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Abstract— Deep Learning (DL) techniques are now
widespread and being integrated into many important systems.
Their classification and recognition abilities ensure their
relevance for multiple application domains far beyond pure
signal processing. As a machine-learning technique that relies on
training instead of explicit algorithm programming they offer a
high degree of productivity. But recent research has shown that
they can be vulnerable to attacks and the verification of their
correctness is only just emerging as a scientific and engineering
possibility. Moreover DL tools are not integrated into classical
software engineering so software tools to specify, modify and
verify them would make them even more mainstream as
software-hardware systems. This paper surveys recent work and
proposes research directions and methodologies for this purpose.

Keywords—  deep-learning  systems, neural networks,
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I. INTRODUCTION

As research unit of a leading vendor of information and
communication systems, Huawei’s Central Software Institute
(CSI) is developing high-performance deep learning (DL)
systems for image classification [18] and other image
recognition functions. As the application domain of self-
driving cars [14] highlights it, correct operation (safety) and
attack resistance (security) of DL systems is an absolute
necessity. Moreover, the very advantage of a neural network
(NN) over explicitly programmed algorithms makes their
maintenance, modularization and general maintenance less
well understood than for general software: how can one specify
precisely its behavior, how can layers from two NN be
combined into a new one with new functionality, etc.
Specification, verification and security of DL is a relatively
novel area so new knowledge and new techniques are being
actively developed in this direction. This paper surveys existing
work and proposes specific research directions to improve the
general safety, security of NN while improving the human
productivity of their developers.

The next sections survey existing work on

- Attacks against DL systems
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- Testing, training and monitoring DL systems for safety
- The verification of DL systems

directions of
software

Then we propose new work in the
specification, verification and more generally
engineering for DL systems.

II.  SECURITY: ATTACKS AND THEIR PREVENTION

An adversarial example for a NN classifier is a slightly
perturbed input that generates a different, hence wrong,
classification from the desired one. In recent years many have
been identified and specific solutions designed for each one.
But the general problem remains of formally guaranteeing in
advance the absence of adversarial example.

Carlini et al.’s paper [3] is motivated in this manner by
safety-security (absence of accidental or intentional adversarial
examples) and the need to verify it. They introduce the notion
of a ground truth, or adversarial example with minimal change
in input value. This is useful for two things: judging the quality
of an attack by comparing it to the ground truth, and judging
the quality of a defense by the amount it increases the
distortion in the new ground truth.

The authors of [16] present and articulate technical
arguments that appear to show that intentional adversarial
examples can be countered, in the area of image processing, by
a kind of “multi-sensor” approach. Like attacks on face
recognition can be countered by 3D or multiple-angle 2D
images, adversarial examples would become ineffective in the
presence of multiple-angle or time-sequenced images of the
same object(s).

III. TESTING, TRAINING AND MONITORING FOR SAFETY

Concrete progress has been made by authors who propose to
adapt training and testing with specific safety-conscious
properties and techniques.

The survey paper by B. Taylor et al. [22] takes a very
general human-level definition of Al safety. It defines eight
very challenging wanted properties of machine learning
systems like NN but most of them relate to the human



application of DL systems so, in our opinion, they are
premature to consider before the science and engineering of
DL becomes more mature. One of their eight properties is more
amenable to purely technical developments “inductive
ambiguity identification” with special case “active learning”.
An active learner can interact with humans during its leaning
phase so as to ask them for additional data (e.g. images) that
would break some automatically detected ambiguity in
classification. Active learning can thus be considered a design
goal for improving the safety of DL systems.

The authors of [24] consider the application of an
(unrelated) automatic testing tool called DeepTest to self-
driving cars. It can be considered an elementary but meaningful
tool for structured testing. As such it has the advantages and
limitations of testing methods: easy to design and implement,
incomplete by design.

Leofante, Pulina and Tacchella [15] present recent work in
the definition and verification of machine-learning safety,
namely the guarantee that the input-output function defined by
a trained system will behave “according to specification”. They
also quote model-checking results for verifying this property,
its computational costs but do not detail the methodology for
doing this. Their notion of global correctness is based on
stability: limited input sample variations lead to limited output
variations. This is a well-defined and apparently verifiable type
of specification, but it does open two related and deep
questions: how can designers be certain that their reference
datasets are in some sense correct and complete? How to
choose the metric that measures the input or output variations?
The notion of active learning, presented in [22] could lead to a
practical solution to the first question. But the general problem
of global correctness certainly needs more powerful
mathematical tools than stability theory: NNs must interact
with general algorithms, if only for such operations as sorting
results, and the whole system correct and complete
specification is thus a classical pre-condition, post-condition
pair of local expressions on the system state. In the (very
common) application of area of image processing NN-specific
predicates could specify that image recognition is, for example
rotation invariant. To the best of our knowledge this problem
of mixing signal-processing with software specification is
unexpolored. Stability predicates would then be an important
but incomplete tool to ensure system correctness.

Wicker, Huang and Kwiatkowska [26] present a
sophisticated approach that allows black-box testing of NNs
i.e. with consideration of features being detected but ignorance
of the NN’s structure. They search a game space where an
agent adversary attempts to use normally/fool/randomly use the
detection of features. The method is considered competitive
with white-box methods.

Yerramalla, Mladenovski and Fuller [28] applies
continuous control theory to design a monitor for ensuring that
“unstable” learning can be detected. Their notion of stability is
specific to an application where a fixed dataset of images is
replaced by an airplane’s onboard NN that is trained
dynamically through in-flight cameras. This work can be
considered as mathematical support for dynamically generated

datasets, or abstractly: dynamically generated specifications for
the DL system.

But again, testing is by design an incomplete approach and
the “specification” of a DL system relies on the experimental
definition of its training dataset.

IV. VERIFICATION AND SIMULATION

Other authors have investigated formal and even automatic
methods for safety verification. This line of research has been
accelerating in recent years.

Broderick [1] uses simulation in the area of flight on-board
online-learning NNs. It does not take a formal approach to
verification but applies statistical techniques. The white paper
[25] defines high-level requirements for “formal”
(mathematically-based) verification of similar systems from the
point of view of control theory.

Fuller, Yerramalla and Cukic [8] model the learning of a
NN as a dynamical system where training adjustments are
discrete differential equations on the states that are neurons and
weights. Lyapunov stability analysis is then applicable to detect
stable states in the dynamical system. Stability in this theory
thus amounts to the absence of adversarial examples. It is
shown how to apply this concept to (shallow) NNs of fixed
topology and also to dynamic ones.

Survey paper [2] compares methods for verifying NNs
with piecewise linear structures. It compares methods based on
SMT solvers, mixed integer programming and a new branch-
and-bound method. The tools are able to verify 100-500
properties for networks for 2-6 layers. Correctness is defined as
a form of stability and verification, in theory exhaustive testing,
is accelerated by assuming piecewise-linear state spaces.

Katz et al. [10, 12] describe SMT-based work on
describing safety properties of systems using simplified
activation functions (ReLU) as linear functions, and finding
solutions with a modified simplex algorithm. This approach
checks domain specific safety specifications expressed as SMT
formulas. Using SMT with specialized theory for handling
"Rectified Linear Units" activation functions. Domain
specific safety specification must be found manually.
Scalability is a concern for this technique.

Cheng, Niihrenberg and Ruess [4] verify DNNs by
translating non-linear (input-output) constraints generated by
ReLU activation functions using big-M encoding. Then
standard techniques for linear optimization are applied to
verification.

In [6], an optimization technique is proposed to accelerate
verification problems that are difficult for SMT and ILP
solvers. It assumes so-called feed-forward NNs that allow the
addition of a global linear approximation of the overall network
behavior.

Blog entry [9] is a general discussion of the importance of
safety for DL systems, with arguments in favor of formal
verification as opposed to testing.

Huang et al. [11] present work on verifying the absence of
adversarial inputs in Feed-forward multi-layer neural networks:



inputs which deceive the network. The paper contains many
convincing examples of such perturbed images. The
verification method finds adversarial inputs, if they exist, for a
given region and a family of manipulations. The technique is
based on a transformation to an SMT solver.

Katz et al. published in [13] their efforts to prove
adversarial robustness of NNs, ie. the absence of
misclassification due to small perturbations. They propose a
new notion of "global robustness" quantifying the robustness of
a DNN. Intuitively, a network is globally robust if any two
neighbors in the input are also neighbors in the output.
Robustness is thus a non-limit form of continuity as in:

di(x,y) =8 — d2(NN(x), NN(y) ) < &

where NN is the neural net’s inference function, dj is a
standard metric in the input domain, d3 a suitable metric in the
output domain and §, € are experimentally chosen error bounds
where € could be zero, e.g. if the output is a discrete space of
features. They then show how to encode this property and
verify it using Reluplex. However, it is challenging to verify,
and the result only extends to DNN with a few dozen nodes.

Narodytask et al. [17] present the first exact Boolean
representation of a deep NN so that a binarized network is
faithfully represented as a Boolean formula. They are then able
to leverage the high efficiency of modern SAT solvers for the
formal and automatic verification of the NNs behavior, in
particular resistance to adversarial perturbations.

Pulina and Tacchella [19] present CETAR: a Counter-
Example Triggered Abstract Refinement verification approach
for DNNs. Performance is not demonstrated on large NNs
(only 20 nodes are used).

Paper [20] by the same authors describes and evaluates the
tool NeVeR that verifies the safety of ANNs by encoding them
as SMT-formula with linear inequalities. Furthermore, to
improve scalability, the authors apply the abstraction
refinement scheme presented in their earlier work.

Xiang, Tran and Johnson [27] present a verification method
for multi-layer NNs and apply it to robotics. Their simulation-
based method for the estimation of the output set of a NN, is
applicable to networks with monotone activation functions.
The verification problem is formulated and solved as a chain of
optimization problems for estimating a reachable set of states.

Dutta et al. [5] study the automatic estimation of the output-
range for deep NNs. A key concept of theirs is that sets of
possible inputs are compactly represented by convex
polyhedral. They compute the guaranteed output range for
DNNSs by successive optimizations.

V.  SPECIFICATION AND FUTURE SOFTWARE TOOLS

The above set of research results indicate a strong
convergence towards automatic and formally-based methods
for verifying the input-output behavior of DL systems. But a
serious problem appears to remain in balancing the guarantees
of exhaustive search as in model checking with reasonable
compute times. This situation is familiar to users of linear

solvers and indeed several authors use linear equations and
solvers to tackle DL safety problems. But the intrinsic
combinatorial nature of the problem is a serious scalability
hindrance.

J. Taylor et al.’s paper [23] discusses in a very high-level way
the problem of specifying the behavior of a machine-learning
system for example through the objective function of its
training phase. It covers an interesting set of research targets
one of whom has specific meaning for specification of DL
system behavior. Inductive ambiguity identification is defined
as the goal of creating systems that can detect inputs for which
their inference or classification would be highly under-
determined by training data. Future safety-verification
methods should address this problem that is akin to the need
for attaching confidence levels to DL-system outputs.

Foerster et al. [7] present a very innovative approach where
the NNs come from a specific sub-family: without
nonlinearities or input-dependent recurrent weights. For this
family the linear representation of input-output behavior is not
an approximation but an exact encoding. As a result
verification can benefit from fast linear-algebra operations.
The balance between this restricted family of NNs and their
expressive power is illustrated on a very-large NLP example.
This approach could either become a breakthrough or a less-
significant approach for niche applications. But the general
idea of a compact and efficiently-processed specification is
probably a core element of future theories and tools.

The white paper by Russel, Dewey and Tegmark [21]
reasserts, among many other things, that formal verification
and security and absolute necessities for all Al systems. They
propose that Al systems (among them DL systems) should
allow the verification of their behavior, of their designs (in
particular their specification), allow how to distinguish their
software-hardware components, and also the modular
verification of their parts.

In view of the existing research it appears that more work is
necessary in the direction of automatic or semi-automatic
formal verification of NN behavior, applied to DL systems. As
we have seen, today’s specification of their behavior is very
similar to what hardware verification faces: enumerated sets of
input-outputs, and a low-level definition of distance between
inputs or outputs, as if it were uniquely a matter of numerical
precision. But small input perturbations may have deep
meanings for example in images. Moreover the accepted /
adversarial perturbations may not be compact in the sense of
topology: consider for example a mixed-color table whose
mixture of pixel colors indicates that the fabric of the table is
made of two different chemicals. A purely local Euclidian
notion of distance would not express correct detection of such
a feature. So, without re-considering the existing scientific
basis for specification, it appears necessary to let designers
and implementers write higher-level specifications from which
the low-level ones can be generated and systematically



verified. A defined advantage of such concepts and tools
would also be that theorem proving could be applied under
certain conditions, eliminating the need for exhaustive solvers
and their lack of scalability for today’s very large NNs.

We therefore propose new research sub-direction as follows:

- Domain-specific languages (DSL) for high-level
description and manipulation of the input-output
specification. For examples grammar-based DSLs for
NLP applications, DSLs with discrete-geometry
semantics for images where features are geometric etc.

- A DSL sub-language defining the distance function
that is the basis for defining perturbations.

- Tools that translate those DSLs into low-level
specifications for given datasets, including tools to
compare datasets, analyze them for their distance-
function statistics etc.

- UML class diagrams for representing datasets, others
for replacing the DSLs in industrial applications.

- Visual tools that let application-domain experts
interact easily but precisely with the specifications.

- Model-based testing tools based on the above high-
level techniques. Such techniques are already being
applied to extensional descriptions (the neural net
itself) [10,12] but they would become more scalable
and efficient if a format resembling source-code
would describe the NN e.g. with parallel loops and
indices for repeated weights and neurons.

- Theorem-proving techniques are still far in the future
because they require (a) clear and expressive logical
specifications and (b) a source-code like format for the
NN as hypothesized above.

VI. CONCLUSIONS

Safety of DL systems is a serious requirement for real-life
systems and the research community is addressing this need
with mathematically-sound but low-level methods of high
computational complexity. To turn DL system design into a
broad industry, methods inspired by software engineering must
be applied to complement and sometimes replace the low-level
ones as for theorem proving replacing model checking. Our
survey of the area has shown the acceleration of the line of
work, the general agreement for its mathematical and low-level
methods. We have also shown how other recent surveys point
to the need for more expressive specifications, a scope for
symbolic  verification and generally more designer
productivity. We have made early but clear and feasible
proposals for new research in this direction.
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