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On pathwise quadratic variation
for càdlàg functions

Henry CHIU ∗ & Rama CONT†

June 2018

Abstract

We revisit Föllmer’s concept of quadratic variation of a càdlàg func-
tion along a sequence of time partitions and discuss its relation with the
Skorokhod topology. We show that in order to obtain a robust notion
of pathwise quadratic variation applicable to sample paths of càdlàg pro-
cesses, one must reformulate the definition of pathwise quadratic varia-
tion as a limit in Skorokhod topology of discrete approximations along
the partition. The definition then simplifies and one obtains the Lebesgue
decomposition of the pathwise quadratic variation as a result, rather than
requiring it as an extra condition.

Keywords: Quadratic variation; semimartingale; pathwise calculus; Ito formula;
pathwise integration; cadlag functions; Skorokhod topology.
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1 Quadratic variation along a sequence of parti-
tions

In his seminal paper Calcul d’Itô sans probabilités [13], Hans Föllmer introduced
a pathwise concept of quadratic variation and used it to provide a pathwise
proof of the Itô formula. Föllmer showed that if a function x ∈ D([0, T ],R) has
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quadratic variation along a sequence πn = (tn0 = 0 < .. < tnj < ... < tnm(n) = T )

of time partitions of [0, T ] in the sense that for each t ∈ [0, T ] the limit

µn :=
∑

[tnj ,t
n
j+1]∈πn

δ(· − tj) |x(tnj+1)− x(tnj )|2 (1)

converges weakly to a Radon measure µπ such that

[x]cπ : t 7→ µπ([0, t])−
∑
s≤t |∆x(s)|2 is a continuous increasing function, (L)

then a pathwise Itô formula may be obtained for functions of x [13]: for any
f ∈ C2(R,R),

f(x(t))− f(x(0)) =

∫ t

0

f ′(x)dπx+
1

2

∫ t

0

f”(x(s))d[x]π(s) (2)

where
∫ t
0
f ′(x)dπx is a pathwise integral defined as a limit of left Riemann sums

computed along the partition:∫ t

0

g(x)dπx := lim
n→∞

∑
πn

g(x(tnj )).
(
x(tnj+1)− x(tnj )

)
. (3)

The quantity
[x]π(t) = µπ([0, t]) = [x]cπ(t) +

∑
s≤t

|∆x(s)|2

is called the quadratic variation of x along π. This result has many interesting
applications and has been extended to less regular functions [2, 8, 10, 17] and
path-dependent functionals [1, 4, 5, 6, 8]. With the exception of [6, 16], these
extensions have focused on continuous paths.

Föllmer’s definition [13] contains the condition (L) on the Lebesgue decom-
position of the limit µπ: the atoms of µ should correspond exactly to the jumps
of x and their mass should be |∆x(t)|2 or, equivalently, the discontinuity points
of [x]π should coincide with those of x, with ∆[x]π(t) = |∆x(t)|2. This condition
can not be removed: as shown by Coquet et al. [9], there are counterexamples of
continuous functions x such that (1) converges to a limit with atoms. Conversely,
one can give examples of discontinuous functions for which (1) converges to an
atomless measure. If this condition is not satisfied, then the pathwise integral
(3) fails to satisfy

∆

(∫ t

0

x(s−)dx(s)

)
(t) = x(t−)∆x(t),

at each t where condition (L) is not met. On the other hand, this condition
(L) is not easy to check and seems to require a link between the path x and
the sequence of partitions π, making it difficult to apply to sample paths of
stochastic processes.

In this work, we revisit Föllmer’s concept of pathwise quadratic variation
along a sequence of partitions and show that it has hitherto unsuspected links
with the Skorokhod topology. In particular, we show that in order to obtain
a robust notion of pathwise quadratic variation applicable to sample paths of
càdlàg processes, one must reformulate the definition of the quadratic variation
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as a limit, in Skorokhod topology, of discrete approximations defined along the
partition. This leads to a simpler definition of pathwise quadratic variation and,
rather than requiring the Lebesgue decomposition of the pathwise quadratic
variation as an extra condition, we obtain it as a consequence of the definition.

Outline We begin by recalling Föllmer’s definition of pathwise quadratic
variation and variations of it which have been used in the literature. Then, we
introduce a new definition of quadratic variation for real-valued càdlàg functions
based on the Skorokhod topology and prove equivalence among the various
definitions. Section 3 extends the results to vector-valued functions. In Section
4, we show that our approach leads to simple proofs for various properties of
pathwise quadratic variation.

2 Pathwise quadratic variation for cadlag func-
tions

Let π := (πn)n≥1 be a sequence of partitions πn = (tn0 , ..., t
n
kn

) of [0,∞) into
intervals 0 = tn0 < ... < tnkn < ∞; tnkn ↑ ∞ with vanishing mesh |πn| ↓ 0 on
compacts. By convention, max(∅ ∩ πn) := 0, min(∅ ∩ πn) := tnkn .

Denote D := D([0,∞),R) the space of cadlag functions and C := C([0,∞),R)
the subspace of real-valued continuous functions. We equip D with a metric d
which induces the Skorokhod (a.k.a J1) topology [14, Ch. VI]. Denote D+

0 ⊂ D
to be the subset of non-negative increasing right-continuous functions null at 0.

Definition 2.1 (Föllmer1981). x ∈ D has (finite) quadratic variation [x]π along
π if the sequence of measures

µn :=
∑
πn

(x(tni+1)− x(tni ))2δ(tni ) (4)

converges vaguely to a Radon measure µ on [0,∞) with [x]π(t) = µ([0, t]), such
that [x]cπ defined by [x]cπ(t) := µ([0, t])−

∑
s≤t(∆xs)

2 is a continuous increasing
function. [x]π(t) = µ([0, t]) is then called the quadratic variation of x along π,
and admits the following Lebesgue decomposition:

[x]π(t) = [x]cπ(t) +
∑
s≤t

|∆x(s)|2. (5)

We denote Qπ0 the set of x ∈ D satisfying these properties.

At this point let us draw a link between vague and weak convergence of
Radon measures on [0,∞), the link of which, is well known in the special case
where the measures are sub-probability measures:

Lemma 2.1. Let vn and v be non-negative Radon measures on [0,∞) and
J ⊂ [0,∞) be the set of atoms of v, the followings are equivalent:

(i) vn → v vaguely on [0,∞).
(ii) vn → v weakly on [0, T ] for every T /∈ J .

Proof. Let f ∈ CK([0,∞)) be a compactly supported continuous function. Since
J is countable, ∃ T /∈ J ; supp(f) ⊂ [0, T ]. Now (ii) ⇒

∫∞
0
fdvn =

∫ T
0
fdvn −→
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∫ T
0
fdv =

∫∞
0
fdv ⇒ (i). Suppose (i) holds, let T /∈ J and f ∈ C ([0, T ], ‖ · ‖∞).

Since f = (f)+ − (f)−, we may take f ≥ 0 and define the following extensions:

f
ε
(t) := f(t)1I[0,T ](t) + f(T )

(
1 +

T − t
ε

)
1I(T,T+ε](t)

f ε(t) := f(t)1I[0,T−ε](t) + f(T )

(
T − t
ε

)
1I(T−ε,T ](t),

then f
ε
, f ε ∈ CK([0,∞)), 0 ≤ f ε ≤ f1I[0,T ] ≤ f

ε ≤ ‖f‖∞ and we have∫ ∞
0

f εdvn ≤
∫ T

0

fdvn ≤
∫ ∞
0

f
ε
dvn.

Since vn → v vaguely and T /∈ J , thus, as n→∞ we obtain

0 ≤ lim sup
n

∫ T

0

fdvn − lim inf
n

∫ T

0

fdvn ≤
∫ ∞
0

f
ε − f εdv

≤ ‖f‖∞v ((T − ε, T + ε])
ε−→ 0,

hence by monotone convergence

lim
n

∫ T

0

fdvn = lim
ε

∫ ∞
0

f εdv =

∫ T

0

fdv

and (ii) follows.

Proposition 2.1. If x ∈ Qπ0 , then the pointwise limit s of

sn(t) :=
∑
ti∈πn

|x(ti+1 ∧ t)− x(ti ∧ t)|2 (6)

exists, s = [x]π and s admits the Lebesgue decomposition:

s(t) = sc(t) +
∑
s≤t

(∆xs)
2. (7)

Proof. If x ∈ Qπ0 , define

qn(t) :=
∑

πn3ti≤t

(x(ti+1)− x(ti))
2,

the distribution function of µn in (4). Since µn → µ vaguely, we have qn → [x]
pointwise at all continuity points of [x] (Lemma 2.1 & [11, X.11]). Let I be
the set of continuity points of [x]. Observe (qn) is monotonic in [0,∞) and I is
dense in [0,∞), if t /∈ I, it follows [11, X.8] that

[x](t−) ≤ lim inf
n

qn(t) ≤ lim sup
n

qn(t) ≤ [x](t+) = [x](t).

Thus, we may take any subsequence (nk) such that limk qnk(t) =: q(t). Since
x ∈ Qπ0 and the Lebesgue decomposition (5) holds on [x], we have

≥0
([x](t+ ε)− q(t)) +

≥0
(q(t)− [x](t− ε))= [x](t+ ε)− [x](t− ε) ε→0→ |∆x(t)|2. (8)
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If t± ε ∈ I, π̃k := πnk and t(k)j := max{π̃k ∩ [0, t)}, the second sum in (8) is

lim
k

∑
ti∈π̃k;

t−ε<ti≤t

(x(ti+1)− x(ti))
2 = lim

k

∑
ti∈π̃k;

t−ε<ti<t(k)j

≥0
(x(ti+1)− x(ti)

2 +(∆x(t))2 ≥ (∆x(t))2

by the fact that x is càdlàg and that t /∈ I.
We see from (8) that q(t) = [x](t) as ε→ 0. Since the choice of the convergent

subsequence is arbitrary, we conclude that qn → [x] pointwise on [0,∞). Observe
that the pointwise limits of (sn) and (qn) coincide (11) by the right-continuity
of x and that x ∈ Qπ0 , Prop. 2.1 follows.

Denote Qπ1 the set of x ∈ D such that (sn) defined in (6) has a pointwise
limit s with Lebesgue decomposition given by (7). Then Qπ0 ⊂ Qπ1 and we have:

Proposition 2.2. If x ∈ Qπ1 , then the pointwise limit q of

qn(t) :=
∑

πn3ti≤t

(x(ti+1)− x(ti))
2 (9)

exists and q admits the Lebesgue decomposition:

q(t) = qc(t) +
∑
s≤t

(∆xs)
2, (10)

and q = s.

Proof. Define t(n)i := max {πn ∩ [0, t]}. Since the pointwise limits of (sn) and
(qn) coincide i.e.

|sn(t)− qn(t)| = (x
t
(n)
i+1
− x(t))2 + 2(x

t
(n)
i+1
− x(t))(x(t)− x

t
(n)
i

) (11)

converges to 0 by the right-continuity of x. Prop. 2.2 now follows from x ∈
Qπ1 .

DenoteQπ2 the set of x ∈ D such that the quadratic sums (qn) defined in (9) have
a pointwise limit q with Lebesgue decomposition (10). Then Qπ0 ⊂ Qπ1 ⊂ Qπ2
and we have:

Proposition 2.3. If x ∈ Qπ2 , then qn → q in the Skorokhod topology.

Proof. Since x ∈ Qπ2 , we have qn → q pointwise on [0,∞) and that (qn), q are
elements in D+

0 . By [14, Thm.VI.2.15], it remains to show that∑
s≤t

(∆qn(s))2
n−→
∑
s≤t

(∆q(s))2

on a dense subset of [0,∞). Let t > 0, define Jε := {s ≥ 0|(∆Xs)
2 ≥ ε

2},
Jεn := {ti ∈ πn|∃s ∈ (ti, ti+1]; (∆Xs)

2 ≥ ε
2} ⊂ πn and observe that∑

s≤t

(∆qn(s))2 =
∑

πn3ti≤t

(x(ti+1)− x(ti))
4

=
∑

Jεn3ti≤t

(x(ti+1)− x(ti))
4 +

∑
(Jεn)

c3ti≤t

(x(ti+1)− x(ti))
4.(12)
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Since x is càdlàg and that |πn| ↓ 0 on compacts, the first sum in (12) converges
to
∑
Jε3s≤t(∆xs)

4 and the second sum in (12)

∑
(Jεn)

c3ti≤t

(x(ti+1)− x(ti))
4 ≤

(
sup

(Jεn)
c3ti≤t

(x(ti+1)− x(ti))
2

) ∑
(Jεn)

c3ti≤t

(x(ti+1)− x(ti))
2 ≤ εq(t)

for sufficiently large n [6, Appendix A.8] hence

lim
n

∑
s≤t

(∆qn(s))2 =
∑

Jε3s≤t

(∆xs)
4 +

≤εq(t)︷ ︸︸ ︷
lim sup

n

∑
(Jεn)

c3ti≤t

(x(ti+1)− x(ti))
4 .

By the Lebesgue decomposition (10), we observe
∑
Jε3s≤t(∆xs)

4 ≤ q(t)2 and
that

lim
n

∑
s≤t

(∆qn(s))2 =
∑
s≤t

(∆xs)
4 =

∑
s≤t

(∆q(s))2

as ε→ 0.

Denote Qπ the set of càdlàg functions x ∈ D such that the limit q̃ of (qn)
exists in (D, d). Then Qπ0 ⊂ Qπ1 ⊂ Qπ2 ⊂ Qπ and we have:

Proposition 2.4. Qπ ⊂ Qπ0 and q̃ = [x].

Proof. Let x ∈ Qπ and I be the set of continuity points of q̃. [14, VI.2.1(b.5)]
implies that qn → q̃ pointwise on I. Since qn ∈ D+

0 and I is dense on [0,∞), it
follows q̃ ∈ D+

0 . Denote µ to be the Radon measure of q̃ on [0,∞), observe the
set of atoms of µ is J := [0,∞)\I and that (qn) are the distribution functions
of the discrete measures (µn) in (4). Thus, by (Lemma 2.1 & [11, X.11]), we see
that µn −→ µ vaguely on [0,∞).

If t > 0, put t(n)i := max{πn ∩ [0, t)}. Since |πn| ↓ 0 on compacts, we have
t
(n)
i < t, t(n)i ↑ t and t(n)i+1 ↓ t. Observe that

∆qn(t) =

{
(x(ti+1)− xti)

2
, if t = ti ∈ πn.

0, otherwise.
(13)

If ∆q̃(t) = 0, [14, VI.2.1(b.5)] implies that ∆qn(t
(n)
i ) → ∆q̃(t). Hence, by

the fact that x is càdlàg , (∆x(t))2 = limn ∆qn(t
(n)
i ) = ∆q̃(t). If ∆q̃(t) > 0,

there exists [14, VI.2.1(a)] a sequence t′n → t such that ∆qn(t′n) → ∆q̃(t) > 0.
Using the fact that x is càdlàg , t′n → t and (13), we deduce that (t′n) must
coincide with (t

(n)
i ) for all n sufficiently large, else we will contradict ∆q̃(t) > 0.

Thus, (∆x(t))2 = limn ∆qn(t
(n)
i ) = limn ∆qn(t′n) = ∆q̃(t) and the Lebesgue

decomposition (5) holds on q̃.
By Def.2.1, we have q̃ = [x] hence Qπ ⊂ Qπ0 .

Theorem 1. Let

• Qπ0 be the set of x ∈ D satisfying Definition 2.1.
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• Qπ1 the set of x ∈ D such that (sn) defined in (6) has a pointwise limit s
with Lebesgue decomposition given by (7).

• Qπ2 be the set of x ∈ D such that the quadratic sums (qn) defined by (9)
have a pointwise limit q with Lebesgue decomposition (10).

• Qπ the set of càdlàg functions x ∈ D such that the limit q̃ of (qn) exists
in (D, d).

Then:

i Qπ0 = Qπ1 = Qπ2 = Qπ.

ii If x ∈ Qπ0 , then [x]π = s(x) = q(x) = q̃(x).

iii x has finite quadratic variation along π if and only if

qn(t) :=
∑

πn3ti≤t

(x(ti+1)− x(ti))
2

converges in (D, d).

iv If (qn) defined by (9) converges in (D, d), the limit is equal to [x].

Proof. These results are a consequence of Prop. 2.1, 2.2, 2.3 and 2.4.

We see that the two defining properties of [x] in Def. 2.1 are consequences
per Thm. 1. The following corollary treats the special case when the underlying
space is C.

Corollary 2.1. Let x ∈ Qπ, sn be defined as in in (6).

i qn → [x] uniformly on compacts in [0,∞) if and only if x ∈ C.

ii If qn → [x] uniformly on compacts in [0,∞), then qn → [x].

Proof. (i): This is a consequence of Prop. 2.4, (5) and [14, VI.1.17(b)].
(ii): Let T > 0, ‖ · ‖(t) the supremum norm on D([0, T ]) and observe that

‖sn − [x]‖(t) ≤ ‖qn − [x]‖(t) + ‖sn − qn‖(t).

Since (i) implies x ∈ C, (ii) now follows from uniform continuity of x and
(11).

Remark 2.1. The converse of (ii) is not true in general.

Remark 2.2. We note that some references have used the pointwise limit of
the sequence

pn(t) :=
∑

πn3ti+1≤t

(x(ti+1)− x(ti))
2

together with the Lebesgue decomposition (5)), to define [x]. To see why this
is not the correct choice, take t0 /∈ π, put x(t) := 1I[t0,∞)(t) then obviously
[x](t0) = lim sn(t0) = lim qn(t0) = 1 but lim pn(t0) = 0.
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3 Quadratic variation for multidimensional func-
tions

Denote Dm := D([0,∞),Rm) and Dm×m := D([0,∞),Rm×m) to be the Sko-
rokhod spaces [3, 19, 15], each of which equipped with a metric d which induces
the corresponding Skorokhod J1 topology [14, Ch. VI]. Cm := C([0,∞),Rm)
the subspace of continuous functions in Dm. We recall Theorem 1 from the one
dimensional case n = 1 that (Def. 2.1) and (Thm. 1.iii) are equivalent.

It is known that x, y ∈ Qπ does not imply x + y ∈ Qπ [7, 18]. Therefore,
the notion of quadratic variation in the multidimensional setting was originally
defined in [13] as follows:

Definition 3.1 (Föllmer1981). We say that x := (x1, . . . ,xm)T ∈ Dm has
finite quadratic variation along π if all xi, xi + xj (1 ≤ i, j ≤ m) have finite
quadratic variation.

The quadratic (co)variation [xi, xj ] is then defined as

[xi, xj ]π(t) :=
1

2

(
[xi + xj ]π(t)− [xi]π(t)− [xj ]π(t)

)
, (14)

which admits the following Lebesgue decomposition:

[xi, xj ]π(t) = [xi, xj ]cπ(t) +
∑
s≤t

∆xi(s)∆xj(s). (15)

We call [x]π := ([xi,xj])1≤i≤j≤m the quadratic (co)variation of x.

Note that, in Def. 3.1, it is impossible to give a multidimensional definition
without first introducing the case m = 1. The following definition avoids this
and directly defines the concept of multidimensional quadratic variation:

Definition 3.2. We say that x ∈ Dm has finite quadratic variation [x]π along
π if

qn(t) :=
∑

πn3ti≤t

(x(ti+1)− x(ti))(x(ti+1)− x(ti))
T

converges to [x]π in (Dm×m, d).

We shall now prove the equivalence of these definitions.
For u, v, w ∈ D, let us write

q(u,v)n (t) :=
∑

πn3ti≤t

(uti+1 − uti)(vti+1 − vti)

and q
(w)
n := q

(w,w)
n . Note that the Skorokhod topology on (Dm, d) is strictly

finer than the product topology on (D, d)m [14, VI.1.21] and that (D, d) is not
a topological vector space [14, VI.1.22], hence the following is essential:

Lemma 3.1. Let t > 0, there exists a sequence tn → t such that

lim
n

(
∆q(u,v)n (tn)

)
= ∆

(
lim
n
q(u,v)n

)
(t),

∀u, v ∈ D; (q
(u,v)
n ) converges in (D, d).
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Proof. Define t(n)i := max{πn ∩ [0, t)}. Since |πn| ↓ 0 on compacts, we have
t
(n)
i < t, t(n)i ↑ t and t(n)i+1 ↓ t. Observe that

∆q(u,v)n (t) =

{(
uti+1

− uti
) (
vti+1

− vti
)
, if t = ti ∈ πn.

0, otherwise.
(16)

Put q̃ := limn q
(u,v)
n . If ∆q̃(t) = 0, [14, VI.2.1(b.5)] implies that ∆q

(u,v)
n (t

(n)
i )→

∆q̃(t). If ∆q̃(t) > 0, there exists [14, VI.2.1(a)] a sequence t′n → t such that
∆q

(u,v)
n (t′n)→ ∆q̃(t) > 0. Using the fact that u, v are càdlàg , t′n → t and (16),

we deduce that (t′n) must coincide with (t
(n)
i ) for n sufficiently large, else we

will contradict ∆q̃(t) > 0. Put tn := t
(n)
i .

Proposition 3.1. Let x, y ∈ Qπ, then (q
(x+y)
n ) converges in (D, d) if and only

if (q
(x,y)
n ) does. In this case, x+y ∈ Qπ and limn q

(x,y)
n = 1

2 ([x+ y]− [x]− [y]).

Proof. Since

q(x+y)n = q(x)n + q(y)n + 2q(x,y)n

and that x, y ∈ Qπ, Prop. 3.1 follows from Lemma 3.1 and [14, VI.2.2(a)].

Proposition 3.2. (qn) converges in (Dm×m, d) if and only if it converges in
(D, d)m×m.

Proof. Since the Skorokhod topology on (Dm×m, d) is strictly finer than the
product topology on (D, d)n×n [14, VI.1.21], we have (Dm×m, d) convergence
implies (D, d)m×m convergence. The other direction follows from the observa-
tion that

qn =
(
q(x

i,xj)
n

)
1≤i≤j≤n

, (17)

satisfies Lemma 3.1 and [14, VI.2.2(b)].

Theorem 2. Definitions 3.1 and 3.2 are equivalent.

Proof. This is a consequence of (14), (17), Prop. 3.1 & 3.2 and Thm. 1

Corollary 3.1. If x ∈ Dm has finite quadratic variation, then

(i) qn → [x] locally uniformly on [0,∞) if and only if x ∈ Cn.
(ii) F (qn)→ F ([x]) for all functionals F which are J1-continuous at [x].

Proof. This is a consequence of Thm.2, (15) and [14, VI.1.17.b].

Remark 3.1. For x to have finite quadratic variation, it is sufficient that (qn)
converges in (D, d)m×m due to Prop. 3.2. (i.e. component-wise convergence)
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4 Some applications
We now show that our approach yields simple proofs for some properties of
pathwise quadratic variation.

Denote D := D([0,∞),R) and Dd×d := D([0,∞),Rd×d) to be the Skorokhod
spaces, each of which equipped with a complete metric δ which induces the cor-
responding Skorokhod (a.k.a J1) topology. Denote F to be the J1 Borel sigma
algebra of D (a.k.a the canonical sigma algebra generated by coordinates). Re-
call that Qπ0 is the set of paths with finite quadratic variation along π in the
sense of Def. 2.1.

Given x ∈ D, when do we know that x has finite quadratic variation? By
Def. 2.1, it is a pre-requisite to verify the condition on the Lebesgue decompo-
sition (5) on the limit measure µ. The following characterization, by contrast,
does not refer to µ:

Property 1. x ∈ Qπ0 if and only if (qn) defined by (9) is a Cauchy sequence in
(D, δ).

Proof. This is a consequence of Thm. 1 and that (D, δ) is complete

One of the main advantages of having convergence in the J1 topology is that
it ensures convergence of jumps in a regulated manner. It comes in handy when
accessing the limit of qn(tn) as n→∞.

Property 2. Let x ∈ Qπ0 , for each t ≥ 0, we define t′n := max{ti < t|ti ∈ πn},
then

tn −→ t; tn ≤ t′n =⇒ qn(tn−)−→[x](t−),

tn −→ t; tn < t′n =⇒ qn(tn) −→[x](t−),

tn −→ t; tn ≥ t′n =⇒ qn(tn) −→[x](t),

tn −→ t; tn > t′n =⇒ qn(tn−)−→[x](t).

In particular, the sequence (t′n) is asymptotically unique in the sense that
any other sequence (t′′n) meeting the above properties coincides with (t′n) for n
sufficiently large.

Proof. This is a consequence of Thm. 1 and [14, VI.2.1].

Given a càdlàg process X (i.e. a (D,F)-measurable random variable), a
natural quantity to consider is P(X ∈ Qπ0 ). This only makes sense however if
Qπ0 is F-measurable. This ’natural’ property, not easy to show using the original
definition (Def. 2.1), becomes simple thanks to Theorem. 1:

Property 3 (Measurability of Qπ0 ). Qπ0 is F-measurable.

Proof. By Thm. 1, Qπ0 = Qπ and by definition, Qπ is the J1 convergence set of

x 7−→
∑

πn3ti≤·

(x(ti+1)− x(ti))
2,
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n ≥ 1 on D. Since D is completely metrisable, the claim follows from [11,
V.3].

In [13], Föllmer introduced the class of Dirichlet processes, defined as càdlàg
processes with finite quadratic variation i.e. such that the sequence

Sn(t) :=
∑

πn3ti≤t

(X(ti+1)−X(ti))
2

converges in probability for every t and the limit [X] is an increasing process
whose paths have Lebesgue decomposition of the form (5):

[X](t) = [X]c(t) +
∑
s≤t

∆X(s)t∆X(s).

This class of processes is strictly larger than the class of semimartingales and
upon which the Itô formula can be applied pathwise.

Theorem 3. Let X be an Rd-valued càdlàg process, define a sequence of (Dd×d, δ)-
valued random variables (qn) by

qn(t) :=
∑

πn3ti≤t

(X(ti+1)−X(ti))(X(ti+1)−X(ti))
T

then the following properties are equivalent:

i X is a Dirichlet process.

ii (qn) converges in probability.

iii (qn) is a Cauchy sequence in probability.

In addition,

iv If (qn) converges in probability, the limit is [X].

v The convergence of (qn) is UCP if and only if X is a continuous process
of quadratic variation [X].

vi (qn) converges (resp. is a Cauchy sequence) in probability if and only if
each component sequence of (qn) converges (resp. is a Cauchy sequence)
in probability.

Proof. We first remark that (Dd×d, δ) is a complete seperable metric space [14],
hence by [12, Lemma 9.2.4], Cauchy is equivalent to convergence in probability.
By [12, Thm. 9.2.1], we can pass to subsequences and apply Prop. 3.2, Thm. 2
& Cor. 3.1 pathwise to X, the claims follow.
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