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By Benjamin Navarro, Aïcha Fonte, Philippe Fraisse, 
Gérard Poisson, and Andrea Cherubini

An Open-Source Library for Physical  
Human–Robot Interaction

O
penPHRI is a C++/Python general-purpose 
software scheme with several built-in safety 
me a su re s  d e s i g ne d  to  e a s e  rob ot 
programming for physical human–robot 
interaction (pHRI) and collaboration. Aside 

from providing common functionalities, the library can 
be easily customized and enhanced thanks to the project’s 
open-source nature. The OpenPHRI framework consists 
of a two-layer damping controller, depicted in Figure 1. 
This allows the user to provide compliance and other 
safety features at both the joint and task levels, depending 
on the application.

pHRI
A situation in which direct contact occurs between a person 
and a robot is referred to as pHRI. From the human perspec-
tive, such interplay can be either intentional or undesired. 

Undesired contact may occur if a person enters the robot 
workspace without activating a presence-detection system 
(e.g., a light barrier, floor mat, or laser scanner). Such contact 
may, of course, lead to severe injuries. Voluntary physical 
interactions, by contrast, are needed whenever a person con-
nects with a robot to stop, guide, or teach it a behavior.

This type of interaction is needed in factories so that 
robots and workers may operate closely or jointly. Other sce-
narios include physiotherapy health-care centers and domes-
tic assistance cases for elderly or disabled people. In all these 
situations, measures must be taken to ensure the safety of the 
people in a robot’s vicinity.

Such measures can be implemented at the hardware level, 
using passively compliant actuators, or at the control/software 
level. While mechanically compliant devices allow fast impact 
force absorption, they are available on only a restricted set of 
robots and add a nonnegligible cost to the platform. However, 
control-level solutions can be applied to virtually any robot. 
Moreover, they can provide preventive actions (e.g., collision 
avoidance and deceleration) that reduce the risk of undesired 
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impact with the operator. Ideally, both solutions should be 
combined to provide the highest level of safety.

Although pHRI has been extensively investigated by the 
research community, to the best of our knowledge, no general 
open-source software solution exists to date. Thus, each 
research team or industrial organization is forced to develop 
its own applications, limiting the adoption, benchmarking, 
and growth of pHRI in the community. So the main motiva-
tion behind OpenPHRI is to provide a full-featured, open-
source software library that can also be easily extended to 
develop pHRI applications.

Overview of the Library
The controller, constraints, and inputs described in this article 
are all available in the OpenPHRI software library, distributed 
online [14] free of charge under the GNU Lesser General 
Public License version 3 (LGPLv3) [15]. This license allows 
integration with open- or closed-source software as long as 
any modifications made to the library are shared with the 
community. 

OpenPHRI is written in C++ to maximize efficiency in 
terms of computation and memory footprint and to easily 
embed it in existing projects. Python bindings are also provid-
ed, because this language is largely used in the robotics com-
munity and because it allows quick prototyping, as most 
computations are performed in machine language to keep 
computational times small. An interface with the robotics 
simulator Virtual Robot Experimentation Platform (V-REP) 
[16] is also furnished. The V-REP remote Application Pro-
gramming Interface (API) library embedded in OpenPHRI 
has no particular license, so it does not violate the LGPLv3. A 
wrapper for the Robot Operating System framework will be 
released in the near future. Users can easily integrate other 
simulators, frameworks, and robots at will. The detailed hier-
archy of the project is given in Table 1.

Example
Listing 1 presents a short but meaningful example of Open-
PHRI usage. In fewer than 35 lines of code (comments 
excluded), one can set up a V-REP scenario in which a serial 
manipulator robot Kuka LWR4+ is moved with an external 
force while at the same time limiting its velocity, reading sen-
sory input, and sending joint commands to the simulator. It 
can be seen (at lines 10 and 18) that smart pointers (shared 
pointers from the standard C++ library) are used instead of 
raw pointers to pass data through the library. This has the 
advantage of automatically releasing the associated memory 
when it is no longer referenced in the program, avoiding 
memory leaks. Also, using pointers instead of values allows 
the user to change some parameters (e.g., maximum velocity) 
online very easily.

Because the example is self-explanatory thanks to the 
comments, we highlight only a few key elements of the 
library. First, we require a robot object. This is a data structure 
containing all of the information regarding its current state 
(e.g., joint positions, external force, and kinematics) 

and control parameters (e.g., velocity bounds and damping 
factor). Next, we create the controller itself, called SafetyCon-
troller, and we pair it to the robot to be controlled. A generic 
add method can be used to add constraints, velocity, and force 
inputs to the controller. The name given as the first parameter 
to the add method can be used to retrieve or remove the asso-
ciated constraint or input from the controller. Then, to run 
the controller, we use the call operator (line 36).

The OpenPHRI Framework
The OpenPHRI control framework (outlined in Figure 1), is 
based on damping control, a particular case of impedance 
control [1], which makes the robot act as a mass-spring-
damper system:

 ,f K x B x M xt t t
. ..

D D D= + +)  (1)

with , ,K Bt t  and Mt  the stiffness, damping, and mass matrix, 
respectively, and ,x x x xrD = -  and xr  being the current 
and reference positions, respectively. f )  is the force to be real-
ized by the robot. Here, we consider only damping control, 
under its admittance form, since it allows the mixing of veloc-
ities and forces together (the two types of input considered in 
this work). Then, we extend the paradigm to both task and 
joint spaces using

 , x B f x1
t ext r

. .
= +
) -  (2)

  ,q B q1
j ext r

. .
x= +

) -  (3)

with x. )  and q. )  being the output velocity at each level, Bt  and 
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Figure 1. An overview of the OpenPHRI framework.
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B j  being the diagonal positive matrices of the damping 
parameters, and fext  and ,extx  respectively, being the forces at 
the control point (joints). For simplicity, we will use the gen-
eral term force when dealing with both forces and torques at 
either the control point or joints. The control point is usually 
the end effector or the tip of the attached tool. Also, through-
out this article, the subscripts t and j indicate variables related 
to task and joint space, respectively.

Although (2) and (3) have proven useful for complying 
with interaction forces while following a predefined trajecto-
ry, they can be extended to fit many more scenarios. We 
designed a more generic controller that includes sets of force 
inputs F  and C and of velocity inputs V  and :X

 ,x B f x1
t i i

.

f

.

x VFi i
.

= +
)

! !

- / /  (4)

 .q B q. 1
j i i

.

qi
i

.
x= +

)

! !x C X

- / /  (5)

Typically, real forces can be combined with virtual ones, 
and it is possible to add virtual velocity sources in V  and X  
to the reference (real) joint or task space velocities. In this 
work, the focus has been on

 ●  real interaction forces exchanged with the human or the 
environment

 ●  virtual mass and stiffness forces (generating inertial and 
elastic effects)

 ● virtual forces repelling obstacles
 ● velocities generated by a predesigned trajectory generator

 ● velocities output by a force controller. 
This is not restrictive, and other inputs can be considered to 
fit more scenarios.

When considering the safety of human–robot interaction, 
most solutions can be expressed in some form of velocity 
reduction. This includes stopping the robot upon contact, 
reducing its velocity when operators are approaching, and 
imposing constraints on velocity, kinetic energy, or trans-
ferred power. To assess the danger, we must monitor the 
velocities in both the task and joint space, because either one 
can lead to undesired behaviors. The total task and joint space 
velocities can be derived from (4) and (5) using forward and 
inverse kinematics:

 ,x x Jq.
tot

. .
= +

) )  (6)

 ,q J x qtot
. . .
= +

) )@  (7)

with J the task Jacobian. Note that (6) and (7) are related by 
x Jq.

tot tot
.

=  and, as such, represent the same motion 
expressed in two different spaces. Vectors x. )  and q. )  are 
needed in both equations so that, for example, one can design 
a joint trajectory in X and add some compliance to the con-
trol point by including the external force in .F

Both (6) and (7) must be solved to derive the set of 
constraints C  that slow down the robot motion if needed 
(see Figure 1). Constraints can be expressed at both the 
joint and task levels, depending on the safety require-
ments or on the available sensor inputs (e.g., collision 

Table 1. The detailed project hierarchy.

Hierarchy Content

src Source files for the libraries

 ● OpenPHRI C++ implementation of the controller and of the robot data structure 

  ● constraints Constraints implementation 

  ● force_generators Task space force inputs 

  ● velocity_generators Task space velocity inputs 

  ● torque_generators Joint space force inputs 

  ● joint_velocity_generators Joint space velocity inputs 

  ● utilities Various utilities, such as clock, data logger, integrator/derivator 

 ● pyOpenPHRI Python bindings for OpenPHRI, developed with Boost.Python* 

 ● vrep_remote_api API** for external V-REP control 

 ● vrep_driver OpenPHRI to V-REP interface 

include Header files for the libraries, which follow the same structure as src 

tests Unit tests for various parts of the OpenPHRI library 

apps Examples and demonstrations to help get started with OpenPHRI 

share Robot models and scenes for V-REP 

build Build directory 

*http://www.boost.org/doc/libs/1_64_0/libs/python/doc/html/index.html
**Courtesy of Coppelia Robotics.
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detection based on joint torque sensors or the force/
torque sensor at the end effector). The constraints are sca-
lar values RCi 0! $  that become active when they are 
smaller than one. They determine the value of the velocity 
scaling factor , :0 1!a 6 @

 ( , ( )) .min min1 Ca =  (8)

This is finally used to reduce (if needed) the joint velocity that 

is sent to the robot actuators:

  .q q.con tot
.

a=  (9)

If multiple constraints are active at the same time, the most 
restrictive one, i.e., the one leading to the lowest velocity, will 
be chosen. This ensures that all of the constraints are satisfied 
at any given time. Equations (4)–(9) make up the OpenPHRI 
framework.

Listing 1. An example of a short OpenPHRI application.

 1 #include <OpenPHRI/OpenPHRI.h>
 2 #include <vrep_driver/vrep_driver.h>
 3
 4 //Use namespaces to shorten the types
 5 using namespace phri;
 6 using namespace std;
 7
 8 int main(int argc, char* argv[]) {
 9   //Create a robot with a name (used by the V-REP driver) and a joint count
10   auto robot = make_shared<Robot>(“LBR4p”, 7);
11   //Set task space damping values to 100
12   *robot->controlPointDampingMatrix() *= 100.;
13   
14   //Create a controller for the robot
15   auto safety_controller = SafetyController(robot);
16
17   //Create a pointer to store the maximum velocity, here 0.1 m/s
18   auto max_vel = make_shared<double>(0.1);
19   //Add this to the controller
20   safety_controller.add(“velocity constraint”, VelocityConstraint(max_vel));
21
22   //Feed the external force to the controller
23   safety_controller.add(“external force”,ExternalForce(robot));
24
25   //Create a V-REP driver for sending joint positions with 5-ms sample time
26   vrep::VREPDriver driver(robot, ControlLevel::Joint, 0.005);
27   //Use V-REP synchronous mode.
28   driver.enableSynchronous(true);
29   //Start the simulation
30   driver.startSimulation();
31
32   while(1) {
33     //Update the robot with the current simulation data
34     driver.getSimulationData();
35     //Run the controller
36     safety_controller();
37     //Send the control output
38     driver.sendSimulationData();
39     //Trigger a simulation step
40     driver.nextStep();
41   }
42 }
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Because multiple inputs can be enabled at the same time, 
they may not be all realizable. This can occur, for instance, if 
the robot must deviate from its task (or joint) space trajectory 
by the presence of an obstacle. In this case, the control veloci-
ty vector will be composed of both inputs. In general, conflict-
ing inputs can arise whenever the controller has been 
misconfigured. Nevertheless, the OpenPHRI framework is 
designed to guarantee the safety constraints C  at its lower 
layer. Hence, these will always be satisfied, rendering the 
robot motion safe. In the next sections, we detail the various 
force and velocity control inputs as well as the constraints that 
have been considered in this work.

Force Inputs
This section presents joint or task space force inputs that, 
when included in sets F  in (4) and C in (5), respectively, 
make the robot comply with real-world forces or react to vir-
tual ones. An illustrative example is given in Figure 2.

Interaction Forces
In many cases, it is necessary to adapt the robot motion in the 
presence of external forces, e.g., for kinesthetic guidance 
(teaching by demonstration). In such scenarios, the external 
force fext  can be included in .F  If this is the only force input 
in ,F  the controller is a classic damping controller. The same 
can be accomplished in the joint space by including extx  in .C

Virtual Mass and Stiffness
Using a full admittance model, including stiffness and mass 
effects in (2) or (3), has been intensively investigated in the 
literature and proven useful in many cases [2]–[4]. This can 
be easily done in our framework by adding a virtual spring 
and/or a virtual mass that generates forces along any 
motion direction. In the task space, for instance, these vir-
t u a l  f o r c e s  w i l l  b e  f K x xt,stiff t r=- -^ h  a n d 

,f M x xt,mass t r
.. ..

=- -^ h  with Kt  and Mt  the diagonal posi-
tive semidefinite matrices of stiffness and mass parameters, 
respectively.

Virtual Repulsive Forces
To prevent the robot from hitting operators or to control its 
motion in a cluttered environment, a collision avoidance algo-
rithm should be used. Despite providing local solutions, the 
potential fields approach [5] is well adapted to dynamic scenari-
os where a complete knowledge of the environment is unavail-
able because of moving and unpredictable obstacles and a 
limited field of view of the sensors. The potential fields approach 
consists of modeling obstacles (targets) as sources of repulsive or 
attractive forces. Summing up these forces results in a motion in 
the most promising direction. Hence, potential fields can be 
trivially integrated within our framework by adding the required 
virtual forces (e.g., repulsive forces )frep  to sets F  or .C

Velocity Inputs
In this section, we describe possible joint and task space 
velocity inputs to be included in X  and ,V  respectively. 
These velocities can be the result of a trajectory generator or 
of a force-control law.

Velocity Reference Trajectory
Because trajectory generation and tracking are present in 
most robotics applications, it is crucial to have it in Open-
PHRI. To this end, we developed within the library a trajecto-
ry generator based on fifth-order polynomials. This outputs 
smooth velocity trajectories ( )[ tqr

.  or ( )]txr
.  with the follow-

ing features:
 ●  Each trajectory can have an arbitrary initial and final value 

as well as a first and second derivative, for a total of six 
degrees of freedom (6 DoF).

 ●  Each trajectory can be composed of multiple segments 
(fifth-order polynomials), joined by intermediate way-
points. The trajectory is C3.

frep

fext

fstiff

Target

Obstacle

Figure 2. Some examples of interaction, stiffness, and repulsive 
forces. 
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Figure 3. An illustration of trajectory synchronization. Given two 
trajectories, each composed of two segments (one intermediate 
waypoint), we can apply (a) no synchronization, (b) waypoint 
synchronization, and (c) whole trajectory synchronization. 
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 ●  Multiple trajectories, each composed of several segments, 
can be synchronized (see Figure 3).

 ●  Arbitrary first- and second-derivative constraints can be 
applied to each segment, and the trajectory duration is 
determined accordingly.

 ●  Instead of first- and second-derivative limits, a minimum 
duration can be specified (e.g., it can be increased for syn-
chronization purposes). 

Similar existing solutions, such as the Reflexxes Motion 
Library [6], do not provide bounded continuous accelerations 
or waypoints for complex trajectory design.

Velocities for Force Control
Force control is required for various applications, such as 
grinding, polishing, assembling, echographic monitoring, 
needle insertion, and minimally invasive surgery. To include 
force control in our framework, we map it to a velocity com-
mand. Let us first define the target force fr  and its associated 
error vector:

 ( ).f S f fr extD = -  (10)

Here, S is a diagonal binary selection matrix, with elements 
( , ) ,i i 0 1S = " , used to set the task space components to be 

driven by the force controller. Then, proportion and deriva-
tive control can be applied to compute the control point 
velocity xfc

.  that regulates fD  to 0. A similar technique can be 
applied in the joint space.

Constraints
In this section, we qualitatively explain the design of each 
constraint Ci  that will reduce the robot velocity via (8) and 
(9). The equations are omitted for simplicity. For the imple-
mentation of these constraints, see the following classes: 
EmergencyStopConstraint, VelocityCon-
straint, JointVelocityConstraint, Accel-
erationConstraint, PowerConstraint, 
ForceConstraint, KineticEnergyCon-
straint, and SeparationDistanceCon-
straint. 

Emergency Stop
A simple way to provide some level of safety, as demon-
strated in [7] and [8] and imposed by the ISO/TS 15066 
safety standard [9], is to stop the robot motion when 
strong contact with a nearby operator occurs. We assume 
that the robot relies only on proprioception (external force 
measurement) and that physical contact with humans or 
with the environment should have limited magnitude. 
Then, to stop the robot, we set constraint Cstop  to zero as 
soon as fext  (or )extx  passes some pretuned threshold. 
Deactivation thresholds are also needed to specify when to 
increase Cstop  to one, using hysteresis. Figure 4 gives the 
evolution of ,Cstop  with activation and deactivation thresh-
olds of 5 N and 1 N, respectively.

Velocity Limitation
Another very common safety criterion is velocity limitation. 
This is often present in robotics safety standards, such as ISO 
10218:2011 [10] and ISO/TS 15066. Note that, even when the 
trajectory has been preplanned to fulfill the velocity bounds, 
other control inputs (e.g., kinesthetic forces applied by the 
operator, force control, or repulsive force) can lead to acceler-
ations that break the constraint. To respect the limitation at all 
times, we design constraint Cvel  to be inversely proportional 
to the norm of the total velocity (either xtot

.  or )qtot
.  and uni-

tary when this is greater than the limit .Vmax  An illustration of 
this velocity limitation is given in Figure 5, where the norm of 
the total velocity xtot

.  and the output velocity x.  as well as the 
value of Cvel  are displayed.

Acceleration Limitation
To avoid abrupt robot motions, the acceleration can also be 
limited to .Amax  Because (8) offers velocity reduction only, we 
use A 0max 2 . To limit the acceleration, we express Cacc  as 

,Cvel  by replacing the current velocity with the predicted one 
in the formulation, if the acceleration was at its maximum 
allowed value Amax  during the next time step. The accelera-
tion limitation mechanism is depicted in Figure 6. We can see 
that the velocity increases linearly during the first 3 s because 
of the acceleration limit.
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Power Limitation
The ISO 10218:2011 and ISO/TS 15066 standards also 
impose a limitation on the power exchanged between human 
and robot. Power can be limited at the hardware level, e.g., the 
electric power, as with the Kuka LWR4+, or at the control 
level, as we do here. The advantage of operating at the control 
level is that the limitation can be tuned online (e.g., deactivat-
ed to allow high dynamic motions when no operator is pres-
ent). To define constraint ,Cpow  we consider the mechanical 
power, i.e., the scalar product between force and velocity. The 
limitation is effective only when this is negative, i.e., when 
energy is absorbed by the human and the robot represents a 
potential threat to the person (see Figure 7). In this case, Cpow  
is inversely proportional to the power, and it is unitary if the 
absolute value of the power is greater than the allowed limit 

.P 0max 2  An example of force limitation is depicted in Fig-
ure 8. We can see that the transmitted power is effectively lim-
ited only when it is negative and passes the limit.

Force Limitation
Force limitation is the third and final constraint imposed by 
ISO 10218:2011 and ISO/TS 15066. Actual force limitation is 
a very challenging problem, because it requires complete 
knowledge of the environment, including the humans pres-
ent. While a complete map of the environment (position, 
materials, and so forth) can be obtained, it is nearly impossi-
ble to obtain the same knowledge regarding humans, as this 
would require estimating their motion and body impedance 
parameters, which change over time (e.g., fatigue or muscular 
cocontraction may stiffen a joint) and from one person to 
another. Hence, we decided to adopt a reactive approach that 
does not rely on an environmental model. By doing so, if the 
external force instantaneously passed a limit ,F 0max 2  the 
robot would react to quickly move away from the impact and 
reach a safe state. 

Our approach has two steps. The first consists of gen-
erating a velocity in the direction opposite to the external 
force, to move away from the collision. This velocity, 
noted as ,xF

.
lim  is added to set V . The second step consists 

of including one or more constraints in C  to slow down 
the robot, according to (8), and guarantee that it behaves 
safely while executing .x. Flim  For example, with respect to 
ISO 10218:2011, both velocity and power limitations must 
be applied:

 ( , ).minC C Cforce vel pow=  (11)
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Kinetic Energy Limitation
When robot and human collide, the level of injury endured by 
the latter can be related to the robot’s kinetic energy [11], 
[12]. Hence, kinetic energy is a major concern when it comes 
to safety, and, as such, it should be limited. For a rigid body of 
mass m, the kinetic energy is defined as / .E m 2vk

2
=  For 

rigid manipulators, an equivalent mass (perceived at any colli-
sion point on the robot structure) can be derived using the 
joint’s dynamic model [11], [13]. Therefore, in both cases, 
limiting the kinetic energy can be seen as a form of velocity 
limitation, with the mass (real or equivalent) acting as a scale 
factor. As such, constraint Ckin  is equivalent to ,Cvel  with 

/ .V E m2max maxk=

Separation Distance
When the separation distance between the robot and nearby 
operators is monitored, it can be used to adapt the aforemen-
tioned limits (e.g., on velocity and power). It is also required 
to fulfill the Speed and Separation Monitor mode of ISO/TS 
15066. For instance, a low level of security may be required if 
no one is present in the surroundings, whereas very strict lim-
itations may be imposed when a robot is working near or in 
collaboration with humans. A simple example is depicted in 
Figure 9. To comply with this, we use fifth-order polynomials, 
implemented in OpenPHRI (OpenPHRI/utilities/fifth_
order_polynomials.{h,cpp}), to allow a smooth adaptation of 
the limits, depending on the distance to the closest operator 
or to any other object to be avoided. Then, any limit (e.g., 

)Vmax  will vary from a low value at a fixed minimal distance 
to a large value at a higher distance and may vary smoothly in 
between.

Benchmark Tests
In pHRI, for the robot to react quickly in the case of an 
impact or to be as transparent as possible when physically col-
laborating with a human, its control loop should run at a 
minimum of 1 kHz. It is, therefore, crucial that the implemen-
tation of our controller in OpenPHRI be fast enough to com-
ply with this timing constraint. To assess the performance of 
our library, we ran some benchmark tests on a computer 
equipped with an Intel i7-6700HQ at 2.6 GHz, operating 
Linux 4.11. Here, we refer to a benchmark in the computing 
(not robotics) sense—i.e., the act of running a computer pro-
gram or a set of programs to assess their performance.

In Figure 10, we present the results of the benchmark tests 
for the controller associated with different constraints and  
force and velocity inputs, running on a 7-DoF manipulator. 
At each iteration, the controller is run 10,000 times to get 
meaningful results, and the average computation time is 
logged. In Figure 10(a)–(e), we give the average computation 
time tr  and the standard deviation v  over 1,000 iterations. 
The computation of the forward and inverse kinematics is not 
included in these results so that we may focus on the control 
computation time overhead. Also, the current controller 
implementation is single-threaded, but, given the very low 
computation time [t s41 nr  in the most complex scenario 

presented in Figure 10(e)], a multithreaded version does not 
seem necessary. Figure 10(f) shows that the memory usage 
(measured using the Massif tool from the Valgrind software) 
stays very low, with a peak at 186 KiB. (Here, the abscissa 
indicates snapshots taken regularly during execution.)

Experiments
In this section, we present the results of a full-featured 
experiment using the framework described in this chapter.  
The experiment is split into two phases: 1) a teaching-by-
demonstration phase and 2) a replay phase, in which the 
robot operates autonomously in the presence of an obstacle 
and near the human operator. Figure 11 shows the setup, 
consisting of a Kuka LWR4+ arm with external force ,fext  
estimated through the Fast Research Interface (FRI) [17]. 
All the code was written in C++ using the OpenPHRI 
library and, to interface with the hardware, integrated 
inside the Knowbotics framework, currently under devel-
opment at Laboratoire d’Informatique, de Robotique et de 
Microélectronique de Montpellier (a public release is 
expected once the software becomes mature enough). The 
FRI library was used to communicate with the Kuka arm. 
The controller sample time was .T 1 ms=  To manage the 
robot behavior, we used OpenPHRI to design the finite 
state machine (FSM) shown in Figure 12.

It is important to note that our framework is used con-
tinuously throughout both the teaching and replay phases. 
An equivalent application using the V-REP simulator is 
available in the OpenPHRI repository under apps/demo 
[18]. The whole application has fewer than 600 lines of 
code: 125 for the main file and 440 for the FSM (header 
plus source). For the FSM, most of the code just adds or 
removes inputs and constraints to fit with Figure 12, so 
one can expect more or less code to write depending on 
the FSM complexity.

The teaching phase consists in manually guiding the robot 
[Figure 13(b) and (c)] by applying ,f Fext !  to teach it the 
waypoints where it should later realize a force-control task 
(applying f N30r =  for 2 s perpendicularly to the end effec-
tor). The number of waypoints is not known a priori. A way-
point is recorded when no motion is detected for 3 s, and the 
teaching phase ends if the robot remains still for 3 s more.

Once the operator has specified all the desired points, the 

x
.

(a)

x
.

(b)

Figure 9. The velocity limitation varies smoothly as a function of 
the separation distance: (a) limited velocity; (b) full velocity. 
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replay phase is triggered. The trajectory generator is used to 
output the control point (end effector) reference velocity 
( )x Vr
.
!  to reach each waypoint [Figure 13(d)]. When a way-

point is reached, the task space force controller is activated 

[ ,x V
.

fc !  Figure 13(e)]. After the force has been correctly 
applied, the robot moves to the next waypoint. Once all of the 
force-control tasks have been performed, the robot returns to 
its original position, using the trajectory generator [Figure 
13(h)]. During the replay phase, while moving between way-
points, the external force at the control point is monitored to 
trigger an emergency stop if its norm exceeds 10 N [Figure 
13(g)], as explained in the “Emergency Stop” section. Motion is 
resumed only when the external force is lower than 1 N. Addi-
tionally, potential fields ( )f Frep !  are used to avoid a known 
object (here, an apple) in the environment [Figure 13(f)].

Throughout the experiment, the joint velocities sent to the 
robot are output by (9), with the scaling factor a  computed 
with the constraints in (8). The task space damping matrix is 
set to ( , , ),250 250diagBt f=  while joint space damping B j  
is not used. During force-control tasks execution, an accelera-
tion limit C Cacc !^ h of .  A 0 5 m/smax

2=  is applied to avoid 

Figure 11. The setup for the experiment.
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Figure 10. The benchmarks of the controller running on a 7-DoF manipulator. (a) The controller with no constraints and no inputs. 
(b) The controller with a velocity constraint .C Cvel=^ h" ,  (c) The controller with velocity and power constraints .,C C Cvel pow=^ h" ,  
(d) The controller with velocity, power, and kinetic energy constraints ., ,C C C Cvel pow kin=^ h" ,  (e) The controller with velocity, 
power, and kinetic energy constraints and with a potential field, a virtual stiffness, and a force controller in the task space 

,, , , ,f fC C C C Fvel pow kin t,stiff rep= =^ h" ", ,  .xV
.

fc= " ,  (f) The memory usage while sequentially executing the controller benchmarks (a)–(e). 
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abrupt motions. During the replay phase, a virtual stiffness 
( , , ),1000 1000diagKt f=  described in the “Virtual Mass 

and Stiffness” section, is added to compensate for deviations 
from the trajectory. The potential fields for obstacle avoidance 
are activated when the distance from the obstacle is below 0.2 
m. Throughout the experiment, the velocity is limited to 

.V 0 1 m/smax =  during teaching and to .  V 0 15 m/smax =  
during replaying.

Snapshots of the experiment are displayed in Figure 13, 
while the results are shown in Figure 14. A video of the experi-
ment is available [19]. The teaching phase takes place during 
the first 36 s. Then the replay phase starts. Figure 14(c) shows 
that the scaling factor is decreased multiple times to comply 
with the constraints. For example, during manual guidance, the 
applied external forces, visible in Figure 14(a), would have led 
to velocities above the limit if Cvel  was not present. The same 
occurs when the obstacle is being avoided between 73 and 74 s. 
As Figures 14(a) and 13(d) show, at 70 s, an unexpected exter-
nal force is applied by the operator, leading to a complete stop 

of the robot (normal operation is resumed at   ).t 72 s=  Con-
trol point velocities before and after scaling are presented 
respectively in Figure 14(b) and (d). Finally, Figure 14(e) shows 
how scaling from the total ( )vtot  to the applied ( )vcon  transla-
tional velocity norms complies with the imposed limit .Vmax

Conclusions
This article introduces OpenPHRI, a new software library 
intended for pHRI and collaboration. We present its struc-
ture, including its core and components (force inputs, 
velocity inputs, and constraints), as well as a short but 
meaningful example. It should be noted that, in some cases, 
tasks (i.e., inputs) can conflict and hence not be fully real-
ized. This behavior can be sometimes desirable (e.g., colli-
sion avoidance while following a trajectory) or unwanted 
(caused by controller misconfiguration). Nevertheless, the 
constraints applied at the lower layer of OpenPHRI, guar-
antee safe robot behavior at all times. 

Aside from safety, a real-life experiment also demonstrates 

Tech Initialization
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Replay Initialization

– Velocity Limit (0.1 m/s)
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+ Velocity Limit (0.15 m/s)
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+ Potential Field

Wait for Motion

Move

Record Waypoint

No Motion for 3 s

No Motion
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Compute Trajectory

Go to Next Waypoint

+ Emergency Stop

Waypoint Reached

– Emergency Stop
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+ Acceleration Limit (0.5 m/s2)

Force Task Execution

– Force Control (z Axis)
– Velocity Limit (0.1 m/s)
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.
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Figure 12. The FSM used for the experiment. A plus sign indicates an addition to the controller (a new constraint or new input) while 
a minus indicates a removal.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 13. Some snapshots of the experiment: (a)–(c) teaching phases and (d)–(h) replay phases. (a) The robot is waiting in its initial 
position. (b) The operator teaches the first waypoint. (c) The operator teaches the second waypoint. (d) The robot goes to the first 
waypoint. (e) Force control is performed at the first waypoint. (f) The robot avoids the obstacle by using repulsive potential fields. (g) 
The operator stops the robot to access the workspace. (h) The robot returns to the initial pose.
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Figure 14. The relevant variables during the experiment. (a) The components of the external force ,fext  applied by the human for 
teaching or upon collision (at t = 70 s), then by the robot during the four force-control tasks. (b) The components of the control point 
total velocity .x

.
tot  (c) The scaling factor ,a  diminishing whenever the constraints are active. (d) The components of the control point 

velocity applied after velocity reduction .x Jq
. .

con con=  (e) A comparison between the current velocity limit Vmax  and the total and 
applied translational velocity norms ( vtot^  and .vcon h
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the advantages of OpenPHRI in terms of ease of use, both 
when the human is active (teaching by demonstration) and 
passive (the smooth generated trajectories are intuitive and 
predictable). In addition, OpenPHRI controllers can be exe-
cuted at very high rates (>1 kHz) or on low-end machines, 
while still achieving excellent performance. Finally, Open-
PHRI programs can be written in a very concise way, while 
retaining high readability. The open-source nature of the proj-
ect allows its users to add new features and share them with 
the community, keeping the project up-to-date.
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