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Abstract High Speed Machining spindles are high pre-
cision mechanisms with a complex and very sensitive
behavior. Frequency Response Functions are required
to avoid unstable cutting conditions that lead to pre-
mature failure of spindle and tool. However, FRFs are
affected by stiffness loss of the bearings at high speed.
Indeed, the rotor’s behavior is driven by its boundary
conditions which are the preloaded bearings. In order
to obtain an accurate model of the preloaded bearing
system, this paper focuses on the axial spindle behav-
ior. An analytical model that computes the equilibrium
state of the shaft, rear sleeve and bearing arrangement
is presented. A model enrichment method is presented
with several new physical phenomena: the macroscopic
deformations of the shaft and bearing rings as well as
the rear sleeve’s complex behavior. The significance of
these phenomena is evaluated with a sensitivity analy-
sis and used for the model updating, to obtain a just
accurate enough model. The contributions of these en-
richments are presented for a case study performed on
an industrial spindle. A good agreement between the
simulation and the experimental results are achieved
that validates the model updating strategy and the phe-
nomenologically enriched model.
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1 Introduction

HSM spindles are used for the machining of advanced
and high value parts, such as aircraft structural parts. A
good understanding of the spindle dynamics is required
to optimize the machining process and to avoid vibra-
tions that affect the quality of machined parts and the
lifetime of the spindle. The simulation approach is of in-
terest to find optimal cutting conditions, compared to
long and expensive experiments. Numerical simulation
can also lead to a better understanding of the complex
phenomena involved in the spindle dynamics.

A complete model to predict the dynamic behav-
ior of spindles is usually composed of a rotating shaft
model and of a bearing model. Most of the rotating
shaft models found in the literature are based on 1D
Finite Element with beam theory: Euler Bernoulli or
Timoshenko [5, 9, 16]. 3D Finite Element model can
also be found [26].

A major part of HSM spindles is equipped with an-
gular contact ball bearings. They play an important role
in the global spindle behavior, especially due to the dy-
namic effects on balls [1, 5, 6, 8, 15]. Bearing model gives
the relation between the global load and the global dis-
placement of the bearing [12, 21] and therefore the bear-
ing stiffness. An accurate bearing stiffness is crucial in a
model as it has a great impact on the spindle frequency
response function [24]. Five degrees of freedom (DoF)
model of bearing that consider dynamic effects on balls
were developed by Jones [14]. This bearing model were
included in spindle models and lead to interesting re-
sults [5]. A new method for the stiffness matrix compu-
tation that includes the dynamic effects was presented
in [19]. The radial expansion of the bearing ring due to
the centrifugal force as well as the thermal effects was
added to the model in [4, 26].
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Angular contact ball bearings are mounted into spin-
dles with a preload, whose value has a great influence
on bearing stiffness [6] and therefore on the spindle be-
havior [20, 23, 25, 27]. Two types of preload system
exist: rigid and elastic ones. The latter is composed of
springs used to apply the preload force. Contrary to the
rigid preload, it is less sensible to thermal effects and
the preload force varies less with speed. They are com-
pared in [3]. It was shown that spindle systems with
rigid preload have higher stiffness than systems with
elastic preload. However, it is not suitable for hot rotors.
Indeed, the motor causes thermally induced preload in-
crease that needs to be controlled to preserve the sys-
tem [2, 11]. Elastic preload is therefore widely used in
HSM electrospindle, although there is a complex axial
behavior of the shaft and of the rear sleeve containing
the rear bearings [13].

The thermal effect on the shaft together with other
phenomena have also been studied in [10] with the use
of a novel multi physic model, designed for an high-
speed aerostatic spindle.

In most of the spindle models that can be found
in the literature, the bearing stiffness values are ob-
tained from nominal parameters values and with a fixed
preload force [9, 22]. The non-linearity of the bearing
behavior was considered in several studies [5, 26], how-
ever the complex axial behavior and preload evolution
influence was not regarded.

The method introduced in [18] that will be com-
pleted in this paper takes into account bearing non-
linearity and also preload variation with speed.

To obtain an accurate model of the spindle dynam-
ics, the complete understanding of the preloaded bear-
ing arrangement is required. Indeed, the rotor’s FRFs
are well affected by the bearing stiffness loss at high
speed. This paper focuses on the study of the axial be-
havior of a spindle. The objective is to understand and
model the behavior of the bearing preloaded system in
relation to the spindle speed and to update the model
parameters that are of importance in complete spindle
models. This research aims at finding the right bound-
ary conditions for dynamic model of spindle (i.e. bear-
ing stiffness and preload forces in relation to spindle
speed).

A 5 DoF bearing model is used and lead to a com-
plete stiffness matrix. It is based on Jones work and
include the dynamics effects on the balls as well as
radial expansions of the rings. The axial equilibrium
of the shaft and the rear sleeve is formulated analyt-
ically and solved for different axial loads and spindle
speeds. Several new physical phenomena are added to
the model: the macroscopic deformations of the shaft
and bearing rings as well as the rear sleeve’s complex

behavior. Their formulation and influence are provided.
A new updating strategy based with phenomenologi-
cal enrichment is presented. Significance classification
of the phenomena is achieved based on sensitivity anal-
ysis. Experimentations that uses a novel loading de-
vice used for the model updating are described and the
model updating results are compared with the experi-
ments. The added phenomena’s importance is discussed
as well as the strategy to build a just accurate enough
model.

2 Spindle Model

Rear bearing,

Front bearing

Fig. 1 Bearing arrangement of the Fischer MFW1709 spin-
dle.

The axial model is developed in order to understand
the complex behavior of the bearing preloaded system
at high speed. It consists of the solving of the axial equi-
librium analytical equations. A Fischer electrospindle
(MFW1709 - 24000 rpm 40 kW) was considered in this
study. The structure of the spindle and the bearing ar-
rangement are presented in Figure 1. It is composed of
a spring preloaded back to back tandem arrangement
of hybrid ball bearings.

2.1 Model Principle

An accurate 5 DoF bearing model is required to con-
struct a numerical model of rotor dynamics. It pro-
vides the relation between the global displacement d =

(82, 8y,02,0y,0,)" and the global loads £ = (F,, F,,, F,, M,, M)

on the inner ring of the bearing as presented in Figure
2. Therefore, it gives the boundary conditions of the
rotor model.

These boundary conditions are expressed as a 5 x 5
stiffness matrix K. Since the paper focuses on the axial
spindle model, only the axial stiffness K(1,1) = K, is
considered.

A 5-DOF analytical bearing model which consider
the dynamic effects on the balls and the macroscopic
radial expansions of the rings is considered. Based on
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Global load o Global displacement
f=(F.,F,,F.,M,,M.) ) d=@..3,,3.,8,,0.)
4 Rigid Body
Glo?i' . displacement
equilibrium hypothesis v
Local Loads ) Local deformations
_ Hertz relation N
Q0 S=k0" " 5; 3,

Fig. 2 Bearing model principle [19].

Lynagh [17] work, it can be deduced in [7] that race-
way roundness errors are negligible.. Since no explicit
expression between d and f can be obtained, the local
equilibrium of each ball is expressed.

4,
Inner raceway groove curvature
center (final position)

5, - OR; cos y L
50 + 0, sin y i

« 8,cos y +8,sin y

o Inner racevJay groove .
7 curvature center ‘
T (unloaded) A,

(L5 N Inner raceway
roove curvature center
BD groove curvature
(initial position)

Ball center (final position)

“——_ Ball center (initial position)

Outer raceway groove curvature

|
|
|
U, ! o center (unloaded)
|

(Outer raceway groove curvature center (initial position)

Fig. 3 Position of the ball center and raceways groove cur-
vature centers, with and without ring deformation and load.

The locations of the curvature center of the inner
ring, outer ring and ball are shown in Figure 3. The ini-
tial positions refer to an unloaded bearing without ring
expansion. The unload positions refers to an unloaded
bearing with ring expansion. Lastly, the final position
refers to a bearing with load and ring expansion. The
position of the inner ring and the balls changes due to
an external load on the bearing. The distance between
the inner raceway groove curvature center before and
after loading are respectively projected on the axial and
radial directions in equation (1). Auy = u; — u, is the
relative radial expansion between the inner and outer
rings of the bearing. The macroscopic deformations of
the ring are due to thermal and centrifugal effect. Thus,
it is assumed to vary with spindle speed N. In section
3 and 5, the rings radial expansion is considered as one
of the model enrichments and the "basic model" refers

to a 5 DoF bearing model with dynamic effects on balls
but without ring radial expansion.

Ay = BDsina + 0, — 0.%; cosy + 0,3, sinv

1
Ay = BDcosa + 0, costp + 9, siny) + Au (1)

Equations (2) are obtained from Figure 3 while ap-
plying the Pythagorean theorem.

(A1 — X1)? + (A — X2)? = [(fi —=0.5)D + 6] = 0
[(fo —0.5)D +68,)* =0

X? 4+ X2 -
(2)

Fig. 4 Dynamic equilibrium of the ball.

The Newton’s second law of motion is applied to
each ball, see Figure 4. Assuming that contact surfaces
can provide sufficient reaction forces to the ball gyro-
scopic moment M, (i.e. \oMy/D < Qo and \;My/D <
uQ;, with p the friction coefficient at the contact), it
leads to :

M,

Q;sina; — Q,sina, + D

(Aicosay — Apcosa,) =0

M
Q;cosa; — @, cosay, + fg()\i sin a;; —

3)

F. and M, represents the centrifugal force and re-
spectively the gyroscopic moment on balls. The coetfi-
cients \; and \, express the gyroscopic moment distri-
bution. They are determined by the equilibrium of the
friction moments at ball /raceway contacts (detailed in
[19]). @i and @, are the contact forces that are ex-
pressed in terms of local displacement §; and J, with

Aosina,) + F, =0
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the Hertzian theory as : § = KQ?/3. The local variables
x = (X1, X3, 0,,9;) are used to solve local equilibrium
with eq. (2) and (3). The global load f are then ob-
tained from the sum of the equilibrium contribution of
each balls.

i M,
F:c = EZ QZ sin o; + Alfg COS 5
M
F, = E (Ql sin o; — )\i?g sin al-) cos 1
M
Q;sino; — )\ifg sin ai) sin 1)

X
My_Z[
[

(4)

The stiffness matrix K represent the linearized be-
havior of the bearing for a given loading state. It is
calculated as a Jacobian matrix built from the partial
derivatives of load with respect to the displacement :

= [0f/0d]. Noel et al. [19] detailed the analytical
computation method that is used to obtain the stiff-
ness matrix.

From the axial stiffness K, of the bearings, an ax-
ial model of the spindle is built based on Figure 1 and
5. The rotor is assumed to be rigid with a quasi-static
behavior. The axial displacements u = (u,u,) of re-
spectively the shaft and the rear sleeve are calculated
for a given axial load F' depending on the preload P and
preload stiffness K. The model is based on the follow-
ing equilibrium equations of the shaft and the sleeve

S FP-F+ 5
= (P_KPUP_F2) ®)

F1 and F3 are the axial loads on the bearing groups
that are obtained with the bearing model, see Eq. (6)
and Figure 5. As ball bearings are in tandem setup, the
load obtained from the model are doubled (i.e. F; =
2F, = 2F), with a and b the two front bearings of the
spindle in Figure 1).

analytical bearing model
—

0z1 = U"'(le,o F,

analytical bearing model
—

(6)

512:Up*u+6m2,0 Fc

0z1,0 and dz2 ¢ correspond to the axial displacement of
the ball bearing due to the preload state.

M,
<Qi sin a;; + /\iDgcosozz) AifiM ] sin v

M
(Qi sin «; + )\iDgcosaZ) + Aifi g} cos ] :

K. K,
\/ YAVAVAVA
Free state v
3,50
Preloaded, no P A A
external load VVV JVVY
AN

With axial load I
F

\"‘A\N \\/II &1\\&

Fig. 5 Spindle axial model.

The equations (5) are solved using the trust region
dogleg algorithm of the Matlab fsolve function. This
iterative algorithm uses the following Jacobian matrix

wal - sz?
KoczQ

- waQ
J= 7
|: _Kp - K;cx2 ( )
This algorithm is chosen because of nonlinearity in the
model (see 3.1).

2.2 Model Enrichment Methodology

A parameter enrichment methodology is introduced in
this paper, in order to simulate and understand the
complex and coupled spindle behavior observed exper-
imentally. Indeed, the updating of the above presented
model does not match with the experiments (as shown
in section 5.1). The method consists in the following
steps:

1. Sensitivity analysis to identify the parameters to be
updated. Assuming a large set of parameters, a sen-
sitivity analysis brings out the parameters whose
variations have the greatest impact on the model.

2. Model updating with the selected parameters.

3. If the result does not match with experiments, in-
clusion of new physical phenomena in the model,
regarding the previous updating sensitivity analysis
results. The high sensitivity of a parameter that has
been updated or if the updated value corresponds
to a boundary can denote a lack in the modeling or
a missing phenomenon. The sensitivity of new pa-
rameters describing new phenomena is then added
to evaluate their influence.

4. Repeat step 2 and 3 until updating residuals are
small enough, so that simulation match with exper-
iments.

Another output of the enrichment methodology based
on sensitivity analysis is that a classification of the sig-
nificance of the physical phenomena in the model is
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obtained. This classification vary from one spindle to
another, in relation to their design. It is useful to ob-
tain a good compromise between model simplicity and
accuracy.

This methodology ensures that the final enriched
model only contains relevant parameters and that the
selected physical phenomena have a significant impact
on the spindle behavior. These updating procedure can
be employed with another objective. If the phenomena
that occur are already known, the sensitivity analysis
will help to find an order of importance of the phe-
nomena and select the parameter to be included in the
model. Therefore, a model as simple as possible but
precise enough can be built.

The model updating is achieved with the Matlab
fmincon function that minimizes the following cost func-
tion (i.e. the error of the shaft displacement) :

e=./z ij Z]:Zl: (usim(i)|N:j - uexp(i)‘N:j>2 ®

with i the external load values selected for the update,
and j the selected speed values (i.e. 4000, 16000 and
24000rpm).

To perform the sensitivity analysis of the model pa-
rameter, a One-Factor-At-a-Time (OFAT) method is
used. The variation of the model output is evaluated
for an independent variation of each parameter. The
other parameters are fixed to their nominal value. All
the parameters have not the same dimensions, there
are for example force, stiffness and geometric parame-
ters in the model. It is therefore important to adapt the
method to be able to compare the different parameters.
A variation range parameter Ap; is then introduced and
selected to be physically possible. The sensitivity ks of
the parameter p, is thus expressed by Eq. (9), with ¢,
the perturbation fixed at 1%.

Rs = [5 (ps,nom + CAps) — £ (ps,nom)] (9)

N =

3 Phenomenological enrichment

The model presented above based on a classical 5 DoF
model of bearing failed to predict accurately the spin-
dle axial behavior, as it will be shown in subsection
5.1. Using the parameter enrichment methodology, sev-
eral physical phenomena have been added to the model.
This section explain how these new phenomena are mod-
eled and what are their influences on the axial behavior
of the spindle.

In order to understand the influence of the new
physical phenomena, Figure 6 presents the evolution
of loads on the front bearing Fj (solid lines) and rear
bearing F5 (dashed lines) in case of a rigid and of an
elastic preload arrangements, in relation to the axial
displacement of the shaft.

Note that Figure 6 also reveals the impact of the
dynamic effects on ball, in relation to spindle speed.

3.1 Limited stroke of the preload system

The motion of the rear sleeve can be limited by a stop
that changes the behavior of the spindle. When the rear
sleeve reaches the stroke limit, the spindle turns into a
rigidly preloaded configuration, see Figure 7. Indeed,
the presence of the stop adds inflexion points (B, B’
and B”) on the preloaded bearing evolution curves Fj
that correspond to an increasing of the axial stiffness
of the spindle, especially at lower speed.

To model the stroke limit on the rear sleeve, a new
parameter up i, is added to the model to constrain
the displacement of the sleeve. At each iteration of the
equilibrium resolution algorithm, if u, < wp 1in, then,
uyp, is fixed at wp jim,. Therefore, only the equilibrium of
the shaft is resolved (see Eq.(5)). A gradually increas-
ing contact surface in the preload system stop can also
be considered. It might be due to very low planarity
or parallelism defect between sleeve and housing. As-
suming an angle v between the two contact surfaces
of rear sleeve and the stop, a second parameter, Asl
(= tan~y x contact diameter) is established. The gradu-
ally increasing contact surface is modeled as an increas-
ing stiffness K, see Eq. (10). The additive K stiffness
is equal to 0 before the contact when u, > up 1im + Asl,
and tends to infinity when u, approaches u, i, (Which
is the case for rigid preload).

0 if up > up 1im + Asl
Asl im H
Kq = { tan? (g . %) if wp 1im < Up < Up 1im + Asl
00 if up < up iim
(10)

The stroke limit stiffness is added to the spring stiff-
ness in the axial equilibrium equation (K, is replaced
by K,+ K, in Eq. (5). A new corresponding Jacobian J
matrix is therefore used in the solving algorithm when
Up lim < Up < Up 1im + Asl (see A).
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5000 T T T T T T T
4500 - F‘ at N = 4000 rpm /
Load on Rear F, at N = 16000 rpm Load on Front
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3500
r— 3000
— 2500
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1500
1000

500
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(a) Load on the bearings with a rigid preload

Fig. 6 Comparison of the behavior of rigid preload and elastic preload systems.
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(b) Loads on the bearings with a limited stroke displacement

Fig. 7 Influence of the stroke limit on axial behavior of the spindle.

3.2 Stick and slip in the preload system

Frictions occurs during the axial displacement of the
rear sleeve in the spindle housing. The stick and slip
effect adds a hysteresis on the rear sleeve behavior as
shown in Figure 8. The spindle is therefore in a rigid
preload configuration when the stick limit is not reached
and that the rear sleeve is stuck. When the sleeve is
slipping, the preload system is in elastic preload config-
uration.

Figure 9 illustrates the modeling principles used to
model the friction between the rear sleeve and the spin-
dle housing. As radial effort are not considered in this
model, the friction can not be modeled with a friction
coeflicient. An effort F'; opposed to the movement direc-
tion of the rear sleeve is thus added in the shaft equilib-
rium equation, representing a simple Coulomb friction

force. An extra computation of the model assuming a
fixed sleeve is launched to test the slip condition before
applying the friction effort.

3.3 Radial expansion of the bearing rings

Dynamic effects on the shaft as well as thermal di-
latation increase the bearing ring radius. These macro-
scopic radial expansions change the contact angle a and
thus the bearing stiffness. It is modeled by radial dis-
placement of the rings raceway groove curvature cen-
ter, noted respectively w; and u, for inner and outer
ring in the bearing model (see Eq. (1) and Figure 3).
For a given bearing initial contact angle and a given
steady-state temperature, an initial relative expansion
Aug is modeled. The parameter is assumed to remain
constant; since the experiments are carried out at iden-
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Fig. 8 Influence of the friction on the axial behavior of the spindle.
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Equilibrium equations
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Fig. 9 Principle of the friction modeling.

tical steady-state operating temperature. In addition,
the radial expansion due to the centrifugal forces on
shaft and inner ring are modeled with a parameter d
and varies with the square of the spindle speed. The dif-
ference between ring radial expansions at a given speed
N is noted Auyn and results from :

Auy = Aug + dw? (11)

Figure 10 shows the influence of radial expansions
of the bearing rings on the axial behavior of the shaft.
A decrease of the axial stiffness of the shaft is clearly
observable at higher speed.

3.4 Axial shrinkage of the shaft

The dynamics effects have also an axial influence on the
shaft. Indeed, due to the Poisson effect, the centrifugal

20 T T T T T
0F
20+
—
E -40
=
-60 |
5
sk // — — — N =4000 rpm - without radial expansion
- I ; — — — N = 16000 rpm - without radial expansion
/ / N = 24000 rpm - without radial expansion
~100 I/ N = 4000 rpm - with radial expansion
N = 16000 rpm - with radial expansion
N = 24000 rpm - with radial expansion
120 L T T T T
-1500 -1000 -500 0 500 1000 1500
(a) Axial displacement of the shaft
3000
2500 [ 1
2000 [ 1
—
E 1500 - 1
L.
1000 1
500 | 1

%20 00 80 60 40
u [pum]
(b) Loads on the bearings

Fig. 10 Radial expansion effect on the axial displacement of
the shaft.

radial expansion induces an axial shrinkage of the shaft.
The axial deflection u,s, and wgs, of respectively the
front side and the rear bearing are added in the model.
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The second term of Eq. (6) becomes :

analytical bearing model
—

6w2 = up_(u+uasz)+5w2,0 F. (12)

The final displacement of the front face of the shaft
becomes u + Ugs - As shown in Figure 11, the axial
shrinkage of the shaft decreases the load on the rear
bearing at higher speed.

20 T T T T T

0

20 b

.40 +

u [um]

-60 b

— — — N =4000 rpm - without axial shrinkage
— — — N = 16000 rpm - without axial shrinkage

-80 b

-100 »//

-120 L T T T T T
-1500 -1000 -500 0 500 1000 1500

F[N]

(a) Axial displacement of the shaft

N = 24000 rpm - without axial shrinkage
N = 4000 rpm - with axial shrinkage

N = 16000 rpm - with axial shrinkage

N = 24000 rpm - with axial shrinkage

3000

2500 [
2000 [

1500 \

1000

F[N]

500 |

-20 0 20

%20 100 80 60 40
u [um]
(b) Loads on the bearings

Fig. 11 Axial shrinkage effect on the axial displacement of
the shaft.

4 Experimentation
4.1 Experimental Setup

An original experimental device has been developed to
apply bidirectional axial loads to the rotating spindle,
see Figure 12. The displacement of the machine tool
along the 7 axis generates a pure axial load on the shaft
through the spring rings. Radial load and bending mo-
ment are avoided thanks to a radial clearance foreseen

Spindle housing

Displacement
sensor

Tool

Ball bearing

Spring rings =

Dynamometer
table

Fig. 12 Experimental device for applying axial load on a
rotating spindle.

in the device. A 3-axis 9255B Kistler dynamometer ta-
ble measures the axial force F'. An eddy current sensor
is used to measure the relative displacement between
the shaft and the spindle housing at the front end of
the spindle.

A loading cycle of £1500N is run at different spin-
dle speeds N (from 4000 to 24000 rpm). Experiments
are carried out at an identical steady-state operating
temperature and are of short duration to avoid the in-
fluence of thermal effects on the results. The sampling
frequency is 12.5 kH z. It allows to filter axial runout of
the surface rotating in front of the sensor. The repeata-
bility of the experiment has been successfully verified.

4.2 Experimental Results

The measured signals are filtered with a median filter
to keep only the relative quasi-static displacement be-
tween the shaft and the spindle housing. Despite fast
experiments, a small drift in the displacement measure-
ment can be observed at low speed due to spindle cool-
ing. It can be compensated by linear interpolation be-
tween idle rotations before and after the loading cycles.
The average displacement from the three measurement
cycles are calibrated considering v = 0 for F = 0 at
4000 rpm.

Figure 13 shows the results of the measurement for
different speed. Three specific zones can be observed on
the lower speed curve (N = 4000 rpm) :

— Zone A corresponds to the normal behavior of the
bearing arrangement with elastic preload.

— Zone B corresponds to a rapid drop in the axial
stiffness of the spindle due to the contact loss in the
front bearing. It can lead to the approximation of
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the preload value : P =~ F4 = 1000 N. Assuming
that the bearing stiffness is much more important
than that of the preload springs, the axial stiffness
in Zone B corresponds to the preload springs. K, ~
%‘Zone B 4 N//J'm

— Zone (C starts when the sleeve reaches its stroke
limit, which generates an increase in the spindle
stiffness. This phenomenon is explained in subsec-
tion 3.1.

The hysteresis on the curve is due to friction in the
preload system as presented in subsection 3.2.

20 — . . .
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g 40p |
|
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120 | | | |
1500  -1000  -500 500 1000 1500

0
Fig. 13 Experimental results of the displacement v in rela-
tion to the axial load F' at different speed.

5 Model enrichment and updating

This section presents the model updating of the axial
model presented in section 2 with the experimental re-
sults.

5.1 Results for a basic model

Figures 14 shows the axial behavior of the spindle ob-
tained with a basic model. The dynamic effects on bear-
ing balls are considered in this model, but not the phe-
nomenological enrichments introduced in section 3. It is
similar to model of commercial bearing software, when
considering identical steady-state operating tempera-
ture.

The parameters of the basic model (P and K),) were
updated as presented in subsection 2.2 and Eq. 8. The
axial displacement of the shaft is then simulated and
compared to the experimental results. It reveals that

the basic model is not accurate enough. The axial stiff-
ness between —500N < F' < 500N corresponds to op-
erating conditions and needs to be well predicted by
the model. The basic model is therefore too simple to
explain the complex behavior of the spindle, even if
dynamics effects on the balls are taken into account in
the bearing model. The model enrichment methodology
presented in section 2.2 is required.

P B Y A Bttt Experimental : N = 4000 rpm
A it Experimental : N = 16000 rpm
Experimental : N = 24000 rpm
Simulation : N = 4000 rpm
Simulation : N = 16000 rpm
Simulation : N = 24000 rpm

T T T

1 T

>8-(2)000 -1500 -1000  -500 0 500 1000 1500 2000
F[N]

Fig. 14 Axial behavior of a rotor with a basic model.

5.2 Classification of phenomena significance

The model enrichment methodology presented in sub-
section 2.2 was applied to the experimental results (of
subsection 4.2), introducing the new phenomena mod-
eled in section 3. The table 1 shows the results of the
sensitivity analysis and of the model updating at the
different steps of the model enrichment.

The most sensitive parameters before the first up-
dading were the preload parameters : P and K. They
were updated during the initial step, which was the ba-
sic model. The results of the initial step, as presented
in Figure 14, were not good enough. Then, the second
sensitivity analysis (k) revealed that the sleeve param-
eters (stroke limit and friction) are the most impor-
tant phenomena on this spindle, after the preload. Due
to coupling between the different parameters of each
phenomenon, they must be updated at the same time.
Therefore, 1y, jim, Ag and Fy been updated during step
2. Finally, radial expansions and azial shrinkage were of
less importance than the previous considered phenom-
ena, but not negligible to obtain an accurate model.
Hence, they were updated in the third steps.

Very small improvement could be achieved with a
fourth step, updating the f. parameter of the ball bear-
ing. Indeed, it is the most sensitive of the remaining pa-
rameters. However, with an average accuracy of 1.96 um,
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Table 1 Results of the sensitivity analysis and of the model updating

range initial step step 2 step 3

parameter min  max nominal | k[um] updated | x[um] updated | s[um] updated | k[um]
load P[N]| 500 1500 950 127.3 728 12.79 1174 13.02 1067 41.72
prefoa K, [N/ pum] 01 15 25 3837  8.79 18.86 153 12.78 177 36.72
stroke Up 11 [0 1 300 -275 17.84 1439  -112 45.72 122 25.00
limit Asl[pum] 0 40 0 0.0005 1.523 25.3 7.628 37.4 0.5502
radial Aug[pm] -30 70 0 4.827 4.809 7.450 -24.2 0.5301
expansions | d.10%[um.s~Z] 0 60 0 3.555 3.360 6.644 46.0 0.2388
friction F¢[N] 0 200 0 29.39 10.72 90.9 1.195 91.8 4.212
axial a.10%[um.s~2] 0 100 0 2.136 1.123 0.4142 6.60 0.2691
shrinkage 5.10%Tum.s~ %]  -500 0 0 11.88 3.431 10.88 147 1.168
D[mm] 8.73+0.1% 0.0349 0.0347 0.0552 0.0016
dom [mm] 82.5+0.1% 0.0132 0.0129 0.0260 0.0002
e 0.54+0.1% 1.157 0.1996 2.018 0.1625
ball 173 0.26 + 5% 0.0058 0.0077 0.0074 0.0070
bearing vy 0.3+5% 0.0029 0.0039 0.0037 0.0035
E,[GPal 315 + 5% 0.0201 0.0267 0.0255 0.0241
E,[Gpa] 210 £ 5% 0.0294 0.0391 0.0373 0.0353
oulkg/m3] 3190 + 5% 0.5527 0.5394 1.088 0.0033

Mean deviation : e[um] 414 ] 129 ] 680 | 1.96 |

the obtained model is precise enough. It clearly explains
the complex behavior of the spindle, by a set of simple
and uncoupled physical phenomena.

5.3 Model Updating results

The results obtained after the third step of enrichment
and update are presented on Figure 15. Figure 15(a)
shows the comparison of the axial behavior at differ-
ent spindle speeds, obtained experimentally and with
the updated model. The simulations are in good agree-
ment with the experimentation, especially at high speed
where there is a need for such advanced model. The re-
sults for other speeds that were not used in the updat-
ing, have also been compared to the experiment. It was
well correlated, which validates the model.

The loads on the bearings are presented on Figure
15(b). It is interesting to notice that the added phenom-
ena affect significantly the spindle bearings behavior,
especially at high speed.

6 Conclusion

An original model of the axial behavior of the spin-
dle has been presented. Moreover, an enrichment strat-
egy that consists of several steps of sensitivity analysis
and model update have been explained. This work pro-
vides a better understanding of the physical phenomena
involved in the spindle dynamics at high speed. The
modeling of the rear sleeve’s behavior, the radial ex-
pansions of the bearing rings and the axial shrinkage
of the shaft has been detailed as well as their influence

on the axial behavior and on the preload evolution. Ex-
perimentations to measure the axial behavior of a ro-
tating spindle have been performed with a new specific
device and analyzed. The presented model have been
updated with the enrichment strategy. The results of
the updating obtained before and after the enrichment
have been showed. The development of a just accurate
enough model have been achieved with the study of the
phenomena significance, thanks to sensitivity analysis.
An advantage of this methodology is that it does not
require a complex thermal model of the spindle to sim-
ulate accurately the bearing behavior. Friction between
the rear sleeve and the spindle housing, combined to the
presence of a limited stroke in the preload system play
a crucial role in the axial behavior and have a great
influence on the preload state of the spindle, and con-
sequently on the bearing stiffness. The final updated
model have been compared to the experiments and it
was in a very good agreement.
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Nomenclature

Capital Letters

R radial distance between the bearing axis and the
groove curvature center
R; = 0.5d,, + (fi — 0.5)D cos ayg

K bearing stiffness matrix
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Fig. 15 Axial behavior of the rotor with the enriched and updated model.

Ajq, Ay axial and respectively radial projection of the
distance between groove curvature centers

BD  distance between groove curvature centers with-
out load or speed

D ball diameter

F axial load on the shaft
F, centrifugal force on ball
Fy Friction force

K, preload springs stiffness

K equivalent stiffness applied to model the gradu-
ally increasing contact surface between the rear
sleeve and the stop

K., = K(1,1) axial stiffness of the ball bearing

M, ball gyroscopic moment

N shaft speed

P bearing preload

Q ball-raceway normal load

X1,X, axial and radial distance between ball center

and groove curvature center of the outer ring
J Jacobian of the axial equilibrium function, Eq.
(5)
Greek Symbols
@ contact angle
Aps  variation range of parameter p;
Asl  transition region of the stroke limit

Auy = u; — u, difference between radial ring expan-
sions at speed IV

é ball-raceway normal displacement

Ks sensitivity of the parameter pg

A distribution parameter for the ball gyroscopic
moment between rings

P ball angular position on the pitch circle

€ mean deviation between experiment and simu-
lations

¢ perturbation factor of the variation range

Lowercase Letters

d global displacement of the inner ring

f global load on inner ring

u axial displacement of the shaft

dm ball orbital diameter

f =r/D

Ps model parameter

r raceway groove curvature radius

ui, U, radial displacement of groove curvature centers

Ugs;, Uas, axial deflections respectively of the front face
and the back bearing due to centrifugal effects
on the shaft

Up 1im stroke limit of the rear sleeve

Subscripts

i inner ring

1 outer ring
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A Jacobian used in the solving algorithm
considering the stroke limit
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