
HAL Id: hal-01818911
https://hal.science/hal-01818911

Submitted on 24 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

In Pursuit of Safety: An Open-Source Library for
Physical Human-Robot Interaction

Benjamin Navarro, Aïcha Fonte, Philippe Fraisse, Gérard Poisson, Andrea
Cherubini

To cite this version:
Benjamin Navarro, Aïcha Fonte, Philippe Fraisse, Gérard Poisson, Andrea Cherubini. In Pursuit of
Safety: An Open-Source Library for Physical Human-Robot Interaction. IEEE Robotics and Automa-
tion Magazine, 2018, 25 (2), pp.39-50. �10.1109/MRA.2018.2810098�. �hal-01818911�

https://hal.science/hal-01818911
https://hal.archives-ouvertes.fr

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 • IEEE ROBOTICS & AUTOMATION MAGAZINE • JUNE 2018

© photocredit

By Benjamin Navarro, Aïcha Fonte, Philippe Fraisse,
Gérard Poisson, and Andrea Cherubini

An Open-Source Library for Physical
Human–Robot Interaction

O
penPHRI is a C++/Python general-purpose
software scheme with several built-in safety
me a su re s d e s i g ne d to e a s e rob ot
programming for physical human–robot
interaction (pHRI) and collaboration. Aside

from providing common functionalities, the library can
be easily customized and enhanced thanks to the project’s
open-source nature. The OpenPHRI framework consists
of a two-layer damping controller, depicted in Figure 1.
This allows the user to provide compliance and other
safety features at both the joint and task levels, depending
on the application.

pHRI
A situation in which direct contact occurs between a person
and a robot is referred to as pHRI. From the human perspec-
tive, such interplay can be either intentional or undesired.

Undesired contact may occur if a person enters the robot
workspace without activating a presence-detection system
(e.g., a light barrier, floor mat, or laser scanner). Such contact
may, of course, lead to severe injuries. Voluntary physical
interactions, by contrast, are needed whenever a person con-
nects with a robot to stop, guide, or teach it a behavior.

This type of interaction is needed in factories so that
robots and workers may operate closely or jointly. Other sce-
narios include physiotherapy health-care centers and domes-
tic assistance cases for elderly or disabled people. In all these
situations, measures must be taken to ensure the safety of the
people in a robot’s vicinity.

Such measures can be implemented at the hardware level,
using passively compliant actuators, or at the control/software
level. While mechanically compliant devices allow fast impact
force absorption, they are available on only a restricted set of
robots and add a nonnegligible cost to the platform. However,
control-level solutions can be applied to virtually any robot.
Moreover, they can provide preventive actions (e.g., collision
avoidance and deceleration) that reduce the risk of undesired

1070-9932/18©2018IEEE. TRANSLATIONS AND CONTENT MINING ARE PERMITTED FOR ACADEMIC RESEARCH ONLY. PERSONAL

USE IS ALSO PERMITTED, BUT REPUBLICATION/REDISTRIBUTION REQUIRES IEEE PERMISSION. SEE HTTP://WWW.IEEE.ORG/

PUBLICATIONS_STANDARDS/PUBLICATIONS/RIGHTS/INDEX.HTML FOR MORE INFORMATION.

Digital Object Identifier 10.1109/MRA.2018.2810098

Date of publication: 17 May 2018

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

3IEEE ROBOTICS & AUTOMATION MAGAZINE • JUNE 2018

impact with the operator. Ideally, both solutions should be
combined to provide the highest level of safety.

Although pHRI has been extensively investigated by the
research community, to the best of our knowledge, no general
open-source software solution exists to date. Thus, each
research team or industrial organization is forced to develop
its own applications, limiting the adoption, benchmarking,
and growth of pHRI in the community. So the main motiva-
tion behind OpenPHRI is to provide a full-featured, open-
source software library that can also be easily extended to
develop pHRI applications.

Overview of the Library
The controller, constraints, and inputs described in this article
are all available in the OpenPHRI software library, distributed
online [14] free of charge under the GNU Lesser General
Public License version 3 (LGPLv3) [15]. This license allows
integration with open- or closed-source software as long as
any modifications made to the library are shared with the
community.

OpenPHRI is written in C++ to maximize efficiency in
terms of computation and memory footprint and to easily
embed it in existing projects. Python bindings are also provid-
ed, because this language is largely used in the robotics com-
munity and because it allows quick prototyping, as most
computations are performed in machine language to keep
computational times small. An interface with the robotics
simulator Virtual Robot Experimentation Platform (V-REP)
[16] is also furnished. The V-REP remote Application Pro-
gramming Interface (API) library embedded in OpenPHRI
has no particular license, so it does not violate the LGPLv3. A
wrapper for the Robot Operating System framework will be
released in the near future. Users can easily integrate other
simulators, frameworks, and robots at will. The detailed hier-
archy of the project is given in Table 1.

Example
Listing 1 presents a short but meaningful example of Open-
PHRI usage. In fewer than 35 lines of code (comments
excluded), one can set up a V-REP scenario in which a serial
manipulator robot Kuka LWR4+ is moved with an external
force while at the same time limiting its velocity, reading sen-
sory input, and sending joint commands to the simulator. It
can be seen (at lines 10 and 18) that smart pointers (shared
pointers from the standard C++ library) are used instead of
raw pointers to pass data through the library. This has the
advantage of automatically releasing the associated memory
when it is no longer referenced in the program, avoiding
memory leaks. Also, using pointers instead of values allows
the user to change some parameters (e.g., maximum velocity)
online very easily.

Because the example is self-explanatory thanks to the
comments, we highlight only a few key elements of the
library. First, we require a robot object. This is a data structure
containing all of the information regarding its current state
(e.g., joint positions, external force, and kinematics)

and control parameters (e.g., velocity bounds and damping
factor). Next, we create the controller itself, called SafetyCon-
troller, and we pair it to the robot to be controlled. A generic
add method can be used to add constraints, velocity, and force
inputs to the controller. The name given as the first parameter
to the add method can be used to retrieve or remove the asso-
ciated constraint or input from the controller. Then, to run
the controller, we use the call operator (line 36).

The OpenPHRI Framework
The OpenPHRI control framework (outlined in Figure 1), is
based on damping control, a particular case of impedance
control [1], which makes the robot act as a mass-spring-
damper system:

 ,f K x B x M xt t t
. ..

D D D= + +) (1)

with , ,K Bt t and Mt the stiffness, damping, and mass matrix,
respectively, and ,x x x xrD = - and xr being the current
and reference positions, respectively. f) is the force to be real-
ized by the robot. Here, we consider only damping control,
under its admittance form, since it allows the mixing of veloc-
ities and forces together (the two types of input considered in
this work). Then, we extend the paradigm to both task and
joint spaces using

 , x B f x1
t ext r

. .
= +
) - (2)

 ,q B q1
j ext r

. .
x= +

) - (3)

with x.) and q.) being the output velocity at each level, Bt and

Two-Layer Safe Damping
Control Framework

Joint Space

Velocity
Inputs

Velocity
Inputs

Force
Inputs

Force
Inputs

Damping Damping

Forward
Kinematics

Inverse
Kinematics

Constraints

Robot Interface

Task Space

+

++

+

qtot
.

qcon
.

xtot
.

q
. ∗ x

. ∗

Figure 1. An overview of the OpenPHRI framework.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 • IEEE ROBOTICS & AUTOMATION MAGAZINE • JUNE 2018

B j being the diagonal positive matrices of the damping
parameters, and fext and ,extx respectively, being the forces at
the control point (joints). For simplicity, we will use the gen-
eral term force when dealing with both forces and torques at
either the control point or joints. The control point is usually
the end effector or the tip of the attached tool. Also, through-
out this article, the subscripts t and j indicate variables related
to task and joint space, respectively.

Although (2) and (3) have proven useful for complying
with interaction forces while following a predefined trajecto-
ry, they can be extended to fit many more scenarios. We
designed a more generic controller that includes sets of force
inputs F and C and of velocity inputs V and :X

 ,x B f x1
t i i

.

f

.

x VFi i
.

= +
)

! !

- / / (4)

 .q B q. 1
j i i

.

qi
i

.
x= +

)

! !x C X

- / / (5)

Typically, real forces can be combined with virtual ones,
and it is possible to add virtual velocity sources in V and X
to the reference (real) joint or task space velocities. In this
work, the focus has been on

 ● real interaction forces exchanged with the human or the
environment

 ● virtual mass and stiffness forces (generating inertial and
elastic effects)

 ● virtual forces repelling obstacles
 ● velocities generated by a predesigned trajectory generator

 ● velocities output by a force controller.
This is not restrictive, and other inputs can be considered to
fit more scenarios.

When considering the safety of human–robot interaction,
most solutions can be expressed in some form of velocity
reduction. This includes stopping the robot upon contact,
reducing its velocity when operators are approaching, and
imposing constraints on velocity, kinetic energy, or trans-
ferred power. To assess the danger, we must monitor the
velocities in both the task and joint space, because either one
can lead to undesired behaviors. The total task and joint space
velocities can be derived from (4) and (5) using forward and
inverse kinematics:

 ,x x Jq.
tot

. .
= +

)) (6)

 ,q J x qtot
. . .
= +

))@ (7)

with J the task Jacobian. Note that (6) and (7) are related by
x Jq.

tot tot
.

= and, as such, represent the same motion
expressed in two different spaces. Vectors x.) and q.) are
needed in both equations so that, for example, one can design
a joint trajectory in X and add some compliance to the con-
trol point by including the external force in .F

Both (6) and (7) must be solved to derive the set of
constraints C that slow down the robot motion if needed
(see Figure 1). Constraints can be expressed at both the
joint and task levels, depending on the safety require-
ments or on the available sensor inputs (e.g., collision

Table 1. The detailed project hierarchy.

Hierarchy Content

src Source files for the libraries

 ● OpenPHRI C++ implementation of the controller and of the robot data structure

 ● constraints Constraints implementation

 ● force_generators Task space force inputs

 ● velocity_generators Task space velocity inputs

 ● torque_generators Joint space force inputs

 ● joint_velocity_generators Joint space velocity inputs

 ● utilities Various utilities, such as clock, data logger, integrator/derivator

 ● pyOpenPHRI Python bindings for OpenPHRI, developed with Boost.Python*

 ● vrep_remote_api API** for external V-REP control

 ● vrep_driver OpenPHRI to V-REP interface

include Header files for the libraries, which follow the same structure as src

tests Unit tests for various parts of the OpenPHRI library

apps Examples and demonstrations to help get started with OpenPHRI

share Robot models and scenes for V-REP

build Build directory

*http://www.boost.org/doc/libs/1_64_0/libs/python/doc/html/index.html
**Courtesy of Coppelia Robotics.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

5IEEE ROBOTICS & AUTOMATION MAGAZINE • JUNE 2018

detection based on joint torque sensors or the force/
torque sensor at the end effector). The constraints are sca-
lar values RCi 0! $ that become active when they are
smaller than one. They determine the value of the velocity
scaling factor , :0 1!a 6 @

 (, ()) .min min1 Ca = (8)

This is finally used to reduce (if needed) the joint velocity that

is sent to the robot actuators:

 .q q.con tot
.

a= (9)

If multiple constraints are active at the same time, the most
restrictive one, i.e., the one leading to the lowest velocity, will
be chosen. This ensures that all of the constraints are satisfied
at any given time. Equations (4)–(9) make up the OpenPHRI
framework.

Listing 1. An example of a short OpenPHRI application.

 1 #include <OpenPHRI/OpenPHRI.h>
 2 #include <vrep_driver/vrep_driver.h>
 3
 4 //Use namespaces to shorten the types
 5 using namespace phri;
 6 using namespace std;
 7
 8 int main(int argc, char* argv[]) {
 9 //Create a robot with a name (used by the V-REP driver) and a joint count
10 auto robot = make_shared<Robot>(“LBR4p”, 7);
11 //Set task space damping values to 100
12 *robot->controlPointDampingMatrix() *= 100.;
13
14 //Create a controller for the robot
15 auto safety_controller = SafetyController(robot);
16
17 //Create a pointer to store the maximum velocity, here 0.1 m/s
18 auto max_vel = make_shared<double>(0.1);
19 //Add this to the controller
20 safety_controller.add(“velocity constraint”, VelocityConstraint(max_vel));
21
22 //Feed the external force to the controller
23 safety_controller.add(“external force”,ExternalForce(robot));
24
25 //Create a V-REP driver for sending joint positions with 5-ms sample time
26 vrep::VREPDriver driver(robot, ControlLevel::Joint, 0.005);
27 //Use V-REP synchronous mode.
28 driver.enableSynchronous(true);
29 //Start the simulation
30 driver.startSimulation();
31
32 while(1) {
33 //Update the robot with the current simulation data
34 driver.getSimulationData();
35 //Run the controller
36 safety_controller();
37 //Send the control output
38 driver.sendSimulationData();
39 //Trigger a simulation step
40 driver.nextStep();
41 }
42 }

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 • IEEE ROBOTICS & AUTOMATION MAGAZINE • JUNE 2018

Because multiple inputs can be enabled at the same time,
they may not be all realizable. This can occur, for instance, if
the robot must deviate from its task (or joint) space trajectory
by the presence of an obstacle. In this case, the control veloci-
ty vector will be composed of both inputs. In general, conflict-
ing inputs can arise whenever the controller has been
misconfigured. Nevertheless, the OpenPHRI framework is
designed to guarantee the safety constraints C at its lower
layer. Hence, these will always be satisfied, rendering the
robot motion safe. In the next sections, we detail the various
force and velocity control inputs as well as the constraints that
have been considered in this work.

Force Inputs
This section presents joint or task space force inputs that,
when included in sets F in (4) and C in (5), respectively,
make the robot comply with real-world forces or react to vir-
tual ones. An illustrative example is given in Figure 2.

Interaction Forces
In many cases, it is necessary to adapt the robot motion in the
presence of external forces, e.g., for kinesthetic guidance
(teaching by demonstration). In such scenarios, the external
force fext can be included in .F If this is the only force input
in ,F the controller is a classic damping controller. The same
can be accomplished in the joint space by including extx in .C

Virtual Mass and Stiffness
Using a full admittance model, including stiffness and mass
effects in (2) or (3), has been intensively investigated in the
literature and proven useful in many cases [2]–[4]. This can
be easily done in our framework by adding a virtual spring
and/or a virtual mass that generates forces along any
motion direction. In the task space, for instance, these vir-
t u a l f o r c e s w i l l b e f K x xt,stiff t r=- -^ h a n d

,f M x xt,mass t r
.. ..

=- -^ h with Kt and Mt the diagonal posi-
tive semidefinite matrices of stiffness and mass parameters,
respectively.

Virtual Repulsive Forces
To prevent the robot from hitting operators or to control its
motion in a cluttered environment, a collision avoidance algo-
rithm should be used. Despite providing local solutions, the
potential fields approach [5] is well adapted to dynamic scenari-
os where a complete knowledge of the environment is unavail-
able because of moving and unpredictable obstacles and a
limited field of view of the sensors. The potential fields approach
consists of modeling obstacles (targets) as sources of repulsive or
attractive forces. Summing up these forces results in a motion in
the most promising direction. Hence, potential fields can be
trivially integrated within our framework by adding the required
virtual forces (e.g., repulsive forces)frep to sets F or .C

Velocity Inputs
In this section, we describe possible joint and task space
velocity inputs to be included in X and ,V respectively.
These velocities can be the result of a trajectory generator or
of a force-control law.

Velocity Reference Trajectory
Because trajectory generation and tracking are present in
most robotics applications, it is crucial to have it in Open-
PHRI. To this end, we developed within the library a trajecto-
ry generator based on fifth-order polynomials. This outputs
smooth velocity trajectories ()[tqr

. or ()]txr
. with the follow-

ing features:
 ● Each trajectory can have an arbitrary initial and final value

as well as a first and second derivative, for a total of six
degrees of freedom (6 DoF).

 ● Each trajectory can be composed of multiple segments
(fifth-order polynomials), joined by intermediate way-
points. The trajectory is C3.

frep

fext

fstiff

Target

Obstacle

Figure 2. Some examples of interaction, stiffness, and repulsive
forces.

−1
0
1

P0 Waypoints P1 Waypoints

−1
0
1

Time (s)
(c)

−1
0
1

0 2 4 6 8

Time (s)
(b)

0 2 4 6 8

Time (s)
(a)

0 2 4 6 8

Figure 3. An illustration of trajectory synchronization. Given two
trajectories, each composed of two segments (one intermediate
waypoint), we can apply (a) no synchronization, (b) waypoint
synchronization, and (c) whole trajectory synchronization.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

7IEEE ROBOTICS & AUTOMATION MAGAZINE • JUNE 2018

 ● Multiple trajectories, each composed of several segments,
can be synchronized (see Figure 3).

 ● Arbitrary first- and second-derivative constraints can be
applied to each segment, and the trajectory duration is
determined accordingly.

 ● Instead of first- and second-derivative limits, a minimum
duration can be specified (e.g., it can be increased for syn-
chronization purposes).

Similar existing solutions, such as the Reflexxes Motion
Library [6], do not provide bounded continuous accelerations
or waypoints for complex trajectory design.

Velocities for Force Control
Force control is required for various applications, such as
grinding, polishing, assembling, echographic monitoring,
needle insertion, and minimally invasive surgery. To include
force control in our framework, we map it to a velocity com-
mand. Let us first define the target force fr and its associated
error vector:

 ().f S f fr extD = - (10)

Here, S is a diagonal binary selection matrix, with elements
(,) ,i i 0 1S = " , used to set the task space components to be

driven by the force controller. Then, proportion and deriva-
tive control can be applied to compute the control point
velocity xfc

. that regulates fD to 0. A similar technique can be
applied in the joint space.

Constraints
In this section, we qualitatively explain the design of each
constraint Ci that will reduce the robot velocity via (8) and
(9). The equations are omitted for simplicity. For the imple-
mentation of these constraints, see the following classes:
EmergencyStopConstraint, VelocityCon-
straint, JointVelocityConstraint, Accel-
erationConstraint, PowerConstraint,
ForceConstraint, KineticEnergyCon-
straint, and SeparationDistanceCon-
straint.

Emergency Stop
A simple way to provide some level of safety, as demon-
strated in [7] and [8] and imposed by the ISO/TS 15066
safety standard [9], is to stop the robot motion when
strong contact with a nearby operator occurs. We assume
that the robot relies only on proprioception (external force
measurement) and that physical contact with humans or
with the environment should have limited magnitude.
Then, to stop the robot, we set constraint Cstop to zero as
soon as fext (or)extx passes some pretuned threshold.
Deactivation thresholds are also needed to specify when to
increase Cstop to one, using hysteresis. Figure 4 gives the
evolution of ,Cstop with activation and deactivation thresh-
olds of 5 N and 1 N, respectively.

Velocity Limitation
Another very common safety criterion is velocity limitation.
This is often present in robotics safety standards, such as ISO
10218:2011 [10] and ISO/TS 15066. Note that, even when the
trajectory has been preplanned to fulfill the velocity bounds,
other control inputs (e.g., kinesthetic forces applied by the
operator, force control, or repulsive force) can lead to acceler-
ations that break the constraint. To respect the limitation at all
times, we design constraint Cvel to be inversely proportional
to the norm of the total velocity (either xtot

. or)qtot
. and uni-

tary when this is greater than the limit .Vmax An illustration of
this velocity limitation is given in Figure 5, where the norm of
the total velocity xtot

. and the output velocity x. as well as the
value of Cvel are displayed.

Acceleration Limitation
To avoid abrupt robot motions, the acceleration can also be
limited to .Amax Because (8) offers velocity reduction only, we
use A 0max 2 . To limit the acceleration, we express Cacc as

,Cvel by replacing the current velocity with the predicted one
in the formulation, if the acceleration was at its maximum
allowed value Amax during the next time step. The accelera-
tion limitation mechanism is depicted in Figure 6. We can see
that the velocity increases linearly during the first 3 s because
of the acceleration limit.

Time (s)

0.0
2.5
5.0
7.5

10.0

E
xt

er
na

l F
or

ce
 (

N
)

0.0

0.5

1.0

C
st

op

External Force |fext|

Emergency Stop Constraint Cstop

0 2 4 6 8 10

Figure 4. The characteristics of the emergency stop constraint.
Activation threshold = 5 N; deactivation threshold = 1 N.

Time (s)

0.0
0.1
0.2
0.3
0.4
0.5

V
el

oc
ity

 (
m

/s
)

0.0

0.5

1.0

α

0 2 4 6 8 10

Total Velocity |xtot|

Control Velocity |xcon|
Scaling Factor α

.
.

Figure 5. The evolution of the velocity, with . .V 0 25 m/smax =

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 • IEEE ROBOTICS & AUTOMATION MAGAZINE • JUNE 2018

Power Limitation
The ISO 10218:2011 and ISO/TS 15066 standards also
impose a limitation on the power exchanged between human
and robot. Power can be limited at the hardware level, e.g., the
electric power, as with the Kuka LWR4+, or at the control
level, as we do here. The advantage of operating at the control
level is that the limitation can be tuned online (e.g., deactivat-
ed to allow high dynamic motions when no operator is pres-
ent). To define constraint ,Cpow we consider the mechanical
power, i.e., the scalar product between force and velocity. The
limitation is effective only when this is negative, i.e., when
energy is absorbed by the human and the robot represents a
potential threat to the person (see Figure 7). In this case, Cpow
is inversely proportional to the power, and it is unitary if the
absolute value of the power is greater than the allowed limit

.P 0max 2 An example of force limitation is depicted in Fig-
ure 8. We can see that the transmitted power is effectively lim-
ited only when it is negative and passes the limit.

Force Limitation
Force limitation is the third and final constraint imposed by
ISO 10218:2011 and ISO/TS 15066. Actual force limitation is
a very challenging problem, because it requires complete
knowledge of the environment, including the humans pres-
ent. While a complete map of the environment (position,
materials, and so forth) can be obtained, it is nearly impossi-
ble to obtain the same knowledge regarding humans, as this
would require estimating their motion and body impedance
parameters, which change over time (e.g., fatigue or muscular
cocontraction may stiffen a joint) and from one person to
another. Hence, we decided to adopt a reactive approach that
does not rely on an environmental model. By doing so, if the
external force instantaneously passed a limit ,F 0max 2 the
robot would react to quickly move away from the impact and
reach a safe state.

Our approach has two steps. The first consists of gen-
erating a velocity in the direction opposite to the external
force, to move away from the collision. This velocity,
noted as ,xF

.
lim is added to set V . The second step consists

of including one or more constraints in C to slow down
the robot, according to (8), and guarantee that it behaves
safely while executing .x. Flim For example, with respect to
ISO 10218:2011, both velocity and power limitations must
be applied:

 (,).minC C Cforce vel pow= (11)

0.00

0.25

0.50
V

el
oc

ity
 (

m
/s

)

0.00

0.25

0.50

0.75

A
cc

el
er

at
io

n
(m

/s
2)

0.0

0.5

1.0

C
ac

c

Time (s)
0 2 4 6 8 10

Time (s)
0 2 4 6 8 10

Total Velocity |xtot|

Control Velocity |xcon|

.
.

Control Acceleration |xcon|

Acceleration Constraint Cacc

..

(a)

(b)

Figure 6. The evolution of (a) the velocity and (b) acceleration,
with . .A 0 13 m/smax

2=

fext fext

xtot
.

xtot
.

(a) (b)

Figure 7. (a) Safe and (b) potentially unsafe situations depend
on the sign of the transferred power.

−0.5
0.0
0.5

V
el

oc
ity

 (
m

/s
)

0.0

0.5

1.0

C
po

w

−20

0

20

P
ow

er
 (

W
)

−50
0
50

F
or

ce
 (

N
)

Total Velocity xtot

External Force fext

.

Control Velocity xcon
.

Total Power
Transmitted Power

Time (s)
0 2 4 6 8 10

Time (s)
(b)

(c)

0 2 4 6 8 10

Time (s)

(a)

0 2 4 6 8 10

Figure 8. The evolution of the (a) velocity, (b) external force, and
(c) transmitted power, with .P 5 Wmax =

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

9IEEE ROBOTICS & AUTOMATION MAGAZINE • JUNE 2018

Kinetic Energy Limitation
When robot and human collide, the level of injury endured by
the latter can be related to the robot’s kinetic energy [11],
[12]. Hence, kinetic energy is a major concern when it comes
to safety, and, as such, it should be limited. For a rigid body of
mass m, the kinetic energy is defined as / .E m 2vk

2
= For

rigid manipulators, an equivalent mass (perceived at any colli-
sion point on the robot structure) can be derived using the
joint’s dynamic model [11], [13]. Therefore, in both cases,
limiting the kinetic energy can be seen as a form of velocity
limitation, with the mass (real or equivalent) acting as a scale
factor. As such, constraint Ckin is equivalent to ,Cvel with

/ .V E m2max maxk=

Separation Distance
When the separation distance between the robot and nearby
operators is monitored, it can be used to adapt the aforemen-
tioned limits (e.g., on velocity and power). It is also required
to fulfill the Speed and Separation Monitor mode of ISO/TS
15066. For instance, a low level of security may be required if
no one is present in the surroundings, whereas very strict lim-
itations may be imposed when a robot is working near or in
collaboration with humans. A simple example is depicted in
Figure 9. To comply with this, we use fifth-order polynomials,
implemented in OpenPHRI (OpenPHRI/utilities/fifth_
order_polynomials.{h,cpp}), to allow a smooth adaptation of
the limits, depending on the distance to the closest operator
or to any other object to be avoided. Then, any limit (e.g.,

)Vmax will vary from a low value at a fixed minimal distance
to a large value at a higher distance and may vary smoothly in
between.

Benchmark Tests
In pHRI, for the robot to react quickly in the case of an
impact or to be as transparent as possible when physically col-
laborating with a human, its control loop should run at a
minimum of 1 kHz. It is, therefore, crucial that the implemen-
tation of our controller in OpenPHRI be fast enough to com-
ply with this timing constraint. To assess the performance of
our library, we ran some benchmark tests on a computer
equipped with an Intel i7-6700HQ at 2.6 GHz, operating
Linux 4.11. Here, we refer to a benchmark in the computing
(not robotics) sense—i.e., the act of running a computer pro-
gram or a set of programs to assess their performance.

In Figure 10, we present the results of the benchmark tests
for the controller associated with different constraints and
force and velocity inputs, running on a 7-DoF manipulator.
At each iteration, the controller is run 10,000 times to get
meaningful results, and the average computation time is
logged. In Figure 10(a)–(e), we give the average computation
time tr and the standard deviation v over 1,000 iterations.
The computation of the forward and inverse kinematics is not
included in these results so that we may focus on the control
computation time overhead. Also, the current controller
implementation is single-threaded, but, given the very low
computation time [t s41 nr in the most complex scenario

presented in Figure 10(e)], a multithreaded version does not
seem necessary. Figure 10(f) shows that the memory usage
(measured using the Massif tool from the Valgrind software)
stays very low, with a peak at 186 KiB. (Here, the abscissa
indicates snapshots taken regularly during execution.)

Experiments
In this section, we present the results of a full-featured
experiment using the framework described in this chapter.
The experiment is split into two phases: 1) a teaching-by-
demonstration phase and 2) a replay phase, in which the
robot operates autonomously in the presence of an obstacle
and near the human operator. Figure 11 shows the setup,
consisting of a Kuka LWR4+ arm with external force ,fext
estimated through the Fast Research Interface (FRI) [17].
All the code was written in C++ using the OpenPHRI
library and, to interface with the hardware, integrated
inside the Knowbotics framework, currently under devel-
opment at Laboratoire d’Informatique, de Robotique et de
Microélectronique de Montpellier (a public release is
expected once the software becomes mature enough). The
FRI library was used to communicate with the Kuka arm.
The controller sample time was .T 1 ms= To manage the
robot behavior, we used OpenPHRI to design the finite
state machine (FSM) shown in Figure 12.

It is important to note that our framework is used con-
tinuously throughout both the teaching and replay phases.
An equivalent application using the V-REP simulator is
available in the OpenPHRI repository under apps/demo
[18]. The whole application has fewer than 600 lines of
code: 125 for the main file and 440 for the FSM (header
plus source). For the FSM, most of the code just adds or
removes inputs and constraints to fit with Figure 12, so
one can expect more or less code to write depending on
the FSM complexity.

The teaching phase consists in manually guiding the robot
[Figure 13(b) and (c)] by applying ,f Fext ! to teach it the
waypoints where it should later realize a force-control task
(applying f N30r = for 2 s perpendicularly to the end effec-
tor). The number of waypoints is not known a priori. A way-
point is recorded when no motion is detected for 3 s, and the
teaching phase ends if the robot remains still for 3 s more.

Once the operator has specified all the desired points, the

x
.

(a)

x
.

(b)

Figure 9. The velocity limitation varies smoothly as a function of
the separation distance: (a) limited velocity; (b) full velocity.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 • IEEE ROBOTICS & AUTOMATION MAGAZINE • JUNE 2018

replay phase is triggered. The trajectory generator is used to
output the control point (end effector) reference velocity
()x Vr
.
! to reach each waypoint [Figure 13(d)]. When a way-

point is reached, the task space force controller is activated

[,x V
.

fc ! Figure 13(e)]. After the force has been correctly
applied, the robot moves to the next waypoint. Once all of the
force-control tasks have been performed, the robot returns to
its original position, using the trajectory generator [Figure
13(h)]. During the replay phase, while moving between way-
points, the external force at the control point is monitored to
trigger an emergency stop if its norm exceeds 10 N [Figure
13(g)], as explained in the “Emergency Stop” section. Motion is
resumed only when the external force is lower than 1 N. Addi-
tionally, potential fields ()f Frep ! are used to avoid a known
object (here, an apple) in the environment [Figure 13(f)].

Throughout the experiment, the joint velocities sent to the
robot are output by (9), with the scaling factor a computed
with the constraints in (8). The task space damping matrix is
set to (, ,),250 250diagBt f= while joint space damping B j
is not used. During force-control tasks execution, an accelera-
tion limit C Cacc !^ h of . A 0 5 m/smax

2= is applied to avoid

Figure 11. The setup for the experiment.

0 200 400 600 800 1,000
Iteration

0 200 400 600 800 1,000
Iteration

(a) (b)

(c) (d)

(e) (f)

0 200 400 600 800 1,000
Iteration

0 200 400 600 800 1,000
Iteration

0 200 400 600 800 1,000
Iteration

0 10 20 30 40 50
Snapshot

1.0

1.2

1.4

1.6

T
im

e
(µ

s)
T

im
e

(µ
s)

T
im

e
(µ

s)
T

im
e

(µ
s)

T
im

e
(µ

s)

1.0

1.2

1.4

1.0

1.5

2.0

Computation Time
Average

3.5

4.0

4.5

3.5

4.0

4.5

5.0

0

100

200

300

M
em

or
y

U
sa

ge
 (

K
iB

)

186 KiB

σ = 0.048 µs
t = 1.006 µs Computation Time

Average σ = 0.054 µs
t = 1.030 µs

Computation Time
Average σ = 0.132 µs

t = 1.154 µs

Computation Time
Average Heap Memory

Stack Memory
Heap + Stack Memory

σ = 0.210 µs
t = 3.675 µs

Computation Time
Average σ = 0.178 µs

t = 3.483 µs

Figure 10. The benchmarks of the controller running on a 7-DoF manipulator. (a) The controller with no constraints and no inputs.
(b) The controller with a velocity constraint .C Cvel=^ h" , (c) The controller with velocity and power constraints .,C C Cvel pow=^ h" ,
(d) The controller with velocity, power, and kinetic energy constraints ., ,C C C Cvel pow kin=^ h" , (e) The controller with velocity,
power, and kinetic energy constraints and with a potential field, a virtual stiffness, and a force controller in the task space

,, , , ,f fC C C C Fvel pow kin t,stiff rep= =^ h" ", , .xV
.

fc= " , (f) The memory usage while sequentially executing the controller benchmarks (a)–(e).

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

11IEEE ROBOTICS & AUTOMATION MAGAZINE • JUNE 2018

abrupt motions. During the replay phase, a virtual stiffness
(, ,),1000 1000diagKt f= described in the “Virtual Mass

and Stiffness” section, is added to compensate for deviations
from the trajectory. The potential fields for obstacle avoidance
are activated when the distance from the obstacle is below 0.2
m. Throughout the experiment, the velocity is limited to

.V 0 1 m/smax = during teaching and to . V 0 15 m/smax =
during replaying.

Snapshots of the experiment are displayed in Figure 13,
while the results are shown in Figure 14. A video of the experi-
ment is available [19]. The teaching phase takes place during
the first 36 s. Then the replay phase starts. Figure 14(c) shows
that the scaling factor is decreased multiple times to comply
with the constraints. For example, during manual guidance, the
applied external forces, visible in Figure 14(a), would have led
to velocities above the limit if Cvel was not present. The same
occurs when the obstacle is being avoided between 73 and 74 s.
As Figures 14(a) and 13(d) show, at 70 s, an unexpected exter-
nal force is applied by the operator, leading to a complete stop

of the robot (normal operation is resumed at).t 72 s= Con-
trol point velocities before and after scaling are presented
respectively in Figure 14(b) and (d). Finally, Figure 14(e) shows
how scaling from the total ()vtot to the applied ()vcon transla-
tional velocity norms complies with the imposed limit .Vmax

Conclusions
This article introduces OpenPHRI, a new software library
intended for pHRI and collaboration. We present its struc-
ture, including its core and components (force inputs,
velocity inputs, and constraints), as well as a short but
meaningful example. It should be noted that, in some cases,
tasks (i.e., inputs) can conflict and hence not be fully real-
ized. This behavior can be sometimes desirable (e.g., colli-
sion avoidance while following a trajectory) or unwanted
(caused by controller misconfiguration). Nevertheless, the
constraints applied at the lower layer of OpenPHRI, guar-
antee safe robot behavior at all times.

Aside from safety, a real-life experiment also demonstrates

Tech Initialization

+ Velocity Limit (0.1 m/s)
+ External Force

Replay Initialization

– Velocity Limit (0.1 m/s)
– External Force
+ Velocity Limit (0.15 m/s)
+ Virtual Stiffness
+ Potential Field

Wait for Motion

Move

Record Waypoint

No Motion for 3 s

No Motion
for 3 s

Compute Trajectory

Go to Next Waypoint

+ Emergency Stop

Waypoint Reached

– Emergency Stop
– Virtual Stiffness (z Axis)
+ Force Control (z Axis)
+ Velocity Limit (0.1 m/s)
+ Acceleration Limit (0.5 m/s2)

Force Task Execution

– Force Control (z Axis)
– Velocity Limit (0.1 m/s)
– Acceleration Limit (0.5 m/s2)
+ Virtual Stiffness (z Axis)

Force Task Termination

Force Applied for 2 s

Go to Initial Position

End

x > 0 m/s
.

No Remaining Waypoints

Remaining Waypoints > 0

Initial Position Reached

Figure 12. The FSM used for the experiment. A plus sign indicates an addition to the controller (a new constraint or new input) while
a minus indicates a removal.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 • IEEE ROBOTICS & AUTOMATION MAGAZINE • JUNE 2018

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 13. Some snapshots of the experiment: (a)–(c) teaching phases and (d)–(h) replay phases. (a) The robot is waiting in its initial
position. (b) The operator teaches the first waypoint. (c) The operator teaches the second waypoint. (d) The robot goes to the first
waypoint. (e) Force control is performed at the first waypoint. (f) The robot avoids the obstacle by using repulsive potential fields. (g)
The operator stops the robot to access the workspace. (h) The robot returns to the initial pose.

F
or

ce
s

(N
, N

m
)

fext,x fext,y fext,z text,x text,y text,z Vx Vy Vz ωx ωy ωz

Vx Vy Vz ωx ωy ωz

50

–50

1.0

0.5

0.0

0

α

V
el

oc
ity

(m
.s

–1
, r

ad
.s

–1
)

V
el

oc
ity

(m
.s

–1
, r

ad
.s

–1
)

0.2

0.0

–0.2

0.1

0.0

–0.1

0 20 40 60 80 100
Time (s)

(a)

0 20 40 60 80 100
Time (s)

(c)

0 20 40 60 80 100
Time (s)

(b)

V
el

oc
ity

 (
m

.s
–1

)

0.2

0.1

0.0
0 20 40 60 80 100

Time (s)

(e)

0 20 40 60 80 100
Time (s)

(d)

 vtot  vcon Vmax

Figure 14. The relevant variables during the experiment. (a) The components of the external force ,fext applied by the human for
teaching or upon collision (at t = 70 s), then by the robot during the four force-control tasks. (b) The components of the control point
total velocity .x

.
tot (c) The scaling factor ,a diminishing whenever the constraints are active. (d) The components of the control point

velocity applied after velocity reduction .x Jq
. .

con con= (e) A comparison between the current velocity limit Vmax and the total and
applied translational velocity norms (vtot^ and .vcon h

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

13IEEE ROBOTICS & AUTOMATION MAGAZINE • JUNE 2018

the advantages of OpenPHRI in terms of ease of use, both
when the human is active (teaching by demonstration) and
passive (the smooth generated trajectories are intuitive and
predictable). In addition, OpenPHRI controllers can be exe-
cuted at very high rates (>1 kHz) or on low-end machines,
while still achieving excellent performance. Finally, Open-
PHRI programs can be written in a very concise way, while
retaining high readability. The open-source nature of the proj-
ect allows its users to add new features and share them with
the community, keeping the project up-to-date.

Acknowledgments
This work was supported by the French National Research
Agency SISCob project ANR-14-CE27-0016 and received
funding from the European Union’s Horizon 2020 research
and innovation program under grant 731330.

References
[1] N. Hogan, “Impedance control: An approach to manipulation. Part
II: Implementation,” J. Dynamic Syst., Measurement, Control, vol. 107,
no. 1, pp. 8–16, 1985.
[2] S. Jung, T. C. Hsia, and R. G. Bonitz, “Force tracking impedance
control of robot manipulators under unknown environment,” IEEE
Trans. Control Syst. Technol., vol. 12, no. 3, pp. 474–483, May 2004.
[3] F. Almeida, A. Lopes, and P. Abreu, “Force-impedance control: A
new control strategy of robotic manipulators,” in Recent Advances in
Mechatronics. Singapore: Springer-Verlag, 1999, pp. 126–137.
[4] H. Sadeghian, L. Villani, M. Keshmiri, and B. Siciliano, “Experi-
mental study on task space control during physical human robot inter-
action,” in Proc. 2nd RSI/ISM Int. Conf. Robotics and Mechatronics
(ICRoM), Oct. 2014, pp. 125–130.
[5] O. Khatib, “Real-time obstacle avoidance for manipulators and
mobile robots,” Int. J. Robotics Res., vol. 5, no. 1, pp. 90–98, Mar. 1986.
[6] Torsten Kroger, “Opening the door to new sensor-based robot
applications: The Reflexxes Motion Libraries,” in Proc. 2011 IEEE Int.
Conf. Robot ic s and Automation , May 2011. doi: 10.1109/
ICRA.2011.5980578.
[7] Y. Yamada, Y. Hirasawa, S. Huang, Y. Umetani, and K. Suita,
“Human-robot contact in the safeguarding space,” IEEE/ASME Trans.
Mechatronics, vol. 2, no. 4, pp. 230–236, 1997.
[8] A. De Luca and F. Flacco, “Integrated control for pHRI: Collision
avoidance, detection, reaction and collaboration,” in Proc. 2012 4th
IEEE RAS and EMBS Int. Conf. Biomedical Robotics and Biomecha-
tronics (BioRob), June 2012. doi: 10.1109/BioRob.2012.6290917.
[9] Robots and Robotic Devices—Collaborative Robots, International
Organization for Standardization Standard ISO/TS 15066:2016, 2016.
[10] Robot for Industrial Environments—Safety requirements—Part 1:
Robot, International Organization for Standardization Standard ISO 10218-
1:2011, 2006.

[11] S. Haddadin, S. Haddadin, A. Khoury, T. Rokahr, S. Parusel, R.
Burgkart, A. Bicchi, and A. Albu-Schaffer, “A truly safely moving robot
has to know what injury it may cause,” in Proc. 2012 IEEE/RSJ Int. Conf.
Intelligent Robots and Systems, Oct. 2012. doi: 10.1109/IROS.2012.6386163.
[12] A. Meguenani, V. Padois, and P. Bidaud, “Control of robots sharing
their workspace with humans: An energetic approach to safety,” in
Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS), Sept.
2015, pp. 4678–4684.
[13] O. Khatib, “Inertial properties in robotic manipulation: An object-
level framework,” Int. J. Robotics Res., vol. 14, no. 1, pp. 19–36, Feb. 1995.
[14] B. Navarro. (2017, Sept. 25). OpenPHRI, a complete and generic
solution for safe physical human-robot interactions. [Online]. Available:
https://github.com/BenjaminNavarro/OpenPHRI
[15] Free Software Foundation. (2016, Nov. 18). GNU lesser general public
license. [Online]. Available: https://www.gnu.org/licenses/lgpl-3.0.en.html
[16] Coppelia Robotics. V-REP: Virtual Robot Experimentation Platform.
[Online]. Available: http://www.coppeliarobotics.com
[17] Fast Research Interface Library: Manual and documentation. [Online].
Available: http://cs.stanford.edu/people/tkr/fri/html/
[18] B. Navarro. (2017, Sept. 6). Open-phri. [Online]. Available: https://
github.com/BenjaminNavarro/OpenPHRI/tree/master/apps/demo
[19] B. Navarro. (2017, Nov. 2). OpenPHRI framework demonstration.
[Online]. Available: http://bit.do/openphrivideo

Benjamin Navarro, Laboratoire d’Informatique, de Robotique
et de Microélectronique de Montpellier, Centre National de la
Recherche Scientifique-Université de Montpellier, France.
PRISME Laboratory, University of Orléans, France. E-mail:
navarro@lirmm.fr.

Aïcha Fonte, Laboratoire Pluridisciplinaire de Recherche, Ingé-
nierie des Systèmes, Mécanique, Énergétique, University of
Orléans, France. E-mail: aicha.fonte@univ-orleans.fr.

Philippe Fraisse, Laboratoire d’Informatique, de Robotique et
de Microélectronique de Montpellier, Centre National de la
Recherche Scientifique-Université de Montpellier, France.
E-mail: fraisse@lirmm.fr.

Gérard Poisson, Laboratoire Pluridisciplinaire de Recherche,
Ingénierie des Systèmes, Mécanique, Énergétique, University
of Orléans, France. E-mail: gerard.poisson@univ-orleans.fr.

Andrea Cherubini, Laboratoire d’Informatique, de Robotique
et de Microélectronique de Montpellier, Centre National de la
Recherche Scientifique-Université de Montpellier, France.
E-mail: cherubini@lirmm.fr.

View publication statsView publication stats

https://www.researchgate.net/publication/325209029

