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We revisit Föllmer's concept of quadratic variation of a càdlàg function along a sequence of time partitions and discuss its relation with the Skorokhod topology. We show that in order to obtain a robust notion of pathwise quadratic variation applicable to sample paths of càdlàg processes, one must reformulate the definition of pathwise quadratic variation as a limit in Skorokhod topology of discrete approximations along the partition. One then obtains a simpler definition which implies the Lebesgue decomposition of the pathwise quadratic variation as a result, rather than requiring it as an extra condition.

1 Quadratic variation along a sequence of partitions

In his seminal paper Calcul d'Itô sans probabilités [START_REF] Föllmer | Calcul d'Itô sans probabilités[END_REF], Hans Föllmer introduced a pathwise concept of quadratic variation and used it to provide a pathwise proof of the Itô formula. Föllmer showed that if a function x ∈ D([0, T ], R) has 1 quadratic variation along a sequence π n = (t n 0 = 0 < .. < t n j < ... < t n m(n) = T ) of time partitions of [0, T ] in the sense that for each t ∈ [0, T ] the limit

µ n := [t n j ,t n j+1 ]∈πn δ(• -t j ) |x(t n j+1 ) -x(t n j )| 2 (1) 
converges weakly to a Radon measure µ π such that

[x] c π : t → µ π ([0, t]) -s≤t |∆x(s)| 2 is a continuous increasing function, (L)
then a pathwise Itô formula may be obtained for functions of x [START_REF] Föllmer | Calcul d'Itô sans probabilités[END_REF]: for any

f ∈ C 2 (R, R), f (x(t)) -f (x(0)) = t 0 f (x)d π x + 1 2 t 0 f (x(s))d[x] c π (s) + 0≤s≤t ( f (x(s)) -f (x(s-)) -f (x(s-))∆x(s) ) (2)
where t 0 f (x)d π x is a pathwise integral defined as a limit of left Riemann sums computed along the partition:

t 0 g(x)d π x := lim n→∞ πn g(x(t n j )). x(t n j+1 ) -x(t n j ) . (3) 
The quantity

[x] π (t) = µ π ([0, t]) = [x] c π (t) + s≤t |∆x(s)| 2
is called the quadratic variation of x along π. This result has many interesting applications and has been extended to less regular functions [START_REF] Bertoin | Temps locaux et intégration stochastique pour les processus de Dirichlet[END_REF][START_REF] Cont | Pathwise integration and change of variable formulas for continuous paths with arbitrary regularity[END_REF][START_REF] Davis | Pathwise stochastic calculus with local times[END_REF][START_REF] Perkowski | Local times for typical price paths and pathwise Tanaka formulas[END_REF] and path-dependent functionals [START_REF] Ananova | Pathwise integration with respect to paths of finite quadratic variation[END_REF][START_REF] Cont | Functional Ito Calculus and functional Kolmogorov equations, Stochastic Integration by Parts and Functional Ito Calculus[END_REF][START_REF] Cont | A functional extension of the Ito formula[END_REF][START_REF] Cont | Change of variable formulas for non-anticipative functionals on path space[END_REF][START_REF] Cont | Pathwise integration and change of variable formulas for continuous paths with arbitrary regularity[END_REF]. With the exception of [START_REF] Cont | Change of variable formulas for non-anticipative functionals on path space[END_REF][START_REF] Vovk | Itô calculus without probability in idealized financial markets[END_REF][START_REF] Rafal | A superhedging approach to stochastic integration[END_REF], these extensions have focused on continuous paths. Föllmer's definition [START_REF] Föllmer | Calcul d'Itô sans probabilités[END_REF] contains the condition (L) on the Lebesgue decomposition of the limit µ π : the atoms of µ should correspond exactly to the jumps of x and their mass should be |∆x(t)| 2 or, equivalently, the discontinuity points of [x] π should coincide with those of x, with ∆[x] π (t) = |∆x(t)| 2 . This condition can not be removed: as shown by Coquet et al. [START_REF] Coquet | Natural decomposition of processes and weak Dirichlet processes[END_REF], there are counterexamples of continuous functions x such that (1) converges to a limit with atoms. Conversely, one can give examples of discontinuous functions for which (1) converges to an atomless measure. If this condition is not satisfied, then the pathwise integral (3) fails to satisfy

∆ t 0 x(s-)dx(s) (t) = x(t-)∆x(t),
at each t where condition (L) is not met. On the other hand, this condition (L) is not easy to check and seems to require a link between the path x and the sequence of partitions π, making it difficult to apply to sample paths of stochastic processes.

In this work, we revisit Föllmer's concept of pathwise quadratic variation along a sequence of partitions and show that it has hitherto unsuspected links with the Skorokhod topology. In particular, we show that in order to obtain a robust notion of pathwise quadratic variation applicable to sample paths of càdlàg processes, one must reformulate the definition of the quadratic variation as a limit, in Skorokhod topology, of discrete approximations defined along the partition. This leads to a simpler definition of pathwise quadratic variation which holds in any dimension and, rather than requiring the Lebesgue decomposition of the pathwise quadratic variation as an extra condition, yields it as a consequence.

Outline We begin by recalling Föllmer's definition of pathwise quadratic variation and variations of it which have been used in the literature. We then introduce a new definition of quadratic variation for real-valued càdlàg functions based on the Skorokhod topology and prove equivalence among the various definitions. Section 3 extends the results to vector-valued functions: we show that, unlike Föllmer's original definition in which the one dimensional case plays a special role, our definition applies regardless of dimension, thus simplifying various statements regarding quadratic variation for vector-valued functions. Finally, in Section 4, we show that our approach leads to simple proofs for various properties of pathwise quadratic variation.

2 Pathwise quadratic variation for cadlag functions 

Let π := (π n ) n≥1 be a sequence of partitions π n = (t n 0 , ..., t n kn ) of [0, ∞) into intervals 0 = t n 0 < ... < t n kn < ∞; t n kn ↑ ∞ with vanishing mesh |π n | ↓ 0 on compacts. By convention, max(∅ ∩ π n ) := 0, min(∅ ∩ π n ) := t n kn . Denote D := D([0, ∞),
µ n := πn (x(t n i+1 ) -x(t n i )) 2 δ(t n i ) (4) 
converges vaguely to a Radon measure µ on [0, ∞) with [x] π (t) = µ([0, t]), such that [x] c π defined by [x] c π (t) := µ([0, t]) -s≤t (∆x s ) 2 is a continuous increasing function. [x] π (t) = µ([0, t]
) is then called the quadratic variation of x along π, and admits the following Lebesgue decomposition:

[x] π (t) = [x] c π (t) + s≤t |∆x(s)| 2 . ( 5 
)
We denote Q π 0 the set of x ∈ D satisfying these properties. At this point let us point out a link between vague and weak convergence of Radon measures on [0, ∞), a link which is well known in the case where the measures are sub-probability measures: Lemma 2.1. Let v n and v be non-negative Radon measures on [0, ∞) and J ⊂ [0, ∞) be the set of atoms of v, the followings are equivalent:

(i) v n → v vaguely on [0, ∞). (ii) v n → v weakly on [0, T ] for every T / ∈ J. Proof. Let f ∈ C K ([0, ∞)) be a compactly supported continuous function. Since J is countable, ∃ T / ∈ J; supp(f ) ⊂ [0, T ]. Now (ii) ⇒ ∞ 0 f dv n = T 0 f dv n -→ T 0 f dv = ∞ 0 f dv ⇒ (i). Suppose (i) holds, let T / ∈ J and f ∈ C ([0, T ], • ∞ ). Since f = (f ) + -(f ) -,
we may take f ≥ 0 and define the following extensions:

f (t) := f (t)1I [0,T ] (t) + f (T ) 1 + T -t 1I (T,T + ] (t) f (t) := f (t)1I [0,T -] (t) + f (T ) T -t 1I (T -,T ] (t), then f , f ∈ C K ([0, ∞)), 0 ≤ f ≤ f 1I [0,T ] ≤ f ≤ f ∞ and we have ∞ 0 f dv n ≤ T 0 f dv n ≤ ∞ 0 f dv n .
Since v n → v vaguely and T / ∈ J, thus, as n → ∞ we obtain Proposition 2.1. If x ∈ Q π 0 , then the pointwise limit s of

0 ≤ lim sup n T 0 f dv n -lim inf n T 0 f dv n ≤ ∞ 0 f -f dv ≤ f ∞ v ((T -, T + ]) -→ 0,
s n (t) := ti∈πn |x(t i+1 ∧ t) -x(t i ∧ t)| 2 (6) 
exists, s = [x] π and s admits the Lebesgue decomposition:

s(t) = s c (t) + s≤t (∆x s ) 2 . ( 7 
)
Proof. If x ∈ Q π 0 , define q n (t) := πn ti≤t (x(t i+1 ) -x(t i )) 2 ,
the distribution function of µ n in (4). Since µ n → µ vaguely, we have

q n → [x] pointwise at all continuity points of [x] (Lemma 2.1 & [12, X.11]). Let I be the set of continuity points of [x]. Observe (q n ) is monotonic in [0, ∞) and I is dense in [0, ∞), if t / ∈ I, it follows [12, X.8] that [x](t-) ≤ lim inf n q n (t) ≤ lim sup n q n (t) ≤ [x](t+) = [x](t).
Thus, we may take any subsequence (n k ) such that lim k q n k (t) =: q(t). Since x ∈ Q π 0 and the Lebesgue decomposition (5) holds on [x], we have

≥0 ([x](t + ) -q(t)) + ≥0 (q(t) -[x](t -))= [x](t + ) -[x](t -) →0 → |∆x(t)| 2 . ( 8 
) If t ± ∈ I, πk := π n k and t (k) j := max{π k ∩ [0, t)}, the second sum in (8) is lim k ti∈π k ; t-<ti≤t (x(t i+1 ) -x(t i )) 2 = lim k ti∈π k ; t-<ti<t (k) j ≥0 (x(t i+1 ) -x(t i ) 2 +(∆x(t)) 2 ≥ (∆x(t)) 2
by the fact that x is càdlàg and that t / ∈ I. We see from (8) that q(t) = [x](t) as → 0. Since the choice of the convergent subsequence is arbitrary, we conclude that q n → [x] pointwise on [0, ∞). Observe that the pointwise limits of (s n ) and (q n ) coincide i.e.

|s n (t) -q n (t)| = (x t (n) i+1 -x(t)) 2 + 2(x t (n) i+1 -x(t))(x(t) -x t (n) i ) (9) 
converges to 0 by the right-continuity of x, where t

(n) i := max {π n ∩ [0, t]} and that x ∈ Q π 0 , Prop. 2.1 follows.
Denote Q π 1 the set of x ∈ D such that (s n ) defined in (6) has a pointwise limit s with Lebesgue decomposition given by [START_REF] Cont | Weak approximation of martingale representations[END_REF]. Then Q π 0 ⊂ Q π 1 and we have:

Proposition 2.2. If x ∈ Q π 1 , then the pointwise limit q of q n (t) := πn ti≤t (x(t i+1 ) -x(t i )) 2 (10) 
exists. Furthermore q = s and admits the Lebesgue decomposition:

q(t) = q c (t) + s≤t (∆x s ) 2 . ( 11 
)
Proof. Since the pointwise limits of (s n ) and (q n ) coincide by [START_REF] Coquet | Natural decomposition of processes and weak Dirichlet processes[END_REF]. Prop. 2.2 now follows from

x ∈ Q π 1 .
Denote Q π 2 the set of x ∈ D such that the quadratic sums (q n ) defined in (10) have a pointwise limit q with Lebesgue decomposition [START_REF] Davis | Pathwise stochastic calculus with local times[END_REF]. Then

Q π 0 ⊂ Q π 1 ⊂ Q π
2 and we have:

Proposition 2.3. If x ∈ Q π 2
, then q n → q in the Skorokhod topology.

Proof. Since x ∈ Q π 2 , we have q n → q pointwise on [0, ∞) and that (q n ), q are elements in D + 0 . By [16, Thm.VI.2.15], it remains to show that s≤t

(∆q n (s)) 2 n→∞ -→ s≤t (∆q(s)) 2 on a dense subset of [0, ∞). Let t > 0, define J := {s ≥ 0|(∆X s ) 2 ≥ 2 }, J n := {t i ∈ π n |∃s ∈ (t i , t i+1 ]; (∆X s ) 2 ≥ 2 } ⊂ π n and observe that s≤t (∆q n (s)) 2 = πn ti≤t (x(t i+1 ) -x(t i )) 4 = J n ti≤t (x(t i+1 ) -x(t i )) 4 + (J n ) c ti≤t (x(t i+1 ) -x(t i )) 4 . ( 12 
)
Since x is càdlàg and that |π n | ↓ 0 on compacts, the first sum in ( 12) converges to J s≤t (∆x s ) 4 and the second sum in ( 12)

(J n ) c ti≤t (x(t i+1 ) -x(t i )) 4 ≤ sup (J n ) c ti≤t (x(t i+1 ) -x(t i )) 2 (J n ) c ti≤t (x(t i+1 ) -x(t i )) 2 ≤ q(t)
for sufficiently large n [6, Appendix A.8] hence

lim n s≤t (∆q n (s)) 2 = J s≤t (∆x s ) 4 + ≤ q(t) lim sup n (J n ) c ti≤t (x(t i+1 ) -x(t i )) 4 .
By the Lebesgue decomposition [START_REF] Davis | Pathwise stochastic calculus with local times[END_REF], we observe J s≤t (∆x s ) 4 ≤ q(t) 2 and that

lim n s≤t (∆q n (s)) 2 = s≤t (∆x s ) 4 = s≤t (∆q(s)) 2
as → 0.

Denote Q π the set of càdlàg functions x ∈ D such that the limit q of (q n ) exists in (D, d).

Then Q π 0 ⊂ Q π 1 ⊂ Q π 2 ⊂ Q π and we have: Proposition 2.4. Q π ⊂ Q π 0 and q = [x].
Proof. Let x ∈ Q π and I be the set of continuity points of q. [16, VI.2.1(b.5)] implies that q n → q pointwise on I. Since q n ∈ D + 0 and I is dense on [0, ∞), it follows q ∈ D + 0 . Denote µ to be the Radon measure of q on [0, ∞), observe the set of atoms of µ is J := [0, ∞)\I and that (q n ) are the distribution functions of the discrete measures (µ n ) in (4). Thus, by (Lemma 2.1 & [12, X.11]), we see that µ n -→ µ vaguely on [0, ∞).

If t > 0, put t

(n) i := max{π n ∩ [0, t)}. Since |π n | ↓ 0 on compacts, we have t (n) i < t, t (n) i ↑ t and t (n) i+1 ↓ t. Observe that ∆q n (t) = (x(t i+1 ) -x(t i )) 2 , if t = t i ∈ π n . 0, otherwise. (13) 
If ∆q(t) = 0, [16, VI.2.1(b.5)] implies that ∆q n (t

(n) i ) → ∆q(t).
Hence, by the fact that x is càdlàg , (∆x(t)) 2 = lim n ∆q n (t i ) for all n sufficiently large, else we will contradict ∆q(t) > 0. Thus, (∆x(t)) 2 = lim n ∆q n (t

(n) i ) = ∆q(t). If ∆q(t) > 0,
(n) i ) = lim n ∆q n (t n ) = ∆q(t)
and the Lebesgue decomposition (5) holds on q.

By Def.2.1, we have q

= [x] hence Q π ⊂ Q π 0 .
Theorem 2.1. Let

• Q π 0 be the set of x ∈ D satisfying Definition 2.1.

• Q π 1 the set of x ∈ D such that (s n ) defined in (6) has a pointwise limit s with Lebesgue decomposition given by [START_REF] Cont | Weak approximation of martingale representations[END_REF].

• Q π 2 the set of x ∈ D such that the quadratic sums (q n ) defined by (10) have a pointwise limit q with Lebesgue decomposition [START_REF] Davis | Pathwise stochastic calculus with local times[END_REF].

• Q π the set of càdlàg functions x ∈ D such that the limit q of (q n ) exists in (D, d).

Then:

(i) Q π 0 = Q π 1 = Q π 2 = Q π . (ii) If x ∈ Q π 0 , then [x] π = s(x) = q(x) = q(x).
(iii) x has finite quadratic variation along π if and only if

q n (t) := πn ti≤t (x(t i+1 ) -x(t i )) 2
converges in (D, d).

(iv) If (q n ) defined by [START_REF] Coquet | On non-continuous dirichlet processes[END_REF] converges in (D, d), the limit is equal to [x].

Proof. These results are a consequence of Prop. 2.1, 2.2, 2.3 and 2.4.

We see that the two defining properties of [x] in Def. 2.1 are consequences per Thm. 2.1. The following corollary treats the special case of continuous functions.

Corollary 2.1. Let x ∈ Q π , s n defined as in (6), (q n ) defined by [START_REF] Coquet | On non-continuous dirichlet processes[END_REF]. (ii): Let T > 0, • (t) the supremum norm on D([0, T ]) and observe that

i q n → [x] uniformly on compacts in [0, ∞) if and only if x is continuous. ii If q n → [x] uniformly on compacts in [0, ∞), then s n → [x]
s n -[x] (t) ≤ q n -[x] (t) + s n -q n (t).
Since (i) implies x ∈ C, (ii) now follows from uniform continuity of x and (11).

Remark 2.1. The converse of (ii) is not true in general.

Remark 2.2. We note that some references have used the pointwise limit of the sequence

p n (t) := πn ti+1≤t (x(t i+1 ) -x(t i )) 2
together with the Lebesgue decomposition (5), to define [x]. To see why this is not the correct choice, take [START_REF] Vovk | Itô calculus without probability in idealized financial markets[END_REF]Sec. 6] proposes a different notion of pathwise quadratic variation along a sequence of partitions, which is shown to coincide with Föllmer's definition under the additional assumption that the sequence of partitions π is refining and exhausts all discontinuity points of the path [START_REF] Vovk | Itô calculus without probability in idealized financial markets[END_REF]Prop. 6.3 & 6.4].

t 0 / ∈ π, put x(t) := 1I [t0,∞) (t) then obviously [x](t 0 ) = lim s n (t 0 ) = lim q n (t 0 ) = 1 but lim p n (t 0 ) = 0. Remark 2.3. Vovk
This requirement of exhausting all jumps can always be satisfied for a given càdlàg path by adding all discontinuity points to the sequence of partitions. However if one is interested in applying this definition to a process, say a semimartingale, then in general there may exist no sequence of partitions satisfying this condition. And, if this requirement of exhausting all discontinuity points is removed, then Vovk's definition differs from Föllmer's (and therefore, fails to satisfy the Ito formula (2) in general).

By contrast, our definition does not require such a condition and easily carries over to stochastic processes without requiring the use of random partitions (see Theorem 4.1). It is known that x, y ∈ Q π does not imply x + y ∈ Q π [7, 20] so one cannot for instance define a quadratic covariation [x, y] π of two such functions in the obvious way. This prevents a simple componentwise definition of the finite quadratic variation property for vector-valued functions. Therefore, the notion sense of Def. 2.1.

Quadratic variation for multidimensional functions

We now give a criterion for x ∈ D to have finite quadratic variation without any reference to the Lebesgue decomposition (5) on the limit measure µ:

Property 1. x ∈ Q π 0 if and only if (q n ) defined by (10) is a Cauchy sequence in (D, δ).
Proof. This is a consequence of Thm. 2.1 and that (D, δ) is complete.

One of the main advantages of having convergence in the J 1 topology is that it ensures convergence of jumps in a regulated manner. It comes in handy when accessing the limit of q n (t n ) as n → ∞.

Property 2. Let x ∈ Q π 0 , for each t ≥ 0, we define t n := max{t i < t|t i ∈ π n }, then t n -→ t; t n ≤ t n =⇒ q n (t n -)-→[x](t-), t n -→ t; t n < t n =⇒ q n (t n ) -→[x](t-), t n -→ t; t n ≥ t n =⇒ q n (t n ) -→[x](t), t n -→ t; t n > t n =⇒ q n (t n -)-→[x](t).
In particular, the sequence (t n ) is asymptotically unique in the sense that any other sequence (t n ) meeting the above properties coincides with (t n ) for n sufficiently large.

Proof. This is a consequence of Thm. 2.1 and [16, VI.2.1].

Given a càdlàg process X (i.e. a (D, F)-measurable random variable), a natural quantity to consider is P(X ∈ Q π 0 ). This only makes sense however if Q π 0 is F-measurable. This 'natural' property, not easy to show using the original definition (Def. 2.1), becomes simple thanks to Theorem. 2.1:

Property 3 (Measurability of Q π 0 ). Q π 0 is F-measurable. Proof. By Thm. 2.1, Q π 0 = Q π and by definition, Q π is the J 1 convergence set of x -→ πn ti≤• (x(t i+1 ) -x(t i )) 2 , n ≥ 1 on D. Since D is completely metrisable, the claim follows from [12, V.3].
Föllmer introduced in [START_REF] Föllmer | Calcul d'Itô sans probabilités[END_REF][START_REF] Föllmer | Dirichlet processes[END_REF] the class of processes with finite quadratic variation ('processus à variation quadratique'), defined as càdlàg processes such that the sequence S n (t) := πn ti≤t (X(t i+1 ) -X(t i )) 2 converges in probability for every t to an increasing process [X] with Lebesgue decomposition:

[X](t) = [X] c (t) + s≤t ∆X(s) t ∆X(s).

The pathwise Itô formula (2) can be applied to this class of processes, which is strictly larger than the class of semimartingales [START_REF] Coquet | On non-continuous dirichlet processes[END_REF].

Theorem 4.1. Let X be an R d -valued càdlàg process, define a sequence of (D d×d , δ)-valued random variables (q n ) by q n (t) := πn ti≤t (X(t i+1 ) -X(t i ))(X(t i+1 ) -X(t i )) T then the following properties are equivalent:

(i) X is a process with finite quadratic variation.

(ii) (q n ) converges in probability.

(iii) (q n ) is a Cauchy sequence in probability.

In addition, iv If (q n ) converges in probability, the limit is [X].

v The convergence of (q n ) to [X] is UCP if and only if X is a continuous process of quadratic variation [X].

vi (q n ) converges (resp. is a Cauchy sequence) in probability if and only if each component sequence of (q n ) converges (resp. is a Cauchy sequence) in probability.

Proof. We first remark that (D d×d , δ) is a complete separable metric space [START_REF] Jacod | Limit theorems for stochastic processes[END_REF], hence by [13, 

  R) the space of cadlag functions and C := C([0, ∞), R) the subspace of real-valued continuous functions. We equip D with a metric d which induces the Skorokhod J 1 topology [16, Ch. VI]. Denote D + 0 ⊂ D to be the subset of non-negative increasing right-continuous functions null at 0. Definition 2.1 (Föllmer1981). x ∈ D has (finite) quadratic variation [x] π along π if the sequence of measures

Denote

  D m := D([0, ∞), R m ) and D m×m := D([0, ∞), R m×m ) to be the Skorokhod spaces[START_REF] Billingsley | Convergence of probability measures[END_REF][START_REF] Skorokhod | Limit theorems for stochastic processes[END_REF][START_REF] Jakubowski | On the Skorokhod topology[END_REF], each of which equipped with a metric d which induces the corresponding Skorokhod J 1 topology [16, Ch. VI]. C m := C([0, ∞), R m ) the subspace of continuous functions in D m . We recall Theorem 2.1 from the one dimensional case n = 1 that (Def. 2.1) and (Thm. 2.1.iii) are equivalent.

  there exists [16, VI.2.1(a)] a sequence t n → t such that ∆q n (t n ) → ∆q(t) > 0. Using the fact that x is càdlàg , t n → t, (13) and [16, VI.2.1(b)], we deduce that (t n ) must coincide with (t

	(n)

  by uniform convergence. Put t n := max{t i < t|t i ∈ π n }, since q n → [x] in the Skorokhod topology, we also have ∆q by[START_REF] Dudley | Real analysis & probability[END_REF] and [16, VI.2.1(b)]. If ∆[x](t) > 0, then [16, VI.2.1(b)] implies t n must coincide with t for all n large enough, but t n < t for all n, hence ∆[x](t) = 0 which implies ∆x(t) = 0 by Prop. 2.4 and (5). Since t is arbitrary, we conclude that x ∈ C.

	uniformly on
	compacts.
	Proof. (i): The if part follows from Prop. 2.4, (5) and [16, VI.1.17(b)]. The only
	if part: Let t ≥ 0, it is well known that
	∆q n (t) → ∆[x](t)

n (t n ) → ∆[x](t)

  Lemma 9.2.4], the Cauchy property is equivalent to convergence in probability. By [13, Thm. 9.2.1], we can pass to subsequences and apply Prop. 3.2, Thm. 3.1 & Cor. 3.1 pathwise to X, the claims follow.

Acknowledgements We thank Rafal Lochowski, Pietro Siorpaes and the referee for useful comments.

Supported by EPSRC Doctoral Training grant 1824430.

of quadratic variation in the multidimensional setting was originally defined in [START_REF] Föllmer | Calcul d'Itô sans probabilités[END_REF] as follows: Definition 3.1 (Föllmer1981). We say that x := (x 1 , . . . , x m ) T ∈ D m has finite quadratic variation along π if all x i , x i + x j (1 ≤ i, j ≤ m) have finite quadratic variation.

The quadratic (co)variation [x i , x j ] is then defined as

which admits the following Lebesgue decomposition:

The function [x] π := ([x i , x j ]) 1≤i,j≤m , which takes values in the cone of symmetricsemidefinite positive matrices, is called the quadratic (co)variation of x.

Note Def. 3.1 requires first introducing the case m = 1. The following definition, by contrast, avoids this and directly defines the concept of multidimensional quadratic variation in any dimension:

We shall now prove the equivalence of these definitions. Define, for u, v, w ∈ D

and q (w) n := q (w,w) n . Note that the Skorokhod topology on (D m , d) is strictly finer than the product topology on (D, d) m [16, VI.1.21] and that (D, d) is not a topological vector space [START_REF] Jacod | Limit theorems for stochastic processes[END_REF]VI.1.22]. The following lemma is essential:

Note that the sequence t n is chosen from the partition points of π n , independently of u, v ∈ D.

Put q := lim n q (u,v) n

. If ∆q(t) = 0, [16, VI.2.1(b.5)] implies that ∆q

Using the fact that u, v are càdlàg , t n → t and ( 16), we deduce that (t n ) must coincide with (t (n) i ) for n sufficiently large, else we will contradict ∆q(t) > 0. Put t n := t

n + q (y) n + 2q Proof. This is a consequence of ( 14), [START_REF] Jakubowski | On the Skorokhod topology[END_REF] 

Some applications

We now show that our approach yields simple proofs for some properties of pathwise quadratic variation, which turn out to be useful in the study of pathwise approaches to Ito calculus. Denote D := D([0, ∞), R) and D d×d := D([0, ∞), R d×d ) to be the Skorokhod spaces, each of which equipped with a complete metric δ which induces the corresponding Skorokhod (a.k.a J 1 ) topology. Denote F to be the J 1 Borel sigma algebra of D (a.k.a the canonical sigma algebra generated by coordinates). Recall that Q π 0 is the set of paths with finite quadratic variation along π in the