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HYPERBOLIC FREE BOUNDARY PROBLEMS AND APPLICATIONS
TO WAVE-STRUCTURE INTERACTIONS

TATSUO IGUCHI AND DAVID LANNES

ABSTRACT. Motivated by a new kind of initial boundary value problem (IBVP) with a free
boundary arising in wave-structure interaction, we propose here a general approach to one-
dimensional IBVP as well as transmission problems. For general strictly hyperbolic 2 x 2
quasilinear hyperbolic systems, we derive new sharp linear estimates with refined dependence
on the source term and control on the traces of the solution at the boundary. These new
estimates are used to obtain sharp results for quasilinear IBVP and transmission problems, and
for fixed, moving, and free boundaries. In the latter case, two kinds of evolution equations are
considered. The first one is of “kinematic type” in the sense that the velocity of the interface
has the same regularity as the trace of the solution. Several applications that fall into this
category are considered: the interaction of waves with a lateral piston, and a new version of
the well-known stability of shocks (classical and undercompressive) that improves the results
of the general theory by taking advantage of the specificities of the one-dimensional case. We
also consider “fully nonlinear” evolution equations characterized by the fact that the velocity of
the interface is one derivative more singular than the trace of the solution. This configuration
is the most challenging; it is motivated by a free boundary problem arising in wave-structure
interaction, namely, the evolution of the contact line between a floating object and the water.
This problem is solved as an application of the general theory developed here.

1. INTRODUCTION

1.1. General setting. This article is devoted to a general analysis of free boundary and free
transmission hyperbolic problems in the one dimensional case. It is mainly motivated by a new
kind of free boundary problem arising in the study of wave-structure interactions and for which
the evolution of the free boundary is governed by a singular equation.

In order to explain the singular structure of this problem, let us recall some results on hyper-
bolic initial boundary value problems (a good reference on this subject is the book [BGS07]).
Let us for instance consider a general quasilinear equation of the form

for t > 0 and = € R. It is well known that if the system is Friedrichs symmetrizable, i.e., if
there exists a positive definite matrix S(u) such that S(u)A(u) is symmetric, then the associ-
ated initial value problem is well-posed in C([0,T]; H*(R)) if s > d + 1/2 (with d = 1 is the
space dimension). The proof is based on the study of the linearized system and an iterative
scheme. If we consider the same equation on R, and impose a boundary condition on U at
x = 0, then the corresponding initial boundary value problem might not be well-posed, even
if the system is Friedrichs symmetrizable. Well-posedness is however ensured if there exists a
Kreiss symmetrizer which, as the Friedrichs symmetrizer, transforms the system into a symmet-
ric system, but with the additional property that the boundary condition for this symmetric
system is striclty dissipative (roughly speaking, this means that the trace of the solution at
the boundary is controled by the natural energy estimate). The construction of such a Kreiss
symmetrizer in extremely delicate and is usually done under the so-called uniform Lopatinskii
condition which can formally be derived as a stability condition for the normal mode solutions
of the linearized equations with frozen coefficients. Under such a condition (and additional
1
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compatibility conditions between the boundary and initial data), a unique solution can again
be constructed (though with many more technical issues) via estimates on the linearized system
and an iterative scheme. The typical result for quasilinear initial boundary value problems satis-
fying the aforementioned condition, as announced in [RMey] and proved in [Mok87], is that the
equations are well-posed but with higher regularity requirements, and more importantly, with a
loss of half a derivative with respect to the initial and boundary data.

In some situation, the boundary of the domain on which the equations are cast depends on
time. In dimension d = 1 for instance, this means that instead of working on R, one works on
(z(t), +00), where the function z is either a known function (boundary in forced motion) or an
unknown function determined by an equation involving the solution U of the hyperbolic system,
typically,

i(t) = X(U,_,,)
for some smooth function x (we shall say that this kind of boundary evolution of “kinematic
type” because, as for kinematic boundary conditions, the regularity of & is the same as the
regularity of the solution at the boundary). Such problems are called free boundary hyperbolic
problems.

It is noteworthy that, up to a doubling of the dimension of the system of equations under
consideration, the considerations above can be extended to transmission problems, where two
possibly different hyperbolic systems are considered on the two different sides of an interface,
and where the boundary condition is replaced by a condition involving the traces of the solution
on both sides. One of the most famous transmission problems with a free boundary is the
stability of shocks. The problem consists in finding solutions to a quasilinear hyperbolic system
that are smooth on both sides of a moving interface and whose traces on the interface satisfy the
Rankine-Hugoniot condition. In dimension d = 1, this latter condition provides an evolution
equation for the interface of the same form as above.

Showing the well-posedness of free boundary hyperbolic problems requires new ingredients
and in particular,

e A diffeomorphism must be used to transform the problem into a boundary value problem
with a fixed boundary.

e A change of unknown must be introduced to study the linearized equation. Indeed, with
the standard linearization procedure, a derivative loss occurs due to the dependence of
the transformed problem on the diffeomorphism. This loss is removed by working with
so-called Alinhac’s good unknown.

The proof of the stability of multidimensional shocks is a celebrated achievement of Majda
[Maj83a, Maj83b, Majl2], with improvements in [Mét01]. Since the proof relies on the theory
of initial boundary value problems, the same loss of half a derivative with respect to the initial
and boundary data is observed.

The free boundary problem that motivates this work is the evolution of the contact line
between a floating object and the water, in the situation where the motion of the waves is
assumed to be governed by the (hyperbolic) nonlinear shallow water equations, and in horizontal
dimension d = 1. In a simplified version, this problem can be reduced to a free boundary
hyperbolic problem, but with a more singular evolution equation for the free boundary, which
is of the form
where Uj is a known function (for the contact line problem, this condition expresses the fact
that the surface elevation and the horizontal flux of the water are continuous across the contact
point). Time differentiating this condition yields an evolution equation for z of the form

I(t) = X((atU)‘:c=£(t)’ (axU)hc:g(t)’ (atUi)lng(t)’ (ain)‘ng(t) ) :
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The standard procedure for free boundary hyperbolic problems descrived above does not work
with such a boundary equation, because there is obviously a loss of one derivative in the esti-
mates: the boundary condition is fully nonlinear. In order to handle this new difficulty without
using a Nash—Moser type scheme, we propose to work with a second order linearization and
introduce a second order Alinhac’s good unknown in order to cancel out the terms responsible
for the derivative losses.

Proving the well-posedness of this fully nonlinear free boundary hyperbolic problem also re-
quires sharp and new estimates for one-dimensional hyperbolic initial boundary values problems
that are of independent interest. One-dimensional hyperbolic boundary value problems are gen-
erally dealt with using the method of characteristics [LY85]. In the Sobolev setting, there is no
specific work dealing with the one-dimensional setting, and the general multidimensional results
are used, with their drawbacks: high regularity requirements and derivative loss with respect
to the boundary and initial data. These drawbacks however can easily be bypassed by taking
advantage of the specificities of the one-dimensional case, and in particular of the explicit con-
struction of the Kreiss symmetrizers. For this reason, we propose in this article a general study
of initial boundary value problems (as well as transmission problems) for fixed, moving, and
free boundaries. This study is based on the new sharp estimates developed to solve the fully
nonlinear free boundary problem mentioned above and fully exploits the specificities of the one-
dimensional case. In particular, the high regularity requirements and the derivative loss of the
general theory are removed. This is for instance of interest to solve the problem of transparent
conditions for hyperbolic systems. We use this general approach to solve several problems com-
ing from wave-structure interactions, as well as other problems such as conservation laws with
a discontinuous flux and the stability of one-dimensional standards and nonstandards shocks.
Another advantage of our approach is that it is much more elementary than the general results,
and does not require refined paradifferential calculus for instance.

1.2. Organization of the paper. Section 2 is devoted to the study of several kinds of free
boundary problems for 2 x 2 quasilinear (strictly) hyperbolic systems. The case of non homo-
geneous linear initial boundary value problems with variable coefficients and a fix boundary is
considered first in §2.1. The main focus is the derivation of a sharp estimate, given in Theo-
rem 1, which requires only a weak control in time of the source term (weaker than L'(0,T),
which is itself weaker than the standard L?(0,T) that can be found in the literature [BGS07))
and which provides a better control of the trace of the solution at the boundary. We first as-
sume the existence of a Kreiss symmertrizer and derive a priori weighted L?-estimates in §2.1.2,
and higher order estimates in §2.1.4. In order to complete the proof of Theorem 1, the main
step, performed in §2.1.5 is the explicit construction of a Kreiss symmetrizer under an explicit
Lopatinskii condition. In §2.2, these linear estimates are used to prove the well-posedness of
quasilinear systems; Theorem 2 provides a sharp result for such systems, which takes advantage
of the specifities of the one-dimensional case and improves the results provided by the general
(multi-dimensional) theorems. It can for instance be used to improve the existing results con-
cerning transparent boundary conditions for the nonlinear shallow water equations. In §2.3 we
go back to the analysis of linear initial boundary value problems, but this time on a moving
domain, i.e., in the case where the domain on which the equations are cast is (z(t),o0), with x
assumed here to be a known function. Using a diffeomorphism that maps R to (z(¢),c0) for
all times, this problem is transformed into an initial boundary value problem with fix boundary,
but whose coefficients depend on the diffeomorphism. One could apply Theorem 1 to this prob-
lem, but would lose an unecessary derivative in the dependence on the diffeomorphism. This
loss is avoided in Theorem 3 by applying Theorem 1 to the system satisfied by Alinhac’s good
unknown; in order to get a sharp result in terms of regularity requirements on the initial data,
the sharp dependence on the source terms proved in Theorem 1 is necessary at this point. These
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linear estimates are then used in §2.4 to study quasilinear initial boundary value problems with
free boundary, i.e., where the function z(¢) is no longer assumed to be known, but satisfies an
evolution equation. The case of an evolution equation of “kinematic” type is considered first,
so that a diffeomorphism of “Lagrangian” type can be used and a solution constructed by an
iterative scheme based on the linear estimates of Theorem 3. The more complicated case of fully
nonlinear boundary conditions of the type mentioned above is addressed in §2.5. To handle this
problem, another kind of diffeomorphism must be used and a generalization of Alinhac’s good
unknown to the second order must be introduced to remove the loss of derivative induced by
the fully nonlinear boundary condition. A more general type of fully nonlinear condition is also
considered in §2.5.4, where a coupling with a system of ODEs is allowed.

As an illustration of the fact that the theory developed above for 2 x 2 initial boundary value
problems can be generalized to systems involving a higher number of equations, we propose in
Section 3 a rather detailed study of transmission problems. More precisely, we consider two 2 x 2
hyperbolic systems cast on both sides of an interface, and coupled through transmission condi-
tions at the interface. Such transmission problems can be transformed into 4 x 4 initial boundary
value problems to which the above theory can be adapted. Linear transmission problems are
first considered in §3.1, the main step being the construction of a Kreiss symmetrizer whose
nature depends on the number of characteristics pointing towards the interface; the nonlinear
case is then considered in §3.2. Moving interfaces are then treated in §3.3 for linear systems and
an application to free boundary transmission problems with “kinematic” boundary condition is
given in §3.4.

A first application of the general theory described above to wave-structure interactions is given
in Section 4. The problem consists in studying the interaction of waves in shallow water with
a lateral piston. The nonlinear shallow water equations are a quasilinear hyperbolic problem
that falls into the class studied above. The domain is a half-line delimited by a piston which
can move under the pressure force exerted by the wave. Its motion (and therefore the position
of the boundary) is given by the resolution of a second order ODE in time (Newton’s equation)
coupled with the nonlinear shallow water equations. The key step is to show that this evolution
equation is essentially of “kinematic” type so that the results of §2.4 can be applied.

In Section 5 we present the problem that motivated this work, namely, the description of the
evolution of the contact line between a floating body and the surface of the water in the shallow
water regime. We recall in §5.1 the derivation of the equations proposed in [Lanl7] to describe
this problem and investigate first, in §5.2, the case of a fixed floating body. We show that the
problem can be reduced to an initial boundary value problem with free boundary governed by a
fully nonlinear equation, which allows us to use the results of §2.5. The extension to the case of
a floating object with a prescribed motion is then presented in §5.3 and the more complicated
case of a freely floating object is studied in §5.4. For this latter case, the evolution of the contact
point is more complicated because it is coupled with the three dimensional Newton equation for
the solid (on the vertical and horizontal coordinates of the center of mass and on the rotation
angle). Technical computations are postponed to Appendix A.

We finally present in Section 6 several applications of our results on transmission problems.
The first one, considered in §6.1 is a general 2 x 2 system of conservation laws with a discon-
tinuous flux (a typical example is provided by the nonlinear shallow water equations over a
discontinuous topography). We then investigate in §6.2 the stability of one-dimensional shocks
(both classical and undercompressive); using our sharp one-dimensional results, we are able to
improve the results one would obtain by considering the one-dimensional case in the general
multi-dimensional theory of [Maj83a, Maj83b, Majl2, Mét01] for classical shocks and [Cou03]
for undercompressive shocks.
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1.3. General notations. - We write Q7 = (0,7) x R,

- The notation 0 stands for either 0, or 0;, so that df € L (Qr) for instance, means 0, f €
LOO(QT) and 8tf S LOO(QT).

- We denote by - the R? scalar product and by (-,-)72 the L?(R) scalar product.

- If A is a vector or matrix, and X a functional space, we simply write A € X to express the
fact that all the elements of A belong to X.

- In order to define smooth solutions of hyperbolic systems in Q7 = (0,7") x R4, it is convenient
to introduce the space W™ (T') as

l
W (T) = () C7((0,T); H™ 9 (R.)),
j=0

with associated norm

lullwmery = sup fu(®ll,, with  [la@)lll,, = > 10/u(®)|zme.).
te[0,7) =0

)

We have in particular H™(Qr) c W™(T) C H™(Qr).
- In order to control the boundary regularity of the solution, it is convenient to use the norm

m 1 1

. 2 2

|u|z:0|m:t = (: :|(a%u)a:0|%’[m3(07t)> = < Z (8au)z0|%2(0,t)> :
=0

lal<m

- We also use weighted norms with an exponential function e~ for v > 0 defined by

t / 3 mo 3
91220 = ( [ rg<t’>|2dt/) 1ol = (ngﬁg(o,t)) |

=0
ey = € Wl Nl = sup [Ju)ll,, .,
te[0,7
" 2
j 2
‘ulm:O’muvvt = (Z ‘(agjcu)h:o‘Hj{"—j(O’t))
=0
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Institut de Mathématiques de Bordeaux for their kind hospitality and for fruitful discussions. T.
1. was partially supported by JSPS KAKENHI Grant Number JP17K18742 and JP17H02856.
D. L. is partially supported by the Del Duca Fondation, the Conseil Régional d’Aquitaine and
the ANR-17-CE40-0025 NABUCO.

2. HYPERBOLIC INITIAL BOUNDARY VALUE PROBLEMS WITH A FREE BOUNDARY

This section is devoted to the analysis of a general class of initial boundary value problems,
with a boundary that can be either fixed, in prescribed motion, or freely moving. We refer to
§1.3 for the notations used, and in particular for the definition of the functional spaces.

2.1. Variable coefficients linear 2 x 2 initial boundary value problems. The aim of
this section is to provide an existence theorem with sharp estimates for a general linear initial
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boundary value problem with variable coefficients of the following form,
O+ A(t,x)0pu+ B(t,z)u = f(t,z) in Qp,
(1) uj,_y = u™(x) on Ry,
v(t) - U,y = g(t) on (0,7),
where u, u™, f, and v are R2-valued functions and g is real-valued function, while 4 and B take

their values in the space of 2 x 2 real-valued matrices. We also make the following assumption
on the hyperbolicity of the system and on the boundary condition.

Assumption 1. There exists cg > 0 such that the following assertions hold.
i. AeWh>(Qr), Be€ L>®(Qr), veC([0,T)).
ii. For any (t,z) € Qp, the matriz A(t,x) has eigenvalues A, (t,z) and —A_(t,x) satisfying

)\i(t, JZ) > Co.

iii. (The uniform Kreiss—Lopatinskii condition.) Denoting by ey (t,z) a unit eigenvector
associated to the eigenvalue Ay (t,z) of A(t,x), for any t € [0,T] we have

V(£,0) - e4 (£ 0)] = co.

Example 1. A typical example of application is to consider the linearized shallow water equa-
tions with a boundary condition on the horizontal water flux q. This system has the form

¢ + 0zq = 0,
{atq +230.q+ (gh — §3) 0:C =
with initial and boundary conditions
(€@ = (¢™¢™)  and g, =g,

where g is the gravitational constant. This problem is of the form (1) with u = (¢,q)*, B =0,
f=0,v=(0,17T, and

0 1
(2) At,z) = Alu) = (gh_ ¢ ) .
Lo ﬁ2

The eigenvalues A+ and the corresponding unit eigenvectors e+ of A are given by Ay = /gﬁi%
and e = ;(l,iAi)T, so that Assumption 1 is satisfied provided that h,q € W (Qr),

VI1+HAL

(Sal[ES]

and

h(t,z) =2 c,  gh(t,z)+ att

x
h(t,x
with some positive constant ¢y independent of (t,x) € Q.

))ZCO

Notation 1. In order to define an appropriate norm to the source term f(t,x) in (1), it is
convenient to use the following norm to functions of t

. ;
sup e-“\so<t>\+(~y / e-%a)r?dt) sl},
0

te[0,7]

T
| e roea];

0

:;,T(f) = Sup{

®

which is the norm of the dual space to L3°(0,T) N L%(O,T) equipped with the norm

" ;
sup e o(t)] + (w / e-%u)\?dt)

te[0,7

associated to the inner product of L%(O,T).
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It is easy to check that S;’t( f) is a nondecreasing function of ¢ > 0 for each fixed f and that
S5 (f) is monotone with respect to f in the sense that if 0 < f1(t) < fo(t) for t € [0,77, then
we have S7 ,(f1) < S5 4(f2) for t € [0,7]. Moreover, we have

T 1 (T 1
(< [ ek and Si,T(f)§<7 / e‘Qthf(t)Ith) .

Remark 1. The first of these two inequalities implies an L?-type control through the Cauchy—
Schwarz inequality,

/OT I, ﬁ(/oT 6‘2”|f<t>r2dt> g

but with a right-hand side involving a factor /T. This is not the case for the L*-type control (with
respect to time) deduced from S:,T( f) and this improvement allows to derive energy estimates
with an exponential growth in Theorems 1, 3, and 7 for instance.

The main result of this section is the following theorem (see §1.3 for the definition of .W™~1(T)
and of the various weighted norms used in the statement).

Theorem 1. Let m > 1 be an integer, T > 0, and assume that Assumption 1 is satisfied for
some cg > 0. Assume moreover that there are constants 0 < Ky < K such that

= Al oo () [V Lo 0,1y < Ko,
[ Al w1.e0 ) 1Bl oo (7> 1 (QA, OB) lwym—1 1y, [¥|wm.eo o) < K.

Then, for any data u'™ € H™(R,), g € H™(0,T), and f € H™() satisfying the compatibility
conditions up to order m — 1 in the sense of Definition 1 below, there exists a unique solution
u € W™(T) to the initial boundary value problem (1). Moreover, the following estimate holds
for any t € [0,T] and any v > C(K):

t !
@)l + (7 / H!u(t’)lemdt’> gl
< C(Ko) (Ol + 191720 + o bt + S50 )l —))-

Particularly, we have

[IKZEC] i o TN P
t
< C(Ko)eC(K)t<IIIU(0)||Im + 19lam08) + [flacolm—1.t +/0 ”|8tf(t/)||m—1dt,>'

Remark 2. The estimates provided by the theorem are a refinement of classical estimates that
can be found in the extensive literature on initial boundary value problems (see for instance
[Sch86, Mét01, BGS07, Mét12]).

i. With the exception of [Mét01], these references provide a control of the source term in
L?-norm with respect to time; it turns out that such a control is not enough to handle “fully
nonlinear” boundary conditions as in §2.5 below. In [Mét01], a more precise upper bound in-
volving only the L'-norm in time of f is provided, but only for constant coefficient symmetric
systems. The above theorem extends this result to variable coefficients systems and also refines
it since it provides a control in terms of S7; instead of L'. This latter refinement is important
for instance to get low reqularity results — W?(T) instead of W3(T) — in Theorems 2, 4, 5, 6,
and 8.

ii. The estimates of the theorem provide a control of |u|,_,|m. and not only of lu,_, gm0,

iii. In addition to the classical L*°(0,T) upper bound on t — ||u(t)|||,,, our estimates provide
a control of its L' (0,T)-norm which is uniform with respect to t (see the comments in Remark
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1 above) which is typical of weghted estimates [Mét12, BGS07]. This term is essential in the
derivation of the higher-order estimates (see the proof of Proposition 2).

Remark 3. The assumption |v|ym.eo ) < K can be weakened into |v|y1,00nqpm—1,0000,7) < K
and [07"v|2(0,r) < K (this is a particular case of Theorem 3 below with z =0).

2.1.1. Compatibility conditions. From the interior equations, denoting uz = dfu, we have
uy = —Adyu — Bu+ f.

More generally, differentiating the equation k-times with respect to ¢, we have a recursion relation

k
Ups1 =— ) <’;) {057 A)dpuj + (8 B)uy} + OF f.

J=0

For a smooth solution u, u}cn = ug|,_, is therefore given inductively by ul = u™™ and

k
®) it == 3 (§) 100 + @B ) + @)

§=0
The boundary condition v(t) - u|,_, = g also implies that
Qf“‘ (I/(t) . u‘mzo) = @fgg.
On the edge {t = 0,z = 0}, smooth enough solutions must therefore satisfy

k

(4) Z <§> (agy)h:o ) u}cnfjhzo = (afg)\t:()-

=0

Definition 1. Let m > 1 be an integer. We say that the data v'™ € H™(R,), f € H™(Qr),
and g € H™(0,T) for the initial boundary value problem (1) satisfy the compatibility condition
at order k if the {u;n}gnzo defined in (3) satisfy (4). We also say that the data satisfy the
compatibility conditions up to order m — 1 if they satisfy the compatibility conditions at order k
fork=0,1,...,m—1.

2.1.2. A priori L?-estimate. We prove here an L? a priori estimate using the following assump-
tion, which will be verified later as a consequence of Assumption 1.

Assumption 2. There ezists a symmetric matriz S(t,x) € Ma(R) such that for any (t,z) € Qr
S(t,x)A(t, x) is symmetric and the following conditions hold.

i. There exist constants ag, By > 0 such that for any (v,t,z) € R? x Qr we have
aolv]? <vTS(t, z)v < Bolv]?.
ii. There exist constants a1, 31 > 0 such that for any (v,t) € R? x (0,T) we have
vIS(t,0)A(t,0)v < —ay|v]? + Ba|v(t) - v]2.
iii. There exists a constant By such that

||8tS + 8x(SA) - 2SBHLZ(QT)_>L2(QT) < ps.

Notation 2. We denote by Bi* < By any constant such that the inequality in i of the assumption
is satisfied at t = 0.

In the L? a priori estimate provided by the proposition, the control of the source term by
S5 ([ £()|lz2) is crucial to get the refined higher order estimates of Theorem 1.
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Proposition 1. Under Assumption 2, there are constants

in in 5
0 b1
Cp = C(fo, 7()) and ¢ = ( )
g (a1 Oé() Ozo (03]

such that for anyu € H'(Qr) solving (1), anyt € [0,T), and any vy > %, the following inequality

holds.
(/Mu|MﬂQ F 200

< collu™| 22 + e1(lgl L2 0.y + S5 (1F()22)),
where we recall that S3 (|| f(+)||z2) is defined in Notation 1.

lles(#)

Proof. Multiplying the first equation of (1) by S and taking the L?(£%) scalar product with
e~ 2"y, we get after integration by parts,

t t
e (Su(t), u(t)) 2 + 27/ e (Su, u) 2dt — / e (S Au - w)),_odt’
0 0
t
= (S),_ou™ u™) 2 + / e (8,8 + 0,(SA) — 2SB)u + 25 f,u) r2dt’.
0

Using Assumption 2 with Notation 2, this yields
t
2 2
aolllu(®)lfo + (2a0y = B2) /0 () llo At + a1 g, _o |72 0.0

t
< By 1wl + Bulglzz o + 2/30/0 e N2 @) [ g2t

We evaluate the last term as

t
Ae2WWWMHMWHHM

: -
< 81O { el + ([ Mot )"}
. B 1o
< S5 (Ol ullwg e + =85 (£ ()l z2) +°/H Ol dt’
and we deduce that
t
Y aq
) O, +F [ IO, + 2 ag
%

2
H m”LZ + ;’9’%3(0,75) + 22)2 :,t(”f(’)HL2)HUHWQ(1§) + 2(50 L(IfC )||L2)>
50

2
1 2 1 2 50
iz + 2l 0 + 3ol + 4 2530501
for v > %' Particularly, we have

50

2
§||U”WQ(

2
7 + 2 Hpo@+4<% Wﬂ>mw).

Plugging this into (5), we obtain the desired estimate. O
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2.1.3. Product and commutator estimates. To obtain higher order a priori estimates, we need to
use calculus inequalities. By the standard Sobolev imbedding theorem H!(R,) C L*°(R,), we
can easily obtain the following lemma.

Lemma 1. Let m > 1 be an integer. There exists a constant C' such that the following inequal-
ities hold:

i lu@o@lll,, < CUlu®ll Lo @) + [1OwE - [o@,y

ii. [[[0% u(®)]o() 2ry) < CUOu®)] Lo @) + MOWE D N0y ] < m,
iii. [0[0% u(®)]o®)]2r.) < CUOU)] L@y + O DIV —y & laf <m -1,
iv. [[0[0% u(t), ()]l 2,y < CllOW@) o ollOVE) o i 2 < laf <m —1,

where [0%; u,v] = 0%(uv) — (0%u)v — u(0%v) is a symmetric commutator.

I

The following Moser-type inequality is a direct consequence of the above lemma.

Lemma 2. Let U be an open set in RN, F € C*®(U), and F(0) =0. If m € N and u € W™(T)
takes its value in a compact set I C U, then for any t € [0,T] we have

I @) Dl < CUlullyrimsz.00 @) )]
where [m /2] is the integer part of m/2.

We also need Moser-type inequalities for the trace at the boundary of the nonlinear terms, as
in the following lemma.

Lemma 3. Let U be an open set in RN, ' € C®(U), and F(0) =0. If m € N and u = u(t, x)
takes its value in a compact set I C U, then we have

i. |F(U)|I:o|m,t < C(ng[m/z] |(aau)|zzo|L<>°(0,t))|u|z:0|m,t}
i [F(w)),—glmt < CUlullwyimze ) |u),—olm.t
iii. |9p(F (w))),olmt < CUlwllwmeys 1wl oo (7)) ([(Or) |, g It + [|O¢tllvym 1y |1, g It )5
where [m/2] is the integer part of m/2.

Proof. The proof of i is straightforward and i together with the Sobolev imbedding theorem
HY(R}) C L>®(R;) yields ii. We will prove iii. The case m = 0 is obvious so that we assume
m > 1. In view of 0%0y(F (u)) = F'(u)0*0u + [0%, F'(u)]0pu, we have

104 (F (1)), glmt < ClOew) gt + CllOpullwm-roiy D 10%F (w)]204
1<]|a|<m
< Cl0u) g lm,t + Cl[ullyyimsare1 ) | Ocullwm 1) [y, _o lm.t-
Since [m/2] + 1 < m, we obtain the desired inequality. O

Lemma 4. There exists an absolute constant C' such that for any v > 0 and any integer m > 1

we have
1

t , 3

6 e u(t)] + <7 [ |u<t'>|2dt') < O(Ju(0)] + 57, (3ku])),
0

0 Jups i < O )+ 3~ gy )

@) el + <7/0 IIIU(t’)IIIi_mdt'> "< C(IlwO)ll—y + S5, MOl 1)) -

Proof. Integrating the identity

%(e_wlu(t)ﬁ +29e” " u(t)? = 2e7 u(t) - dypu(t),



HYPERBOLIC FREE BOUNDARY PROBLEMS AND APPLICATIONS 11

we have

t t
e~ u(t) > + 2y / e~ lu()|?dt’ = |u(0)]? 4 2 / e ut') - dpu(t))dt’.
0

0
The last term is evaluated as

t t
) / e (1) - Bu(t)dt’ < 2 / 2 [0 () |yt | A"
0 0

. 1
< QSZ:’t(|8tu\){ sup e " u(t')] + (7/ @2w'|u(t’)|2dt/> 2}
0

t'€[0,t]
1 / ¢ /
< - sup e 2" \u(t’)\Q—i-’y/ e 2 lu(t)2dt’ + 38 t(\atu|)
t'e(0,t] 0
so that we obtain (6). Similarly, we can show (8). As a corollary of (6), we have
_1 _
Julrz 0.4 < C(v2[u(0)] + 7 Opul L2 0.0))-
Applying this inequality to (0%u)|,_,, summing the resulting inequality over |a| < m — 1, and

using the Sobolev imbedding theorem H'(R,) C L°°(R,), we obtain (7). O

2.1.4. Higher order a priori estimate. We can now state the generalization of Proposition 1 to
higher order Sobolev spaces.

Proposition 2. Let m > 1 be an integer, T > 0, and assume that Assumption 2 is satisfied.
Assume moreover that there are two constants 0 < Ky < K such that

c0, 1, || Al| oo )5 1A oo ()5 V] Lo 0,1y < Ko,
B2 )| Allwroo gy 1Bl oo @y 1 (DA, OB) g1y, [ wmeoe 0.7y < K,

where ¢g and ¢1 are as in Proposition 1. Then, every solution v € H™ Y (Qr) to the initial
boundary value problem (1) satisfies, for any t € [0,T] and any v > C(K),

@l + ([ e |||mdt) gl
< C(Ko) (w0, + 19l 0,0y + | flacolm—1,, + S5 N0 f ) ,1—1))-
Proof. Let u,, = 0;*u. Then, u,, solves
Oy, + A(t, )0yt + B(t, 2)up, = fr, in Qp,
U,y = (3f‘u)|t:0 on R,
v(t) U,y = gm (%) on (0,7),

where

9m = 81?19_ [817€nvy] UL
Applying Proposition 1 we obtain

t 3
2
lwm (®)llo, + <7/0 |”um(t/)|”0,7dt/> + [um),_ol220)

< colw(O)l,,, + e1(lgmlz2 0,0y + S5 ([l fm ()l 22))-
On the other hand, it follows from Lemma 1 that
{Hfm(t)HL2 S 8ef )y + CUE) ()]

|9m’Lg(0,t) < ‘9|H,;"(0,t) + C(K)le:o’mflmt

{fm — O (f — Bu) — [0}, A)d,u,
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Therefore, we obtain

: !
2
(9) Nt ()l + <7 /0 |||um<t'>|||0,7dt’> + ftml o220

< C(Ko) (Ilu(0)ll, + lglmrzm 0,0y + S5 4 (NOf (Nl —1))
+ CE) (|t —glm—17: + S5 (llut)])) -

We proceed to control the other derivatives. Let k£ and [ be nonnegative integers satisfying
k+1<m— 1. Applying 9Fd., to the equation, we get

POy 4+ ADFOL = OFOL(f — Bu) — [0F0L, Al0yu =: fry.
By using these two expressions of fi; together with Lemma 1 we see that

| f#,1(0)[| 2 < C(Ko)l[[u(0)]l,,,
19 frea @)l 2 < 10 f @),y + CE)[[u®)]ll,
[ fetlozolzz0,6) < [flucolm—1.t + CE) Uy, _olm—-1,.¢-

We have now the relation 9F0L u = A= (fry — P19 u) so that

|0F O u(t) ]| 2 < C(Ko) (|05 Obult) |l 2 + || fra(£)] £2),
|(OFO ), ol 120 < C(K) (O L)y, ol L2 0.y + [frdlomol22(0))-

Therefore,

: :
ot ol + (v [ oko a3 ar )+ 100k ), iz

1

2
< ctwo {1 el + (v [ 10t ot |||07dt) 10, o2 0

2
+ W e @llo + (7/0 H|fk7l(t/)H|(2),ydt/> +|fk,lz_0|Lg(o,t)}~

Here, by Lemma 4 we have

W@l + (v [ Mseate HOWdt)

< C(1 ka0l g2 + S5 N0: fra ()l 2))
< C(Ko) ([Ilu(0)ll,,, + 5% . (MO f (Wl1)) + CUE)SS ,(Mwl)l,p,)-

By using the above inequality inductively, we obtain

@)l + ( / lhut mmdt> T ol

< C(K ){HIU( Ml + 55, U0 Ol 1) + [flozolm—1,7.0

1

t 2
+ @)l + (7 / mum(t')méwdt’) o+l o220

)1 ( / ()12, ,d ) }

+ CE) ([t m—1.0 + 7 ([u()llln))-
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This together with (9) and Lemma 4 implies

)l + ( /Hlu mmdt) T ol

< C(Ko) (Iu(O)l, + |9l 0,6y + iocolm—r.6 + S5 (106 ()lll 1))
+ C(K) (|t lm-1.7 + S5 1 (Nu@),,))
< C(Ko) (w0, + lglrz 0.y + [flaolm—r.6 + S5 e (WOS (1))

) B t s
+C(K){’Y ), + 1(7 /0 Hu(t’)!Hiwdt’) Ty 1ru|m=0\m,7,t}.

Therefore, by taking v sufficiently large compared to C'(K), we obtain the desired estimate (note
that this would not be possible without the second term of the left-hand side). U

2.1.5. Proof of Theorem 1. Under Assumption 2, the existence and uniqueness of a solution u €
W™(T) to (1) can be deduced from Proposition 2 and the compatibility condition along classical
lines (see for instance [Mét01, Mét12, BGS07]). We still have to prove that the assumptions
made in the statement of Theorem 1 imply that Assumption 2 is satisfied. This is given by the
following lemma.

Lemma 5. Let ¢ > 0 be such that Assumption 1 is satisfied. There exist a symmetrizer
S € Whe(Q7) and constants ag, o and By, 1, B2 such that Assumption 2 is satisfied. Moreover,
we have

1 1
¢ < C(%’ ’|A|t:o”L°°(R+)> and ¢ < C(%, ||A||L°0(QT)>7

where ¢y and ¢1 are as defined in Proposition 1, and we also have

B2
= (o Ml [ Blueion )

This lemma is a simple consequence of the following proposition and its proof, which charac-
terizes the uniform Kreiss—Lopatinskii condition iii in Assumption 1.

Proposition 3. Suppose that the condition ii in Assumption 1, |v(t)| > co, and |A(t,z)| < 1/c¢o
hold for some positive constant cq. Then, the following four statements are all equivalent.

i. There exist a symmetrizer S € W (Qr) and positive constants oy and By such that
aold < S(t,z) < Bold and that for any v € R? satisfying v(t) - v =0 we have

v S(t,0)A(t,0)v < 0.

ii. There exist a symmetrizer S € WH*(Qr) and positive constants oy, Bo, a1, and By such
that apld < S(t,z) < Bold and that for any v € R? we have

v S(t,0)A(t,0)v < —aq|v|* + Bu|v(t) - v
iii. There exists a positive constant cg such that
|7 (£, 0)w(t)*] > ao,

where w4 (t,x) is the eigenprojector associated to the eigenvalue Ay (t,x) of A(t,x).

iv. There exists a positive constant g such that
v (t) - e (t,0)] = ao,

where ex(t, x) is the unit eigenvector associated to the eigenvalue =Xy (t,x) of A(t,x).
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Proof. We note that the eigenprojector w4 (¢, x) is given explicitly by

A(t,z) + A_(t,x)Id A(t,z) — Ay (t,2)Id
’ T (t,ﬂj‘) =

Ap(t, o) + A_(t,x) A (t,z) + A_(t, x)

and that under the assumption Ay (¢,z) and |74 (¢, z)| are bounded from above by a constant
depending on ¢y. We see that

V(1) - €4 (£, 0)] = [1()- - ex (£, 0)-] = [(m— (£, 0)w()) - ex(,0)1] < [m_(t, 0)w(t)*]
and that
|7 (£, 0)v ()| = |((t) " - ex(t,0) )7 (t,0)e4 (t,0)| < |7 (£,0)[|v(t) - e1(t,0)|.

These imply the equivalence of iii and iv. Obviously, ii implies i.
We proceed to show that i implies iii. By the assumption we have

(v()5) TS, 0)A(t, 0)u(t)* <0,
which together with the spectral decomposition
A(tv ‘T) = A'i‘ (ta ‘T)ﬂ-'i' (t7 I‘) - A (ta 1“)71-— (t’ I‘)

Ty (t, x) =

implies
coo|m.(, 0)w(£) 12 <Ay (¢, 0) (s (¢, 0)w(8) 1) TS (8, 0)my (1, 0)u(t)*
) (- (£, 0)w() ) TS (¢, 0)m— (¢, 0)w(t) "

<(A-(t,0) = A4 (t,0)
+ A-(t,0)(m (,0)1/(75) St 0)m (¢, 0)w (1)
<BolA=(t,0) = Ay (¢, 0)| | (£, 0) v (8) |7 (£, 0)w(t) |
+ BoA—(t,0)|m— (¢, 0)w (1) .
Particularly, we have
0) = A4 (t,0)?

BRlA-(t,

coap|my (¢, 0)v(t)*]? < < 0 A coon + 2BoA_(t,0) ) |7_(t,0)v ()%
Therefore, in view of co < |[v(t)] < |7 (t,0)v(t)*] + |71 (t,0)v(t)*| we obtain the desired in-
equality in the statement iii.

Finally, we will show that iii implies ii. This is the most important part of this proposition.
We want to show that for a suitably large M > 1, a symmetrizer S(¢, x) satisfying the conditions
in the statement ii is provided by the formula

S(ta $) = 7T+(t, $)T7T+(ta 'I) + Mﬂ-*(ta .CE)TTF,(t, SC),

so that the first point of ii is satisfied with g = 1 and By = M. By the definition of 71, we
compute indeed that
SA= )\+7TI7T+ — MM_ntn_,
which is obviously symmetric. For the second point of ii, just remark that
vISAv = Ay v — MA_|7m_v|*

We need to show that this quantity is negative on the kernel Ryt of the boundary condition.

Under the hypothesis we can assume that |v(t)] = 1 without loss of generality. Then, we see
that
—|r_v? = —|(vt - v)r_vt + (v v)T_v)?
1
< g P P o
1
< —§|7T—VL|2\U!2 +(fmv? + m_v Py - of?
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and that
ool = |t o)t + (v vy
<2mevt Pt ol 4 2mv Py - of?
< Alm et Pl + AP + (a2 o
Therefore, we obtain
M M |mevt?
T 12 + 1T+ 2
v SAv S — )\_‘71'_1/ | <2 — 4Im |’U‘
+ M (v + vt ) 4+ 4 (vt 2 4 v ) Yo - of?
Taking for instance M = 2 + 8supg,,. f\‘—f%, we easily obtain the desired inequality in the
statement ii. g

2.2. Application to quasilinear 2 x 2 initial boundary value problems. The aim of this
section is to use the results of the previous section to handle general quasilinear boundary value
problems of the form

Ou+ A(uw)0yu+ B(t,z)u = f(t,x) in Qp,
(10) uj,_y = u'(z) on Ry,

(¢, u|z:O) = g(t) on (0,7),
where u, u'®, and f are R?-valued functions, g and ® are real-valued functions, while A and

B take their values in the space of 2 x 2 real-valued matrices. We also make the following
assumption on the hyperbolicity of the system and on the boundary condition.

Assumption 3. Let U be an open set in R?, which represents a phase space of w. The following
conditions hold.

i. Ae C™U).
ii. For any u € U, the matriz A(u) has eigenvalues Ay (u) and —A_(u) satisfying
At (u) > 0.

iii. There exist a diffeomorphism © : U — OU) C R? and v € C([0,T)) such that for any
t €[0,7] and any u € U we have

O(t,u) =v(t)-O(u) and |V, P(t,u)-et(u)| >0,
where e (u) is a unit eigenvector associated to the eigenvalue A\ (u) of A(u).

Remark 4. In the case of a linear boundary condition as the we considered for Theorem 1, we
have ®(t,u) = v(t) - u so that by taking ©(u) = u, the third point of the assumption reduces to
V() - e (w)] > 0.

Remark 5. If ®(t,u) = ®(u) is independent of t and if for some u’ we have |V, ®(t,u°) -
e (u®)| > 0, then by the inverse function theorem and up to shrinking U to a sufficiently small

neighborhood of u°, the existence of a diffeomorphism © satisfying the properties of point iii is
automatic.

Example 2. For the nonlinear shallow water equations
0w+ A(u)Oru =0

with w = (¢, q)T and A(u) as given by (2), whose linear version has been considered in Example
1, the first two points of the assumption are equivalent to

h>0, \/ghi%>0 (with h = ho + ¢).



16 TATSUO IGUCHI AND DAVID LANNES

The condition iii of the assumption depends of course on the boundary condition under consid-
eration. Let us consider here two important examples:

e Boundary condition on the horizontal water fluz, that is, q|,_, = g. As seen in Example
1 and Remark 4, this corresponds to ®(t,u) = v - u with v = (0,1)T, and the condition
iii of the assumption is satisfied.

e Boundary condition on the outgoing Riemann invariant, that is, 2(\/g> - \/gTo) +
q/h = g. We then have ®(t,u) = ®(u) = 2(\/gh — \/gho) + q/h and we can take the
diffeomorphism defined on U = {(h,q) € R?; h > 0} by

O(h,q) = (2(v/gh — V/gho) + a/h,2(\/gh — \/gho) —a/h) ",

where 2(\/gh —\/gho) — q/h is the incoming Riemann invariant. Then, ®(u) = v-O(u)
with v = (1,0)T; moreover, we compute V,® = (1/h)(A\~, )T so that all the conditions
of the third point of the assumption are satisfied.

The main result is the following.

Theorem 2. Let m > 2 be an integer, B € L>®(Qr), 0B € W™ YT), and assume that
Assumption 3 is satisfied with © € C®U) and v € W™>(0,T). If u™ € H™(R,) takes its
values in a compact and conver set Ko C U and if the data u™, f € H™(Qr), and g € H™(0,T)
satisfy the compatibility conditions up to order m — 1 in the sense of Definition 2 below, then
there exist Th € (0,T] and a unique solution w € W™ (Ty) to the initial boundary value problem
(10). Moreover, the trace of u at the boundary x = 0 belongs to H™(0,T1) and |u),_y|m 1, is
finite.

Remark 6. There is a wide literature devoted to the analysis of quasilinear hyperbolic initial
boundary value problems. For the general multi-dimensional case, assuming that the uniform
Kreiss—Lopatinskii condition holds, the existence is obtained for m > (d + 1)/2 + 1, with a
loss of 1/2 derivative with respect to the boundary and initial data [RMey, Mok87] (see also
[BGS07]). Ezistence for m > d/2 + 1 without loss of derivative is obtained under the additional
assumption that the system is Friedrichs symmetrizable [Sch86, Mét12] but one cannot expect in
general an H™(0,Ty) estimate for the trace of the solution at the boundary. In the particular
one-dimensional case, a C solution is constructed in [LY85] using the method of characteristics;
more recently, in the Sobolev setting, it is shown in [PT13] that the general procedure of [RMey,
Mok87] can be implemented in the particular case of the shallow water equations with transparent
boundary conditions, that is, a boundary data on the outgoing Riemann invariant (see Example
2 above): for data in H/?, a solution is constructed in W3(T). As said in Ezample 2, our
result covers this situation and, by taking advantage of the specificities of the one-dimensional
case proves existence in W™ (T), with m > 2 and without loss of derivative, and provides an
H™(0,T1) trace estimate.

2.2.1. Compatibility conditions. From the interior equations, denoting ug = Ofu, we have
u; = —A(u)dyu — Bu+ f.
More generally, by induction, we have
up = cx(u, B, f),

where ci(u, B, f) is a smooth function of v and of its space derivatives of order at most k, and
of the time and space derivatives of order lower than k — 1 of B and f. For a smooth solution
u to (10), up' = ug|,_, is therefore given by

(11) u}ﬁn = cikn(u,B, ),
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where ¢ (u, B, f) = cx(u, B, f) The boundary condition ®(t,u|,_,) = g also implies that
OF®(t,uy,_,) = 0fg.
On the edge {t = 0,2 = 0}, smooth enough solutions must therefore satisfy

{(I)(O7uin|zo) = g|t:0 k = 0’

l¢e=0"

W V@00, ) + 020, 4, ) = (Big),_, k=1,

[t=0

and more generally, for any k& > 1,
(12) u}ﬁn‘zzo . qu)(o,um\z:o) + Fk(uglgjgk—1|z:0) = (atkg)\t:m

where F}, (ui1n< i<k ) is a smooth function of its arguments that can be computed explicitly by
—J =" z=0

induction.

Definition 2. Let m > 1 be an integer. We say that the data u'™ € H™(R,), f € H™(Qr),

and g € H™(0,T) for the initial boundary value problem (10) satisfy the compatibility condition

at order k if the {u;n Lo defined in (11) satisfy (12). We also say that the data satisfy the
compatibility conditions up to order m — 1 if they satisfy the compatibility conditions at order k
fork=0,1,...,m—1.

2.2.2. Proof of Theorem 2. Without loss of generality, we can assume that ©(0) = 0. The first
step is to linearize the boundary condition. Under Assumption 3, this is possible by introducing
v = 0(u), J() =dy(©71(v)), and Aﬁ(v) = J(v)tAO 7 () J(v).

Then, w is a classical solution to (10) if and only if v is a classical solution of
O + AH()0v + J(v)TIB(t, )07 (v) = J(v) T f(t,2) in Qr,
(13) V),_, = O(u(2)) on Ry,
v(t) V), = g(t) on (0,7)

with v(t) as in Assumption 3. Let K1 be a compact and convex set in R? satisfying Ko € K1 € U.
Then, there exists a constant ¢y > 0 such that for any u € K; and any ¢t € [0,T] we have

)\j:(U) > Co, |vuq)(t7u) : e_,_(u)] > cp.

Note that there exists a constant 6y > 0 such that ||v — ©(u™)||z~ < dp implies that u = 0~ (v)
takes its values in ;. We therefore construct a solution v to (13) satistying ||v(t) — O (u™)||fee <
dg for 0 <t < T3. The solution is classically constructed using the iterative scheme

O™t At ()90 = 7 in Qp,
(14) "t = 0(u(z)) on Ry,

v(t) v, = 9(t) on (0,T),
for all n € N and with

frtz) = J") 7t x) = J (") T Bt 2)0 T (u").
For the first iterate u°, we choose a function u® € H™+/2(R x R, ) such that
(8Fu?)

with ul" as defined in (11). Such a choice ensures along a classical procedure [Mét01, Mét12]
that the data (©(u™), f*, g) are compatible for the linear initial boundary value problem (14)

in the sense of Definition 1. Moreover, |||v™(0)[||,, is independent of n, and there exists therefore
Ky such that

|t:0:u}€n for k=0,1,...,m

I

1 n n ny—
ol (Ol 1A ™) o0 0,5 145 (") oo 027, ) < Ko
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as long as v™ satisfies ||v"(t) — ©(u)| =~ < dp for 0 < ¢t < Ty. We prove now that for M large

enough and 77 small enough, for any n € N we have

15) {nv“HWmm) + 0", glmy < M,

o™ (t) — O(u™)||L~ < & for 0<t<Ty.

The main tool to prove this assertion is to apply Theorem 1 to (14). In order to do so, we
first need to check that Assumption 1 is satisfied. The only non trivial point to check is the
third condition of this assumption. The fact that this is a consequence of Assumption 3 for the
original system (10) is proved in the following lemma.

Lemma 6. For any v € O(U), the matriz A*(v) has two eigenvalues :I:/\ﬁi(v) and associated
t

eigenvectors €5 (v) given by
M) =207 (v)  and  €h(v) = J(v) ex(071(v)).
Moreover, denoting u = ©~*(v) we have
v(t) - e (v) = V,®(t,u) - ep(u).
Proof of the lemma. The first part of the lemma is straightforward. For the second point, just
notice that by definition of ©, one has V,®(t,u) = (0'(u))Tv(t). Since moreover ©'(u) =
(dy(©(v)))~t = J(v)~!, we have
Vu®(t,u) - es(u) = v(t) - J(v) e (07 (v))

and the result follows from the first point. O

We can therefore use Theorem 1 to prove (15) by induction. Since it is satisfied for n = 0
for a suitable M and 77, we just need to prove that it holds at rank n + 1 if it holds at rank n.
There is K = K (M) such that

1R @™ llwr.o0 @,y 1OCAR (™)) lgm-1(7y) < K.

Taking a greater K if necessary, we can assume also that ||B||p~(q,) and [[0B|wm-1(7) < K
and therefore that

™ @l < CE) A+ ([ FE)l],)-

It follows therefore from Theorem 1 that
anHHWm(Tl) + \Un+1|z:o|m,T1
C(K)T: n
< CUEDS (1t alumoiry + b+ COE) [+ A0 )0
We also have
[0 (t) = O (u™) [ < 0™ oo ry Tt < Clo"™ w1 T

Therefore, by choosing M large enough and 77 small enough the claim is proved. The con-
vergence is classically obtained by proving that {v"}, is a Cauchy sequence and, therefore,
convergent in L2, and that the limit is actually in W™ (7T'). We omit the details.
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2.3. Variable coefficients 2 x 2 boundary value problems on moving domains. We now
turn to consider initial boundary value problems that are still cast on a half-line, but instead
of R4, we now consider (z(t), +00), where the left boundary z(¢) is a time dependent function.
We consider first linear problems with variable coefficients. For the sake of simplicity and to
prepare the ground for applications to quasilinear systems, we consider a slightly less general
system of equations than in (1): the variable coefficient matrix A(¢, z) is of the form A(U(t,x)).
More precisely,

U+ AU)0,U+BU =F in (z(t),o00) for te(0,7),
(16) Uj,_, = u™(z) on (0,00),
v(t) U, =91 on (0,7),

where without loss of generality we assumed z(0) = 0. The first thing to do is of course to
transform this initial boundary value problem on a moving domain into another one cast on
a fix domain, say, Ry. This is done through a diffeomorphism ¢(¢,-) that maps at all times
Ry onto (z(t),00) and such that for any ¢, we have ¢(t,0) = x(t). Several choices are possible
for ¢ and shall be discussed later. At this point, we just assume that ¢ € C'(Qr) and that
©(0,2) = x. Composing the interior equation in (16) with the diffeomorphism ¢ to work on the
fix domain (0, 00), introducing the notations

u=Uop, u=Uogp, Ofu=(9,U) oo, Ofu = (0,U) o o,

so that, in particular,

1 ath
17 0Y = —0x, Of =0y — ——0,,
(17) Oz K ‘ O
and writing B =Bo ¢ and f = F o ¢, we obtain the following equation for w
(18) Ofu+ A(w)dfu+ B(t,x)u = f(t, ).

The initial boundary value problem on a moving domain (16) can therefore be recast as an initial
boundary value problem on a fix domain

Ou + A(u, 0p)0yu + B(t,z)u = f(t,x) in Qp,

(19) Uy = 0%(2) on R,
v(t) U = g(t) on (0,7),
with )
Alw, 00) = 5 (A(w) — (Dup)1d).

If we want to apply Theorem 1 to construct solutions to (19), it is necessary to get some
information on the regularity of ¢, which is of course related to the properties of the boundary
coordinate z(t). A direct application of Theorem 1 requires that d¢ be in W™ (T') in order to get
solutions u in W™ (T'). Using Alinhac’s good unknown [Ali89], it is however possible to obtain
refined regularity estimates, as shown in the following theorem which requires only the following
assumption.

Assumption 4. We have u € WH°(Qr), x € CY([0,T]), z(0) = 0, and the diffeomorphism ¢
is in C1(Qr). Moreover, there exists a constant co > 0 such that the following three conditions
hold.

i. There exists an open setU C R? such that A € C®(U) and that for any u € U, the matriz
A(u) has eigenvalues Ay (u) and —A_(u). Moreover, u takes its values in a compact set
Ko CU and for any (t,z) € Qp we have

Ai(u(t,x)) Fop(t,x) > o and  Ax(u(t,x)) > co.
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ii. Denoting by ey (u) a unit eigenvector associated to the eigenvalue Ay (u) of A(u), for
any t € [0, T] we have
v (t) - e (u(t,0))] = co.
iii. The Jacobian of the diffeomorphism is uniformly bounded from below and from above,
that is, for any (t,z) € Qr we have

1
Co S BIQO(t,$) S %

Example 3. Considering as in Example 1 the linearized shallow water equations, but this time
on a moving domain, Assumption 4 reduces to the conditions h,q € W (Qr) and

h(t,z) > co, +/gh(t,x)+ (ZE? 3 — Oyp(t, x)) >co, /gh(t,x)+

with some positive constant cy independent of (t,x) € Qrp.

q(t, z)
ht,z) =

Theorem 3. Let m > 1 be an integer, T > 0, and assume that Assumption 4 is satisfied for
some co > 0. Assume moreover that there are two constants 0 < Ky < K such that

éa 1106 0)[],,—1 |V|L°°(0,T)’ HaSOHLOO(QT)7 HA||L°°(IC0) < Ky,

10@]lwm—1(1); [0cll rm (@7, (™)), g Lo 0,7y < K,

lullyw .00 @pywm (1) |1 Bllweopys 10Bllwm—1(7y; [V [wicoqwm—1.00 0,15 [0V 12001y < K,
where @(t,x) = @(t,z) —x. Then, for any data u™ € H™(R,), f € H™(Qr), and g € H™(0,T)
satisfying the compatibility conditions up to order m —1 in the sense of Definition 1, there exists

a unique solution u € W™(T) to (19). Moreover, the following estimate holds for any t € [0,T]
and any v > C(K):

m,y,t

¢ 3
(@)l + (’Y/O HU(t/)Illfn,ydt) + Jug,
< C(Ko) (1 +107"v| 120,01 (O) L, + gl 0,6y + | fluco lm—1.78 + 85U Ollla)) -
Particularly, we have

@)l + 1), lm.t
t
< C(Ko)ec(K)t<(1 107 v 20 w0l + 191z 0,) + 1 flomolm—1.t +/O |||f(t’)|||mdt'>-

2.3.1. Proof of Theorem 3. A direct estimate in W (T') for the solution of (19) through Theorem
1 is not possible because it would require that 92 € W™~ 1(T) while, under the assumptions
made in the statement of the theorem, we only have 9%p € W™ ~2(T'). The key step is to derive
a Wm—L(T) estimate on u as well as on 9fu = Oyu — (9rp) 5 u.

Proposition 4. Under the assumptions of Theorem 3, there is a unique solution u € W™1(T)
to (19) satisfying

t
(20) llu(llo + u),—olos < C(Ko)ec(K)tOHU(O)Wo + 19l m0(0,8) +/0 H\f(t’)H\odt’>
i the case m =1 and

(21) w(@)l]m—1 + (W), lm—1,t

t
< O(K)e S (||ru<o>u|m_1 T glimet0g) + 1ol + /O matf(t’)mm_th’)
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in the case m > 2. Moreover, Ofu € W™~ YT) and we have

t !
(22) O Ul + (7 [ OFUEIR, 1,0 )+ 1OF W) ol-1r
0

< C(Eo) (1 +107"v| 2200 1O, + 9l mm 0,6 + | flucolm—1,0 + S5 Clll))
+ CK) (93 N lllm) + lug,glm—14)-
Proof of the proposition. Step 1. We first show that there exists a solution u € W™~1(T) to
(19) satisfying (20)—(21). A direct application of Theorem 1 almost yields the result, but with
a constant C(K') bigger than C(K) in the sense that it depends on [|0¢||y1.00(q,) instead of

10¢]| oo (p)- The improved estimate claimed in (20)-(21) is made possible by the particular
structure of the matrix A(u, dp), as shown in the following lemma which improves Lemma 5.

Lemma 7. Suppose that Assumption 4 is satisfied. Then, there exist a symmetrizer S €
Whe(Q7) and constants ag, a1 and Bo, B, Bo such that Assumption 2 is satisfied for the initial
boundary value problem (19). Moreover, we have

1 in
0 < O AW @y | @2lcollme.):

1
1 < O 1A= (an): 1hell =) ).
and ¢g and c¢1 are as defined in Proposition 1, and

P2 1
7< - [eo] fo o} oo .
o < O 1AW w102l (- Bl =) )

where u™ = U,y

Proof of the lemma. The proof is an adaptation of the proof of Lemma 5. We still denote by 7
the eigenprojector associated to the eigenvalues £ of A(u). As a symmetrizer for A(u, ), we
choose
S = (Oup) (mimy + Mrln_)
with sufficiently large M. Since we have
= [[(0z)0rS + 05 (SA) — (Orp) 05 S — 2(83630)SB||L°°(QT)7

where we denoted S = 7rJTr7r+ + M#7T7_, and since 7+ depends only on A(u), we deduce the
desired results. O

Using Lemma 7 instead of Lemma 5 in the proof of Theorem 1 in the particular case of the
initial boundary value problem (19), we get (20)—(21).

Step 2. We prove here an extra regularity on 97w that implies the inequality stated in the
theorem. The main tool to get this extra regularity is Alinhac’s good unknown [Ali89], which
removes the loss of derivative due to the dependence on ¢ in the coefficients of the initial
boundary value problem (19). Differentiating with respect to time the interior equation in (19),
and writing @ = dyu, f = 0, f, etc., we get
(23) Ot + A(u, 00) 0yt + A'(w)[@]0Fu + M(u, dp, 0,u)d¢ + B = f — Bu
with

M(u, ¢, 0,u)0p = —((0:) Alu, 0p) + (9r)1d) OF u.
Obviously, the term M (u, dp, 0,u)0¢ is responsible for the loss of one derivative, in the sense

that a control of ¢ in W™*Y(T) is required to control the W™(T) norm of u. This singular
dependence is removed by working with Alinhac’s good unknown 4% = % — $0%u instead of 1.
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The notations f¢ and B¢ are defined similarly. The following lemma is due to Alinhac [Ali89]
and can be checked by simple computations.

Lemma 8. With 1% = 1 — ¢fu, the equation (23) can be rewritten under the form
Oui? + A(u, 09) 0,17 + A'(w)[i¥]0Fu + Bu? = f# — Bu.

Remark 7. We use the notations & = dyu and u¥ = 9fu to underline the fact that this is a
general procedure that works for any linearization operator, not only time differentiation.

We can use (18) to write
ofu = A(w)~\(f — Bu— i),
so that the lemma yields
opu® + A(u, 0p)0, 17 + Byu? = fo,
where

24 {Bm = B~ A A(w)

fay =% — AW A(w) 7 f — (B — A'(w)[i¥]A(w) "L B)u.

Therefore, u? = 97 u solves an interior equation similar to those considered in Theorem 1. Let
us now consider the initial and boundary conditions for @%. For the initial condition, we have
(1)) = ulty with  ufyy = (9pu)),_, — (Fp)|,_, Oxu™

For the boundary condition, let us differentiate with respect to time the boundary condition in
(19) to obtain v(t) - dyu|,_, = Opg — V'(t) - u|,_, or equivalently

v(t) - (4f + 207 u)

0
loeo = Otg — V(t) - up,_,-

Using (18), this yields
v(t) - ((Id— a';A(g)*l)ug")h:O =g — V' (t) - uy,_, — av(t) - A(u)"Y(f — Bu)

|a::0'

It follows that 4% satisfies an initial boundary value problem of the form (1), namely,

¥ + A(@, 8(,0)3;;0&90 + B(l)ﬂw = f(l) in Qp,

(25) uf_ = u on Ry,
v () 'ﬂﬁzo =90) on (0,7,

where f;) and By are as in (24) and

{gm = 09— (Ow) -uy,_, — dv- A(w) " (f — Bu)|,_,,

(26) vy = (Id — @A(ghzo)_l)Tu

Concerning the boundary condition, we have the following lemma which shows that the initial
boundary value problem (25) satisfies condition iii in Assumption 1.

Lemma 9. Under Assumption 4, for any t € [0,T] we have
2
0
lv(1)(t) - e (u(t, 0))] > (@t 0)
Proof. We see that
vy (t) - e (u(t,0)) = v(t) - (Id — 2(¢) A(u(t, 0)) Ye, (u(t,0))

_ (t)
= (1 - m)”(t) -eq(u(t,0)).

Since #(t) = (0xp)(t,0), this gives the desired inequality. O
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Here, we see that
vyloeor) < C(Ko),  [Bulle@r) < C(K)
and that in the case m > 2
190B 1y llwm—2(1), [v(1) lwm-1.000,7) < C(K).

Therefore, we can apply the result in Step 1 to obtain

1

t 2
(27) |||u¢<t>u|m_1,7+<v / |||w<t'>|uil_1,7dt’) I
0
< CEQ) (1 Oy + 19 s (0 + 1 Fct)mo =zt + S Fey s

where the term |f(1y,_,lm—2,,: is dropped in the case m = 1. Here, we have

2?2 )l -y < C(Ko)IIIU(O)HIm,
1y Ol 1 < CCE)UF Dl + M@l 1),

|f(1)‘Z:O’m_2’7’t S C(K)(‘f|120|m_1777t + |U‘Z:O’m_1’7’t)'

Concerning the term [g(1)|gm-1(04), especially, the term (0:) - u|,_, we need to estimate it
carefully, because we do not assume v € W™°(0,T). In the case m = 1, we estimate it directly
as

[(Ov) ol r2(0,0) < CUE) up,_olr2(0,0)-

In the case m > 2, we see that

[Gv) - w100y < WIwm—1.00(0,) [t ,—g lm—1.7.6 + 10" V] 12(0,0) B A T u(t’, 0)
t

< C(E)|u),_olm-14. + ClO" v |20, [w(O) I, 15

where we used supy¢jo e ut’,0)| < C(||u(0)| 72 + N3 |, _o|1,7,¢), Which is a simple conse-
quence of (6) in Lemma 5. In any case, we have

9) =10,y Sl9lEz00) + ClLOT V] L2000 (O] —1 + CUE) (g lm—1,t + [ floglm—1,2)-

Therefore, by (27) we obtain

16 ()l + < / i ()11, - mdt) 1, e

< C(Ko) (1 410" v[12(0,0) 1w, + |9l 71 (0))
+ CE) (| flazolm—1,t + [0, g lm—1.6 + S5 (IF Olll) + S5l 1))

which shows 97u € W=1(T).

Step 3. Finally, we improve the above inequality to show (22). It follows directly from Lemma
8 that we have also the equation for ¥ of the form

0¥ 4+ A(u, 0p)0, 0¥ = f(l)

with
fay = 0f f — A'(w)[0f w|0fu — Of (Bu).
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Moreover, we have (27) with f(1) replaced by f(l). In order to give modified estimates for ]?(1)
and g(1), in the case of m > 2 we use the following expressions

0% fay = OF0°f + [0, 97)(9fu + A(uw)dfu + Bu)
— 0%(A'(w)[0f u]0Fu + Of (Bu)),

O gy = OF (Org — (Ow) -y, _,) — v - A(w) "' OF (f — Bu)|,_,
— [0F,&v - A(w) " (0F u+ A(u)dfu),_,,

where we used (18). These expressions together with Lemma 1 give

Iy D ll—y < CENF D, + CE) ()],
9| =10 + | 1) o lm—2.7.
< C(Ko) (0] 20,0 1Ol oy + glarm 0,6 + | flocglm—1,6) + CE) ), _olm—1,,

which yields (22). The proof of Proposition 4 is complete. O

In order to conclude the proof of Theorem 3, we need to show that Proposition 4 provides a
control of u in W™(T').

Lemma 10. Under the assumptions of Theorem 3, if u solves (19), then we have

t :
10u@)lln ., + (w / Haumwimdt’) 10wy o1
< 0<Ko>{u|u<o>|||m st + S (IBOlly)

OO, ( [V, )+ 1@

e ( [ mmdt> s

Proof. We will use the same notation 4% = 9fu in the proof of Proposition 4. Then, (18) can
be written as

(28) W + A(w)0fu = f — Bu=: fo.
We first consider the case m = 1. Here, it holds that

1f0(0)[| 2 < C(Ko)|[[u(0)]ll;,
10 fo() 2 < 10cf ()|l 2 + CE)|[u(®)]l;,
[ foazol22(0,6) < [facolr2(00) + CUE) vyl 22 0,0)-
It follows from (28) that
Dot = (0o 0) A(w) " (fo — ©¥).

We also have

Therefore, we obtain
|Ou(t, z)| < C(Ko)(|a?(t, z)| + | fo(t, z)]).
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By Lemma 5 we have

ool + (v [ 15 Hovdt)

< C(Ilfo(0)llzz + S5, (10efo () z2))
< C(Ko) (Illw(0)]ll + S5 I0ef O)llz2)) + CE) S5 (lu)]l)-

Using the above inequalities, we get the desired estimate in the case m = 1.
We proceed to consider the case m > 2. Applying 0% with a multi-index « satisfying |a| <
m — 1 to (28) and using the identity

(20) DO = 0O + (D£0°0) 0w + (Dap) [0 Dsp, D2
with a symmetric commutator [0%; v, w] = 0%(vw) — (0%v)w — v(9“w), we obtain
A(w)020% 4+ 0%u? = 0%(f — Bu) — [0%, A(u)]0%u
+ A(w) (070 0)05u + (D) 0% Outp, OFu))
= fl,a-
Here, by Lemma 1 it holds that
1f1,a(0)llL2 < C(Ko)lllu(0)[ll,,
10cf1.0(B)][ 2 < CE)NOS @)l ;71 + CUE) A+ [[[0eo @)l ) ()]
‘fl,oqzzo‘L?/(O,t) < |f\x:o|m—1,’y,t + C(K)|u|x:o‘m—1mt~
We also have
8°0pu = (Do) A(w) ™ (fr,a — 0%0%),
which will be used to evaluate d,u. Applying 0% to the identity dyu = 0¥ + (9y)0% u and using
(29) we obtain

D%Ou — 0°UP — (940) (D) 1 0%Opu
= (0“0pp)Ofu + [0% Brp, O5u] — (0ep) (Do)~ (0% Duip) OF u + [0%; Butp, O]
=: f2,a-
Here, by Lemma 1 it holds that
1f2,0(0)l[ 12 < C(Ko)[[u(0)l],y,
10 f2.0(8)[[ 2 < COE) (L + 10 @)l ) [ (E)]]]5,
|f2.ap, o l22(0,6) < CU) |t lm—1,7.1-
We also have
0% 0pu = 0°U? + (9yp) (0np) 10Ot + fo,a,
which will be used to evaluate d,u. Therefore, we obtain
0%0u(t, )| < C(Ko)(|0%a?(t, )| + | fra(t, )| + [f2a(t, 2)]),
so that

t 3
0wy + (7 [ WUy, Qt )+ [(OU)), gm0
0

t :
sC(K()){u\u@(t)rumw (v / W(t'w?mdt’) 1 o

e (Wl (3 W)+ on)

o <m—1,j=1,2
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Here, by Lemma 5 we see that

150 ® o, + ( / T ||07dt)

< C([1£5,0(0)lz2 + 85 (10 fj.a ()l L2))
< C(Ko) (w0, + S5 (0 f C)lll—r)) + CE)S (1 + M Ol MuI]y,)
and that

S5 (L e (Ml ) eI, )

1/t .
< (3 [, 0 ) + [ e ol ) o
Y Jo 0
t 1 t 1
< 1 N2 d¢ 2 ) ' 2 d¢ 2
=5/, lw()[,,dE" )+ 10l mrm () ; [N,

Summarizing the above inequalities, we obtain the desired estimate. O

Now, it follows from the estimates in Proposition 4 and Lemma 10 together with Lemma 4

that
t 3
2
M@ llry + (7 [ M@ 5, dE )+ g, bt
0

1

t 2
< low)lllp-1, + <7/0 |||3U(t/)H|iq,_1,7dt/> + (0, lm—1.¢

t )
()l + <7 / ||ru<t’>r|3n_1,7dt’) + 1t olm-10
< CUR (1 + 1720 OVl + bl + s liosie + 8510 ln)

1 t 2 1 _
+C(K){7 2(7 /0 \||u<t/>|||$n,ydt') oy ), + 1|u|zo|m,7,t}.

Therefore, by taking v sufficiently large compared to C'(K'), we obtain the desired estimate in
Theorem 3. The proof of Theorem 3 is complete.

2.4. Application to free boundary problems with a boundary equation of “kine-
matic” type. We investigate here a general class of free boundary problems. We consider a
quasilinear hyperbolic system cast on a moving domain (z(t), 00),

U+ AU)O,U =0 in (z(t),00) for te (0,7),
(30) Ujoo = u™ (@) on (z(0),00),
v-U,_ 0= g(t) on (0,7),

and assume that the evolution of the boundary is governed by a nonlinear equation of the form

(31) = X(U|z:£(t))

for some smooth function X. The set of equations (30)—(31) is a free boundary problem. In
the following, without loss of generality we assume x(0) = 0. Using as in §2.3 a diffeomorphism
o(t, ) : Ry — (z(t), 00), and recalling the notations

u=Uop  Of=y 0 O =0-5%0,
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the free boundary problem (30)—(31) can therefore be recast as an initial boundary value problem

on a fixed domain,

ou + A(u, 0p)0,u=0 in Qp,

(32) uj,_, = u'(x) on Ry,
voup,_, = g(t) on (0,7),

where v € R? is a constant vector and

A(u, 0p) =

5,5 (A = (ip)1d),

complemented by the evolution equation
(33) T =X(u,_,), z(0) = 0.

As shown in §2.3, the regularity of ¢ plays an important role in the analysis of the initial
boundary value problem (32). It is therefore important to make an appropriate choice for the
diffeomorphism. For a boundary equation of the form (33) which is of “kinematic” type, a
“Lagrangian” diffeomorphism is appropriate. In particular, in the second point of the lemma,
the structure of ¢ allows the control of dy;p in W™ (T") (which involves m + 1 derivatives of )
by u in W™(T') (which involves only m derivative of u).

Lemma 11. Let U be an open set in R? and X € C®(U). Suppose that u € WH(Qr) takes
its values in a compact and convexr set K1 C U and that

[ullwr.o0 @y, 1¥ Twroe ey < K
Then, x € CY([0,T]) can be defined by the ODE

{a‘c(t) = X(u,_,(t)) for te(0,T),
z(0) = 0.

Moreover, there exists Ty € (0,T] depending on K such that the mapping ¢ : Qr — R defined by

(34) @(t,x):a:-i-/o X(u(t',z))dt’

satisfies the following properties:
i. We have ¢(t,0) = z(t) and that for any t € [0,T1], ¢(t,) is a diffeomorphism mapping
Ry onto (z(t),00) and satisfying 3 < Oyp(t,z) < 2.
ii. If moreover m > 2, u € W™(T1), and X (0) = 0, then we have, with ¢(t,x) = ¢(t,z) —x,
1106(0)ll5—1, 192l Lo (27, ) < CII1w(0)][],.,),
1Bllwm(z)s 18 lwm (11, (0™ 0) ol Lo 0,11) < C (Iellwm (y)s 1), o 1y )-
We can now state the main result of this section, which holds under the following assumption.

Assumption 5. Let U be an open set in R?, which represents a phase space of u. The following
conditions hold.
i. A, X e C>®(U), X(0)=0.
ii. For any u € U, the matriz A(u) has eigenvalues Ay (u) and —A_(u) satisfying
Ar(u) >0 and Ai(u) F X(u) > 0.

iii. Denoting by ey (u) a unit eigenvector associated to the eigenvalue Ay (u) of A(u), for
any uw € U we have

v-ex(w)] > 0.
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Theorem 4. Let m > 2 be an integer. Suppose that Assumption 5 is satisfied. If u'™ € H™(R)
takes its values in a compact and convex set Ko C U and if the data u™ and g € H™(0,T) satisfy
the compatibility conditions up to order m —1 in the sense of Definition 8 below, then there exist
Ty € (0,T) and a unique solution (u,z) to (32)—(33) with u € W™(T1), z € H™1(0,T1), and ¢
given by Lemma 11.

2.4.1. Compatibility conditions. For the free boundary problem, z(t) and ¢(¢,x) are unknowns
so that the interior equation Oyu + A(u,dp)0d,u = 0 does not determine (ﬁfu)‘xzo directly in
terms of the initial data «™ and its derivatives. In order to determine them, we need to use
(34), or equivalently, the evolution equation 0;p = X (u) at the same time.

Suppose that u is a smooth solution to (32)—(33). We note that the interior equation in (32)
can be written as

O u~+ A(u)dfu =0

and that 97 and 97 commute. Therefore, denoting Uk) = (0f)*u and using the above equation
inductively, we have

Ug) = c1r(u, 0fu, ..., (8;")’%),

where ¢ 1 is a smooth function of its arguments. In view of this, we define u‘(I,;) by
(35) u‘&) = c1 (U™, 0pu™, .. ., OFu™)
for k =1,2,.... Using the relation 9; = 9/ + (0y¢)d% inductively, we see that
k
OF = O + (000 +> . Y. o (00) - (') (9F) (97,

1=2 jo+jit+-+h=k
1<g1,-5d1

so that denoting uj, = Ofu and ¢y, = 9Fp we have

k
l
up =y FeROFu+ Y > o e a(09) ug)
1=2 jotjit++j=k

1<j1,01
Particularly, denoting ul* = (0fu)|,_, and ©}* = (9f¢)|,_, we obtain
k
(36) ul = uly + R0 Y D e POl
=2 jo+jit++a=k
1<1,001

This implies that u}cn is written in terms of goijn and &Lu for 0 < J < k. On the other hand,
differentiating the evolution equation 9y = X (u) k-times with respect to ¢, we have

Vr+1 = c2k(u, Oy, . . ., Gfu),
where ¢y is a smooth function of its arguments. Therefore, we get
(37) gp}gnﬂ = cop(u™ ul, ... ull).
Using (36) and (37) alternatively we can determine ul" and ¢*. Now, the boundary condition
v-u),_, = g implies that

2 k
v-Ofu,_, = 0/g.

On the edge {t = 0,2 = 0}, smooth enough solutions must therefore satisfy

(38) voug,_, = (0fg)

lt=0"
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Definition 3. Let m > 1 be an integer. We say that the data u™ € H™(Ry) and g € H™(0,T)
for the initial boundary value problem (32)—(33) satisfy the compatibility condition at order k if
the {u}“ o defined by (35)—(37) satisfy (38). We also say that the data satisfy the compatibility
conditions up to order m — 1 if they satisfy the compatibility conditions at order k for k =
0,1,...,m—1.

Remark 8. These compatibility conditions do not depend on the particular choice of the diffeo-
morphism ¢ such as (34). The other choice of the diffeomorphism ¢ : Ry — (x(t), 00) will give
the same conditions.

2.4.2. Proof of Theorem 4. Let K1 be a compact and convex set in R? satisfying Ko € K1 € U.
Then, there exists a constant ¢y > 0 such that for any u € K1 we have

Ai(u) = co,  Ax(u) FX(u) > co, lv-ey(u)] > co.

We will construct the solution u with values in ;. Note that there exists a constant dy > 0
such that ||u — u'®||z~ < &y implies u(x) € K for all # € Ry. Therefore, it is sufficient to
construct the solution u satisfying ||u(t) —u™"||p= < dg for 0 <t < Ty. The solution is classically
constructed using the iterative scheme

t
(39) O (t,x) = a:+/ X(u" (', x))dt
0
and
O™+ A(u™, 000 u" Tt =0 in Q,

(40) ut = u(x) on Ry,
vouth = g(t) on (0,7

for all n € N. For the first iterate u®, we choose a function u® € H™/2(R x R,) such that
(0fu®)|,_, = ui for 0 < k < m with u}* defined by (35)—(37). Then, for the initial boundary
value problem (40) to the unknowns u"*! the data (u'", g) satisfy the compatibility conditions
up to order m — 1 in the sense of Definition 1. Moreover, |||u"(0)]||,, is independent of n, and
there exists therefore Ky such that

1 n = n
%,Illu (O)llz05 NOLCON 15 10" | Loe (2,5 21 [[ Al £oe 11y < Ko,

I

as long as [[u” |1,y < K and Ty € (0,77 sufficiently small depending on K. We prove now
that for M large enough and T} small enough, for any n € N we have

HunHWm(TQ + |un\x:0|myT1 < M,
Hu"(t) — umHLoo S 50 for 0 S t S Tl.

We prove this assertion by induction. Since it is satisfied for n = 0 for a suitable M and T3, we
just need to prove that if holds at rank n + 1 if it holds at rank n. By the Sobolev imbedding
theorem and Lemma 11, we have

[ [[wr.ee @y )s 19" lwm (1) 100" lwrm (1), (0™ "), [ L0 0,1y) < K(M).
It follows therefore from Theorem 3 that
[ (@) g 7y + [ ol < C(K0)eCMM(1+ gl pmo,1))-

Choosing M = 2C(Ko)(1 + |g|lgm(0,1)), it is possible to choose 71 small enough to get that the
right-hand side is smaller than M. We also have ||u" () — u™|zo < Cllu™ [z T1 < o
for 0 <t < Tj. Therefore, the claim is proved.
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We proceed to show that the sequence of approximate solutions {(u", ¢™)}, converges to the
solution (u, ¢) to (32)—(33) satisfying u € W™ (T1) and z = ¢|,_, € H™(0,T1). We have

O (ut? — w1y + A(u™, 0p™)0p (u T2 — T = 7 in Qg
(ut? —yntly, =0 on Ry,
V-

=0 on (0,7)

[t=0
(un+2 o un+1)|x:0

with
f = — (A", 0" ) — A(u™, ™)) dpum
It follows therefore from (21) in Proposition 4 that

12 = )0+ 1072 =)o
t
<O (17" baa + [ 0" Ol 50

t
<o) / O™ s + O F™) )l

for 0 <t < Ty, where we used Lemma 4 and the fact that (0fu™)
n. Here, we see that

10 f™ lwm—2(1y) <

limo = ul" does not depend on

(M)[|(u" = u™, @™ — o™ (" = ™) lwm—1(1y)

C
C(M)|lu™* = u"[lwm-1(z,)

IN

and that
1™ olm—21 < CM)([(u™ = u™, @™ =™, (" — "N llwm-1(1y)
el [ N (R ) [T Ry
< CM) ([lu™ = u™|yym-1(zy) + (" = ™) lmo1my),

where we used Lemma 3. Note that in the above inequalities, the quantity 9;(¢"*! — ™) has
been controled in W~1(T}); a similar control of 9,(¢™"! — ¢") is not possible and this is the
reason why it is important to have [|0;f(t)|||,,,_o rather than ||| f(¢)]],,_; in the right-hand side
of (21) in Proposition 4. Therefore, by taking 77 sufficiently small if necessary, we obtain

Hun—i—? _ un+1"Wm71(T1) + ‘(un+2 _ un—H)\x:O’m—l,ﬂ
1
< §(HU"+1 — " lygm-1(7y) + 1@ = 0™ lm11y)-

This together with an interpolation inequality HUH%‘/LM(QH) < Cllullyym—1(my) llullwm () shows

that {(u", ")}, converges to (u, @) in W™= H(Ty) N WL (Qq,), so that (u,$) is a solution to
(32)—(33). Moreover, by standard compactness arguments we see that

lwllwm (1) + (U)o lmm < M.

The regularity and the uniqueness of the solution stated in the theorem is obtained by standard
arguments so we omit them. The proof of Theorem 4 is complete.

2.5. Application to free boundary problems with a fully nonlinear boundary equa-
tion. We now consider a 2 x 2 quasilinear hyperbolic system on a moving domain (z(t), 00):

(41) U+ A(U)0,U =0 in (z(t),o0)
with a fully nonlinear boundary condition

(42) U=U; on z=z(t),
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where U; = Ui(t, z) is a given R?-valued function, whereas z(t) is unknown function. Compared
to the free boundary problem (30)—(31), the evolution equation of the boundary is implicitly
contained in the above boundary condition. In fact, differentiating the boundary condition
U(t,z(t)) = Ui(t, z(t)) with respect to t and taking the Euclidean inner product of the resulting
equation with 9,U — 9,U;, we obtain

(43) = x((0U),,_,, (OUi),_, ),
where
(0:U — 0,U;) - (0U — 0Uh)

|0,U — 0,U;|?
In view of this, a discontinuity of the spatial derivative 9,U on the free boundary is crucial to
the free boundary problem (41)—(42) whereas U itself is continuous. Compared to the boundary
equation (31) of kinematic type, (43) does not depend on U itself but on its derivative 9U.
Therefore, (41)—(43) is more difficult than (30)—(31) in the previous subsection. We will use
again a diffeomorphism ¢(¢,-) : Ry — (z(¢),00) and put u = U o ¢ and u; = U; o . Then, the
free boundary problem (41)—(42) is recast as a problem on the fixed domain:

OFu+Aw)dfu=0 in Qp,
Ulpeg = Wilg—g on (O,T)

x(0U, 0U;) = —

(44)

We impose the initial conditions of the form

(45) uj,_y = u™(x) on R, z(0) = 0.

We also note that the equation (43) for the free boundary is then reduced to
(46) & = x((0%u)|,» (07ui)|,)-

Assumption 6. Let U be an open set in R?, which represents a phase space of u.
i. AeC>®U).
ii. There exists co > 0 such that for any u € U, the matriz A(u) has eigenvalues Ay (u) and
—A_(u) satisfying A+ (u) > co.

As before, this condition ensures that the system is strictly hyperbolic. We denote by e (u)
normalized eigenvectors associated to the eigenvalues £t (u) of A(u). They are uniquely de-
termined up to a sign. Since both eigenvalues are simple, we have Ay,er € C°(U) under an
appropriate choice of the sign of ex. As mentioned above, a discontinuity of 9,U at the free
boundary is crucial so that we will work in a class of solutions satisfying

(47) (@ — 0Fus), | > co
for some positive constant ¢y. The interior equation in (44) can be written as
ou + A(u, 0p)d,u = 0,

where A(u, dp) = (9x0) 1 (A(u)—(0y)Id). The eigenvalues of this matrix are (9,¢) ™1 (£A+ (u)—
Op), whereas the corresponding eigenvectors are e (u) which does not depend on dp. In view
of i in Assumption 1, we also restrict a class of solution by

(48) Ar(u) Fop>co in (0,7) x Ry.

We note that the boundary equation (46) is not of the kinematic type considered in §2.4 so that
we need to use a different diffeomorphism from the one given by Lemma 11. Let ¢ € C§°(R) be a
cut-off function such that ¢(z) = 1 for |z| < 1 and = 0 for |x| > 2. We define the diffeomorphism
by

(19) eltr) =z + v (%)),

|z:0
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where € > 0 is a small parameter which will be determined later. As we will see below, under
this choice of the diffeomorphism, (48) would be satisfied if the solution satisfies

(50) )‘i(u\xzo) :Fi > 260 on (O,T).

The following lemma shows that this choice of diffeomorphism behaves differently than the
Lagrangian diffeomorphism studied in Lemma 11; in particular, the latter has a better time
regularity, while the former has a better space regularity.

Lemma 12. Suppose that z € C([0,T]) satisfies £(0) = 0 and |&[;27) < K. Then, there
exists Ty € (0,T] depending on € and K such that the mapping ¢ : Qr — R defined by (49)
satisfies the following properties:
i. We have ¢(t,0) = z(t) and ¢(0,x) = x and for all0 < t < Ty, (t,-) is a diffeomorphism
mapping Ry onto (z(t),00) and satisfying % < Opp(t,x) < 2.
ii. For any nonnegative integers k and [, we have

10,052() | L1nzoo ) < Cle. k)|B1 (D)),

where ¢(t,x) = @(t,z) — x. Particularly, if moreover m > 2 and x € H™(0,T}), then
we have

m—1
10B(0) 125 1] Lo (2, ) < CE) <Z (0/))—o| + VT2 !i\H2(o,T1>>a
7=0

1@ llwm—1(1)s 10 llwm=1(7y), (O™ @)oo 0,11y < C(E)|Zlwm—t0mmm(0,1)-

Theorem 5. Let m > 2 be an integer. Suppose that Assumption 6 is satisfied. If u'™ € H™(R )
takes its values in a compact and convex set Ko C U and if the data u™ and Uy € W™>((0,T") x

(—0,0)) satisfy
i. )\i(uin\zzo) :ngln > 0,
ii. (8ﬂcuin)|x:0 - (833Ui)|t=x:0 #0,
i, ((0,u™),_y — (02U1)},_,_y)t ey (u™) ) #0,
where 2 = (Oyz),_, will be determined by (52) below, and the compatibility conditions up to

order m —1 in the sense of Definition 4 below, then there exist Th € (0,T] and a unique solution
(u,z) to (44)—(45) with u,dyu € W™Y(Ty), z € H™(0,T}), and ¢ given by Lemma 12.

Remark 9. Thanks to Proposition 6 below, the condition iii in the theorem can be replaced by
i 0 - e (u),_,) # 0,
where po is the unit vector satisfying po - (0;Ui + A(Ui)0:Ui)),_,_, = 0. This unit vector g is

uniquely determined up to the sign under the other assumptions of the theorem.

2.5.1. Compatibility conditions. Suppose that u is a smooth solution to (44)-(45). We note that
97 and 0f commute. Denoting u) = (9f)*u and using the interior equation in (44) inductively,
we have

Uk) = cg(u,0fu, ..., (&f)ku),

where ¢; 1 is a smooth function of its arguments. In view of this, we define u‘(r];) by
(51) u‘(I,;) = ¢ (U™, 0pu™, .. ., OFu™)

for k=1,2,.... We proceed to express (8;@% in terms of the initial data. Differentiating the

=0
boundary condition in (44) with respect to ¢, we have 9fu = 9Fu; on x = 0. Using the relation
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Oy = Of + (0yp)0% inductively, we see that

k
O =@ + @O+ Y o0 e) - (01O (9%)
1=2 jo+j1++i=k
1<g1,-001

so that denoting z;, = OFz we have

iy — (OF)*ui + 24 (05w — OFus)

k
; .
+ Z Z ClijoritZ(Gy) " 2, (0F) (ugi) — (OF °ui) =0 on x=0.
=2 jo+jit--+5=k
1<g1,--01
Decomposing this relation into the direction dfu — 0% u; and its perpendicular direction, we
obtain
8;60114 — 8fu1
T, = ——a—— 2 Qg — (0
Lk |8}0u — a;ngiP (k) ( t ) 1

k
l |
P g, (09) (u@o)—(af)%)}
1=2 jo+ji+-+s=k
1<j1,...,01

|z:0

and

(0%u — B%u)" - {uw ()

k

| |

P gy e, (09) <u<]-o>—<af>mui>} _o,

1=2 jo+ju++ji=k le=0
1<j1,...,01

respectively. In view of this, we define g}cn inductively by i = 0 and

Bmui“ — (8$U1)

in __ lt=0 in krr
(52) L = — \8xuin — (8$Ui)|t:0|2 ’ {u(k) - (at U1)|t:0
k
in inql 7, in j
Y gty - 0F,
1=2 jo+jit-+ji=k lo=0
1<j1,--d1
fork=1,2,....

Definition 4. Let m > 1 be an integer. We say that the data v'™ € H™(R,) and U; €
Wm((0,T) x (—0,9)) for the initial boundary value problem (44)—(45) satisfy the compatibility
condition at order k if {u‘(‘;)}gnzo and {gl(?)}gn:?]l defined by (51)—(52) satisfy uin|zzo = Ui|,_umo
in the case k =0 and

(amuin - (a:vUi)\t:O)L ’ {utlllc) o (ani)‘tZO

k
in in ql/ in j
+ Z Z Cl,jo,...,jlg(jl) T E(]l)ax(u(]o) - (a‘gOUi)h—o)} = 0
1=2 jo+ji+-+ii=k le=o0
1<),

in the case k > 1. We say also that the data u™ and U; for (44)—(45) satisfy the compatibility
conditions up to order m — 1 if they satisfy the compatibility conditions at order k for k =
0,1,...,m—1.
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Roughly speaking, the definition of g}f ensures the equality Ofu = OFfu; at © = t = 0 in
the direction dfu — 0Fu;, whereas the compatibility conditions ensure it in the perpendicular
direction (0fu — 8fui)l.

We shall need to approximate u™ and U; by more regular data which satisfy higher order
compatibility conditions. Such an approximation is given by the following proposition.

Proposition 5. Let m and s be integers satisfying s > m > 2 and let A € C®U). If u™ ¢
H™(Ry) takes its value in U and if the data u™ and Uy € W™((0,T) x (—6,0)) satisfy

(azuin)|z:0 - (8in)|t:z:O 70

and the compatibility conditions up to order m —1, then there exists {(u™ ™), Ui(n))}n a sequence
of data such that (uin’(”),Ui(n)) € H5(Ry) x W>((0,T) x (—6,8)) converges to (u'™,U;) in
H™(Ry) x B" ([0, T] x [-6,8]) and satisfies the compatibility conditions up to order s — 1.

Proof. Once we fix Ui, the compatibility condition at order k£ is a nonlinear relation among
(8£uin)|z:0 for j = 0,1,..., k. We need to know the explicit dependence of the highest order
term (8’;uin)‘zzo

The compatibility conditions at order 0 and 1 are given by (u'™™)

of the compatibility condition to show this proposition.
‘z:O = Ui|t:x:0 a'nd
((O2u™) g = (B2U1) | —ymg) ™ - (AU, ) (Be™)),_y + (D)) ,y) = O,
respectively. We proceed to consider the compatibility condition at order k in the case k > 2.
We will denote simply by LOT the terms containing obu™ for j = 0,1,...,k — 1, U;, and its
derivatives only, and not containing agum. Then, we have
ulhy = (—A@W™)*ou™ + LOT
and g';»n = LOT for 0 < 5 < k — 1. Denoting uikn = (0Fu)
Of + (0yp)0% inductively, we obtain
=3 (4)@praroidy, + 0k), 0"+ LOT
§=0
= ((Orp)i=old — A(u™))*ayu™ + (8f )

..o and using the relation 0; =

|t:08zuin + LOT,
so that . ‘ . . . ‘
upl_y = (@'1d — A(u™),_ )" (@u™)),_, + 2} (9eu™)),_, + LOT.
We also have .
(8fu1) = g%n(azUl) + LOT.
Therefore, the compatibility condition at order k is given by
((0pt™)),_y = (0aU1)},_, )" - {(@"1d = A(w™,_))* (95u™)),_, + LOT} = 0.

Once we obtain these expressions to the compatibility conditions, the approximation stated in
the proposition is obtained along classical lines. See for instance [RMey]. O

It:m:O |t=.’1}:0

|ac:0

2.5.2. Reduction to a system with quasilinear boundary conditions. At first glance the boundary
condition in (44) is nothing but a nonhomogeneous Dirichlet boundary condition. However,
ui(t,0) = Ui(t,z(t)) depends on the unknown free boundary x, which would be determined
from the unknown 9%u through the evolution equation (46). Therefore, the boundary condition
represents implicitly a nonlinear relation between u and its derivatives, so that we will reduce
(44) to a system with standard quasilinear boundary conditions to solve the initial value problem
(44)—(45). Now, suppose that u is a solution to (44). Putting

(53) Uy = 07 0f u,
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we will derive a system for u and wu(y) with quasilinear boundary conditions together with a
quasilinear evolution equation for z. We note that 9 and 97 commute. Applying differential
operators 8f and 07 to the first equation in (44), we can express af 0fu and 0F0Fu in terms of
u(2), u, and 0%¥u as

(54) {W%%—GAW)me+AWMWM%m,
7 0Fu = (—A(u) )2 (ug) + A’ (u) [0 u]OF u) + (—A(u) ™) A (u)[0F u]0F u.
Applying 9/ 97 to the first equation in (44) and using the above relations, we obtain
Of uizy + A(w)0Fu(e) + B(u, d¥u)ugy = fi2)(u, 0%u),
where
B(u, 0% u)uzy = A'(w)lue))0Fu — 24 ()0 u] Aw) uge),
f@) (u,0%u) = 24" (u) [Ofu]A(u)_lA’(u) (07 u)0Fu — 2A" (u)[0f u, Of u]OF u.

This is an equation for u (). We proceed to derive a boundary condition for u () and an evolution
equation for x. Differentiating the boundary condition v = u; on x = 0 with respect to t twice
and using the relation 8; = 97 + (9p)95, we have

Of 0fu + 220f 0P u + #2070 u + 208w = OF OF us + 2207 0P u; + £20L 0% us + 0L
on z = 0, where we used 0:p(t,0) = &(t). This together with (54) implies
(Id — iA(u)_l)zu(Q) + &(0%u — 0%ui) = g1(&, u, 0¥u, 0¥ 0%w;),
where
g1(z, u, 0%u, 09 0%u;)
= (22A(w) ™" = 2%(A(u)™1)?) A'(w)[0f W] 0F u + 2 Au) T' A (w) [0Fu] 0% u
+ 07 0F us + 200 0Fu; + 22020 u;.
Decomposing this relation into the direction dfu — dFw; and its perpendicular direction, we
obtain an evolution equation for x as
& = x(&, u, w2y, 07u, 0¥u;, 0¥ 0%u;),
where
X(&, u, u(z), 07u, 0%u;, 0¥ 0%u;)
(0fu — Ofws) - (91(&, u, 0%u, 0¥0%u;) — (Id — iA(u)_l)Qu(g))
|0Fu — OF u; |2

and a boundary condition for u(y) as

V@) U@ = 92>
where v(9) = V() (&, u, 0Fu, I u;) and gy = g(2) (&, u, 8¥u, 0¥u;, 0¥0%u;) are defined by

(55) Yz) = ((Id = 2A(u) ™)) ((OFu — O w) "),
92y = (0Fu — 0fw)® - g1(&, u, 0¥u, 0°0%u;).
Concerning a boundary condition for u, we would like to write it in the form v-u = g. However,

we have a high degree of freedom for choosing the vector v. From the point of view of the
maximal dissipativity in the sense of ii in Assumption 1, the most convenient choice is v = v,

where .

v = e (u"(0).
As before, we introduce the matrix A(u, d¢) = (Or¢) 1(A(u) — (9ip)Id). The eigenvalues of
this matrix are (9,¢) " (EA+(u) — Oyp), whereas the corresponding eigenvectors are e (u) which
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does not depend on dp. Summarizing the above arguments, the initial value problem (44)—(45)
yields the following:

ou + A(u, 0p)0,u =0 in Qp,
(56) u),_y = u™(x) on Ry,
Vol =L Uil on (0,7),
together with
Opuy + A(u, 09)0ru(ay + B(u, 0%u)u) = fo)(u,0%u) in Qr,

(57) U)o = Uy () on Ry,
V(@) " U2)lamo = I@)le=o on (0,7),
and an equation for the evolution of the free boundary given by
., for te(0,T),

(58) {33(: X(&, u, u(g), 0Pu, 0%u;, 0¥ 0%u;)|
L

0)=0, &(0)=ait,

where the initial data uig) and xl(ri) should be chosen appropriately for the equivalence of (56)—
(58) with (44)—(45) and will be given in the next subsection.

Remark 10. i. In place of 97 0fu we can also use 02u — (0?¢)05u as u(z)- An advantage of
the choice (53) is that the reduction and calculations become a little bit simpler.

ii. It is essential to differentiate (44) twice in time to derive a system with quasilinear bound-
ary conditions. For example, the first derivative u) = Ofu satisfies a boundary condition

(A(u)_lu(l) + 8;%1)L (ugy — Of u;) =0 on (0,7),

which is still nonlinear in ).

‘1:0

Then, we will analyze maximal dissipativity for (57) in the sense of ii in Assumption 1, that
is, the positivity of [v/(s)-e|. The following proposition characterizes this condition algebraically
under the restrictions (47) and (48).

Proposition 6. Suppose that u together with x is a smooth solution to (44) satisfying (47) and
(48) and that V(2) s defined by (55). Then, there exists a unique unit vector u = u(t) up to the
stgn such that
1 (Of ui + Aui)0fwi))
Moreover, we have the following identity on x = 0:
| e Ay — )3 |0Fu — OF ;] eyl
Vi) e+l = - ey
® N [(@ld - Afw) Tl

=0.

x=0

This proposition implies that the positivity of |v/o)-e | is essentially equivalent to the positivity
of |- e4|, where p is a unique direction that the quantity 9fu + A(u)d5u is continuous across
the boundary.

Proof of the proposition. Differentiating the boundary condition in (44) with respect to ¢ and
using the relation 9, = 97 + (9yp)0%, we have 9fu + £05u = 9 u; + £05u; on x = 0. This and
the interior equation in (44) imply
(59) (2Id — A(u))(0%u — O%u;) = Of ui + A(u;))0%u; on x = 0.
Since the matrix zId — A(u) is invertible, it should hold that (9fu; + A(ui)dfus)|,_, # 0.
Therefore, the direction p is uniquely determined up to the sign as
((8fu1 =+ A(ui)é?fui)‘z:o)l
](@pul + A(ui)afum

ool
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By taking the Euclidean inner product of (59) with p, we have
(&1d - Alu, )"+ (9 - OFw)
Since both vectors (zId — A(uy,_,))T 1 and (9fu — 9fw),,
(0Fu — OFwi)|,_, |
8fu—8fuij‘ =+ 220" (&ld — A(uy T,u.
( )Iz:o \(gId _ A(u\z:o))TM( ( |a:—0))
Particularly, we see on x = 0 that
Yoy e = (0fu— 0Fu;) " - (Id — 2 A(u)~")’ey
= (1 -2 ) (0%u — I¥u;)t e,
|0Fu — OFwi| .
— )
1 — AT £ Ao

which gives the desired identity. O

=0.

|z:0

_, are nonzero, so that

= £(1 — 2>

Once the diffeomorphism ¢ is given, we can regard the initial boundary value problems (56)
and (57) as the same type of problem considered in the previous sections. Concerning the
compatibility conditions for the problems, it is straightforward to show the following lemma.

Lemma 13. Suppose that the data v'™ € H™(R,) and U; € W™>((0,T) x (—6,8)) for the initial
boundary value problem (44)—(45) satisfy the compatibility conditions up to order m — 1 in the
sense of Definition 4 and that the diffeomorphism ¢ satisfies ©(0,x) = z and (9F)(0,0) = Z(p)
fork=1,...,m—1.
i. The compatibility conditions for the initial boundary value problem (56) are satisfied up
to order m — 1 in the sense of Definitions 1-2. '
ii. Let m > 3. If the initial datum ug, is given by (51) and u satisf