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Abstract The efficient use of digital manufacturing data is 
a key leverage point of the factories of the future. 
Automatic analysis tools are required to provide smart and 
comprehensible information from large process databases 
collected on shopfloor machines-tools. In this paper, an 
original and dedicated approach is proposed for the data 
mining of HSM (High Speed Machining) flexible 
productions. It relies on an unsupervised learning (by 
statistical modelling of machining vibrations) for the 
classification of machining critical events and their 
aggregation. Moreover, a contextual clustering is suggested 
for a better data selection, and a visualization of machining 
KPI for decision aiding. It results in new leverages for 
decision making and process improvement; through 
automatic detection of the main faulty programs, tools or 
machine conditions. This analysis has been performed over 
two spindle lifespans (18 months) of industrial HSM 
production in aeronautics and results are presented, which 
assess the proposed approach. 

Keywords: Monitoring, Machining, Data mining. 

1. Introduction 

A huge and increasing amount of digital data is generated 
in every industry and business area, and conducts to Big 
Data challenges [1]. If collected, the manufacturing data 
contains valuable information and knowledge that enables 
the improvement of decision making and productivity. The 
huge amounts of data in manufacturing databases, which 
contain large numbers of records, with many attributes 
that need to be simultaneously explored to discover useful 
information and knowledge, make manual analysis 
impractical [2]. Intelligent and automated data analysis 
methodologies are therefore needed. 

Concerning machining, abundant digital data is also 
available in modern shopfloors. Most of data is not 
collected (notably real-time data for machine-tool control) 
or remains almost unused, whereas it is key leverage point 
for process improvement. In an Industry 4.0 approach, 
data from the CNC (Computer Numerical Control) and from 
additional sensors can be collected. Indeed, the CNC 
contains interesting information, concerning for example 
the speed and power consumption of spindle and axes, the 
current cutting tool and program, etc. It can be collected in 
the HMI [3], by field bus [4] or through standard protocols 
such as MTconnect [5] and OPC UA [6] (which enable 
interoperability). 

Additional sensors also provide useful in-process 
information, as classically for Tool Condition Monitoring 
[7][8][9][10]. Then, advanced signal processing is 
performed; such as wavelet transform [11], statistics [12], 
mechanical model [13], Artificial Intelligence (e.g. neural 
network [14]) or Machine Learning (e.g. Bayesian network 
[15], support vector machine [16]). But the learnings (in 
machining literature) are always supervised and based on 
a limited number of cutting tests performed in laboratory 
[9][17]. No approach was conducted on months of data 
issued from real industrial HSM productions, with their 
very wide variety of workpieces and tools engagements 
(several thousands). It would be much more arduous and 
require an unsupervised learning. Indeed, generally, 
machining incidents (chatter occurrence or tool breakage) 
cannot be collected in HSM companies. Besides, most 
studies focus on tool monitoring and do not deal with HSM 
process improvement, whereas it could be an input. 

Several research projects are developing solutions for in-
process monitoring and data collection [18][4]. Others 
focus on post-machining workpiece inspection data [19]. 
Different architectures are proposed for the management 
of process digital data at shopfloor level [20][21]. 
However, there is a lack of data mining approach to answer 
to the HSM specific questions [9]. The main issues concern 
productivity and workpiece quality. General performance 
indicators, based on smart shopfloor data, are missing to 
ease the improvement of HSM process. It is particularly 
true for HSM flexible productions. For example, in 
aeronautics, several machines-tools produce a very large 
variety of high added value parts, with a large number of 
tools, during very long machining operations (several 
hours). In that case, it is difficult to identify the main cause 
of machining incidents that decrease productivity or 
quality. Therefore, a global approach based on HSM in-
process data is suitable. Moreover, since a large amount of 
data needs to be considered; it makes impossible a manual 
analysis and requires a data mining approach. 

 
In this paper, a new data mining method for the 

continuous improvement of HSM flexible production is 
introduced. The in-process monitoring and data collecting 
device is presented. After data selection by contextual 
clustering, a new data aggregation method dedicated to 
machining vibrations is proposed, in order to reveal the 
machining critical events. It relies on new monitoring 
criteria based on mechanical models and on their 
unsupervised learning through statistical modelling. Key 
Performance Indicators (KPI) for the cutting tool, program 
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and machine-tool and their visualization are then 
proposed. Lastly, the new data mining method is applied to 
an industrial HSM production database and results are 
presented to validate the approach.  

 

 
Figure 1. Data mining method. 

2. Data mining method for HSM 

The proposed method for data mining in HSM follows 
four steps (Fig.1) which lead to the computing of KPI for 
the process continuous improvement. The first step 
collects the data. The second one is the data selection by 
contextual clustering. The third one aggregates data with 
new operators and thresholds determined by statistic 
modeling. The last step computes KPI from the aggregated 
data in order to identify the main faulty elements. 

 
2.1. Process monitoring and data collection  

 
A specific monitoring system was developed to perform 

the in-process monitoring and data collect, called 
EMMAtools (Fig. 2). Four accelerometers are integrated 
into the spindle, at the front and rear bearings, along the 
two radial directions. Vibration signals are measured with 
a National Instrument 9234 acquisition card at a sampling 
frequency of 50 kHz.   

 
Beside the monitoring criteria, the system is connected to 

the CNC of the machine-tool by field bus. It collects 
complementary information related to the machining 
context (ID of tool and workpiece program; actual spindle 
speed N, spindle power P, feedrate Vf …). The system 
records about one hundred parameters every 0.1 s, 
corresponding to 100 Mo of industrial data per day, during 
the whole spindle lifespan. 

 
 

 
Figure 2. Device for process monitoring and data collection. 

  
In order to avoid excessively big database, online signal 

processing is carried out, every 0.1 s on samples of 5000 
points. The root mean square of the vibration velocity 
(VRMS) is calculated and provides information concerning 
the vibration level during machining. Two machining 
monitoring criteria and one maintenance criterion, defined 
below, are also computed online. 

 
Detection of chatter Nh: Chatter is an instable cutting 

phenomenon that involves unacceptable quality defect (of 
waviness) on the workpiece surface. In order to develop a 
new criterion to detect chatter a complementary 
experimental study was carried out. Cutting tests were 
performed at different spindle speeds and depths of cut in 
order to obtain chatter (on a Huron machine-tool with a 
24 000 RPM Fischer spindle and 20mm carbide tool in 
aluminium alloy). The analysis of the vibration spectrum 
reveals that, in presence of chatter, new contributions 
appear at non-harmonic frequencies (of the spindle speed). 
Figure 3 presents an example of frequency spectrum of 
these instable cuts. Harmonic frequencies (in orange) are 
synchronous with the spindle rotation frequency and the 
tooth passing frequency; whereas non-harmonic ones can 
be related to chatter (in blue) or bearing fault frequencies 
(BPFO in green and yellow). 

 

 
Figure 3. Example of frequency spectrum of instable 

machining (orange: harmonic frequencies of spindle speed ; 

other colours: non-harmonic frequencies). 
 
Based on these mechanical aspects, the criterion for 

chatter detection, noted Nh, is therefore proposed as the 
sum of the amplitudes of the five dominant non harmonic 
contributions of the vibration spectrum. To do so, the 
frequency spectrum is computed by Fast Fourier 
Transform (FFT) and order tracking is performed (through 
the measured spindle speed) in order to classify the 
harmonic and non-harmonic frequencies. An example of 
computation of Nh criterion is shown in Fig.4. Two 
successive milling operations were carried out (between 
the dotted lines) and the vibrations were measured. The 
first one is a stable cut, whereas chatter appears during the 
second one. The red line shows VRMS and indicates when 
there is a machining, and the blue line corresponds to Nh 
criterion, that successfully detects chatter. Applied to 
around 20 cutting tests in laboratory, the criterion was 
shown reliable. 



 

 
Figure 4. Test of chatter criterion. 

 
Detection of tool failure Ub: For this study, two HSM 
databases have been studied to find a criterion that detects 
tool failure. A tool breakage conducts to an increase of the 
mechanical unbalance of the tool, which can be estimated 
by the vibration amplitude at the spindle frequency. The 
new criterion Ub is thus defined as the amplitude of the 
contribution at the spindle frequency, monitored in the 
vibration spectrum by order tracking. Ub criterion is 
evaluated when the spindle is rotating without cutting, to 
prevent from disturbances due to cutting forces. This 
versatile monitoring enables reliable tool failure detections 
during the data mining. Fig. 5 presents the results of the 
monitoring of 350h of industrial production, considering a 
given tool (32mm diameter, 2 teeth). Green lines and 
vertical black lines show the tool changes (because of wear 
or breakage), red and blue lines are the Ub criterion 
computed accelerometers located at the rear and front 
bearings of the spindle. Three tool failures can be seen on 
this graph at 40h, 225h and 255h. It was confirmed by 
further analyses in the database. Consequently, Ub 
criterion is validated for tool failure detection and will 
hence be used for the data mining in this paper. 

 
Figure 5. Test of tool failure Ub criterion. 

 
Spindle condition monitoring: a vibration signature is 

performed once a day (during idle rotations, at the same 
machine position and steady state operating temperature 
and with the same tool), during which vibrations are 
measured to evaluate the spindle condition. The spindle 
condition is evaluated through the bearing fault vibrations 
that appear at specific frequencies in the spectrum when 
an element of the bearing is damaged. It is a classical 
technique for condition-based maintenance [4]. The 
criterion for the monitoring of spindle condition, noted 
BPFO, is defined as the amplitude (in m/s²) of the 
contribution at Ball Pass Frequency of Outer ring. It is 
obtained by order tracking in the frequency spectrum. The 
BPFO frequency is easily computed from bearing geometry. 

 
2.2. Contextual clustering  

 
In order to increase the reliability of the analyses, a 

contextual clustering is performed. Indeed, accurate and 
sensitive monitoring criteria, as defined in the previous 
section, are only relevant in a given context. For example, 
the monitoring criterion for cutting stability Nh is only 
relevant during cuts and would lead to misinterpretations 
during idle rotations.  

The evolutions of raw data of N, Vf and P are analysed and 
conduct to contextual information. The spindle rotation 
and feedrate can be steady, transient or null. The tool can 
be removing material or not, with steady or transient 
cutting conditions. These different states are determined 
through thresholds, initially tuned in relation to the natural 
variability of N, Vf and P observed on a given machine-tool. 
They constitute new contextual attributes in the database. 
Besides, the tool and program IDs are also considered as 
contextual information. They enable data selection in a 
given context, forming new clusters. 

In this way, the contextual clustering consists in the 
selection, in the database, of all the values of a given 
variable for a given machining context (for example, the 
unbalance Ub of a given tool during idle rotations, over a 
complete spindle lifespan). 

 
2.3. Data aggregation  

 
Data aggregation is the major issue. From the hundreds 

of gigaoctets of machining data, a few smart and 
comprehensive information need to be computed. 

In the monitoring system, criteria are computed for each 
of the four accelerometers. In order to decrease the 
number of variables, resultant of criteria are computed by 
bearings. Finally, the mean of front and rear resultants of 
each criterion is retained for further analysis. The 
following equation illustrates the aggregation of all the 
accelerometers for Nh criterion. Xav and Yav refer to 
accelerometers at front bearing in both radial directions X 
and Y. Xar and Yar refer to accelerometers at rear bearing 
in radial directions. 

 
 

 
Figure 6. Data organization for the aggregation. 

 

A data structure is needed to perform the analysis (Fig.6). 
This structure is composed of 4 levels (raw real-time data, 
tool call, workpiece program and day). The raw machining 
data of each criterion is aggregated into a single value for 



each of the three higher levels of the data organization. To 
do so, aggregation operators are needed. 

Those operators can be simple statistic ones, like the 
average, standard deviation or peak value of a given signal, 
during a given period. In this paper, a new operator is 
proposed. It was notably developed to aggregate the 
criteria of machining vibration. In this case, a simple peak 
or mean value is not relevant enough because machining 
events, which are short in time, are hidden by other data. 
The idea of the aggregation operator is to sum only the 
critical data, i.e. the data overpassing a given critical 
threshold in order to highlight critical machining events. 

The Criticality Operator (CO) takes into account the time 
and the amplitude over a given threshold. Let 
Xi={xi(k), k=0..n} the time series representing an ith 
monitoring criterion. The operator is defined as: 

 
 

with Ti the critical threshold, ti and tf the initial and final 
time of the considered period and dt = 0.1s the sampling 
period. A second operator T is proposed. It evaluates the 
time during which a criteria is exceeding the critical 
threshold.  

 

 
Figure 7. Aggregations of VRMS with 2 different critical 

thresholds (TVRMS). 

 
Figure 7 illustrates the criticality operator applied to 

more than 5 months of vibration levels VRMS during 
machining. It is shown that, in relation to the value of 
critical threshold TVRMS that is chosen, different events are 
revealed: long event of moderate intensity (100th, 145th 
day) vs. short but severe event (129th, 141st day). If the 
critical threshold is too low, events of moderate intensity 
become normal machining conditions.  

A Machine Learning of the critical threshold is thus 
suitable. Unfortunately, in industry, it is generally not 
possible to collect labeled training data, such as the few 
exact instants were chatter occurred (during machining 
operations of several hours) and the operators cannot 
spend time in collecting manually such data. Consequently, 
an unsupervised learning is required, for the classification 
in two different populations: effective faulty population 
and normal machining population. A statistical approach is 
proposed in this paper for the self-calibration of the critical 
thresholds, in relation to the process natural variability. 

The normalized histogram of each criterion is calculated 
from the data selected by contextual clustering over a long 
period. The logarithm of the histogram is computed in 

order to emphasize the critical values which may reveal 
the very rare faults. Then, a Maximum Likelihood 
Estimation (MLE) algorithm is computed to fit Probability 
Density Functions (PDF) on each histogram. The statistical 
model that was chosen is a mixture model of General 
Extreme Value function (GEV) with two components. The 
GEV function was chosen because it represents a system in 
which extreme values are accentuated. Two components 
are necessary in order to model respectively the natural 
noise and the expected but infrequent events. Fig. 8 
presents a histogram of Nh criterion for chatter, 
considering the first spindle lifetime. The result of 
distribution fitting is in agreement with experimental data. 
The two GEV components suggest two populations of cuts: 
with (D) and without (C) chatter. Similar results are 
obtained with other criteria, which validate the statistical 
model. The critical threshold is then chosen as the abscise 
value where the two GEV functions cross, i.e. the point that 
statistically minimizes the classification errors (A and B) 
between the two populations [22]. In the example, a critical 
threshold TNh of 20m/s² is found. 

 
Once the critical threshold is tuned, the aggregation can 

be computed. The contextually selected data of a given 
criterion is aggregated by an operator (CO or T) with the 
dedicated self-tuned threshold. Aggregated data consist in 
a limited number of relevant information that enables 
analyses and the evaluations of Key Performance 
Indicators (KPI).  

As an example, let us illustrate the procedure with the 
CO[Nh>20m/s²] aggregation per tool. The first step is the 
computation of Nh from raw machining data for each 
accelerometer. Second step is the aggregation of the Nh 
criterion on the four accelerometers with the equation 
shown before. The third step applies the CO operator for 
each call of a given tool in the database, with TNh threshold 
learnt by the GEV statistical model (Fig. 8). Finally, the 
results can be summed for a given tool; and compared to 
the other ones in order to know the contribution of each 
tool on chatter issues (Fig. 10).  

 
Figure 8. Chatter Nh histogram, with double GEV fitting 

(black), composed of natural noise population (green) and 

chatter population (red). 
 

2.4. Evaluation of KPI  
 
In this study, three kinds of events are mainly 

considered: the occurrences of chatter, tool failures and 
excessive vibration levels. They are respectively revealed 

Critical threshold 
(TNh) 

Different events detected 



by the criteria Nh, Ub and VRMS, when their critical 
thresholds are exceeded.  

Three faulty elements are responsible for these events: 
the cutting tool (tool failure or inappropriate cutting 
conditions), the workpiece program and the spindle 
condition. The effects of these faulty elements are generally 
coupled and difficult to identify when the numbers of tools 
and programs are very large, like for flexible productions. 
In order to be able to perform a continuous process 
improvement, it is important to identify the main faulty 
elements. To do so, an analysis of the recurrence of the 
problematic events is carried out, through Key 
Performance Indicators. Then, similarly to Pareto 
approach, results are sorted and the more recurrent faulty 
elements are identified. 

A particular attention should be paid to the accurate 
selection of aggregated data, at this stage. A sequence is 
proposed, to firstly detect spindle condition issues, then 
tool ones and lastly program ones. In this way, for example, 
it is possible to select the data related to a given program, 
without considering a given tool which is henceforward 
known for its inappropriate cutting conditions.  

3. Results and discussion 

The new data mining method was then implemented 
with a real industrial database. Machining data were 
collected for one year and a half, during two whole spindle 
lifetimes, on a machine tool equipped with EMMAtools 
monitoring device, in an aeronautic company that 
machines structural parts of aluminum alloy.  

In order to illustrate the data, visualizations are 
presented. The 39 Go database is composed of 426 days; 
80 different tools were used for the machining of 534 
workpiece programs.  

The database corresponding to the first spindle lifetime 
was used to determine the critical thresholds Ti of the 
monitoring criteria by unsupervised learning through the 
statistical modeling; enabling data aggregation. A 
visualization of the results of the new data mining method 
dedicated to HSM is presented below (following the 
proposed sequence of analysis and applied to the two 
spindle lifetimes database). Results are helpful for the 
continuous improvement of HSM productions. 

 
3.1. Machine tool performance  

 
The impact of the machine-tool condition on the 

production was studied. The spindle condition was 
estimated by BPFO and the daily vibration signatures. 
Fig. 9 shows the evolution of BPFO (in orange) along two 

complete lifetimes of spindle (in one in each graph). The 
critical occurrences of chatter, revealed by the 
aggregations CO[Nh>20m/s²] of chatter criterion Nh for 
each tool call (in relation to the learnt critical threshold 
TNh=20m/s²), are also plotted (in blue). The example 
highlights that more chatters occur at the end of life of the 
two spindles. It means that the spindle condition has 
decreased the stability limit of some tools, which also 
confirmed by complementary dedicated tests and 
simulations [23].  

 
Figure 9. Influence of spindle condition on chatter 

occurrences for tool n° 22, over two spindle lifetimes. 

 
 

3.2. Cutting tools performance 
 

The tools performance is firstly analyzed without 
considering the spindle end of life that modifies the in-
process behavior, i.e. corresponding data are not selected. 
The occurrences of chatter are aggregated with 
T[Nh>20m/s²] for every call of a given tool, during cuts 
only. From the total duration of chatter, the contribution of 
a given tool is expressed as a percentage. Similarly, the 
vibrations levels are aggregated with T[VRMS>7mm/s] for 
every tool call; but without selecting the chatter 
occurrences and tool failures (in order to avoid 
redundancy of the detection). In this way, the KPI reveals 
the excessive forced vibrations of a given tool during cuts 
(that might damage the spindle). Lastly, the number of 
failure of a given tool is counted, with CO[Ub>7.25m/s²]. 
Ub is only calculated on a contextual cluster defined by 
non-cutting and steady spindle rotating phases. 



 
The results are presented in Figure 13, for each tool ID. 

On this bar graph, it is noticeable that a few tools are 
involved in most of the machining issues. Most of them can 
be solved by optimization of the cutting conditions. Note 
that the tool issues should be solved before modifying any 
workpiece program involved in the detected problem.  

 

 
Figure 10. Pie charts representing the chatter occurrences ratio 

per tool, with and without selecting data from the spindle end 

of life. 

 
The pie charts in Figure 10 show the contributions of the 

different tools in chatter occurrences, if the data related to 
the spindle end of life is considered or not. It reveals the 
main faulty tools are not the same. The tool n°22 that 
presents limited problems when the spindle is in good 
condition is the most concerned tool by chatter issues 
when the spindle is worn. It was significantly affected by 
the evolution of the tool-spindle dynamic behaviour which 
has modified the stability limit. 
 
3.3. Workpiece programs performance  

 
In this section, data related to tools previously identified 

as faulty and chatter occurring during spindle end of life, is 
not selected for the aggregation. In this way, workpiece 
faulty programs can be detected. 

The two pie charts presented in Figure 11 show 
workpiece programs that should be promptly modified. 
The half of the time with excessive vibrations can be solved 
by programing again only three references: n°149, 94, 142 
(Fig. 11a); and 6 programs should be modified to obtain 
the same improvement rate concerning chatter (Fig. 11b).  

 

 
Figure 11. Pie charts representing the faulty workpiece 

programs in terms of excessive forced vibrations (a) and 

chatter (b). 

 
3.4 Production performance 

 
There is a strong industrial interest for the rate of 

machine use. Note that the factory where data were 
collected works in a three-shift system, five days a week. 
The contextual clustering enables to determine when the 
machine-tool is stopped (in red) or moving; and removing 
material or not (in pink). Then, during machining, cutting 
tools dedicated to rough or finishing milling operations can 
be aggregated separately. In this way, the real rate of 
machine use can be obtained (see Fig. 12) 

It can be noticed that only 38% of the spindle lifetime has 
been spent in machining. The total times of rough and 
finish milling operations are relatively similar. 

  
Figure 12. Machine use rate during the complete spindle 

lifetime. 

4. Conclusion 

In this paper, a new data mining method is proposed for 
the continuous improvement of HSM flexible productions. 
It relies on an unsupervised learning (by statistical 
modelling of machining vibrations) for the classification of 
machining critical events and their aggregation; the 
contextual clustering for a better data selection; and the 
visualization of machining KPI for decision aiding.  

Firstly, the data collection device was presented. New 
machining mechanics-based monitoring criteria were 
defined for the detection of chatter, tool failure and 
excessive vibrations. A contextual clustering enables a 
more relevant data selection, based on natural variability 

Figure 13. Ratios per tool for failures, durations of chatter and excessive cutting vibrations (in order to highlight faulty tools). 

 



of the process. A new operator was proposed for the 
aggregation of machining vibrations, based on a critical 
threshold. It is self-tuned by statistical modelling (by MLE 
with 2 GEV components).  

Then, it automatically evaluates machining Key 
Performance Indicators from aggregated data. Lastly, 
recurrent events are analysed in order to reveal the main 
faulty elements to enable process improvement and 
decision making. 

The method was then applied to two industrial HSM 
databases of 18 months. It notably revealed the impact of 
spindle condition on cutting stability. It also highlighted 
the main faulty tools and workpiece programs, as well as 
the machine use rate. 

As a perspective, this machine learning method could be 
extended for real time monitoring and predictive 
maintenance. 
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