s,p(R). (6.31)

When sp > 1 or s = p = 1, f is continuous and thus it has a degree. When

sp < 1, there is no reasonable definition of degree [37]. The “critical” case is

the one of the spaces W 1/p,p, with 1 < p < ∞. It turns out that these spaces are

embedded into VMO (see e.g. [16, § 1.2, Example 2]), and thus, as explained in

Remark 13, we may define deg f , which is given by formula (6.30). We address

here the question of an estimate for deg f . The answer is provided by the following

result, originally established in [6] with a slightly different argument.

LEMMA 36. Let 1 < p < ∞. Let f : R→ S
1 satisfy f (x)≡ 1 for |x| ≥ R = R f and

f −1 ∈W 1/p,p. Then

|deg f | ≤Cp | f |
p

W 1/p,p. (6.32)

PROOF. Let, for x ∈ R,

d(x) := inf{ε > 0; |u(x,ε)| ≤ 1/2}. (6.33)
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By (6.28), we know that d(x)> 0. Consider the open set

U := {(x,ε); x ∈ R, 0 < ε < d(x)}. (6.34)

By the proof of (6.23), we have

Jw = 0 in U. (6.35)

On the other hand, Lemma 26 implies that

|Jw(x,ε)| ≤
C

ε2
, ∀ f : R→ S

1, ∀x ∈ R, ∀ε > 0. (6.36)

Combining (6.30), (6.35) and (6.36), we obtain

|deg f | ≤
1

π

ˆ

R2
+,∗

|Jw|.

ˆ

R

ˆ ∞

d(x)

1

ε2
dεdx ≈

ˆ

R

1

d(x)
dx. (6.37)

We complete the proof of Lemma 36 combining (6.37) with Lemma 37 below (with

s = 1/p).

LEMMA 37. Let 0 < s < 1 and let f : R→ S
1 be such that f −1 ∈W s,p. Let d(x)

be as in (6.33). Then
ˆ

R

1

[d(x)]sp
dx . | f |pW s,p . (6.38)

PROOF. In view of (5.3) and of Theorem 8, for a.e. x ∈ R we have

lim
ε→0

u(x,ε) = f (x) (6.39)

and
ˆ ∞

0

ε (1−s)p−1 |∇u(x,ε)|p dε < ∞. (6.40)

Let x satisfy (6.39)–(6.40). Since (6.39) holds, we have either d(x) = ∞, or

d(x) < ∞ and then |u(x,d(x))| = 1/2. Assume that d(x) < ∞. Using Hölder’s

inequality when p > 1 (and a trivial argument when p = 1) we find that

(1/2)p = ||u(x,d(x))|− | f (x)||p ≤ |u(x,d(x))− f (x)|p

≤

(
ˆ d(x)

0

∣∣∣∣
∂

∂ε
u(x,ε)

∣∣∣∣ dε

)p

≤Cs,p [d(x)]
sp

ˆ d(x)

0

ε (1−s)p−1 |∇u(x,ε)|p dε

≤Cs,p [d(x)]
sp

ˆ ∞

0

ε (1−s)p−1 |∇u(x,ε)|p dε .

(6.41)
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Consequently, we have

1

[d(x)]sp
≤Cs,p

ˆ ∞

0

ε (1−s)p−1 |∇u(x,ε)|p dε , for a.e. x ∈ R. (6.42)

We obtain (6.38) by combining (6.42) with Theorem 8.

6.4 FACTORIZATION

We first summarize what we have achieved in Sections 6.2 and 6.3. We have an

integral formula for deg f when f is continuous, or merely VMO . If, in addition,

f has some Sobolev regularity, then we also have an estimate of deg f . In terms of

pullback of forms, we gave a meaning to 〈 f ♯ω ,1〉 for f ∈ VMO and we also have

an estimate of this quantity when f ∈W 1/p,p.

It is much more difficult to give a robust meaning to f ♯ω when f : Rn → S
1.

It is beyond the scope of this presentation to explain in detail how can this be

achieved (and we refer to [13, Chapter 8] for the complete proofs). However, we

will explain the definition of f ♯ω and the main ingredient used in the definition.

Assume first that f = eıϕ , with smooth ϕ . Then (see the proof of (6.4)) we have

f ♯ω =
1

2π
dϕ . (6.43)

Similarly, if f ,g : Rn → S
1 are sufficiently smooth, then

( f g)♯ω = f ♯ω +g♯ω . (6.44)

Another easy observation is that

f ♯ω =
1

2π
f ∧d f is well-defined when ∇ f ∈ L1. (6.45)

Put together, the three above observations lead to the following reasonable def-

inition. If

f = gh, where g = eıϕ and ∇h ∈ L1, (6.46)

then we define

f ♯ω :=
1

2π
dϕ +

1

2π
h∧dh. (6.47)

It is possible to follow this route and give a robust meaning to f ♯ω when f −1∈
W s,p with sp ≥ 1. The main ingredient is the “factorization” theorem, asserting the

possibility of decomposing f as in (6.46). More specifically, we have the following

result, valid in any dimension [13, Chapter 8].
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THEOREM 12. Assume that n ≥ 1, s > 0 and 1 ≤ p < ∞. Let f : Rn → S
1 be such

that f −1 ∈W s,p and

f (x)≡ 1 for |x| ≥ R = R f . (6.48)

Then we may write f = eıϕ h, where ϕ ∈W s,p(Rn;R) and h−1∈W sp,1(Rn;R2).

In particular, when sp ≥ 1, Theorem 12 allows to define

f ∧d f = f ♯ω :=
1

2π
dϕ +

1

2π
h∧dh, (6.49)

the result being a 1-form with coefficients in W s−1,p +W sp−1,1.

The proof of Theorem 12 is too long to be given here. Let us simply mention

that it relies heavily on the trace theory of weighed Sobolev spaces and on cancel-

lation phenomena. It is simpler when sp < 1, and in this specific case we refer the

reader to [40].

APPENDIX. SOME DETAILED CALCULATIONS

PROOF OF LEMMA 16. By scaling, it suffices to prove the lemma when R = 1.

We start with a useful preliminary observation. By the mean value theorem,

there exists some y ∈ B1(0) such that

ˆ

B1(0)

| f (x)− f (y)|p

|x− y|n+sp
dx . | f |p

W s,p(B1(0))
.

For any such y, we have

‖ f − f (y)‖p

Lp(B1(0))
.

ˆ

B1(0)

| f (x)− f (y)|p

|x− y|n+sp
dx . | f |p

W s,p(B1(0))
. (7.1)

We now recall the following elementary inequality. Let µ be a measure on the

set A such that 0 < µ(A)< ∞. Then

∥∥∥∥ f −

 

A

f dµ

∥∥∥∥
Lp(A)

≤ 2‖ f − c‖Lp(A), ∀ f ∈ Lp(A), ∀c ∈ R. (7.2)

Using (7.1), (7.2) (with A := B1(0) and µ the Lebesgue measure), and the

assumption
´

B1(0)
f = 0, ∀ f ∈ Y1, we obtain

‖ f‖Lp(B1(0)) . | f |W s,p(B1(0)), ∀ f ∈ Y1. (7.3)
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For x ∈R
n such that |x|> 1, let x∗ := x/|x|2 ∈ B1(0). Fix some ψ ∈C∞

c (B2(0))
such that ψ ≡ 1 in B1(0). Let f ∈ Y1. We set

f ∗(x) :=

{
f (x), if |x|< 1

f (x∗), if |x|> 1
and P1 f := ψ f ∗. (7.4)

Noting that

P1 f (x)−P1 f (y) = 0 if |x| > 2 and |y|> 2

and that

|P1 f (x)−P1 f (y)| ≤ | f ∗(x)| |ψ(x)−ψ(y)|+ |ψ(y)| | f ∗(x)− f ∗(y)|, (7.5)

we find that

|P1 f |pW s,p . | f ∗|p
W s,p(B2(0))

+

ˆ

B2(0)

ˆ

Rn

| f ∗(x)|p
|ψ(x)−ψ(y)|p

|x− y|n+sp
dydx. (7.6)

On the other hand, since ψ ∈C∞
c (R

n), it is easy to see that
ˆ

Rn

|ψ(x)−ψ(y)|p

|x− y|n+sp
dy ≤C =Cψ , ∀x ∈ R

n. (7.7)

Combining (7.6) and (7.7), we find that

|P1 f |pW s,p . | f ∗|p
W s,p(B2(0))

+‖ f ∗‖p

Lp(B2(0))
. (7.8)

Next, using the definition of f ∗ and performing in B2(0)\B1(0) the change of

variable x 7→ x∗, we find that

‖ f ∗‖Lp(B2(0)) . ‖ f‖Lp(B1(0)). (7.9)

By (7.8), (7.9) and (7.3), we obtain

|P1 f |pW s,p . | f ∗|p
W s,p(B2(0))

+ | f |p
W s,p(B1(0))

, (7.10)

and thus the conclusion of the lemma amounts to

| f ∗|W s,p(B2(0)) . | f |W s,p(B1(0)). (7.11)

In turn, (7.11) is obtained as follows. We have

| f ∗|p
W s,p(B2(0))

.| f |p
W s,p(B1(0))

+

ˆ

B2(0)\B1(0)

ˆ

B2(0)\B1(0)

| f (x∗)− f (y∗)|p

|x− y|n+sp
dydx

+

ˆ

B1(0)

ˆ

B2(0)\B1(0)

| f (x)− f (y∗)|p

|x− y|n+sp
dydx.

(7.12)
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Using the change of variable x∗ 7→ x and y∗ 7→ y and noting that

|x∗− y∗| ≈ |x− y|, ∀x,y ∈ B2(0)\B1(0),

and

|x− y∗| ≈ |x− y|, ∀x ∈ B1(0), ∀y ∈ B2(0)\B1(0),

we obtain (7.11) from (7.12).

The proof of Lemma 16 is complete.

PROOF OF LEMMA 17. We will use repeatedly the following straightforward

consequences of Hölder’s inequality. If 0 < a < ∞, then for some C =Ca,p,n < ∞

we have

ˆ

Rn\BaR(0)

| f (x)|p

|x|n+sp
dx ≤C R−n ‖ f‖p

Lq(Rn\BaR(0))
, ∀ f : Rn → R. (7.13)

Similarly, we have, with C =Ca,p,n < ∞,

ˆ

BaR(0)
| f |p ≤C Rsp ‖ f‖p

Lq(BaR(0))
. (7.14)

Using the fact that ψ ∈C∞
c (R

n), we find that the function ξ : Rn → R,

ξ (x) :=

ˆ

Rn

|ψ(x)−ψ(y)|p

|x− y|n+sp
dy,

satisfies

ξ (x).

{
1, if |x|< 1

|x|−(n+sp), if |x| ≥ 1
. (7.15)

Set ηε := 1−ψε . Combining (7.15) with the fact that

ˆ

Rn

|ψε(x)−ψε(y)|p

|x− y|n+sp
dy =

ˆ

Rn

|ηε(x)−ηε(y)|p

|x− y|n+sp
dy = ε sp ξ (εx),

we obtain

ˆ

Rn

|ψε(x)−ψε(y)|p

|x− y|n+sp
dy =

ˆ

Rn

|ηε(x)−ηε(y)|p

|x− y|n+sp
dy

.

{
ε sp, if |x| < 1/ε

ε−n |x|−(n+sp), if |x| ≥ 1/ε
.

(7.16)
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For the convenience of the reader, we split the remaining part of the proof into

three steps. Clearly, these steps lead to the conclusion of the lemma.

Step 1. We have

|ψε f − f |W s,p → 0 as ε → 0. (7.17)

Indeed, noting that

ψε(x) f (x)− f (x) = ηε(x) f (x) = 0 if |x| ≤ 1/ε ,

we find that

|ψε f − f |pW s,p .

ˆ

|x|>1/ε

ˆ

Rn

| f (x)|p
|ηε(x)−ηε(y)|p

|x− y|n+sp
dydx

+

ˆ

|x|>1/ε

ˆ

Rn

| f (x)− f (y)|p

|x− y|n+sp
dydx.

(7.18)

Using successively (7.16) and (7.13), we find that

|ψε f − f |pW s,p .‖ f‖p

Lq(Rn\B1/ε (0))

+

ˆ

|x|>1/ε

ˆ

Rn

| f (x)− f (y)|p

|x− y|n+sp
dydx → 0 as ε → 0.

(7.19)

The first step is complete.

Step 2. We have

| fε − f |W s,p → 0 as ε → 0. (7.20)

With no loss of generality, we assume that supp ρ ⊂ B1(0). Set Hε := fε − f .

Then (7.20) amounts to

Iε :=

ˆ

Rn

ˆ

Rn

|Hε(x)−Hε(y)|
p

|x− y|n+sp
dxdy

=

ˆ

Rn

ˆ

Rn

|Hε(x+h)−Hε(x)|
p

|h|n+sp
dxdh → 0 as ε → 0.

(7.21)

In order to estimate Iε , we start by noting that

|Hε(x+h)−Hε(x)|.

ˆ

|y|<ε

| f (x+h− y)− f (x+h)− f (x− y)+ f (x)|

εn
dy.
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Using this observation, we estimate the integrand in (7.21) as follows.

1. If |h|< ε , we use

|Hε(x+h)−Hε(x)|.

ˆ

|y|<ε

| f (x+h− y)− f (x− y)|

εn
dy

+

ˆ

|y|<ε

| f (x)− f (x+h)|

εn
dy.

2. If |h| ≥ ε , we write

|Hε(x+h)−Hε(x)|.

ˆ

|y|<ε

| f (x+h− y)− f (x+h)|

εn
dy

+

ˆ

|y|<ε

| f (x)− f (x− y)|

εn
dy.

Thus

Iε . ε−np (K1 +K2+K3 +K4) = ε−np (K1,ε +K2,ε +K3,ve +K4,ε),

where

K1 :=

ˆ

Rn

ˆ

|h|<ε

(
ˆ

|y|<ε
| f (x+h− y)− f (x− y)|dy

)p

|h|−(n+sp) dhdx,

K2 :=

ˆ

Rn

ˆ

|h|<ε

(
ˆ

|y|<ε
| f (x+h)− f (x)|dy

)p

|h|−(n+sp) dhdx,

K3 :=

ˆ

Rn

ˆ

|h|≥ε

(
ˆ

|y|<ε
| f (x+h− y)− f (x+h)|dy

)p

|h|−(n+sp) dhdx,

K4 :=

ˆ

Rn

ˆ

|h|≥ε

(
ˆ

|y|<ε
| f (x− y)− f (x)|dy

)p

|h|−(n+sp) dhdx.

We will prove that ε−np K j → 0 as ε → 0, j = 1, . . . ,4. The only ingredient we

use in the proof is the straightforward fact that

lim
ε→0

ˆ

Rn

ˆ

|y|<ε

| f (x+ y)− f (x)|p

|y|n+sp
dydx = 0. (7.22)

We start with K2. Noting that

(
ˆ

|y|<ε
| f (x+h)− f (x)|dy

)p

=C εnp | f (x+h)− f (x)|p,
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we find that

ε−np K2 =C

ˆ

Rn

ˆ

|h|<ε

| f (x+h)− f (x)|p

|h|n+sp
dh → 0 as ε → 0.

For K1, Hölder’s inequality implies that

(
ˆ

|y|<ε
| f (x+h− y)− f (x− y)|dy

)p

. εn(p−1)

ˆ

|y|<ε
| f (x+h− y)− f (x− y)|p dy,

(7.23)

and thus

ε−np K1 .

ˆ

Rn

ˆ

|h|<ε

ˆ

|y|<ε

| f (x+h− y)− f (x− y)|p

εn |h|n+sp
dydhdx.

For fixed y and h, the change of variable x− y = z leads to

ε−np K1 .

ˆ

Rn

ˆ

|h|<ε

| f (z+h)− f (z)|p

|h|n+sp
dhdz → 0 as ε → 0.

We next estimate K3; the calculation for K4 is similar and will be omitted.

Inequality (7.23) implies that

ε−np K3 . ε−n

ˆ

Rn

ˆ

|h|≥ε

ˆ

|y|<ε

| f (x+h− y)− f (x+h)|p

|h|n+sp
dydhdx.

In the above integral, we fix y and h and make the change of variable x+h = z.

Next we integrate in h and find that

ε−np K3 .

ˆ

Rn

ˆ

|y|<ε

| f (z− y)− f (z)|p

εn+sp
dydz

.

ˆ

Rn

ˆ

|y|<ε

| f (z− y)− f (z)|p

|y|n+sp
dydz → 0 as ε → 0.

The second step is complete.

Step 3. We have

|ψε ( fε − f )|W s,p → 0 as ε → 0. (7.24)

Set Lε := fε − f , so that

|Lε |W s,p → 0 and ‖Lε‖Lq → 0 as ε → 0. (7.25)
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In order to prove (7.24), we start from the straightforward estimate

|ψε Lε |
p
W s,p . |Lε |

p
W s,p +

ˆ

Rn

|Lε(x)|
p

ˆ

Rn

|ψε(x)−ψε(y)|p

|x− y|n+sp
dydx. (7.26)

Combining (7.26) with (7.13), (7.14) and (7.16), we obtain (7.24).

The third step is complete.

PROOF OF LEMMA 18. Let f : Rn → R. Let x,y ∈R
n. Set

z0 := x, z1 = (y1,x2, . . . ,xn), z2 := (y1,y2,x3 . . . ,xn), . . . ,z
n := y.

Then

| f (x)− f (y)|p .
n

∑
j=1

| f (z j)− f (z j−1)|p. (7.27)

Dividing (7.27) by |x− y|n+sp and integrating over x and y, we find that

| f |pW s,p .
n

∑
j=1

ˆ

Rn

ˆ

Rn

| f (z j)− f (z j−1)|p

|x− y|n+sp
dxdy. (7.28)

Next, we note that

ˆ

Rn−1

1

|x− y|n+sp
dx1 . . .dx j−1dy j+1 . . .dyn =

C

|x j − y j|1+sp
, (7.29)

for some finite constant C. Inserting (7.29) into (7.28), we find that “.” holds in

(3.38).

For the reverse inequality, we fix some j, say j = 1. For x1 6= y1 ∈ R, set t :=
(x1 + y1)/2, X := (t,x2, . . . ,xn) and r := |x1 − y1|/4. We start from the inequality

| f (x1,x2, . . . ,xn)− f (y1,x2, . . . ,xn)|
p .| f (x1,x2, . . . ,xn)− f (z)|p

+ | f (y1,x2, . . . ,xn)− f (z)|p.
(7.30)

We divide (7.30) by |x1 − y1|
n+1+sp and integrate over x ∈ R

n, y1 ∈ R and

z ∈ Br(X). We find that

ˆ

Rn−1

| f (·,x2, . . . ,xn)|
p

W s,p(R)dx̂1 .

ˆ

Rn

| f (x)− f (z)|p F(x,z)dxdz, (7.31)

with

F(x,z) :=

ˆ

z∈Br(X)

1

|x1 − y1|n+1+sp
dy1.
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Using the fact that, whenever z ∈ Br(X), we have |x− z| ≤ (3/4) |x1 − y1|, we

find that F(x,z) . |x− z|−(n+sp). Inserting this into (7.31), we find that “&” holds

in (3.38) for j = 1. The calculation for other values of j is similar and will be

omitted.

LEMMA 38. Let 0 < s < 1 and 1 ≤ p < ∞. Let

Z1 :=

{
f : R→ R; f ∈ Lp, | f |pW s,p :=

ˆ

R

ˆ

R

|∆1
h f (x)|p

|h|1+sp
dxdh < ∞

}
, (7.32)

Z2 :=

{
f : R→ R; f ∈ Lp, 〈 f 〉p

W s,p :=

ˆ

R

ˆ

R

|∆2
h f (x)|p

|h|1+sp
dxdh < ∞

}
, (7.33)

equipped respectively with the norms

‖ f‖p
Z1

:= ‖ f‖p
Lp + | f |pW s,p ,

‖ f‖p
Z2

:= ‖ f‖p
Lp + 〈 f 〉p

W s,p .

Then Z1 = Z2, with equivalence of norms.

PROOF. As explained in the proof of Lemma 19, it suffices to establish the semi-

norm equivalence | fε |W s,p ≈ 〈 fε〉W s,p , which in turn amounts to establishing the

semi-norm equivalence

|g|W s,p ≈ 〈g〉W s,p , ∀g ∈ Z1 ∩Z2. (7.34)

The identity ∆2
hg(x) =∆1

hg(x+h)−∆1
hg(x) leads to ‖∆2

hg‖Lp ≤ 2‖∆1
hg‖Lp , which

in turn implies the inequality ‖g‖Z2
≤ 2‖g‖Z1

and the embedding Z1 →֒ Z2.

In order to obtain the opposite inequality

|g|W s,p . 〈g〉W s,p , ∀g ∈ Z1 ∩Z2, (7.35)

we let k ≥ 2 be a large integer to be fixed later. We have the identity

k−1

∑
j=1

j ∆2
ε g(x+( j−1)ε) = k ∆1

εg(x+(k−1)ε)−∆1
(k−1)εg(x),

and thus

|∆1
εg(x+(k−1)ε)| ≤

1

k
|∆1

(k−1)εg(x)|+
1

k

k−1

∑
j=1

j |∆2
ε g(x+( j−1)ε)|. (7.36)
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If we raise (7.36) to the pth power, divide by |ε |1+sp, integrate over x and ε and

perform in the first right-hand side integral the change of variable h := (k − 1)ε ,

we find that

|g|pW s,p ≤Cs,p k−(1−s)p |g|pW s,p +Cs,p,k〈g〉
p
W s,p . (7.37)

Let k satisfy Cs,p k−(1−s)p < 1/2. If we apply (7.37) with such k and use the

fact that |g|W s,p < ∞, we obtain (7.35).

PROOF OF LEMMA 21. The argument is similar to the one in Step 2 in the

proof of Lemma 17. We take advantage of the compact notation for variations

and present a shorter argument. With no loss of generality, we may assume that

supp ρ ⊂ [−1,1].

Let h,τ ,x ∈R. Then we have the identity

∆2
h f (x+ τ)+∆2

h f (x− τ)−2∆2
h f (x)

= ∆2
τ f (x− τ +2h)+∆2

τ f (x− τ)−2∆2
τ f (x− τ +h).

(7.38)

Multiplying (7.38) by ρε(τ), integrating over sup ρε ⊂ [−ε ,ε ] and taking into

account the fact that ρε is even, we find that

2∆2
h( fε − f )

=

ˆ

[∆2
τ f (·− τ +2h)+∆2

τ f (·− τ)−2∆2
τ f (·− τ +h)]ρε(τ)dτ .

(7.39)

Using the fact that |ρε |. 1/ε , we obtain from (7.39) that

‖∆2
h( fε − f )‖Lp .

1

ε

ˆ

|τ |≤ε
‖∆2

τ f‖Lp . (7.40)

On the other hand, we clearly have

‖∆2
h fε‖=

∥∥(∆2
h f )∗ρε

∥∥
Lp ≤

∥∥∆2
h f
∥∥

Lp ‖ρε‖Lp =
∥∥∆2

h f
∥∥

Lp ,

and thus

‖∆2
h( fε − f )‖ ≤ 2‖∆2

h f‖Lp . (7.41)

Using (7.40) when |h|> ε and (7.41) when |h| ≤ ε and Hölder’s inequality, we
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find that

| fε − f |pW s,p .
1

ε p

ˆ

|h|>ε

(
ˆ

|τ |≤ε
‖∆2

τ f‖Lp dτ

)p

|h|−1−sp dh

+

ˆ

|h|≤ε

‖∆2
h f‖p

Lp

|h|1+sp
dh

≈ε−p−sp

(
ˆ

|τ |≤ε
‖∆2

τ f‖Lp dτ

)p

+

ˆ

|h|≤ε

‖∆2
h f‖p

Lp

|h|1+sp
dh

.ε−1−sp

ˆ

|τ |≤ε
‖∆2

τ f‖p
Lp dτ +

ˆ

|h|≤ε

‖∆2
h f‖p

Lp

|h|1+sp
dh

.

ˆ

|h|≤ε

‖∆2
h f‖p

Lp

|h|1+sp
dh → 0 as ε → 0.

The proof of Lemma 21 is complete.

PROOF OF LEMMA 22. As explained in the proof of Lemma 19, it suffices to

establish, for smooth f : Rn → R the following semi-norm equivalences:

‖Dm f‖p
Lp ≈

ˆ

Sn−1

ˆ

ω⊥

∥∥∥( f x
ω)

(m)
∥∥∥

p

Lp
dxdω , ∀m ∈N, (7.42)

| f |pW s,p ≈

ˆ

Sn−1

ˆ

ω⊥

| f x
ω |

p
W s,p dxdω , ∀s > 0 non-integer, ∀M > s. (7.43)

Estimate (7.43) is actually an identity, up to a multiplicative constant. Indeed,

we have

| f |pW s,p =

ˆ

Rn

ˆ

Rn

|∆M
h f (y)|p

|h|n+sp
dydh

=
1

2

ˆ

Sn−1

ˆ

R

ˆ

Rn

|∆M
r ω f (y)|p

|r|1+sp
dydrdsω

=
1

2

ˆ

Sn−1

ˆ

ω⊥

ˆ

R

ˆ

R

|∆M
r ω f (x+ t ω)|p

|r|1+sp
dtdrdxdsω

=
1

2

ˆ

Sn−1

ˆ

ω⊥

ˆ

R

ˆ

R

|∆M
r f x

ω(t)|
p

|r|1+sp
dtdrdxdsω

=
1

2

ˆ

Sn−1

ˆ

ω⊥

| f x
ω |

p
W s,p dxdsω ,

whence (7.43). In the above, we first expressed h in spherical coordinates (with

r ∈ R), next we performed the change of variables y = x+ t ω , x ∈ ω⊥, t ∈ R,

whose Jacobian is 1.
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We now turn to the proof of (7.42). We let to the reader the easy case where

m = 0 and we assume that m ≥ 1. The starting point of the proof is the following

observation. If A is a symmetric m-linear form on R
n, and if

A(ω , . . . ,ω︸ ︷︷ ︸
m times

) = 0, ∀ω ∈ S
n−1,

then A = 0. This is a consequence of the polarization formula for symmetric forms.

It follows that

A 7→ 〈A〉p :=

(
ˆ

Sn−1

|A(ω , . . . ,ω)|p dsω

)1/p

,

is a norm on the space of symmetric m-linear form on R
n.

Applying the above to A := Dm f (x), x ∈ R
n, we find that

‖Dm f‖p
Lp ≈

ˆ

Rn

〈Dm f (y)〉p
p dy

=

ˆ

Sn−1

ˆ

Rn

|Dm f (y)(ω , . . . ,ω)|p dydsω

=

ˆ

Sn−1

ˆ

ω⊥

ˆ

R

|Dm f (x+ t ω)(ω , . . . ,ω)|p dtdxdsω

=

ˆ

Sn−1

ˆ

ω⊥

ˆ

R

∣∣∣( f x
ω)

(m)(t)
∣∣∣

p

dtdxdsω

=

ˆ

Sn−1

ˆ

ω⊥

∥∥∥( f x
ω)

(m)
∥∥∥

p

Lp
dxdsω ,

whence (7.42).

REMARK 14. The proof of (7.43) yields the following more general identity. If

g : Rn ×R
n → [0,∞) and α ∈R, then

ˆ

Rn

ˆ

Rn

g(x,y)

|x− y|n+α
dxdy

=
1

2

ˆ

Sn−1

ˆ

ω⊥

ˆ

R

ˆ

R

g(x+ t ω ,x+ τ ω)

|t − τ |1+α
dtdτdxdsω .

(7.44)

PROOF OF LEMMA 23 WHEN n = 1. Let f ∈W
1,1

loc (R). We will prove that

| f |′ = (sgn f ) f ′ ∈ L1
loc. (7.45)
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Since f is continuous, the conclusion is clear if f does not vanish. We may

thus assume that f vanishes at some point, say f (0) = 0. Then (7.45) amounts to

| f (x)| =

ˆ x

0

(sgn f (t)) f ′(t)dt, ∀x ∈ R. (7.46)

We prove e.g. (7.46) when x > 0. Assume first that f (x) = 0. Let U := {y ∈
(0,x); f (y) 6= 0}. We write the open set U as a disjoint union U = ∪ jI j, with

each I j = (a j,b j) an open interval. Since f has constant sign on I j and we have

f (a j) = f (b j) = 0, we find that

ˆ

I j

(sgn f (t)) f ′(t)dt =±

ˆ

I j

f ′(t)dt =±( f (b j)− f (a j)) = 0, ∀ j.

Therefore,

ˆ x

0

(sgn f (t)) f ′(t)dt =

ˆ

U

(sgn f (t)) f ′(t)dt

=∑
j

ˆ

I j

(sgn f (t)) f ′(t)dt = 0 = f (x),

as desired.

When f (x) 6= 0, set z := sup{y ∈ [0,x); f (y) = 0}. Then sgn f = sgn f (x) on

(z,x) and f (z) = 0. By the previous calculation, we have
´ z

0
(sgn f (t)) f ′(t)dt = 0.

On the other hand, we clearly have

ˆ x

z

(sgn f (t)) f ′(t)dt = sgn f (x)

ˆ x

z

f ′(t)dt = (sgn f (x)) f (x) = | f (x)|,

so that (7.46) holds.

PROOF OF LEMMA 24. Step 1. An identity

We claim that, for x,h ∈ R
n and M > 0 we have, with r := |h|:

∆M
h f (x) =

M

∑
j=0

(
M

j

)
(−1) j∆M

ren+1
F(x+ jh,0)

+
M

∑
j=1

(
M

j

)
(−1) j+1∆M

h F(x, jr).

(7.47)

In order to prove (7.47), we start from the identity

f (x) =
M

∑
j=0

(
M

j

)
(−1) jF(x, jr)+

M

∑
j=1

(
M

j

)
(−1) j+1F(x, jr), ∀x ∈R

n.
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As a consequence,

∆M
h f (x) =

M

∑
k=0

(
M

k

)
(−1)M−k f (x+ kh)

=
M

∑
k=0

(
M

k

)
(−1)M−k

M

∑
j=0

(
M

j

)
(−1) jF(x+ kh, jr)

+
M

∑
k=0

(
M

k

)
(−1)M−k

M

∑
j=1

(
M

j

)
(−1) j+1F(x+ kh, jr)

=
M

∑
k=0

(
M

k

)
(−1)k∆M

ren+1
F(x+ kh,0)+

M

∑
j=1

(
M

j

)
(−1) j+1∆M

h F(x, jr).

(In the second term of the last equality, we have inverted the sums over M and j.)

Therefore, (7.47) holds, as claimed.

Step 2. From the identity (7.47) to the estimate (5.13)

In view of (7.47) and of the desired estimate (5.13), it suffices to establish the

estimate (7.48) below.

LEMMA 39. Let M > 0 be an integer. Let X := (x,ε) ∈R
n+1
+ and let H = (h, t) ∈

R
n+1 be such that [X ,X +MH]⊂ R

n+1
+ . Assume that either h = 0 or t = 0. Then

we have

|∆M
H F(X)|. |H|M

ˆ M

0

tM−1|DMF(X + tH)|dt. (7.48)

PROOF. Set G(t) := F(X + tH), t ∈ [0,M]. Then clearly

∆M
H F(X) = ∆M

1 G(0) and |G(M)(t)|. rM|DMF(X + tH)|.

Therefore, it suffices to prove that

|∆M
1 G(0)|.

ˆ M

0

tM−1|G(M)(t)|dt. (7.49)

In turn, estimate (7.49) is obtained as follows. Let χ1 := 1[−1,0] and, for j ≥ 2,

set

χ j := χ1 ∗χ1 ∗ · · · ∗χ1︸ ︷︷ ︸
j times

.
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By a straightforward induction on j, the distributional derivative χ
( j−1)
j is

bounded, and χ j(t) = 0 when t ≥ 0 or when t ≤ − j. This leads to the inequal-

ity

|χ j(−t)| ≤C jt
j−1, ∀ j ≥ 1, ∀ t ≥ 0. (7.50)

On the other hand, by a straightforward induction on M, we have

∆M
1 G(0) = G(M) ∗χM(0) =

ˆ M

0

G(M)(t)χM(−t)dt. (7.51)

We obtain (7.49) from (7.50) and (7.51).
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Linéaire (2018), https://hal.archives-ouvertes.fr/hal-01626613.

[13] H. Brezis and P. Mironescu. Sobolev maps with values into the circle.
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84. Birkhäuser Verlag, Basel, 1992.

[56] S.V. Uspenskiı̆. Imbedding theorems for classes with weights. Trudy Mat.

Inst. Steklov. 60 (1961), 282–303. English translation: Am. Math. Soc. Transl.

87 (1970), 121–145.

[57] W. Ziemer. Weakly differentiable functions. Sobolev spaces and functions of

bounded variation. Graduate Texts in Mathematics, no 120. Springer-Verlag,

New York, 1989.
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