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Abstract

In this article we introduce a new traffic flow model for a dense urban area. We consider a two-dimensional
conservation law in which the velocity magnitude is given by the fundamental diagram and the velocity direc-
tion is constructed following the network geometry. We validate the model using synthetic data from Aimsun
and propose a reconstruction technique to recover the 2D density from the data of individual vehicles. A
comparison between the model and the data is shown.

Keywords: Macroscopic traffic flow model, Two-dimensional PDE, kernel density estimation,
Validation & Simulation

1 Introduction

Different families of traffic models have been developed over the years (see [van Wageningen-Kessels et al., 2014]
for a review of model evolution). Microscopic models aim at representing each vehicle as a particle with dynamics
based on Ordinary Differential Equations (ODEs). The first microscopic model called car-following was proposed
in [Pipes, 1953], [Kometani and Sasaki, 1961] with the idea that vehicles adapt their speed according to the
position of the vehicle in front. Then, the global traffic state can be seen as a system of n coupled ODEs, where
n is the number of vehicles in the network. These models allow to describe the behavior of every single driver but
are not always used in practice due to their high computational cost and their difficulty to be calibrated as they
require many parameters. Alternatively, macroscopic models do not model each individual vehicle but represent
the traffic state as average quantities like vehicle density. In the thirties, [Greenshields et al., 1934] found a link
between vehicles density and flux. Following that work, a model inspired from fluid dynamics was introduced:
the Lighthill, Whitham and Richards model (LWR model) ([Lighthill and Whitham, 1955] [Richards, 1956]).
This model is based on a partial differential equation and is able to describe dynamically the evolution of traffic
density along a road. A discrete and easy to implement version, the Cell Transmission Model (CTM) which is
equivalent to the Godunov method [Godunov, 1959] has been introduced in [Daganzo, 1994]. This model has
been extended, subsequently, to networks to model urban settings.

Subsequently, the extension to a network was developed in [Coclite et al., 2005], here the authors couple the
LWR model with a junction model. The dynamics of the junction is modeled with an LP-optimization problem.
Several others models have been introduced since then, see [Garavello et al., 2016] and reference therein. These
models assume knowledge of several parameters, for instance, the split ratio of vehicles at each intersection,
which might be difficult to obtain, and also focus on a level of detail that my be not relevant for the size
of the area considered that is why researchers on large scale traffic modeling started to develop models that
describe traffic at a more aggregated level. In this framework, an important field of research concentrates on
the notion of Macroscopic (or Network) Fundamental Diagram. Starting with some empirical observation of
traffic in a city, [Daganzo and Geroliminis, 2008] and [Geroliminis and Daganzo, 2008] show that it is possible to
exhibit a relation between the average density and the average flow over a whole network. This result enables
the introduction of accumulation models — also called reservoir models — which consist of representing the
traffic state of a network with a single scalar field variable representing the total number of vehicles in the
network. These models are practical because they are understandable, with few parameters to tune and a low
computational cost. However, they contain little information about the traffic states. For example, they are not
able to describe precisely where vehicles are located over the reservoir. This problem was later on addressed in
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some papers in which the authors separated different areas of the city with different reservoirs, see for example
[Leclercq et al., 2015], and [Hajiahmadi et al., 2013].

At the beginning of traffic modeling in urban areas, some continuous two dimensional model were investigated
[Beckmann, 1952] but only in the case of static models. These authors represent the traffic state in the 2D-
plane using a density of vehicles per area. An overview of static models in two dimensions is available in
[Ho and Wong, 2006].

Finally, traffic in urban areas can be modeled with two-dimensional continuous and dynamic models. A review
of some of these model have been done by [Aghamohammadi and Laval, 2018]. These models represent the traffic
density ρ as a variable over a 2D-plane (x, y) ∈ Ω. Such models are based on a two-dimensional conservation law
and take the following general structure:{

∂ρ(t,x,y)
∂t +∇ · ~Φ(ρ(t, x, y)) = 0
ρ(0, x, y) = ρ0(x, y)

, ∀t ∈ R+,∀(x, y) ∈ Ω (1)

where ρ is the aggregated density and ~Φ the flow vector defined as the product of the density ρ and velocity
field vector ~v. This type of two-dimensional equations is commonly used in pedestrian modelling [Helbing, 1998],
[Hughes, 2002], [Jiang et al., 2010]. However, one should remark that crowds evolve in general in open space and
are not constrained on roads as vehicles do. Thus, a first assumption for the application of this kind of equations
to traffic is to consider that the urban network is dense enough to be approximated as a continuum. Generally,
2D models are not expected to describe very precisely the density evolution at space coordinates, but focus more
on capturing the main traffic features and the global evolution of the density. The literature concerning this type
of models is scarce, but there are several studies which start considering the problem. First, in [Jiang et al., 2011]
and [Du et al., 2013], the authors take inspiration from pedestrian modeling in order to model vehicular traffic.

They define the flux ~Φ by solving an Eikonal equation such that the flow follows the path of the lowest cost
— usually in terms of travel time, but other criteria could be used as well. Another extension of this model
is done in [Jiang et al., 2015]. Their extension considers a second order equation such that it improves the
description of the vehicle acceleration in the aim of pollutant estimation. In [Romero Perez and Benitez, 2008],

an advection diffusion equation is introduced with a function of flux ~Φ that depends on the space coordinates
instead of depending on the density. Thus, the velocity is predetermined and the equation becomes linear.
Another study ([Della Rossa et al., 2010]) consider a model including a diffusion term and a drift term dependent
on the density. The direction of the drift vector is fixed in some area and is determined by the shape of the
network. In [Saumtally, 2012] and [Sossoe and Lebacque, 2016], the authors investigate the representation of
intersection and how it could be interpreted in a 2D model. Following this idea, they take inspiration of junction
models in one dimension like [Lebacque and Khoshyaran, 2004] and build extensions to 2D models. Lastly in
[Herty et al., 2017], [Chetverushkin et al., 2010], [Sukhinova et al., 2009], the authors consider two-dimensional
models for the case of multilane roads instead of a road network. Thus, the methodology and the model have
several similarities but the objectives and the results are different. In [Mollier et al., 2018], we consider a flux
function consisting of a direction that depends on the space coordinates — as the one considered in this paper —
and the simple fundamental diagram suggested first by [Greenshields et al., 1934], however without any specific
tuning of the parameters.

As 2D models are recent, there is little validation or calibration of these models. A first challenge in testing
2D models is to obtain a two-dimensional density function from real traffic data. In particular, the reconstruction
of a density in the 2D-plane from vehicle data on the road network needs to be defined properly. The problem of
reconstructing a probability density from observation is a well-known problem in statistics. One common method
is Kernel Density Estimation (KDE) introduced first by [Parzen, 1962]. Using this method, each data observation
contributes to the density via a Gaussian centered at the position of the data observation. In [Fan, 2013] and
[Fan et al., 2013], the authors suggest to use this method for real traffic density but in the one-dimensional case
when density represents a single road.

This article has two contributions. The first one is to present a 2D model with a geometry-dependent flux
where the magnitude depends on the density and the direction depends on space. The second contribution is a
methodology for the validation of 2D models using microsimulation. To this aim, a method to reconstruct a two-
dimensional density from simulated data is described. A numerical method for the simulation is also shown and
the results of comparison between the 2D model and the microsimulator Aimsun are presented. The organization
of the paper follows these lines. In Section 2, we present the considered model with the construction of the flux
function and the numerical method used for the simulation. Then in Section 3, we explain the methodology
for the reconstruction of two-dimensional density. In Section 4, we deal with the estimation from data of the
parameters to construct a Fundamental Diagram consistent with the network. Finally in Section 5, we display
the results of the comparison between the simulation of the 2D model and the equivalent scenarios run with the
microsimulator Aimsun.
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2 Model design

2.1 A two-dimensional conservation law for traffic modeling

In this paper we introduce a 2D model for traffic flow based on a two-dimensional conservation law. We consider
a model in the two-dimensional plane where the density represents the number of vehicles per square area. An
example can be seen in Figure 1, giving a comparison between the same traffic situation described with a 1D
density (left) and a 2D density (right).

Figure 1: Representation of an urban area as a road network (left) and as a continuum (right).

Based on the different variables that could influence the flux function, several models could be designed. In
this paper, we make the following assumptions :

1. The velocity magnitude is decreasing with respect to density.

2. The drivers do not adapt their paths with respect to density, i.e., there is no re-routing.

3. The maximal speed and the capacity is constant with respect to space.

4. The direction of the flow is given by the geometry of the network.

As most relevant roads are commonly bi-directional, this last assumption requires some justification. Large-
scale urban traffic modeling is of particular relevance during (morning and afternoon) rush hour times of peak
congestion. During those times, most urban areas exhibit a dominant direction of traffic flow (e.g., from the
suburbs to downtown in the morning), and it is generally known (from historic data and/or travel demand
modeling) which roads in the network carry this peak flow. In that spirit, we consider the following model.{

∂ρ

∂t
(t, x, y) +∇ · ~Φ(x, y, ρ(t, x, y)) = 0, ∀t ∈ R+,∀(x, y) ∈ Ω ⊂ R2

ρ(0, x, y) = ρ0(x, y). ∀(x, y) ∈ Ω
(2)

The density ρ is a two-dimensional quantity (number of vehicles per square meter) and it is a function of time

t and space (x, y) defined in an area Ω ⊂ R2 . The flux function ~Φ(x, y, ρ) : [0, ρmax]×Ω→ [0,Φmax] is given by

~Φ(x, y, ρ) = ρ~v(ρ) (3)

where the velocity field ~v(x, y, ρ) : [0, ρmax]× Ω→ [0, vmax] is given by

~v(x, y, ρ) = v(ρ)︸︷︷︸
magnitude

· ~dθ(x, y)︸ ︷︷ ︸
direction

(4)

We denote by θ the angle between ~dθ and the x-axis. The magnitude of the velocity, v(ρ), is determined by
the Fundamental Diagram (FD). In this paper, the FD chosen is the one introduced by [Newell, 1961] and
[Francklin, 1961], whose velocity function is:

v(ρ) = vmax

(
1− exp

(
c

vmax

(
1− ρmax

ρ

)))
(5)
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Figure 2: Speed and flow vs. density.

This function possesses three parameters: the maximum velocity vmax, the maximum density ρmax, and a
velocity c that determines how rapidly the velocity decreases with increasing density, and thus affects the value
of the critical density. The resulting flux function is strictly concave down. An example of this FD is displayed in
Figure 2. The existence and uniqueness of solutions of equation (2) are guaranteed under conditions of smoothness
of the function flux Φ. We refer the reader to the papers of [Kruzhkov, 1970] (see p.223 for the conditions of
Uniqueness and p. 230 for the Existence), [Rossi, 2017] for the scalar case in two space dimension as considered
in this article.

2.2 Construction of the velocity direction field

In the model description (2), we have presented a velocity field that is the product of the a magnitude that
depends on the density only, and a direction that depends on position only. In this section, we suggest one
possible way to construct the direction function ~dθ from the geometry of the road network similarly to what is
done in [Mollier et al., 2018]. The motivation behind this is due to the fact that, contrary to what happens with
crowds [Hughes, 2002], vehicles are constrained to the physical road network.

Before describing in detail how the function ~dθ is constructed we need to introduce some notation. We describe
a road as a path from one intersection to another. We denote by q ∈ {1, .., Q} the different roads of the network.
The spatial path of each road is described by a parametric curve Ψq : s ∈ [0, smax] → (Ψq

1(s),Ψq
2(s)) ∈ R2.

The variable s ∈ [0, smax] allows to progress along the road curvature from an intersection to the next one. Let
~τ q(Ψq(s)) be the tangent vector of the road q at position (Ψq

1(s),Ψq
2(s)). For example in a network with only

straight roads, this tangent vector is constant along each road. An example is given in Figure 3.

Figure 3: Variables considered for the estimation of the velocity direction field. (smax = 1)
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The estimation of the unit vector ~dθ at the discrete cell level is done by a spatial interpolation method called
Inverse Distance Weighting:

~dθ(x, y) =

Q∑
q=1

∫
s∈[0,1]

w(‖(x, y)− (Ψq
1(s),Ψq

2(s))‖) ~τ q(Ψq(s)) ds

∣∣∣∣∣∣ Q∑
q=1

∫
s∈[0,1]

w(‖(x, y)− (Ψq
1(s),Ψq

2(s))‖) ~τ q(Ψq(s)) ds
∣∣∣∣∣∣ (6)

Equation (6) constructs a direction at any point in the domain as a (normalized) weighted average of the road
direction ~τ q of all points in the network, where the weight of a contributing point on a road depends on its
distance to the evaluation point. The weight function w : R+ → R+ should be a decreasing function of the
distance. Here we use an exponential function:

w : X → e−βX with β > 0.

However, other weight functions, particularly compactly supported ones, are also possible. The parameter β
represents the localization of the weighted average: for small β, the velocity direction field provides only the
global trend of the direction, while with a large β, the velocity field follows the detailed features of the roads.
Figure 4 demonstrates these two extreme cases in an example. As we are interested in a model that captures the
large-scale two-dimensional vehicle transport, but without over-resolving the details of the network, we need to
choose a value of β that lies between these two extremes.

Figure 4: Comparison between the estimation of the velocity direction for a small β (left) and large β (right).

Figure 5 shows the velocity direction field on the network considered for simulation: as the β chosen is not
large, the direction field is smooth and quite close to the global direction of the network which is towards the
North-East direction.

5



Figure 5: Example of a velocity direction field in a modified Manhattan grid network.

It is important to stress that for a general network, the weighted average (6) could potentially generate an
undefined direction (due to the numerator and denominator vanishing). However, for dominant direction flow
networks considered here, this scenario cannot happen.

2.3 Model discretization

Numerical methods for conservation laws have been broadly studied in one dimension, multidimension and
variable coefficient [Toro, 2013]. In [Lie, 1999], the authors consider space-dependence for quasilinear equations
and show that it is possible to use dimensional splitting if the flux function is bounded and Lipschitz continuous.
As the space and density dependencies of the flux can be split, one can rewrite equation (2) to have an equation
with a quasilinear term and a source term: ∀t ∈ R+,∀(x, y) ∈ Ω,

∂ρ

∂t
+ cos

(
θ
)∂ ρv(ρ)

∂x
+ sin

(
θ
)∂ ρv(ρ)

∂y︸ ︷︷ ︸
Quasilinear

= −ρv(ρ)
(∂ cos(θ)

∂x
+
∂ sin(θ)

∂y

)
︸ ︷︷ ︸

Source

. (7)

The splitting method, or method of fractional steps, was considered first by [Godunov, 1959] and then properly
introduced by [Strang, 1968]. The principle of dimensional splitting is to compute separately the different term
of the equation for each discrete interval of time. Thus, the equation of our model can be split in three parts:

∂ρ

∂t
+ cos(θ(x, y))

∂ ρv(ρ)

∂x︸ ︷︷ ︸
1

+ sin(θ(x, y))
∂ ρv(ρ)

∂y︸ ︷︷ ︸
2

= −ρv(ρ)
(∂ cos(θ)

∂x
+
∂ sin(θ)

∂y

)
︸ ︷︷ ︸

3

.

Then, the dimensional and operator splitting consist of dividing for each time step, the computation of the
solution by 3 steps. In the first step, the propagation of the density along the x-coordinates is computed. Then
in the second step, the propagation of density along the y-coordinates is updated. Finally, using the operator
splitting method ([Toro, 2013], [Gosse, 2014]) the source term is taken into account.
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For each dimension, the flux is computed using the Godunov scheme ([Godunov, 1959]). Note that the
splitting approach presented here is only one, simple, way to discretize the model equations. Other, potentially
more efficient computationally, discretizations are possible. In the numerical results, the numerical approximation
is conducted with a fine spatio-temporal resolution, so that the errors due to the discretization are negligible
compared to the model and upscaling errors.

Let (Ci,j)(i,j)∈[1..I]×[1..J] be the cell space discretization and (xCi,j
, yCi,j

) be the coordinates of each cell center.

Applying the method given in section 2.2, we can define a flux direction for each cell ~dθ(xi, yj). Let us define
the density in the cells with (ρi,j)(i,j)∈[1..I]×[1..J], then the numerical flux is defined at cell interfaces with the
notation Fi+ 1

2 ,j
= F (ρi,j , ρi+1,j) and the function F is defined as follows:

F (ρi,j , ρi+1,j) =


min(Φ(ρi,j),Φ(ρi+1,j)), if ρi,j < ρi+1,j

Φ(ρi,j), if ρi+1,j ≤ ρi,j ≤ ρcrit

Φ(ρi+1,j), if ρcrit ≤ ρi+1,j ≤ ρi,j
Φmax, if ρi+1,j ≤ ρcrit ≤ ρi,j .

(8)

The vertical flux Fi,j+ 1
2

is defined analogously.
Let ∆t be the time step, and ∆x and ∆y the space discretization with respect to the x-axis and the y-axis,

respectively. Then the global scheme for the computation of the model can be defined as follows:

ρ∗i,j = ρn
i,j − cos(θi,j)

∆t

∆x
(Fni+ 1

2 ,j
− Fni− 1

2 ,j
), (9)

ρ∗∗i,j = ρ∗i,j − sin(θi,j)
∆t

∆y
(F ∗i,j+ 1

2
− F ∗i,j− 1

2
), (10)

ρn+1
i,j = ρ∗∗i,j −m(ρ∗∗)

(
∆t

∆x
(cos(θi+ 1

2 ,j
)− cos(θi− 1

2 ,j
)) +

∆t

∆y
(sin(θi,j+ 1

2
)− sin(θi,j− 1

2
))

)
. (11)

Here θi,j is the angle of the unit vector direction of the flux ~dθ(xi, yj) defined in Section 2.2 at cell Ci,j , and

cos(θi+ 1
2 ,j

) is equal to
cos(θi+1,j)+cos(θi,j)

2 the average between cosinus of the angles in cell Ci,j and Ci+1,j . Figure 6
shows a graphical representation of the dimensional splitting, on the left the propagation of the density and the
flow interface in the x-axis, and on the right the y-axis propagation.

Figure 6: Application of the dimensional splitting with the representation of the cell interfaces.

In summary, the splitting separates the computation of every time iteration into three steps: propagation
along the horizontal axis, propagation along the vertical axes, and source term.

3 Reconstruction of a 2D density from individual vehicle trajectories
of microsimulation

Two-dimensional model validation is a topic that is not commonly addressed in the literature: while many ref-
erences can be found concerning the validation and reconstruction of 1D density, only few references exists for
two-dimensional models. In [Della Rossa et al., 2010], the authors compare their results against microsimulation
but without providing a systematic methodology. In [Herty et al., 2017], the authors compare their model with
real data from a highway, however, for the case of a multilane road instead of a road network. In this paper we
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propose a comparison between the model that we introduce and a reconstructed density obtained from microsim-
ulations done in Aimsun (https://www.aimsun.com/). We start the simulations with same initial conditions and
we want to compare the evolution of the main traffic density with respect to time. A first question that arises is
the exact definition of density over the plane and how to estimate it from data. In this Section, we show a method
to reconstruct density from GPS logs and then use this reconstruction to compare microscopic and macroscopic
model results.

3.1 Data collection from Aimsun

We consider several scenarios in the microsimulator Aimsun. We use a test network, shown in Figure 7, of a
deformed 10 × 10 Manhattan grid, laid out on a 1km × 1km domain. To cut the regularity and therefore have
a more generic network, we start from a regular Manhattan grid and add a normally distributed perturbation
(of standard deviation 30m) to the position of each node. Horizontal edges go East-bound, and vertical edges go
North-bound. In line with this, all roads in the West and South are entrance roads (“I” number 1 to 16), whereas
the roads in the East and North are exit roads (“O” number 1 to 16). Each network edge is a single-lane road.
Vehicles are assumed to have a length of 4m and the minimum gap between two vehicles is 2m. This results in
a road capacity of 166.67 vehicles per kilometer. It is important to note that this 1D road capacity does not
equal the maximum density of the 2D model. The time step of the Aimsun simulation ∆tAim = 0.8s. During the
simulations, the vehicles’ positions in the network are collected at each time step, yielding the data points xnk , y

n
k

for vehicle indices k ∈ [1, . . . ,K(n)] and at times tn = n∆tAim, n ∈ [0, . . . , N ].

Figure 7: Manhattan grid oriented towards the North-East direction in Aimsun (left) and a zoom of the road
network (right).

3.2 Density estimation with Gaussian kernel

In this section, the Kernel Density Estimation (KDE) method is presented. The idea of this method is that each
observation has a spatial contribution to the estimated density, defined by the function chosen as kernel. The
final estimated density then corresponds to the superposition of all those contributions. Note that, in contrast to
the estimation of probability densities that are normalized to integrate to 1, the resulting vehicle density is scaled
to integrate to the total number of vehicles. We start with the one-dimensional case to establish the concepts
and notations.

Reconstruction of density with kernel estimation in 1D:
Let xnk be the position of vehicle k at time tn. Then, the density at that time can be estimated as follows:

ρ̃n(x) =

K(n)∑
k=1

G1d(x− xnk ) (12)

where G1d is the kernel function used to describe the contribution of each vehicle. We choose the kernel to be a
Gaussian function:

G1d(x) =
e
− x2

2d20

√
2πd0

which satisfies

∫
R
G1d(x) dx = 1

8
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Here the parameter d0 is a length scale determining the width of the Gaussian. The integral of the estimated
density over space is equal to the number of vehicles:∫

R

ρ̃n(x) dx = Number of vehicles on the road at time tn. (13)

Reconstruction of density with kernel estimation in 2D:
Let (xnk , y

n
k )k∈[1,...,K(n)],n∈[0,...,N ] be the position of the vehicles at time tn. Then the density over the 2D-plane

can be estimated as follows:

ρ̃n(x, y) =

K(n)∑
k=1

G2d

((
x
y

)
−
(
xnk
ynk

))
(14)

with

G2d(x, y) =
e
−
x2 + y2

2d2
0

2πd2
0

which satisfies

∫∫
R2

G2d(x, y) dx dy = 1.

The density ρ̃ni,j in the cell Ci,j is estimated with the value at the center of the cell. An example of the
reconstruction of the density is given in Figure 8.

Figure 8: Example of 2d density reconstruction from data by kernel density estimation method: the density is
represented by the colormap, the blue squares represent the positions of vehicles and the considered network can
be seen in the background.

3.3 Parameters fitting for the kernel reconstruction

In practice, the parameter d0, which determines the range impact of the Gaussian kernel, has to be properly
chosen. There are several works regarding the optimal choice of this parameter including some applications on
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traffic modeling, see for example [Fan et al., 2013], [Fan, 2013]. In these articles, the authors study the choice of
this parameter for an application of the kernel density approximation for a 1D model of traffic. They based their
choice of the parameter d0 on the idea that if the headway between vehicles is constant then the reconstructed
density should be constant as well. However, there must be an exception to this principle when the density of
vehicles is very low. An example is given in Figure 9.

Figure 9: Reconstruction of density in 1D for vehicles with a constant headway of 37m and for a d0 of respectively
12m, 18m, 25m, and 100m.

We can observe that a choice of a small d0 (smaller than the vehicle spacing) leads to the creation of peaks in
the reconstructed density. Conversely, a d0 chosen too high invalidates the reconstructed density due to boundary
effects and leads to a bell-shaped reconstruction. For an intermediate value of d0, the reconstructed density is
almost constant, with only small layers of reduced density near the boundaries.

Next we try to extend this idea for density reconstructions in two dimensions. First, let us consider equidistant
vehicles in the 2D-plane without taking into account the network (e.g., vehicles on a parking lot). The density
reconstructed in this case can be seen in Figure 10.

10



Figure 10: Reconstruction of 2D density for vehicles uniformly distributed every 37m in the 2D-plane and for d0

of respectively 12m, 18m, 25m, and 100m.

The same qualitative effects as in one dimension can be observed in the 2D case. When the d0 is chosen too
large or too small, the reconstructed density tends to a bell or to have multiple peaks, respectively. If d0 takes
an intermediate value, then the reconstructed density is almost constant in space and has the shape of a plateau.
Next we consider the test network and place vehicles equidistantly along the roads. This means that on the
whole network, we consider that vehicles are distributed with a constant spacing. Figure 11 shows the result of
the reconstructed density for this scenario. In the cases that d0 is too high or too low, we face the same problem
than encountered previously.
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Figure 11: Reconstruction of 2D density for vehicles with a constant spacing of 37m on the network and for d0

of respectively 25m, 50m, 100m, and 150m.

In practice, it seems difficult to obtain a totally flat estimation of the density in this case even when d0 is
chosen with an intermediate value. Thus, the parameter d0 is chosen by an optimization process. Consider
vehicles placed at a minimal distance — one vehicle every 6m — over the network and let ρ̃ be the corresponding
estimated density. The parameter d0 is chosen such that it reduces as much as possible the distance between
maximum of the density evaluated over Ω and the rest of the estimated density.

d0 = arg min
d0∈R∗

+

‖ρ̃(., .)− max
(x,y)∈Ω

ρ̃(x, y)‖2 (15)

The density ρ̃ depend on the parameter d0 in a non linear way given by the Equation (14). For the 10 × 10
Manhattan square grid of 1km length considered, the resulting value of d0 is 85.1 meters.

4 Parameter tuning

4.1 Estimation of the Fundamental Diagram

Since we consider densities as number of vehicles per meter square, we need to introduce a new way to estimate
from synthetic data the fundamental diagram for the two-dimensional models. The definition of a fundamental
diagram is closely linked to the definition of density. In Section 3.2, a way to reconstruct density from traffic data
was presented. Thus, it is consistent that the fundamental diagram is also based on the kernel reconstruction
method.

The data for the construction of the FD is collected from a simulation in Aimsun in which we recorded the
position and the instantaneous velocity of vehicles every 0.8s. We are then able at each time step, to reconstruct an
estimated density with the kernel method defined Section 3.2. In order to construct a FD we need to reconstruct
a velocity or a flux over the 2D plane using the data collected from Aimsun as well. In particular, we construct
an interpolation of the velocity of all vehicles. Let (vnk )(k,n)∈[1,...,K(n)]×[1,...,N ] be the speeds of the vehicles of
subscript k over the K(n) vehicles present in the network at time tn. The corresponding positions of these
vehicles are (xnk , y

n
k )(k,n)∈[1,...,K(n)]×[1,...,N ]. Using these data, we can — consistent with (14) — estimate the

density (ρ̃ni,j)(i,j)×n∈[1,...,I]×[1,...,J]×[1,...,N ] by the Kernel Density Estimation method:

ρ̃ni,j =

K(n)∑
k=1

G2d

((
xCi,j

yCi,j

)
−
(
xnk
ynk

))
(16)
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We can also estimate the velocity field (ṽni,j)(i,j)×n∈[1,...,I]×[1,...,J]×[1,...,N ], by interpolation of each individual

vehicle speed and then deduce the flow rate field (Φ̃ni,j)(i,j)×n∈[1,...,I]×[1,...,J]×[1,...,N ] respectively, as follows:

ṽni,j =

K(n)∑
k=1

G2d

((
xCi,j

yCi,j

)
−
(
xnk
ynk

))
vnk

‖
K(n)∑
k=1

G2d

((
xCi,j

yCi,j

)
−
(
xnk
ynk

))
‖

and Φ̃ni,j = ṽni,j ρ̃
n
i,j (17)

The number of data observation we obtain with the method presented just above can be really huge: for each
discrete point and each time step we have a measure. This leads to redundant data, difficulty to read the data
and inconsistency of the estimation. For these reason, we apply a sampling over time and an aggregation over
space. We denote by (ρ̄ni,j)(i,j)×n∈[1,...,Ī]×[1,...,J̄]×[1,...,N̄ ] and (Φ̄ni,j)(i,j)×n∈[1,...,Ī]×[1,...,J̄]×[1,...,N̄ ] respectively the
density and the flow after the sampling and aggregation and constructed as follows:

ρ̄ni,j =
1

100

10i∑
h=10(i−1)+1

10j∑
l=10(j−1)+1

ρ̃20n
h,l and Φ̄ni,j =

1

100

10i∑
h=10(i−1)+1

10j∑
l=10(j−1)+1

Φ̃20n
h,l (18)

Applying these reconstructions for all data, a fundamental diagram density–flow relation can be obtained. The
result is shown as the points in Figure 12. We then fit a function Φ̃ to these data points that satisfies the following
constraints:

1. The flux is zero for a vanishing density: Φ̃(0) = 0.

2. The flux returns to zero when the density reaches its maximum: Φ̃(ρmax) = 0

3. The function Φ̃ must be a concave down function.

4. The function Φ̃ must be smooth.

The two first constraints ensure that the density remains between 0 and ρmax. For a review of existing fundamental
diagram and their properties we refer the reader to the paper of [Carey and Bowers, 2012]. For our case, we
consider the FD suggested by [Newell, 1961] and [Francklin, 1961] that satisfies the above properties and that
seems the most appropriate to the shape of the data we have:

Φ(ρ) = vmaxρ
(

1− exp
( c

vmax
(1− ρmax

ρ
)
))

(19)

For the simulations, we consider that the maximum density ρmax is fixed and corresponds to the maximum
density reconstructed (before doing sampling and aggregation) of the data collected from the simulation.

ρmax = max
(i,j)×n

ρ̃ni,j , (i, j)× n ∈ [1, . . . , I]× [1, . . . , J ]× [1, . . . , N ] (20)

The estimation of the parameters vmax and c is done using the aggregated and sampled data. The optimization
problem is solve with a toolbox of Matlab considering the following minimization problem:

arg min
vmax,c

( Ī∑
i=1

J̄∑
j=1

N̄∑
n=1

‖Φ(ρ̄ni,j)− Φ̄ni,j‖22
)

(21)

The scenario of simulation considered for the collection of data is the following. We consider the network described
in Figure 7 initially congested. Then we open the network exits and stop the inflows. We collect data during
the dissipation of the congestion which lasts 15 minutes. Every 0.8s, measures are collected from vehicle position
and speed over the whole space. The results are given in Figure 12.
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Figure 12: Estimation of the fundamental diagram with the function of Newell and Franklin.

The curve is obtained for the value ρmax = 2175 vehicles/km2, vmax = 29.9110km/h and c = 17.2089km/h.

5 Simulation results

5.1 Description of the scenario

In Section 3, we established a way to reconstruct a two-dimensional density from data of the microsimulator
Aimsun. We are now able to compare a simulation of the 2D model with the microsimulator. With this aim, we
build two scenarios. Recall that we assume that we have only a flow oriented towards the North-East direction
for all simulation. The network is the same deformed 10× 10 Manhattan grid as before. The minimum spacing
between vehicles along the road is 6m. For the two scenarios, the parameters of the 2D model are the same
as the ones estimated in the previous sections: d0 = 85.1m, ρmax = 2175veh/km2, vmax = 29.911km/h, and
c = 17.2089km/h.

In the Aimsun simulator, there is an important role of randomness (for instance at each intersection, the
direction taken by a vehicle is a random variable with a probability dependent of the turning ratios). This implies
that different runs of the same scenario could yields noticeably different results on a micro-scale. Thus, some
congestion at a local level may appear at different place and time in two different run of microsimulation. Thus,
to improve the robustness of our model comparison, we compute 100 different runs of the Aimsun simulation
for each scenario. For each of these runs, we reconstruct a 2D density and then we use the average of these
reconstructed densities as a means of comparison for our 2D model.

Scenario 1: Creation of a congestion. We set up Aimsun that there is an accident in the North-East corner
of the domain, which causes a congestion to propagate over the network that is initially in free flow. It may be
difficult to represent an equivalent scenario in the two-dimensional model. For this reason, we considered that
the simulation of the 2D model is done on a subdomain, a square of 800m which starts in the left bottom corner,
of the real network. Then, we consider that the supply on the exit of the 2D model (on the right and the top) is
directly given by the supply of the density reconstructed of the microsimulator at the same position. The inflows
in both case are identical: 800 vehicles per hour at each of the 16 entrances (see Figure 7 for an example of an
Aimsun simulation for 6400 vehicles per hour and per km over the 2 km of entrance boundary of the 2D model.
The simulation starts 3 mn after the beginning of the congestion and lasts 5mn00s. In Figure 13 the initial and
final states of the microsimulation for scenario 1 are displayed. A video that shows the reconstruction of density
and the distribution of vehicle for one instance of this scenario is available at https://youtu.be/Nb-m2-fDxHY.
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Figure 13: Distribution of vehicles during the Aimsun simulation for an individual run of the scenario 1 at the
initial and final time of the simulation.

The 2D-model for this scenario are simulated and compared only in the green subdomain. The parts of the
network that are not considered in the 2D model are used to provide the boundary condition such that the
condition of the 2D-model and the microsimulation are similar.

Scenario 2: Congestion dissipation. The second scenario consists of the dissipation of a congested area.
We create a congestion in the microsimulation that fill the network during 15mn and then we start to dissipate
it by opening all the outputs and stopping the inflow at the entrances of the model. One minute after the
dissipation start, we reconstruct the 2D density from the Aimsun simulator and feed this density as initial state
to the 2D model. Then we compare the evolution of the micro and the macro models over the next 5mn00s.
In Figure 14 the initial and final states of the microsimulation for one sample of scenario 2 are displayed. A
video that shows the reconstruction of density and the distribution of vehicle for one instance of this scenario is
available at https://youtu.be/L8Q9MgYyBK4.

Figure 14: Distribution of vehicles during the Aimsun simulation for an individual run the scenario 2 at the final
and final time of the simulation.

As the two models are very different, it might be difficult to have a good precision in the results. However,
the aim of this study is more to be able to capture the large scale features of traffic than to focus on detail at a
local level.

5.2 Comparison micro vs. macro simulation

Results of simulation scenario 1.
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In this scenario, we are considering a creation of congestion. The results of the simulation can be seen in
Figure 15. The figure represents a comparison of simulation results between the 2D model and the average of
the reconstructed density from 100 runs in Aimsun.

16



17



Figure 15: Comparison of two-dimensional (left) and the average microsimulator behavior (right) during the
creation of a congestion. Video of the full simulation available at https://youtu.be/Y9RGLFTIGSs

First, we can notice that the main traffic features, which is the propagation of a wave moving backward is
captured by the 2D model. During the first 2mn, for the considered selected square of 800m, the network is in
free flow conditions because the congestion needs a sufficient time to appear. From t = 120s, a delay can be seen
in the creation of the congestion in the 2D model. This might be explained by the choice of boundary condition.
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Indeed, as we use the supply of the microsimulation to feed the output of the two models, the congestion in
this one can only start when the state of the micro simulation are already fully congested. Thus, the difficulty
to create a scenario perfectly identical for both the macro and the micro simulation can explain a part of the
difference observed. The delay in the propagation of the shockwave is carried over the duration of the simulation.

Furthermore, we can observe some difference regarding the shape of the shock wave. Indeed, the shock in
the 2D model is really discontinuous whereas for the reconstruction from the microsimulation it is smooth. But,
as the kernel use for the reconstruction is a Gaussian with a quite large range we could have expected this
phenomenon. The simulation time is short in comparison with usual study case but this scale directly with the
size of the network smaller than usual.

Results of simulation scenario 2.
In the second scenario, we are considering a dissipation of a congestion. As in the previous simulation, the

results represent a comparison of the density evolution between the 2D model and the average of 100 Aimsun
simulation runs. The results can be seen in Figure 16.
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Figure 16: Comparison of two-dimensional (left) and the average microsimulator behavior (right) during the
dissipation of a congestion. Video of the full simulation available at https://youtu.be/OLGGyWU2jz4

The simulation of the dissipation of congestion seems to fit well the reconstruction of the Aimsun simulation.
The speed of the dissipation looks also similar. Nevertheless, there is some fundamental difference. First starting
from time t = 30s, one may notice that the 2D model includes a shock in the South-West of the congested area.
This phenomena could not be captured by the reconstructed density which is smooth due to the Gaussian Kernel.
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On the other side of the congested area, a rarefaction wave that reduced can be observed. If the simulation time
is short in comparison with usual study case, this could be directly link with the scaling of the size of the network.

6 Conclusion and future work

This paper investigates a method for the validation of a two-dimensional model. We construct a 2D model and
explain methods for the tuning of parameters using the network for the direction of the flux and data for an
estimation of a specific fundamental diagram. Then we present results of simulations which compare the results
of a 2D model and the microsimulator Aimsun for a similar scenario. Future steps that need to be done include
to consider a heterogeneous network with capacity and speed varying over the plane. Indeed, this would be
necessary to get closer to more realistic scenarios especially in term of creation of congestion. We could notice
the tools described in this article for the comparison between the microscopic and the 2D model can be used for
the validation of more complex situation.
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