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ABSTRACT

Excessive negative energy balance (EB) has been 
associated with decreased reproductive performance 
and increased risk of lameness and metabolic diseases. 
On-farm, automated EB estimates for individual cows 
would enable dairy farmers to detect excessive negative 
EB early and act to minimize its extent and duration 
by altering feeding. Previously, we have shown that EB 
can be estimated from frequent measurements of body 
weight (BW) and body condition score (BCS) changes, 
referred to as EBbody. In this study, we investigated the 
robustness and sensitivity of the EBbody method to as-
sess its genericity and on-farm applicability. We used 5 
data sets with BW of lactating cows (name of data set 
in parenthesis): 65 Holstein cows in a French feeding 
trial (INRA); 6 Holstein cows in a British feeding trial 
(Friggens); 31 Holstein cows and 17 Jersey cows in a 
Danish feeding trial (DCRC); 140 Holstein cows in a 
British feeding trial (Scotland’s Rural College, SRUC); 
and 1,592 Holstein cows on 9 Danish farms with milking 
robots (automatic milking system). We used the INRA 
and Friggens data sets to develop a dynamic formula to 
correct BW for increasing residual gut-fill (RGF) dur-
ing early lactation. With the DCRC data, we tested the 
effect of smoothing parameters and weighing frequency 
on EBbody. Also, 2 robustness tests were performed us-
ing the SRUC data to test the effect of diet change on 
BW and the automatic milking system data to test the 
effect of farm on BW variation. Finally, we combined 
the results into a blueprint describing different ways 

to calculate EBbody depending on the purpose and on 
the availability of BCS. The dynamic RGF adjustment 
resulted in a lower empty BW during early lactation 
than that obtained with the previously used constant 
RGF. The double-exponential smoothing method used 
to correct for meal-related gut-fill was robust to choice 
of smoothing parameters. Cows should be weighed at 
least once every 4 d during early lactation to capture 
the duration of negative EBbody. Our EBbody method 
proved robust to diet changes. Finally, although cow 
BW varied significantly between farms, the quantile 
regression smoothing of BW did not bias the estimation 
of weight differences between herds. In conclusion, these 
results validate the applicability of the EBbody method 
to estimate EB across a range of farm conditions, and 
we provided a blueprint that enables the estimation of 
EBbody for individual cows on-farm using only frequent 
BW, in combination with BCS when available.
Key words: body reserve, decision support, on-farm, 
precision livestock

INTRODUCTION

In early lactation, essentially all dairy cows pass 
through a period of negative energy balance (EB). 
Such a period of energy deficit is natural (Friggens and 
Newbold, 2007); however, if the period of energy deficit 
is prolonged or very deep or both, it may have negative 
consequences on cow health. Indeed, excessive negative 
EB has been linked with poorer reproductive perfor-
mance (Wathes et al., 2007). Likewise, more loss in 
BCS has been associated with prolonged periods to first 
service (Dechow et al., 2002), higher risk of becoming 
lame, and lower probability of recovering from lameness 
(Lim et al., 2015; Randall et al., 2015). Furthermore, 
cows with a greater loss of BW during the first 120 
DIM had a higher risk of metabolic diseases, infectious 
diseases, and other diseases (Frigo et al., 2010). An on-
farm estimate of EB would be a powerful management 
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tool enabling the dairy farmer or perhaps rather the 
consultant to rapidly detect excessive negative EB and 
thus identify cows at risk.

Traditionally, EB is estimated as the difference be-
tween energy input and energy output, meaning feed 
intake minus milk produced, maintenance, and so on 
(Wathes et al., 2007), but measuring individual feed 
intake is not viable on commercial farms. Used as a 
proxy for EB, BCS loss has been shown to be geneti-
cally unfavorably correlated with reproductive traits 
(Pryce et al., 2001). However, short-term changes in 
BCS are difficult to detect (at least with manual scor-
ing) and consequently BCS changes are unsuitable for 
short-term management purposes on-farm. In contrast, 
BW changes rapidly relative to time since calving. 
Weekly changes in BW and BCS can provide the basis 
for estimating EB (Coffey et al., 2001). Recently, we 
advanced this body reserve change method to calculate 
EB by using daily live-weight measurements together 
with fortnightly BCS, which were noise-reduced and 
adjusted for milk production and meal-related gut-fill 
(Thorup et al., 2012). We hereafter refer to our method 
as EBbody. Body condition score measuring technology 
is emerging, such as thermal imaging (Halachmi et al., 
2013) and 3-dimensional imaging (Fischer et al., 2015; 
Hallén Sandgren and Emanuelson, 2016); consequently, 
the estimation of EBbody may become a fully automated 
on-farm tool in the near future. Later, we adapted the 
EBbody method to function in real time and proposed 
a way to estimate EBbody without BCS (Thorup et al., 
2013).

Being based only on frequent BW measurements and 
BCS assessments, EBbody has the advantage of enabling 
individual EB to be estimated for all cows on any farm 
that measures live weight and BCS frequently, including 
dry cows. However, a key aspect of the EBbody method 
is to be able to filter out the BW change not coming 
from changes of body reserve size, namely the variation 
in gut-fill, urine, and milk weight. For the initial devel-
opment of the EBbody method, we made the following 
assumptions: variation in BW due to meal-related gut-
fill was appropriately adjusted for by smoothing the 
BW by quantile regression (QR) using the 20% lower 
quantile; residual gut-fill (RGF) was assumed constant 
over time; and the cows were required to be weighed 
daily (Thorup et al., 2012). Further, although the cows 
were not the same in the 2 studies (Thorup et al., 2012, 
2013), they came from the same herd. Consequently, 
we needed to test EBbody on different farms and on 
different diets to ensure that the method was broadly 
applicable.

Therefore, to make EBbody a robust method, the pur-
poses of this study was to examine first, the sensitivity 

of EBbody to changes in the assumptions made for gut-
fill and weighing frequency, and second, the robustness 
of EBbody in different feeding systems and on different 
farms. We also took the opportunity to synthesize the 
descriptions of the previous methods and current con-
siderations into an on-farm calculation procedure.

MATERIALS AND METHODS

This study consists of 3 parts concerning the sensitiv-
ity analysis, the robustness test, and the description of 
how to convert live weights and BCS into EBbody. The 
energy units used for calculating EBbody are effective 
energy (EE). In the EE system (Emmans, 1994), 1 MJ 
of EE supply has the same energy value as 1 MJ of lipid 
loss from the body. Thus, the EE values assigned to 
feeds are directly equivalent to the energy requirements 
of the cow. Moreover, body lipid and protein gain and 
loss are differentiated; the values of the constants used 
to calculate body protein and body lipid changes dur-
ing mobilization and during deposition are specified in 
Appendix B, Equation [9].

Data handling and analysis was performed using R 
version 3.2.3 (R Development Core Team, 2015).

Sensitivity Analysis

We analyzed the sensitivity to 3 different aspects of 
EBbody: the RGF variation, meal-related gut-fill varia-
tion, and weighing frequency. A fourth aspect, namely 
the choice of the regression coefficients a and b for 
converting BCS to body lipid, can be deduced from 
the equations involved, and thus is dealt with in the 
Discussion only.

Residual Gut-Fill Variation. Previously, we used 
a fixed value for RGF = 0.26 kg per kg of lipid-free 
empty body weight (EBW), where EBW is BW ad-
justed for milk, gravid uterus, meal-related, and RGF 
(Thorup et al., 2012), and in using a fixed value, we 
assumed a negligible effect of change in intake on RGF. 
However, during early lactation feed intake increases 
(Friggens et al., 1998; Huzzey et al., 2007), and conse-
quently RGF will increase. Thus, provided that we know 
how intake changes, we can adjust RGF accordingly. 
For this purpose, we made use of data from 65 Holstein 
Friesian cows housed indoors from August 2014 to June 
2015 at the INRA PEGASE experimental farm (INRA, 
Le Rheu, France), referred to as the INRA data. Across 
lactation (1 to 240 DIM), these cows weighed on aver-
age (SD in parentheses) 620 (70.2) kg, range 482 to 776 
kg; their mean DMI was 21.3 (2.65) kg/d, range 16.6 to 
27.0 kg/d, and their mean milk yield (MY) was 30.5 
(4.87) kg/d, range 21.7 to 43.4 kg/d. The cows were fed 
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ad libitum using the same TMR (65% maize silage and 
35% concentrate) throughout lactation. Feed was dis-
tributed twice per day after milking. Dry matter intake 
was measured daily and individually as the difference 
between offered and next day’s refusal weight in each 
individual feed trough. Mean DMI per day of the INRA 
cows was calculated. These daily mean DMI reached a 
plateau level that was maintained between 100 and 200 
DIM. The average intake in this period was used as a 
reference level of intake, and the proportionate intake 
was calculated for each DIM by dividing daily mean 
DMI by the average DMI level from 100 to 200 DIM. 
An exponential model was fitted to describe the change 
in proportionate intake with time (Equation 1):

 proportionate intake (kg/kg) =   

 a × (1 − e−b × DIM) + c. [1]

In this equation, a + c is the asymptote (approximately 
= 1), c is the starting level, and coefficient b describes 
the curvature of the exponential. This time-dependent 
equation provides the basis to substitute our previously 
fixed value of RGF with a dynamic RGF equation. To 
check the genericity of this equation, we used an older 
and second data set of 6 Holstein Friesian cows housed 
at the Scotland’s Rural College (SRUC) Dairy Re-
search Center (Dumfries, UK), which were fed the same 
TMR (grass silage and 100 g of concentrate per kg of 
fresh weight, designed to limit the intake) from 11 to 
231 DIM. These cows constituted the control group fed 
low-concentrate TMR in the trial described in detail by 
Friggens et al. (1998), hereafter referred to as the Frig-
gens data. We compared the 2 RGF correction methods 
by calculating the difference between EBW corrected 
with constant RGF and EBW corrected with dynamic 
RGF derived from Equation [1] using the Danish feed-
ing trial (DCRC) data.

Meal-Related Gut-Fill Variation. The analysis of 
meal-related gut-fill variation was performed on data 
from 17 Danish Jersey and 31 Danish Holstein cows 
of mixed parity. The cows were housed throughout 
the year and milked in an automatic milking system 
(AMS) at the Danish Cattle Research Centre (Tjele, 
Denmark). The cows were weighed automatically at 
each milking (i.e., approximately 2.5 times/d). They 
calved between October 2005 and May 2006. Across 
lactation (2 to 305 DIM), the Holstein cows weighed 
on average 565 (54) kg, range 479 to 721 kg, and their 
mean MY was 27.0 (4.79) kg/d, range 15.1 to 36.9. The 
Jersey cow mean BW was 444 (50.8) kg, range 368 to 
543 kg, and their mean MY was 17.5 (2.72) kg/d, range 
12.7 to 22.2 kg/d. Cows and housing were described in 
more detail in Thorup et al. (2013); feed composition 

was described by Weisbjerg and Munksgaard (2008). 
This data set is hereafter referred to as DCRC data. 
The BCS was assessed once every 2 wk, and BCS was 
smoothed across lactation using a natural cubic spline 
of degree 3 as described in Thorup et al. (2012).

In our first study, we adjusted BW for meal-related 
gut-fill variation by smoothing BW by QR using the 
20% lower quantile, which is not the same as assum-
ing 20% gut-fill (Thorup et al., 2012). This regression 
approach smoothing over time worked well for histori-
cal data, but is not suitable for a real-time smoothing 
that would be needed for use in an on-farm real-time 
decision support tool. On-farm where the purpose is 
to detect health problems occurring in the short term, 
smoothing needs to be real time. In our follow-up paper, 
we proceeded to smooth BW double-exponentially and 
asymmetrically in real time (i.e., penalizing positive 
weight deviations more than negative weight deviations 
by applying the combination of smoothing parameters 
0.02 for increasing and 0.08 for decreasing weight 
changes; Thorup et al., 2013). The function is avail-
able in the dataIrony GitHub repository (Højsgaard, 
2018). The sensitivity of the real-time method to the 
choice of smoothing parameters was evaluated using 5 
asymmetric (unequal size of increasing and decreasing 
parameter) and 5 symmetric (equal size of increasing 
and decreasing parameter) combinations of parameter 
values for penalizing weight increases and weight de-
creases on the DCRC data. The performance of these 
smoothings were summarized by calculating the offset 
as offset = ∑(new smooth – reference smooth)/number 
of observations, and the noise as noise = ∑ √[(devia-
tiont – deviationt−1)

2/number of observations] with the 
deviations at any given time (t) being the difference 
between the observed values and the new smooth, mak-
ing this summarization resemble a RSS. The 0.02 and 
0.08 parameter combination was chosen as reference.

Weighing Frequency. Again using the DCRC data, 
we used the 0.02 and 0.08 parameter combination for 
the double-exponential smoothing (DES), and we cal-
culated EBbody for different measurement frequencies of 
approximately 2.5 weights/d, 1.5 weights/d, 1 weight/2 
d, 1 weight/4 d, 1 weight/6 d, and 1 weight/12 d. Days 
to first positive EBbody were derived and compared to 
evaluate the consequence of measurement frequency on 
EB trajectories.

Robustness Tests

Two types of robustness of the QR smoothing meth-
od were tested. The first was a test of robustness to 
diet changes using data from cows that change between 
indoor TMR feeding and grazing, assuming that a diet 
change to or from grass would cause quite a big gut-fill 
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change, but that EBW would not change unless one 
of the diets lacked energy. The second was a test of 
the robustness to variation in data noisiness using data 
from different farms.

Diet Change Effect. Data from the SRUC Crich-
ton Royal Farm (Dumfries, UK) with 2 genetic lines 
and 2 feed types were used; this data set is referred 
to as SRUC data. Genetic line S was selected for high 
milk merit; genetic line C was standard merit. Cow 
diet type was either high forage, that is, grazing from 
mid spring to early autumn and fed on TMR when 
housed the rest of the year (seasonally grazing, SG), 
or low forage, meaning permanently housed (PH), 
and was previously been described by Randall et al. 
(2015). This design allowed us to use the PH cows as a 
control group in comparison with the SG cows that ex-
perienced a gradual diet change from TMR to grass in 
the spring and vice versa in the autumn. For SG cows, 
the TMR that was fed when they were housed had a 
NDF content of 437 g/kg of DM and a ME content of 
10.8 MJ/kg of DM. Cows were milked 3 times daily 
and weighed after each milking. The BCS was assessed 
once per week. Cows calved continuously throughout 
the year. Data from January 1, 2009, to November 30, 
2010, were obtained. During this period there were 2 
gradual grass turn-out and 2 grass turn-in events. From 
these data, we excluded 5 d, because mean BW across 
cows for either lactation 1, 2, or 3+ was more than 
50 kg from a smoothed mean [using the LOESS func-
tion in R (R Development Core Team, 2015)]. These 
aberrant days occurred during winter and were likely 
due to cold weather causing malfunction of the weigh-
ing scale. Only weight observations between 1 and 305 
DIM were used. Within a lactation, outliers more than 
±50 kg from the mean of the previous 2 observations 
were removed. This cleaning rule did not remove any 
observations 10 d after diet change. After this cleaning, 
data contained 237 lactations with a varying number 
of weight observations. Periods from 30 d before to 30 
d after each grass event that had at least 60 weight 
observations and at least 60 d (out of 61 d in a period) 
were selected. The cleaning procedures left 192 periods 

originating from 157 lactations by 140 cows in the data 
set (i.e., each cow contributed from 1 to 4 periods) 
containing a total of 31,622 observations. Of the 192 
periods, 91 periods were from permanently housed cows 
and 101 from SG cows. Furthermore, 108 were spring 
periods with diet change from TMR to grass, and 84 
were autumn periods with diet change from grass to 
TMR. The number of observations per period, mean 
BW, mean DMI, and mean MY are reported by diet 
and genetic merit in Table 1. To minimize the influence 
of the meal-related gut-fill, the BW were smoothed by 
QR using the 20% lower quantile (Thorup et al., 2012). 
Because the periods were only 60 to 61 d long, one knot 
was placed on the day of a diet change. Periods were 
divided into before and after diet change sub-periods, 
thus spring had 216 sub-periods and autumn had 
168 sub-periods of 30 d. Mean residuals and residual 
standard deviation (RSD) for each sub-period were 
calculated.

When testing the robustness of the smoothing 
method to a diet change, residual BW and RSD of 
BW before and after a diet change were compared. 
The RSD provides information on the ability of the 
smoothing to track the diet change, whereas the residu-
als provide information on the assumption that using 
the lower 20% quantile to smooth would adequately 
represent meal-free gut-fill (i.e., adequately account 
for meal-related gut-fill). Seasons (spring and autumn) 
were analyzed separately because in spring there should 
be no difference in residuals and RSD between diets 
before grass turn out, and we were interested to see if 
there was a difference after diet change. In the autumn, 
we expected the opposite. We used a mixed model to 
draw out the difference between diets before and after 
the diet change (i.e., the PH cows gave the baseline 
trend against which the SG cows that changed be-
tween housed and grazed periods were evaluated). The 
random part of the model accounted for the fact that 
the nondiet design elements (merit and parity) would 
affect overall weight, which may have affected size of 
change in BW because gut-fill and energy requirements 
are proportional to BW. In this model, the dependent 

Table 1. Number of observation periods, mean (SD) BW, mean DMI, and mean milk yield (MY) with respect 
to diet type (seasonally grazing, permanently housed) and genetic merit (standard, high), Scotland’s Rural 
College data

Item

Seasonally grazing

 

Permanently housed

Standard merit High merit Standard merit High merit

No. 46 45 42 59
BW, kg 562 (71.1) 594 (79.2) 563 (49.6) 615 (84.2)
DMI, kg/d 41.0 (6.85) 45.0 (8.36) 39.4 (6.10) 46.1 (6.85)
MY, kg/d 26.7 (5.76) 31.1 (6.92) 33.0 (8.06) 39.7 (7.95)



6006 THORUP ET AL.

Journal of Dairy Science Vol. 101 No. 7, 2018

variable Y was either mean BW, mean residual BW, or 
mean RSD of BW, and all variables were tested with 
the same model, M1:

 Y = diet + sub-period + sub-period × diet   

 + cow × parity,  [M1]

where diet = (PH; SG), sub-period = (30 d before diet 
change; 30 d after diet change), and cow × parity was 
a random effect. Nonsignificant interactions were re-
moved, leaving only significant interactions and main 
effects in the model.

Farm Effect. The effect of farm on BW variation 
was tested using a data set of 1,592 lactations from 
9 Danish commercial farms with Lely milking robots 
in which cows were weighed at each milking. No BCS 
was available from these farms. These data are referred 
to as AMS data. The BW were smoothed 2 different 
ways using the 20% quantile as in Thorup et al. (2013) 
and using the middle quantile (50%). Being the middle 
quantile, the 50% mean RSD is simply an estimate of 
the noisiness in data, whereas the 20% mean RSD is an 
estimate of the residuals after applying the smoothing 
method used in Thorup et al. (2012). For each cow and 
both degrees of smoothing (20 and 50% QR), we calcu-
lated mean daily BW change across lactation and RSD. 
We performed a Fligner-Killeen test on the RSD to 
test whether farm variance was homogeneous. Fligner-
Killeen is a nonparametric test of the null hypothesis 
that the variance in each of the farms is the same and is 
very robust to deviations from the normal distribution.

Calculating EBbody Step by Step

The description of going from live weight to EBbody 
has different pathways depending on the data avail-
able, and on the purpose of the calculation. To calcu-
late EBbody, one needs to know the following: are BW 
measured before or after milking? If BCS is available, 
is it assessed frequently (i.e., from an automated source 
of technology) or not? Further, one needs to know the 
purpose of calculating EBbody because the smoothing 
approach will depend on the purpose (i.e., if short-term 
or long-term trends is the focus, as mentioned above in 
the Meal-Related Gut-Fill Variation section). A flow-
chart and accompanying list of equations for doing this 
are given in Appendices A and B.

RESULTS

Sensitivity Analysis

Residual Gut-Fill Variation. The fits of Equa-
tion [1] for the INRA and the Friggens data set are 

shown in Figure 1. For the INRA data, a = 0.43, b 
= 0.05, and c = 0.54, and for the Friggens data, a = 
0.37, b = 0.05, and c = 0.63. The SD of the residuals 
was 18.0 × 10−3 and 9.51 × 10−3 for the INRA and 
Friggens data, respectively. Despite large differences in 
ration type (and location, and so on), there is a very 
strong similarity between the 2 time-trends in relative 
intake suggesting that a correction for RGF according 
to DIM would have a general applicability. Our previ-
ous RGF was a constant of 0.26 kg/kg of LFEB, which 
we consider as representing the RGF once intake has 
stabilized in mid-lactation (i.e., the asymptote). Using 
the coefficients from the INRA data, our new c = c × 
RGF = 0.1404. The new a = RGF − new c = 0.1196. 
Hereby we get a new RGF as a function of DIM (Equa-
tion [2]), which can replace the constant RGF used in 
our previous studies:

 RGF = 0.1196 × (1 − e−0.05 × DIM) + 0.1404. [2]

The difference between the exponential (dynamic) 
RGF method and the constant RGF method on EBW 
is shown by breed and parity on the DCRC data set 
in Figure 2. The EBW assuming constant RGF is 
subtracted from EBW assuming dynamic RGF (i.e., 
positive values denote that the EBW assuming dynam-
ic RGF was larger than the EBW assuming constant 
RGF). The correction using constant RGF produced a 
lower EBW during very early lactation compared with 
the correction using dynamic RGF. At 13 DIM, the dif-
ference between the 2 correction methods ranged from 
12.1 to 20.4 kg for the different groups. As expected, the 
difference depended on the size of the cow: the heavier 
the cow, the larger the difference. However, across a 
range of BW ranging from around 400 to 700 kg (i.e., 
first parity Jersey to third parity Holstein), the differ-
ence between EBW calculated with the different RGF 
corrections was remarkably consistent. By 50 DIM, the 
difference had diminished, ranging from 1.7 to 2.7 kg.

The difference between constant and exponential 
RGF on EBbody will be discussed further below in rela-
tion to weighing frequency.

Meal-Related Gut-Fill Variation. Mean BW 
curves relative to DIM for 8 smoothing parameter 
combinations are shown in Figure 3 (2 of the combina-
tions are not shown to enable lines to be distinguished). 
The mean offset and noise of 10 smoothing parameter 
combinations are reported in Table 2. Calculating the 
offset for the reference combination did not make sense, 
as it by definition would be zero. With respect to offset, 
the asymmetric 0.02; 0.12 was the only combination 
that resulted in a lower smoothed weight curve than 
the reference combination, as seen by the negative 
offset values for this combination. The other combina-
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tions produced positive values. Noise ranged from 9.53 
to 9.87 kg for the Jersey cows, whereas for Holstein 
cows, noise ranged from 15.9 to 16.5 kg. The 0.10; 0.10 
combination produced the largest offset and the lowest 
noise when looking at the Holstein cows.

Weighing Frequency. The mean EBbody curves 
at 4 weighing frequencies are shown relative to DIM, 
grouped by breed, and shown for EBbody calculated with 
BW corrected with constant or dynamic RGF in Figure 
4 (3 frequencies are omitted from the plot to enable 
lines to be distinguished). Mean days to first positive 
EBbody are reported by breed in Table 3. Regardless 
of the breed, the point of returning to positive EBbody 
was consistently later for the EBbody corrected with a 
dynamic RGF as compared with the EBbody corrected 
with the constant RGF. Further, decreasing weighing 
frequency had a greater effect on EBbody corrected with 
dynamic RGF compared with EBbody corrected with 
constant RGF. With respect to weighing frequency of 
Holstein cows, days to first positive EBbody was slightly 
greater for the 2 lowest frequencies; namely 1 weight per 
6 d and 1 weight per 12 d, whereas weighing frequency 
had less effect on the Jersey cows. In Holstein cows, 
which have a steeper BW gain during early lactation, 
weighing frequencies lower than 1 weight per 4 d seem 
to cause the smoothing to miss the timing of the EBbody 
returning to positive. Interestingly, EB with a dynamic 
RGF correction started out a little more negatively in 
both breeds (Figure 4C and 4D) compared with EB 
with a constant RGF correction (Figure 4A and 4B).

Robustness Test

Diet Change Effect. The mean BW trajectories 
relative to days from diet change grouped by genetic 
merit, season, and diet are shown in Figure 5. In the 
spring, SG cows lost on average 13 kg at grass turn-out, 
whereas PH cows gained on average 12 kg (sub-period 
× diet interaction: χ2 = 98.7; P < 0.001), meaning a 
difference of 25 kg caused by the diet change of the SG 
cows. In the autumn, SG cows gained 14 kg at grass 
turn-in, and PH cows gained 6 kg (sub-period × diet 
interaction: χ2 = 12.6; P < 0.001), a difference of 8 kg.

Observed BW minus fitted BW (i.e., residual BW) 
relative to days from diet change grouped by season 
and diet are shown in Figure 6. By visual appraisal, the 
residual BW did not reveal any systematic difference 
between grass and TMR diets nor any difference before 
and after the diet change in SG cows, suggesting that 
the 20% QR smoothing works equally well on housed 
cows feeding on a TMR and grazing cows.

Mean residual BW and RSD of BW relative to days 
from diet change grouped by season and diet are shown 
in Figure 7. The interaction between diet and season 

Figure 1. Early lactation intake as a proportion of mid-lactation 
intake fitted by an exponential model (Equation [1]) relative to DIM. 
Squares: Friggens data (n = 6 cows), circles: INRA data (n = 65 cows).

Figure 2. Empty body weight (EBW) difference [kg, EBW cor-
rected with dynamic residual gut-fill (RGF) minus EBW corrected 
with constant RGF] from 1 to 100 DIM, grouped by breed and parity: 
Jersey parity 1 (full gray), Jersey parity 2 (dashed gray), Jersey par-
ity 3 (dotted gray), Holstein parity 1 (full black), Holstein parity 2 
(dashed black), Holstein parity 3 (dotted black), Danish feeding trial 
data, n = 48 cows.
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was insignificant for both mean residual BW and RSD 
of BW. In the spring, mean residual BW before and 
after grass turn-out did not differ (χ2 = 0.13; P = 0.72), 
and mean residual of SG cows was lower than that of 
PH cows (χ2 = 14.6; P < 0.001). In the autumn, mean 
residual BW before tended to be higher than after grass 
turn-in (χ2 = 3.19; P = 0.07), and mean residual of SG 
and PH cows did not differ (χ2 = 0.31; P = 0.58). In 
the autumn, RSD of BW before and after grass turn-in 
did not differ (χ2 = 0.08; P = 0.78), likewise SG and 
PH cows did not have different RSD (χ2 = 0.35; P 
= 0.56). In the spring, the RSD of BW tended to be 
higher before than after grass turn-out (χ2 = 2.79; P 
= 0.09), and the RSD of SG cows was lower than that 

of PH cows (χ2 = 6.65; P = 0.01), meaning that a diet 
effect was present at springtime.

Farm Effect. The Fligner-Killeen test showed that 
the 50% QR smoothing created RSD variances that 
were highly significantly different among farms (χ2 = 
112, df = 8, P < 0.001). Mean RSD at 50% QR ranged 
from 11.7 to 16.0 kg, with farm A having the highest 
mean RSD, indicating that most noise in BW measure-
ments occurred on this farm.

Mean BW change per day (BW, kg/d) at 50% QR 
is shown relative to mean BW change per day (BW, 
kg/d) at 20% QR in Figure 8. When mean BW change 
was calculated per farm (Figure 8A), the relationship 
between 50% QR and 20% QR had a slope of 0.97, 

Figure 3. Mean BW (kg) of cows relative to DIM at 8 different combinations of smoothing parameters. (A) Holstein cows and (B) Jersey 
cows, asymmetric smoothing parameter combinations: 0.02 and 0.08 (full line), 0.02 and 0.04 (dashed), 0.04 and 0.08 (long-dashed), 0.06 
and 0.08 (dotted); (C) Holstein cows and (D) Jersey cows, symmetric smoothing parameter combinations: 0.02 and 0.02 (full), 0.04 and 0.04 
(dashed), 0.06 and 0.06 (long-dashed), 0.10 and 0.10 (dotted), Danish feeding trial data, n = 48 cows.
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which was not significantly different from 1. Thus, the 
relative difference between the 20% QR used in the 
EBbody method and a simple mean smoothing was not 
affected by the between-farm variability. On average, 
the 20% QR predicted a mean BW change per d 0.02 
kg more than the 50% QR at farm level, presumably 
because the change in body reserves was not camou-
flaged by meal-related gut-fill changes using the 20% 
QR. When mean BW change was calculated per cow 
(Figure 8B), the relationship between 50% QR and 20% 
QR had a slope of 0.82, showing that cows with larger 
swings in their BW trajectories were more affected by 
the asymmetric 20% QR smoothing.

EBbody Step by Step

The blueprint of how to calculate EBbody based on 
live BW either with or without the information about 
BCS is added as a flowchart (Appendix A) and an ac-
companying list of equations (Appendix B).

DISCUSSION

It was not the purpose of this study to validate the 
calculation of EB from high-frequency BW measures to-
gether with regular BCS, because this has already been 
done (Thorup et al., 2012, 2013). Rather, the present 
study explored the robustness of the EBbody method to 
a greater range in real-world conditions (between-farm 
variability, contrasting diets, different BW measure-
ment frequencies), as well as exploring its sensitivity 
to smoothing assumptions (dealing with meal-related 
and RGF).

Farm Effect

Our comparison of BW from 9 commercial farms 
showed that level of noise in BW differed significantly 
among farms, as we expected. When comparing the 
50% QR and the 20% QR across farms, we found a 
slope of 0.97 indicating that the difference between the 
asymmetric 20% QR smoothing and normal symmetric 
(50% QR) smoothing was the same across herds, de-
spite the inherent farm differences in variability. This 
made us conclude that our 20% QR smoothing method 
used for BW was robust to between-farm variability.

Diet Change Effect

The absolute BW changes indicated that the smooth-
ing method tracked BW adequately regardless of the 
changes from TMR to grazing and vice versa. The lack 
of difference in residuals indicated that the grass and 
TMR diets did not differ in terms of variability in meal-
related gut-fill. Diet and diet change did not interact T
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Figure 4. Mean energy balance (EB, MJ/d, smoothed double-exponentially using the reference coefficients of 0.02 and 0.08) and 4 differ-
ent weighing frequencies: all (full line), a.m. only (long-dashed), every 10th (dotted) or 30th (dashed) BW observation relative to DIM. (A) 
Holstein cows, constant residual gut-fill (RGF) correction, (B) Jersey cows, constant RGF, (C) Holstein cows, dynamic RGF, and (D) Jersey 
cows, dynamic RGF. The plotted frequencies correspond to weighing cows about 2.5/d, 1 to 2/d, 1 per 4 d, and 1 per 12 d (Danish feeding trial 
data, n = 48 cows).

Table 3. Mean (SD) number of days to first positive energy balance (EBbody) using the constant residual gut-fill (RGF) or the dynamic RGF 
correction, smoothed double-exponentially with coefficients of 0.02 and 0.08 for 7 weighing frequencies and grouped by breed1

Item

Weighing frequency

All weights, 
 2.5/d

AM weights, 
1–2/d

PM weights, 
1–2/d 1 per 2 d 1 per 4 d 1 per 6 d 1 per 12 d  

Holstein, n = 23
 First positive EBbody, d, constant RGF 46.7 (20.7) 47.2 (26.0) 45.1 (24.6) 47.5 (26.3) 46.6 (25.4) 52.9 (28.4) 53.1 (32.5)
 First positive EBbody, d, dynamic RGF 52.6 (17.9) 55.7 (19.7) 51.2 (20.2) 53.0 (21.6) 55.1 (23.9) 64.7 (27.3) 63.5 (29.8)
Jersey, n = 14
 First positive EBbody, d, constant RGF 59.2 (22.9) 64.7 (26.3) 56.9 (30.6) 54.7 (30.7) 62.4 (26.8) 59.1 (37.7) 66.1 (32.9)
 First positive EBbody, d, dynamic RGF 63.6 (19.5) 70.4 (18.8) 68.6 (18.7) 67.0 (17.8) 71.0 (18.7) 73.8 (23.1) 78.6 (22.5)  
1Eleven cows returning to positive EBbody later than 100 DIM were omitted (Danish feeding trial data, n = 37 cows).
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significantly on mean residual BW and RSD of BW, 
so the diet effect on mean residual and RSD of BW 
observed in the spring relates to something that goes 
across the herd, and thus is not indicative of the ability 
of the method to deal with diet changes.

Weighing Frequency

In herds that do not weigh the cows at each milking, 
the frequency of observations may produce very smooth 
curves that lack important details, if detection of health 
issues is the focus. The frequency of weight observa-
tions did, as expected, influence days to first positive 
EBbody, particularly for the Holstein cows, which have 
a steeper BW loss during early lactation. Indeed, 
weighing the cow at least once every 4 d during early 

lactation seemed to be required to properly capture 
the duration of the negative EBbody period. Thus, while 
the EBbody method can still detect the general pattern 
through lactation when weighing frequencies are low 
(Figure 4), there is a clear trade-off between short-term 
precision and decreasing weighing frequency. Another 
study recommended that cows are weighed every day to 
detect the onset of sudden disease or estrus and to use 
a rolling average of 7 d for management purposes such 
as adjustment of the herd feeding program (Alawneh 
et al., 2011).

Meal-Related Gut-Fill Variation

Our analysis indicated that if smoothing created an 
offset larger than 4 kg from the reference, we started 

Figure 5. Mean BW (kg) relative to days from diet change grouped by diet. Curves are LOESS smoothed with SE shown. Full line: perma-
nently housed cows; dashed line: seasonally grazing, season and genetic merit. For number of cows in each group, see Table 1. A vertical line 
marks the day of diet change (Scotland’s Rural College data, n = 192 periods).
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to move away from the concept of adjusting for meal-
related gut-fill. Our analysis also revealed that the 
DES method was fairly robust to the chosen smooth-
ing parameters, as seen by their low effect on the level 
of noise. The asymmetric smoothing principle was a 
way to adjust for meal-related gut-fill, and the pres-
ent analysis did not make us question that principle. 
The choice of smoothing depends on the purpose. For 
instance, the farmer may be interested in detecting 
short-term changes in BW in real time because these 
may be associated with health problems. In that case, 
the DES approach may be best suited. On the other 
hand, if long-term trends in EBbody are of interest, for 
instance to help decide when to inseminate a cow, as-
sist in culling decisions, or for phenotyping, the QR 

smoothing approach may be the better choice. Other 
approaches to modeling EB throughout lactation have 
been explored (Banos et al., 2005).

Residual Gut-Fill Variation

The simplifying assumption that RGF is constant 
throughout lactation made in Thorup et al. (2012) ig-
nored the systematic rise in intake in early lactation. 
Therefore, we compared a BW correction for RGF, 
which assumed a constant gut-fill relative to DIM, with 
a dynamic correction, which assumed an exponential 
relationship between gut-fill and DIM. This exponential 
relationship was constructed to reflect the systematic 
rise in intake in early lactation. We found that early 

Figure 6. Observed BW minus fitted BW (kg) relative to days from diet change, grouped by diet (permanently housed; seasonally grazing) 
and season (autumn; spring). A vertical line marks the day of diet change (Scotland’s Rural College data, n = 31,622 weight observations).
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lactation EBbody will be more negative using the dy-
namic RGF correction method by on average −9.23 and 
−10.7 MJ/d for Jersey and Holstein cows, respectively, 
at 7 DIM, as compared with −19.1 and −4.80 MJ/d for 
Jersey and Holstein cows, respectively, using the con-
stant RGF correction method. The difference between 
the 2 methods tailed off to −0.64 and −0.97 MJ/d for 
Jersey and Holstein cows by 70 DIM. Consequently, 
the use of a constant RGF slightly underestimates the 
extent of negative EBbody during early lactation, which 
was evident for both Holstein (compare Figures 4A and 
4C) and Jersey cows (compare Figures 4B and 4D). 
Therefore, we recommend the use of the dynamic RGF 
correction. An important aspect of this dynamic RGF 
is that despite being time related, it does not require 
the measurement of feed intake.

Collectively, the tests of the EBbody method’s robust-
ness suggest that it can be deployed across a relatively 
wide range of farms and feeding systems provided there 
is at least one BW measurement per 4 d. The sensi-
tivity testing suggests that the method is not overly 
sensitive to the smoothing assumptions. An additional 
element of sensitivity, namely the values of the coef-
ficients used to convert BCS into body lipid proportion, 
was evaluated in Thorup et al. (2013) and showed that 
the method is applicable across farms that use similar 
BCS scales, even if there are local observer differences.

Calculating EBbody from BW and BCS

Thus, with the testing presented in this study, EBbody 
is robust enough to provide estimates of true EB in 

Figure 7. Mean residual BW (BW, kg) and residual SD of BW (kg) relative to diet change (d) grouped by diet (permanently housed; sea-
sonally grazing) and season (squares: autumn; circles: spring), derived from model M1. A vertical line marks the day of diet change (Scotland’s 
Rural College data, n = 31,622 weight observations).
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the real-world conditions that apply beyond research 
stations. As well as providing herd or group average EB 
trajectories for benchmarking and herd-level advice, 
the differences between individual cow EBbody may well 
be useful for farm managers. Accordingly, we have pro-
vided a blueprint in the shape of a flowchart (Appendix 
A) and the required equations (Appendix B) allowing 
users to choose the equations they need for calculating 
EBbody depending on the desired output. Nonetheless, 
this blueprint is likely to need an automated decision-
making tool to become used on farm. A very simple 
approach could be one that alerts when a cow fails to 
reach a positive EBbody within a set period of, say, 50 
DIM. However, putting this into operation was outside 
the scope of the present paper; any company or techni-

cal institute with the skills and resources is free to do 
so.

CONCLUSIONS

With this study, we tested various aspects of sensitiv-
ity and robustness of our estimation of EB from BW 
measures and found no reason to doubt its functionality 
across a broad range of real-world conditions. Further, 
we provided a blueprint that allows the estimation of 
EBbody for individual cows on farm using only frequent 
BW in combination with BCS when available. Future 
studies should strive to establish a link between the 
predicted EBbody and disease or production outcomes 
(or both) in larger data sets.

Figure 8. Mean BW change per day (kg/d) across lactation at 50% quantile regression (QR) relative to mean BW change per day (kg/d) 
across lactation at 20% QR. (A) Mean per farm (n = 9 farms); (B) mean per cow (n = 1,592 weight observations). Full: regression line; dashed: 
unity line (automatic milking system data). Shaded area indicates confidence limits. Letters A to I indicate different farms.
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APPENDIX A

Figure A1. Flowchart of how to calculate EBbody from BW and BCS. EB = energy balance; EBbody = EB estimated from frequent measure-
ments of BW and BCS changes; RGF = residual gut-fill; ∆BL = rate of change in body lipid.
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APPENDIX B

B1. Adjust BW for milk in udder to get a milk-free BW, BWmf (Thorup et al., 2012):

 BWmf = BWoriginal – milk weight at the previous milking. 

B2. Clean BWmf by removing outliers:
Each new observation of milk-free BWmf is compared with the mean of the previous 2 observations, and values 

differing by more than ±50 kg are disregarded.
B3. Smooth BW using DES to get short-term changes (Thorup et al., 2013). This smoothing produces a 

rather noisy BW, which requires EBbody to also be smoothed, see B12. To derive a meal-related gut-fill-free BW, 
a process in 2 steps is followed:

 (1) single-exponential smoothing (SES) of data y1, y2,… with smoothing parameter w, where 0 < w < 1, was 
defined as S = St−1 + w(yt – St−1); w is the smoothing parameter, yt is the observed value at time t, and 
St is the smoothed value at time t.

 (2) double-exponential smoothing (DES) was obtained by applying the SES scheme to the smoothed values St. 
We used a modified DES procedure as follows: when the difference (yt – St−1) was negative, the smoothing 
parameter was w = 0.08, and when (yt – St−1) was positive, w = 0.02. Due to this asymmetric weighting, 
the smoothed curve follows a lower trajectory than it would have if positive and negative differences had 
been weighted equally (i.e., symmetrically). This downward bias is a means to minimize the influence of 
meal-related variation in gut-fill on the smoothed BW.

R-code:

source ('ESmoothFUN.R') # Function available in dataIrony on GitHub repository (Højsgaard, 
2018). 
α.w <- c(0.02, 0.08) 
α.b <- 0.02 
smooth.w <- .DES 
smooth.b <- .SES 
wthres <- 50 # Cleaning threshold = mean of previous two observations +/−50 kg 
wdL <- splitBy(~COWID, data = BW.df) 
smooth <- 
 lapply(wdL, function(wd){ 
  wd <- wd[seq(1, nrow(wd), by=1), ] 
  wd$tfc <- as.numeric(with(wd, WeighingTime - as.POSIXct(LactationStart))) 
  tvar <- wd$tfc 
  yvar <- wd$BW 
  ss1 <- smooth.w(yvar, tvar, α=α.w) 
  wd$BWfitDES <- fitted(ss1) 
  wd 
})

B4. Smooth BW using QR to get long-term trends, described in (Thorup et al., 2012):
Quantile regression using the 20% lower quantile of the distribution in a cubic spline function with 10 equidis-

tant knots between 1 and 305 DIM, as opposed to the nonequidistant knots at 1, 12, 20, 60, 115, and 150 DIM 
used in Thorup et al. (2012), where only the first 150 DIM where analyzed.

R-code:

for (this.lact in all.lacts) { 
 cow.data <- BW.df[lacts==this.lact, ] 
 number.knots <- 10 # Specifying 10 equally spaced knots 
 spacings <- seq(from=min(cow.data$tfc), to=max(cow.data$tfc), length=number.knots+2)[2:(num-
ber.knots+1)] 
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 X <- model.matrix(BW ~bs(tfc, knots=spacings), data=cow.data) 
 tau <- 0.2 
 fit <- rq(BW ~bs(tfc, knots=spacings), tau=tau, data=cow.data) 
 cow.data$BWfitQR <- as.numeric(X %*% fit$coef) 
 BW.df[lacts==this.lact, ] <- cow.data 
}

B5. Adjust BW for pregnancy (i.e., gravid uterus; Equation [2] in Thorup et al., 2013), adapted from Martin 
and Sauvant (2010):

 Wfetal = ω × exp{−ln[ω/CBW/(1 − e−α × GL) × (1 − eα × dfcon)]} 

 GU = (Wfetal/0.58)/1,000. 

Calculate days from conception (dfcon). If birth date of future calf is unknown, dfcon can be estimated as current 
calving date plus 400 d minus length of gestation period (GL) of 282 d (i.e., current calving date + 118 d). CBW 
= calf birth weight (Holstein = 44,000 g, Jersey = 29,000 g), ω = 3.5 × 10−6 kg is the initial value of fetal growth, 
α = 0.0111 is the rate of decay of fetal growth rate (no unit), Wfetal = weight of fetus (g), assumed to make up 
58% of the weight of the gravid uterus (GU, kg).

B6. Adjust BW for dynamic RGF (Equations [1] and [2], present study):

 RGF = 0.1196 × (1 − e−0.05×DIM) + 0.1404, 

where 0.1196 = (a + c) is the asymptote, −0.05 = b is the rate of decay of RGF growth rate, and 0.1404 = c is 
the level of proportionate intake at lactation start.

B7. In the case of infrequent BCS, smooth BCS using this log-Woods model:

 BCS = (BCS1 × parity × breed)lm + (DIM × parity × breed)lm + log(DIM) × BCS1, 

where BCS1 is the observed BCS at one DIM, parity (l = 1, 2, 3+), breed (m = Holstein, Jersey, Red), and DIM 
(continuous).

B8. Smooth BCS using DES for frequent BCS: same procedure as in B3.
B9. Calculate EBbody from BW when BCS are available (Equation [6], Thorup et al., 2012):

 EBbody (MJ/d) = z × [a × ∆EBW + b × ∆(EBW × BCS)] + y × k × [(1 – a)   

× ∆EBW – b × ∆(EBW × BCS)],

where constant a = 0.05 kg of lipid/kg of EBW, b = 0.10 kg of lipid/kg of EBW/unit of BCS, k = 0.2224 kg/
kg is the protein content of lipid-free EBW, y = 13.5 MJ/kg of mobilized and 50.0 MJ/kg of deposited protein, 
respectively, and z = 39.6 MJ/kg of mobilized and 56.0 MJ/kg of deposited lipid, respectively.

B10. Calculate EBbody from BW when no BCS are available (Equation [4], Thorup et al., 2013):

 ∆BL = ∆EBW − ∆BPstd/k. 

B11. Calculate EBbody when no BCS is available (Equation [8], Thorup et al., 2013):

 EBbody = z × ∆BL + y × ∆BP, 

where k = 0.2224 kg/kg, ∆BL = the rate of change in body lipid, z = the energy associated with BL change, and 
y = the energy associated with body protein change. Standard body protein change (∆BPstd) can be estimated 
for Holstein and Jersey cows using Table 3 in Thorup et al. (2013).

B12. Smooth EBbody double-exponentially, if BW was smoothed double-exponentially: same procedure as in 
B3.
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