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ABSTRACT
The paper finds the singular points from which (to which) the generically accessible
system is not weakly reachable (controllable) in k steps. These points are found
with the help of the space of vector fields, being the discrete-time analogue of the
strong accessibility distribution. Unlike in the continuous-time case, separate object
is needed to find the singular points related to weak reachability.
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1. Introduction

The generic accessibility property of non-linear discrete-time system can be charac-
terized using the concept of autonomous variables, see e.g. (Aranda-Bricaire, Kotta
and Moog, 1996), (Mullari, Kotta, Bartosiewicz, Pawluszewicz and Moog, 2017). The
existence of an autonomous variables can be easily checked with the help of the vec-
tor space of 1-forms, denoted by H∞, and introduced in (Aranda-Bricaire, Kotta and
Moog, 1996). The accessibility property is known to be related to reachability and con-
trollabiliy properties. Unfortunately, H∞ does not allow to find the singular points,
from which (to which) the generically accessible system is not weakly reachable (con-
trollable). In the continuous-time case alternative accessibility condition (Conte, Moog,
Perdon, 2007) is formulated in terms of strong accessibility distribution, that allows to
find the reachability singular points. In the discrete-time case the space of vector fields
Dπ

∞ (Mullari, Kotta, Bartosiewicz, Pawluszewicz and Moog, 2017) is the discrete-time
analogue of the strong accessibility distribution. Computing of Dπ

∞ requires to define
the backward shift operators acting on the vector fields in a manner that is consistent
with the geometric meaning of shifting the vector field along the (discrete) trajectory
of the control system (Rieger, Schlacher, 2011). However, unlike the continuous-time
case, Dπ

∞ cannot be directly used for finding the singular points from which the sys-
tem is not weakly reachable in k steps. The present paper builds upon the results of
(Mullari, Kotta, Bartosiewicz, Pawluszewicz and Moog, 2017), in particular on Dπ

∞.
This vector space is the starting point to construct the matrix which helps to find the
reachability singular points. Expressing Dπ

∞ in a matrix form and shifting its elements
as functions forward a necessary number of steps allows to find the singular points x
from which the system is not weakly reachable.

Unfortunately, this matrix does not enable to find the autonomous variables. So, in



the discrete-time case, unlike the continuous-time case, one needs two objects. The first
one to check generic accessibility and to find the autonomous variables, and the second
one to check generic accessibility and to find the reachability singular points. Moreover,
if a state transition map of a system has a global analytic inverse with respect to x, the
first object, the vector space Dπ

∞ enables also to determine the controllability singular
points, to which the generically accessible system is not weakly controllable.

Finally, in (Hanba, 2017) it has been proven that controllability to the origin is
equivalent to state feedback stabilizability. Necessity of controllability to the origin
can, for instance, be checked using the results of this paper. As for the other results
on reachability and controllability, see (Kawano, Ohtsuka, 2016), (Kawano, Ohtsuka,
2013). These papers developed conditions for reachability (controllability) from an
equilibrium point (to an equilibrium point) for the subclass of polynomial discrete-time
systems.

2. Preliminaries

Consider the discrete-time nonlinear control system

x⟨1⟩(t) = Φ̄(x(t), u(t)) (1)

where x⟨1⟩(t) := x(t + 1), t ∈ Z, the variables x(t) ∈ X̄ ⊂ Rn, u(t) ∈ U ⊂ Rm

and the state transition map Φ̄ : X̄ × U → X̄ is supposed to be analytic. Both
X̄ and U are assumed to be open in respective sets. Recall below some facts from
(Mullari, Kotta, Bartosiewicz, Pawluszewicz and Moog, 2017). Denote by K the set
of meromorphic functions in a finite number of independent variables from the infinite
set C =

{
x, u⟨k⟩, z⟨−l⟩, k ≥ 0, l > 0

}
. Here u⟨k⟩ denotes the k-th order forward shift of

u, z⟨−l⟩ the l-th order backward shift of a variable z, defined below.

Assumption 1. The map Φ̄ can be extended to Φ = (Φ̄T , χT )T : X̄ × U → X̄ × Rm

so that Φ has a global analytic inverse Φ−1, defined on its image Φ(X̄ × U).

In some cases the existence of a local inverse of Φ could suffice and this could be
guaranteed by some rank condition. However, the field K consists of global functions,
so to define forward and backward shifts of K we need that Φ be globally invertible.
To conclude, Assumption 1 is a bit more restrictive than the submersivity assumption,
but less restrictive than the assumption of invertibility of the state transition map Φ̄,
i.e. Assumption 2 in Section 5. The extended system has a form

x⟨1⟩(t) = Φ̄(x(t), u(t)), z(t) = χ(x(t), u(t)); (2)

see (Mullari, Kotta, Bartosiewicz, Pawluszewicz and Moog, 2017) for more informa-
tion. Due to Assumption 1 one can define from (2) the backward shifts of x and u:

x⟨−1⟩ = Ψ(x, z⟨−1⟩), u⟨−1⟩ = λ(x, z⟨−1⟩), (3)

where Ψ and λ are the first and the second vector components of the map
Φ−1, respectively. The forward and backward shift operators σΦ : K → K
and ρΦ : K → K, respectively, are defined as follows. The forward
shift of a function φ(x, u, ..., u⟨k⟩, z⟨−1⟩, z⟨−2⟩, ..., z⟨−l⟩) ∈ K is, according
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to (2), the composition φ⟨1⟩ := φσΦ = φ(Φ̄(x, u), u⟨1⟩, ..., u⟨k+1⟩, χ(x, u),
z⟨−1⟩, ..., z⟨−l+1⟩), and the backward shift of a function φ̄(x, u, u⟨1⟩, ..., u⟨k⟩, z⟨−1⟩,
z⟨−2⟩, ..., z⟨−l⟩) ∈ K according to (3) the composition φ̄⟨−1⟩ := φ̄ρΦ =
= φ̄(Ψ(x, z⟨−1⟩), λ(x, z⟨−1⟩), u, ..., u⟨k−1⟩, z⟨−2⟩, ..., z⟨−l−1⟩). Obviously,
σΦ ◦ ρΦ = ρΦ ◦ σΦ = id. Define the space E∗, whose elements are the vector fields of
the form

Ξ=

n∑
i=1

αi
∂

∂xi
+
∑
k≥0

m∑
j=1

βjk
∂

∂u
⟨k⟩
j

+
∑
l>0

m∑
q=1

γql
∂

∂z
⟨−l⟩
q

. (4)

Denote byX the subspace of E∗ spanned overK by ∂/∂xi, byU the subspace consisting
of the vector fields Ξ for which αi = 0 and γql = 0, and by Z the subspace consisting
of the vector fields Ξ for which αi = 0 and βjk = 0. Then E∗ = X⊕U⊕Z. Define also

U0 :=spanK {∂/∂u} and Z0 :=spanK
{
∂/∂z⟨−1⟩}.

The concept of backward shift has been extended to the vector fields in (Mullari,
Kotta, Bartosiewicz, Pawluszewicz and Moog, 2017). The backward shift of a vector
field (4) is

Ξ⟨−1⟩=

n∑
i=1

ai
∂

∂xi
+
∑
k≥0

m∑
j=1

bjk
∂

∂u
⟨k⟩
j

+
∑
l>0

m∑
q=1

cql
∂

∂z
⟨−l⟩
q

, (5)

where ai =
⟨
dx

⟨1⟩
i ,Ξ

⟩⟨−1⟩
, bjk =

⟨
du

⟨k+1⟩
j ,Ξ

⟩⟨−1⟩
, cql =

⟨
dz

⟨−l+1⟩
q ,Ξ

⟩⟨−1⟩
, l ≥ 0. In

the study below we stay in the space X, therefore we will operate with the projections
of Ξ ∈ E∗ onto X, denoted by Ξπ and defined as

Ξπ :=

n∑
i=1

αi
∂

∂xi
. (6)

Note, that the backward shift does not commute with the projection operator π.

Definition 2.1. (Albertini and Sontag, 1993) The reachable set from the state x ∈ X̄
is the set of states R(x) to which one can move from x via a finite number of forward
shifts using some sequence of inputs. The controllable set to x is the set of states
C(x) from which one can move to x via a finite number of forward shifts using some
sequence of inputs. The reachable (controllable) set in k steps from (to) x is the set
of states Rk(x) (Ck(x)), to which (from which) one can move from x (to x) in k steps.

Definition 2.2. (Albertini and Sontag, 1993) The system (1) is called weakly reach-
able from x ∈ X̄ (weakly controllable to x ∈ X̄) if the interior of R(x) (C(x)) is a
nonempty set. The system is called weakly reachable (controllable) in k steps from
(to) x ∈ X̄, if Rk(x) (Ck(x)) has a nonempty interior.

Definition 2.3. (Aranda-Bricaire, Kotta and Moog, 1996) A non-constant function
ϕ(x) is called an autonomous variable of system (1), if there exists an integer k ≥ 1
and a non-constant meromorphic function ψ such that ψ(ϕ, ϕ⟨1⟩, ..., ϕ⟨k⟩) ≡ 0, where
∂ψ/∂ϕ⟨k⟩ ̸≡ 0. System (1) is said to be generically accessible, if it has no autonomous
variables.

Remark 1. It has been shown in (Albertini and Sontag, 1993), that the system (1)
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is generically accessible, if there is an open and dense subset Y ⊂ X̄ such that for all
x ∈ Y the reachable set R(x) has a nonempty interior.

Recall the vector space Dπ
∞ ⊂ X (Mullari, Kotta, Bartosiewicz, Pawluszewicz and

Moog, 2017):

Dπ
∞=spanK

{(
∂

∂u

)⟨−k⟩π
, k > 0

}

is the union of

Dπ
k = spanK

{(
∂

∂u

)⟨−l⟩π
, l = 1, ..., k

}
, k ≥ 1. (7)

There exists an index k⋆ such that dimK Dπ
k−1 < dimK Dπ

k for k ≤ k⋆, but dimK Dπ
k⋆ =

dimK Dπ
k⋆+1 =: dimK Dπ

∞. According to its definition, Dπ
∞ is invariant under the back-

ward shift with projection, i.e. for each Ξ ∈ Dπ
∞

Ξ⟨−1⟩π ∈ Dπ
∞.

Moreover, as shown in (Mullari, Kotta, Bartosiewicz, Pawluszewicz and Moog, 2017),
for non-accessible system, each function ϕ(x), which is the invariant of Dπ

∞, i.e. satisfies
the condition ⟨dϕ,Ξ⟩ ≡ 0 for all Ξ ∈ Dπ

∞, is also an autonomous variable and vice
versa.

Theorem 2.4. (Mullari, Kotta, Bartosiewicz, Pawluszewicz and Moog, 2017) System
(1) is generically accessible, iff

dimK Dπ
∞ = n.

Definition 2.5. The point x ∈ X̄ is called a reachability (controllability) singular
point of system (1), if the interior of R(x) (of C(x)) is empty. It is called a singular
point of reachability (controllability) in k steps of system (1), if the interior of Rk(x)
(of Ck(x)) is empty.

3. Reachability singular points

The goal of this section is to show that the vector space Dπ
k is helpful for finding the

singular points, from which the system is not reachable in k steps. Compute the kth
order forward shift of the states x⟨k⟩ = Φ̄k

(
x, u, ..., u⟨k−1⟩), where

Φ̄1(x, u) = Φ̄(x, u), Φ̄k(x, u, ..., u⟨k−1⟩) = Φ̄k−1(Φ̄(x, u), u⟨1⟩, ..., u⟨k−1⟩). (8)

Compute A := ∂Φ̄/∂x, B := ∂Φ̄/∂u. Observe that the elements of the matrices A and
B belong to K. Denote

x⟨k⟩ = Φ̄k (x,uk) , (9)
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where uk := (u, ..., u⟨k−1⟩). For a fixed initial state x, the map uk 7→ Φ̄k(x,uk) assigns
the state at time k to a control sequence uk. Define the matrix

Mk(x,uk) =
∂Φ̄k(x,uk)

∂uk
=

[
∂Φ̄k(x,uk)

∂u
...

∂Φ̄k(x,uk)

∂u⟨k−2⟩
∂Φ̄k(x,uk)

∂u⟨k−1⟩

]
. (10)

Proposition 3.1. The columns of matrix Mk have the form:

∂Φ̄k

∂u⟨k−1⟩ = B⟨k−1⟩,
∂Φ̄k

∂u⟨k−q⟩ = A⟨k−1⟩...A⟨k−q+1⟩B⟨k−q⟩, q = 2, ..., k.

Proof. The proof is direct, taking into account (8) and using the chain rule.

Lemma 3.2. (Jakubczyk, Sontag, 1990) Let x be fixed. Under Assumption 1, the
set Rk(x) has a nonempty interior if and only if supuk∈Uk{rankRMk(x,uk)} = n,

where Uk ⊂ Rk×m. Consequently, the interior of R(x) is nonempty if and only if
supk>0{supuk∈Uk rankRMk(x,uk)} = n.

Consequently, for the values of x, where supuk∈Uk{rankRMk(x,uk)} = n, the sys-
tem of equations (9) is locally solvable with respect to uk and one can find a set of
inputs necessary to take the system from a fixed x into a desired final state x⟨k⟩ ∈ X̄.
Lemma 3.2 allows to find the reachability singular points in k steps and the reachability
singular points. These points are found at locations where

sup
uk∈Uk

{rankRMk(x,uk)} < n, (11)

and

sup
k>0

{ sup
uk∈Uk

{rankRMk(x,uk)}} < n,

respectively.
The computation of the singular points from which the generically accessible system

(1) is not weakly reachable, is addressed next. The points from which the system is not
weakly reachable in k steps are characterized thanks to Dπ

k . Compare the structures
of the matrix Mk and the matrix Nk, formed from the basis vector fields of Dπ

k :

Nk =

[(
∂

∂u

)⟨−k⟩π
...

(
∂

∂u

)⟨−2⟩π (
∂

∂u

)⟨−1⟩π]
. (12)

The forward and backward shifts of matrices are defined elementwise.
For an arbitrary vector field Ξ = α ∂/∂x + β0 ∂/∂u the coefficients a

of Ξ⟨−1⟩π are computed according to (5): Ξ⟨−1⟩π = ⟨dx⟨1⟩,Ξ⟩⟨−1⟩∂/∂x =
⟨dΦ̄,Ξ⟩⟨−1⟩∂/∂x. Since Φ̄ depends only on x and u, we get

Ξ⟨−1⟩π = [Aα+Bβ0]
⟨−1⟩ ∂

∂x
. (13)
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Proposition 3.3. For any q ≥ 2 holds the following:(
∂

∂u

)⟨−1⟩π
= B⟨−1⟩ ∂

∂x
,

(
∂

∂u

)⟨−q⟩π
= A⟨−1⟩...A⟨−q+1⟩B⟨−q⟩ ∂

∂x
. (14)

Proof. Start with Ξ = ∂/∂u and compute the projection π of its first order backward
shift, using formula (13) and taking α ≡ 0 and β0 the m×m identity matrix, yielding
directly (14). To compute the projections of the 2nd order backward shift, apply the
formula (13) now on the vector field (14), taking α = B⟨−1⟩ and β0 ≡ 0:(

∂

∂u

)⟨−2⟩π
=
(
AB⟨−1⟩

)⟨−1⟩ ∂

∂x
= A⟨−1⟩B⟨−2⟩ ∂

∂x
, (15)

which proves (14) for q = 2. Applying recursively formula (13) proves (14) for q >
2.

Corollary 3.4. If Mk is the matrix defined by (10), then

Mk = σΦ
k (Nk) . (16)

Proof. Follows directly from Propositions 3.1, 3.3, and definition (12) of Nk.

The singular points for reachability in k steps are characterized by the following
theorem.

Theorem 3.5. Let x be fixed. Under Asumption 1, the system is not weakly reachable
from x in k steps if and only if

sup
uk∈Uk

{rankR[σkΦ(Nk)]} < n. (17)

Proof. Follows directly from (11) and Corollary 3.4.

Example 3.6. Consider the system x
⟨1⟩
1 = (1 + x1u) ln |x2|, x

⟨1⟩
2 = ex1u, defined for

x2 > 0. One can pick z = u, then the corresponding backward shift equations read

x
⟨−1⟩
1 =

ln |x2|
z⟨−1⟩ , x

⟨−1⟩
2 = exp

(
x1

1 + ln |x2|

)
. (18)

The total differentials of the coordinate forward shifts are

dx
⟨1⟩
1 = u ln |x2| dx1 +

1 + x1u

x2
dx2 + x1 ln |x2|du,

dx
⟨1⟩
2 = uex1u dx1 + x1e

x1u du.

(19)

In order to determine the reachability singular points of this system, find first the
points, from which the system is not weakly reachable in 2 steps and then examine the
behaviour of these points under the forward shifts. Compute for this purpose the basis
vector fields of Dπ

2 . According to (5) and (6), we obtain the projection of the first order
backward shift of ∂/∂u as the vector field (∂/∂u)⟨−1⟩π = ⟨dx⟨1⟩, ∂/∂u⟩⟨−1⟩∂/∂x. Taking
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into account (19) yields (∂/∂u)⟨−1⟩π = (x1 ln |x2|)⟨−1⟩ ∂/∂x1+(x1 exp(x1u))
⟨−1⟩ ∂/∂x2.

Due to (18) we get(
∂

∂u

)⟨−1⟩π
=

x1 ln |x2|
u⟨−1⟩(1 + ln |x2|)

∂

∂x1
+
x2 ln |x2|
u⟨−1⟩

∂

∂x2
, (20)

The projection of the second order backward shift of ∂/∂u can be found analogously:(
∂

∂u

)⟨−2⟩π
=
x1
[
(1 + ln |x2|)2+(1+2 ln |x2|)x1)

]
u⟨−2⟩(1 + ln |x2|)(1 + x1 + ln |x2|)

∂

∂x1
+

x1x2 ln |x2|
u⟨−2⟩(1 + x1 + ln |x2|)

∂

∂x2
.(21)

Writing now the matrix N2 according to (12) and computing its second order forward
shifts, we obtain due to (16) the matrix

M2=

(
x1[1 + (2ux1 + 1)u⟨1⟩ ln |x2|] ux1 (1 + x1u) ln |x2|
u⟨1⟩x1 ln |x2|x(1+x1u)u⟨1⟩

2 (1 + x1u) ln |x2|x(1+x1u)u⟨1⟩

2

)
.

Its generic rank is 2, but supu2∈U2{rankR(M2)} is obviously less than 2 (i.e. the con-
dition (17) is satisfied), if at least one of the following conditions holds:

x1 = 0, x2 = 1. (22)

The constraints (22) give the states, from which the system is not reachable in 2 steps.
If the first condition holds and the initial state is (0, x2), then for the next four time

instances we get: (ln |x2|, 1), (0, xu
⟨1⟩

2 ), (u⟨1⟩ ln |x2|, 1), (0, xu
⟨1⟩u⟨3⟩

2 ). Consequently, the
states of the system start to jump between the subspaces x1 = 0 and x2 = 1 regardless
of the choice of inputs. The system behaves similarly, if one starts with the initial
state (x1, 1). This means, the system is not weakly reachable from initial states (1, x2)
and/or (x1, 1) also in more than 2 steps. Ergo, the system is not weakly reachable
from any point in those subspaces of X̄, defined by x1 = 0 and/or x2 = 1.

4. Matrix Mk does not define autonomous variables

In this section it is shown that Mk is of no help in finding directly the autonomous
variables of the non-accessible systems, but for this purpose the vector space Dπ

∞ is
required.

Example 4.1. Consider the system

x
⟨1⟩
1 = u, x

⟨1⟩
2 = ln

∣∣∣∣exp(x2)ux1

∣∣∣∣ , z = x1, (23)

resulting in the backward shifts

x
⟨−1⟩
1 = z⟨−1⟩, x

⟨−1⟩
2 = ln

∣∣∣∣exp(x2)z⟨−1⟩

x1

∣∣∣∣ , u⟨−1⟩ = x1.

7



Compute, according to (13),(
∂

∂u

)⟨−1⟩π
=

∂

∂x1
+

1

x1

∂

∂x2
,

(
∂

∂u

)⟨−2⟩π
= 0.

Obviously dimK Dπ
∞ = 1 < n = 2. According to Theorem 2.4 the system is not

generically accessible. The space Dπ
∞ has a single functionally independent invariant

ϕ(x) = x1 exp(−x2),

which is the autonomous variable of system (23).
Compute the matrix M2, using Proposition 3.1,

M2 =

(
0 1

0 1/u⟨1⟩

)
.

Though the matrix M2 has also generic rank 1, it is of no help to find the autonomous
variable. Its left kernel [

−1 u⟨1⟩
]

(24)

as the row matrix is not related to ϕ(x) directly. However, expressing the gradient
of ϕ as the row vector, we get [exp(−x2), −x1 exp(−x2)]. Shifting it twice forward
elementwise, one gets the row vector[

x1 exp(−x2)
u⟨1⟩

, −x1 exp(−x2)
]
,

which is obtained via multiplying (24) by −x1 exp(−x2)/u⟨1⟩, and therefore, belongs
also to the left kernel of M2. In plain words, the left kernel of M2 does not define the
autonomous variable itself but defines its 2-step forward shift.

To conclude, there are two related objects, allowing to check the accessibility of the
system (1) – the matrixMk, given by (10), and the vector space Dπ

k , given by (7). The
first one allows additionally to find the singular points of weak reachability in k steps,
but does not reveal directly the autonomous variables in the straightforward manner.
The second object enables to compute the autonomous variables directly, but not the
reachability singular points. The matrix Mk is obtained, shifting k times forward the
elements of the matrix (12), built from the basis vector fields of Dπ

k as the column
vectors.

5. Controllability singular points

In this section we shall consider the subclass of systems (1), satisfying the following
assumption.

Assumption 2. Let Φ̄u(x) = Φ̄(x, u) and assume that for every u the map Φ̄u has a
global analytic inverse Φ̄−1

u . Define Ψ(x⟨1⟩, u) := Φ̄−1
u (x⟨1⟩). Then the backward shift
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of the state is defined as

x⟨−1⟩ = Ψ(x, u⟨−1⟩).

Under the Assumption 2 the natural choice is z = u. Compute the kth order back-
ward shift of the state

x⟨−k⟩ = Ψk
(
x, u⟨−1⟩, ..., u⟨−k⟩

)
,

where Ψ1(x, u⟨−1⟩) := Ψ(x, u⟨−1⟩), Ψk(x, u⟨−1⟩, u⟨−2⟩, ..., u⟨−k⟩) =
(Ψk−1(x, u⟨−1⟩, u⟨−2⟩, ..., u⟨−k+1⟩))⟨−1⟩ = Ψk−1(Ψ(x, u⟨−1⟩), u⟨−2⟩, ..., u⟨−k⟩). Define the
matrix

M̄k =

[
∂Ψk

∂u⟨−k⟩ ...
∂Ψk

∂u⟨−2⟩
∂Ψk

∂u⟨−1⟩

]
. (25)

Lemma 5.1. Let x be fixed. Under the Assumption 2, the set Ck(x) has a nonempty
interior if and only if supūk∈Uk{rankRM̄k(x, ūk)} = n. Consequently, the interior of
C(x) is nonempty if and only if supk>0{supūk∈Uk rankRM̄k(x, ūk)} = n, where ūk =

{u⟨−k⟩, ..., u⟨−1⟩}.

Proof. The proof is analogous to the proof of Lemma 3.2.

Lemma 5.1 allows to find the controllability singular points in k steps and the
controllability singular points. These points are found at locations where

sup
ūk∈Uk

{rankRM̄k(x, ūk)} < n, (26)

and

sup
k>0

{ sup
ūk∈Uk

{rankRM̄k(x, ūk)}} < n,

respectively.
The computation of the singular points to which the generically accessible system

(1) is not weakly controllable in k steps, is addressed next. Under Assumption 2 the
matrix A(x, u) is invertible for each (x, u). Denote the inverse of A by Ā.

Proposition 5.2. Under Assumption 2, the elements of the matrix M̄k in (25) have
the form:

∂Ψk

∂u⟨−l⟩ = −Ā⟨−k⟩...Ā⟨−l⟩B⟨−l⟩, l = 1, ..., k. (27)

Proof. Taking the total differential of (1) yields dx⟨1⟩ = Adx + Bdu. Multiplying it
by Ā from left and shifting the result one step backward gives dx⟨−1⟩ = Ā⟨−1⟩dx −
Ā⟨−1⟩B⟨−1⟩du⟨−1⟩. Then direct computation gives

dx⟨−k⟩ = dΨk = Ā⟨−k⟩...Ā⟨−1⟩dx− Ā⟨−k⟩...Ā⟨−1⟩B̄⟨−1⟩du⟨−1⟩−
−Ā⟨−k⟩...Ā⟨−2⟩B̄⟨−2⟩du⟨−2⟩ − ... − Ā⟨−k⟩B̄⟨−k⟩du⟨−k⟩,

(28)

9



From (28) follows directly (27).

Lemma 5.3. M̄k = −Ā⟨−k⟩...Ā⟨−1⟩Nk.

Proof. Due to (27),

M̄k=
(
−Ā⟨−k⟩B⟨−k⟩ ... − Ā⟨−k⟩...Ā⟨−2⟩B⟨−2⟩ − Ā⟨−k⟩...Ā⟨−1⟩B⟨−1⟩

)
. (29)

On the other hand, according to (12) and Proposition 3.3

Nk =
(
A⟨−1⟩...A⟨−k−1⟩B⟨−k⟩ ... A⟨−1⟩B⟨−2⟩ B⟨−1⟩

)
.

Multiplying Nk from the left hand side by −Ā⟨−k⟩...Ā⟨−1⟩ and taking into account (29)
proves the lemma.

Lemma 5.4. supūk∈Uk{rankRNk(x, ūk)}<n ⇔ supūk∈Uk{rankRM̄k(x, ūk)}< n.

Proof. According to Sylvester inequality, rankR(PQ) ≤ min{rankRP, rankRQ}.
Due to Lemma 5.3, rankRM̄k ≤ rankRNk, and so rankRNk < n yields
rankRM̄k < n. Since, again by Lemma 5.3, Nk = −A⟨−1⟩...A⟨−k⟩M̄k, and so rankRNk ≤
rankRM̄k, proving the lemma.

Theorem 5.5. Under Assumption 2, the system (1) is not weakly controllable to a
fixed point x ∈ X̄ in k steps if and only if

sup
ūk∈Ūk

rankRNk(x, ūk) < n,

or equivalently

sup
ūk∈Ūk

dimRDπ
k (x, ūk) < n.

Proof. Follows directly from (26) and Lemma 5.4.

Example 5.6. (Continuation of Example 3.6). The system satisfies Assumption 2,
which allowed us to take z = u. Find the controllability singular points in 2 steps
according to Theorem 5.5, using the vector space Dπ

2 . The generic dimension of Dπ
2 is 2,

i.e. the system is generically accessible, but the dimension of supū2∈U2 dimRDπ
2 (x, ū2)

drops, if at least one of the following conditions holds:

x1 = 0, x2 = 1, (30)

Moreover, the basis vector fields of Dπ
2 are not defined at the following subspaces of

X̄:

1 + ln |x2| = 0 ⇒ x2 = e−1, 1 + x1 + ln |x2| = 0 ⇒ x2 = e−1−x1 , (31)
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Check whether the states determined from the conditions (30) and (31) are really the
controllability singular points. For this purpose compute, using (18),

x
⟨−2⟩
1 =

x1

u⟨−2⟩ (1 + ln |x2|)
, x

⟨−2⟩
2 = exp

(
ln |x2| (1 + ln |x2|)

u⟨−1⟩ (1 + x1 + ln |x2|)

)
, (32)

where z⟨−1⟩ is replaced by u⟨−1⟩. Examine (18) and (32). If the first condition x1 = 0

in (30) holds, then (18) gives x
⟨−1⟩
2 = 1, and (32) yields x

⟨−2⟩
1 = 0, i.e. C2(x) for the

subspace x1 = 0 are the one-dimensional spaces x1 = 0 and x2 = 1, which have an
empty interior and therefore the subspace x1 = 0 is really weakly non-controllable.
Analogously can be shown, that the subspace x2 = 1 is also weakly non-controllable.

Examine next the conditions (31). Show first, that the subspace defined by x2 =
e−1 is not weakly controllable in two steps, i.e. one cannot move the system into an
arbitrary point of this subspace in two steps. For this purpose write the second order
forward shifts of the state coordinates

x
⟨2⟩
1 =

[
1 + (1 + x1u)u

⟨1⟩ ln |x2|
]
x1u, x

⟨2⟩
2 = x

(1+x1u)u⟨1⟩

2 , (33)

and try to compute the values of inputs, necessary to move the system from an
arbitrary initial state into the subspace x2 = e−1. Writing the second formula of

(33) in alternative form x
⟨2⟩
2 = exp[(1 + x1u) ln |x2|u⟨1⟩] and setting x2 = e−1 yields

1 + (1 + x1u) ln |x2|u⟨1⟩ = 0. Due to the first formula of (33) one obtains x
⟨2⟩
1 = 0

independent of the choice of inputs. Ergo, the final state (x
⟨2⟩
1 , e−1) is not weakly

controllable except the point (0, e−1). Analogously one can show, that the subspace
x2 = exp(−1 − x1) is also not controllable, i.e. one can not move the system from

an arbitrary initial state into the final state (x
⟨2⟩
1 , exp(−1 − x1)) except the point

(1, exp(−1− x1)).

Example 5.7. As another, well-known example, consider a loop of wire, rotating
around a vertical axis in an homogeneous magnetic field with the horizontal field
lines. The system of equations, characterizing the rotational motion have, in case of a
small rotational angles, the following form:

x
⟨1⟩
1 = x1 + x2T, x

⟨1⟩
2 = x2 + (ax1u− bx2)T,

where x1 and x2 are the rotational angle and the angular velocity of the loop, respec-
tively, T is the sampling time. The system constants are a = BS/J , b = µ/J , where
B is the magnetic induction, S – the area and J – the moment of inertia of the loop,
and µ – the frictional coefficient. Taking z = u, we obtain the corresponding backward
shift equations:

x
⟨−1⟩
1 =

1

Λ1
[(b x1 + x2)T − x1], x

⟨−1⟩
2 =

1

Λ1
[u⟨−1⟩x1aT − x2], (34)

where Λ1 = u⟨−1⟩aT 2 + b T − 1. Compute the projections of the backward shifts of
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∂/∂u according to (5) and (6):(
∂

∂u

)⟨−1⟩π
=

a

Λ1
[(x1b+ x2)T

2 − x1T ]
∂

∂x2
,(

∂

∂u

)⟨−2⟩π
=

a

Λ2

(
[x1b

2 + x2b+ u⟨−1⟩x1aT
4 − 2(x1b+ x2)T

3 + x1T
2]

∂

∂x1
+

+ [(x1b
3 + x2b

2 + u⟨−1⟩x1ab)T
4 − (3x1b

2 + 3x2b+ u⟨−1⟩x1a)T
3 +

+(3x1b+ 2x2)T
2 − x1T ]

∂

∂x2

)
,

where Λ2 = u⟨−2⟩u⟨−1⟩a2T 4 + (u⟨−1⟩ + u⟨−1⟩)ab T 3 + [b2 − (u⟨−1⟩ + u⟨−2⟩)a]T 2 −
2b T + 1. The system is generically accessible, because dimK Dπ

2 = 2, but
supū2∈U2 dimRDπ

2 (x, ū2) drops, when at least one the following conditions holds:

x1 = x2 = 0, x2 = x1(1− b T )/T. (35)

In order to check the weak controllability in 2 steps of subspaces (35) we find the
states, from which one can steer the system into these subspaces. Taking first the
point (0, 0) one can find with the help of (34), that the single possible previous state
is again (0, 0), i.e. the point (0, 0) is not weakly controllable in any number of steps.

For the subspace x2 = x1(1 − bT )/T we obtain, according to (34), that
x⟨−1⟩ = (0, x1/T ), which is a single point. The next step backward gives x⟨−2⟩ =

(x1/Λ
⟨−1⟩
1 , x1/(Λ

⟨−1⟩
1 T )), which, depending on u⟨−2⟩, is a line. But the third backward

shift yields x⟨−3⟩ = (x1(bT−2)/Λ3, x1(1+au
⟨−3⟩T 2)/Λ3), where Λ3 = u⟨−2⟩u⟨−3⟩a2T 4+

(u⟨−2⟩ + u⟨−3⟩)abT 3 + [b2 − (u⟨−2⟩ + u⟨−3⟩)a]T 2 − 2bT + 1. Depending on the choice
of u⟨−2⟩ and u⟨−3⟩, this covers the entire X̄. Ergo, the subspace x2 = x1(1− bT )/T is
weakly controllable in 3 steps.

6. Conclusion

The vector space, introduced in (Mullari, Kotta, Bartosiewicz, Pawluszewicz and
Moog, 2017) as the discrete-time analogue of the strong accessibility distribution, un-
like its continuous-time counterpart, does not directly identify the states from which
the system is not weakly reachable in k steps. In order to find such states, a new
object is constructed as described below. Writing the vector space in the matrix form
(i.e. taking its basis vector fields as the columns of the matrix), the elements of the
matrix as scalar functions are shifted k times forward. This shifted matrix enables
to find directly the points from which the generically accessible system is not weakly
reachable in k steps. However, from the other side, the shifted matrix is of no help to
find the autonomous variables of the system. To conclude, in the discrete-time case,
unlike in the continuous-time case, two related objects are needed. Finally note that
each of these two objects allows to check generic accessibility property. However, the
controllability singular points in k steps can be found using the analogue of the strong
accessibility distributions.
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