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DERIVATION OF THE INCREMENTAL DEFORMATION FIELD

We recall that the equilibrium equation can be written as div(PF′) = 0 where the first Piola-Kirchoff tensor
is P = µF − PF−1 and F′ = ∂r′/∂R, where the div operator is evaluated in the prestretched configuration B′.
Everywhere at the free boundary z′ = h except at the triple line, Nanson’s formula gives PF′ · n′ = fC + γsn · (∇n)
where n′ = (0, 1) is the outward unit vector normal to the free surface in B′ and n is the outward unit normal vector
in B. We linearize the equilibrium condition and boundary conditions around the finitely prestretched configuration
given by the mapping r′ = (r′, z′) = (λR,Z/λ2) in order to obtain the incremental solution [1]. To this end, it is
convenient to separate the pressure into the form P = P ? + εp where P ? is a constant pressure in B′ and p is the
incremental pressure from B′ to B. By applying the boundary condition PF′~n′ = 0 which holds in B′ before the
deposition of the drop, it is easily found that P ? = µ/λ4. Following this decomposition, the equilibrium equations and
boundary conditions can be linearized with respect to ε and are solved easily by shifting into Fourier space, leading
to the following solution for the vertical displacement of the free surface ζ(r′) = uz(r

′, h):

ζ(r′) = γ` sinα

∫ ∞
0

ds
J0(sr′)

(
ρJ0(sρ)− 2J1(sρ)

s

)
2µg(hs, λ) + sγs

(1)

where the function g(hs, λ) is:

g(hs, λ) =
−
(
λ12 + 6λ6 + 1

)
sinh(hs) sinh

(
hλ3s

)
+
(
λ12 + 2λ6 + 5

)
λ3 cosh(hs) cosh

(
hλ3s

)
− 4

(
λ9 + λ3

)
2λ4 (λ6 − 1) (λ3 sinh(hs) cosh (hλ3s)− cosh(hs) sinh (hλ3s))

(2)

Here we have assumed that the lower surface of the elastic layer is bonded to an infinitely rigid surface, ur(r
′, 0) =

uz(r
′, 0) = 0. Note that when there is no prestretch, i.e when λ = 1, the solution (1) reduces to the well know

solution of the elastowetting problem where the surfaces force distribution is damped both by the elasticity and the
surface energy of the substrate. In absence of surface tension, we recover a known result of incremental elasticity [2].
Interestingly, it should be noted that the introduction of a finite prestretch only affect the elastic term 2µg(hs, λ) but
not the term associated with the surface energy of the solid sγs. This result could in fact be anticipated because the
cost of creating a unit of area is independent of the underlying deformation in the absence of any Shuttleworth effect,
and thus the surface energy term is independent of λ, as seen in (1). Furthermore, it is known that the incremental
response of a prestretched elastic half-space is that of a transversely isotropic linear half-space. Indeed, for very thick
sample, i.e in the limit h → ∞, we find that g∞(λ) = limh→∞ g(hs, λ) = (λ9 + λ6 + 3λ3 − 1)/(2(λ7 + λ4)), implying
that the incremental response of a prestretched Neo-Hookean elastic half-space with elastic modulus µ is identical to
that of a linear elastic half-space without prestretch but with an effective shear modulus µg∞(λ). This increase of the
apparent rigidity is a purely nonlinear effect. As a consequence, the incremental deformation theory predicts that: i)
the overall profile of the ridge, and in particular its height d = ζ(ρ), depend on the prestretch λ; ii) regarding the
opening angle of the ridge however, we recover the classical result θ = π− 2γsζ

′(0−) = π− γ`/γs for all thicknesses H
and prestretch λ. Therefore the incremental theory predicts that the opening angle is constant, for any prestretch λ,
in the limit of small deformations (γ`/2γs � 1).

DERIVATION OF THE NONLINEAR ELASTIC FORCE AT THE TIP OF THE ELASTOCAPILLARY
RIDGE

We wish to evaluate here the vertical elastic force fEz acting at the tip of the elastocapillary ridge. In this section
we only consider a drop of infinite radius and focus on a single symmetric contact line. Within the framework of linear
elasticity, the elastic force at the tip vanishes. Here we calculate the first order correction due to the nonlinearities
and show that this leads to a nonlinear force fEz ≈ −2[Trzuz] acting on the ridge. Let us first recall the expression
given in the main text for the force acting on an elastic singularity:
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FIG. 1: Definition of the contour Γε =
4⋃
i=1

Γiε enclosing the singularity

fE = lim
ε→0

∫
Γ′
ε

(WeI− FTP)ν′d`′ (3)

which can be rewritten as [3]

fE = lim
ε→0

∫
Γε

T · νd` (4)

where T is the Cauchy stress tensor and Γε is now a contour enclosing the tip of the ridge in the current configuration.

The vector ν is outward vector normal to Γε. We consider the composed contour Γε =
4⋃
i=1

Γiε enclosing the tip of the

elastocapillary ridge as shown in figure 1.
Let us now calculate the integral (4). At the free surface, i.e on Γ1

ε , the boundary conditions of the incremental
elastic problem imply, at first order in the parameter γ`/γs, that:

−T (0)
rr

∂ζ

∂r′
+ T (1)

rz = 0 along er (5)

T (1)
zz = γsδ(r

′)− γs
∂2ζ

∂r′2
along ez (6)

Where T
(0)
rr = (λ2 − 1/λ4) is the radial stress in the prestretched configuration while the quantities labeled with a

superscript (1) refer to the incremental stress in the current configuration. When λ 6= 1, the radial stress T
(0)
rr 6= 0

and therefore the shear stress T
(1)
rz at the free surface is non-zero and discontinuous (owing to the discontinuity of

∂ζ/∂r′). At second-order in γ`/γs, this non-zero shear stress will induce a stress −T (1)
rz

∂ζ
∂r in the vertical direction (i.e

in equation 6). Therefore we have T · ν · ez ∼ (T
(1)
zz − T (1)

rz
∂ζ
∂r′ ) up to second order on Γ1

ε . Note that in absence of
pre-stretch (i.e when λ = 1), the second-order contribution vanishes.

We now evaluate the integral of this quantity along the element of contour Γ1
ε in the limit ε → 0. In the current

configuration, the infinitesimal length element is d` = (1 + ∂u/∂r′)dr′ and thus:

lim
ε→0

∫
Γ1
ε

T · ν · ezd` = lim
ε→0

∫ ε

−ε

(
T (1)
zz − T (1)

rz

∂ζ

∂r′

)(
1 +

∂u

∂r′

)
dr′ + h.o.t (7)

= lim
ε→0

∫ ε

−ε
T (1)
zz dr′ + lim

ε→0

∫ ε

−ε

(
T (1)
zz

∂u

∂r′
− T (1)

rz

∂ζ

∂r′

)
dr′ + h.o.t (8)

Because the stress field T
(1)
zz has a logarithmic integrable singularity the first integral of (8) vanishes (in the limit

ε→ 0), a known result in the context of linear elastocapillarity. Using the incompressibility relation and the balance
of linear momentum, the second integral can be transformed into:

lim
ε→0

∫
Γ1
ε

T · ν · ezd` = − lim
ε→0

∫ ε

−ε
dr′

∂(T
(1)
rz ζ)

∂r′

∣∣∣∣∣
z′=0

− lim
ε→0

∫ ε

−ε
dr′

∂(T
(1)
zz ζ)

∂z′

∣∣∣∣∣
z′=0

+ h.o.t (9)

Turning now to the integral along the boundary Γ3
ε (located say, at z′ = −ε), we have, again using the incompress-

ibility relation and the balance of linear momentum

lim
ε→0

∫
Γ3
ε

T · ν · ezd` = lim
ε→0

∫ ε

−ε
dr′ ζ

∂T
(1)
rz

∂r′

∣∣∣∣∣
z′=−ε

+ lim
ε→0

∫ ε

−ε
dr′

∂(T
(1)
zz ζ)

∂z′

∣∣∣∣∣
z′=−ε

+ h.o.t (10)
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Now, T
(1)
rz and its derivative are continuous for all r′ at z′ = −ε so that the first integral in the r.h.s of (10) vanishes.

We now add (9) and (10) and, noting that the field ∂(T
(1)
zz ζ)/∂z′) is also continuous, the second integrals of the r.h.s

of (9) cancels the the second integrals of the r.h.s of (10). We thus obtain:

lim
ε→0

∫
Γ1
ε∪Γ3

ε

T · ν · ezd` = − lim
ε→0

∫ ε

−ε
dr′

∂(T
(1)
rz ζ)

∂r′

∣∣∣∣∣
z′=0

+ h.o.t (11)

which does not vanish because T
(1)
rz (r′, z′ = 0) is discontinuous at r′ = 0, leading to

lim
ε→0

∫
Γ1
ε∪Γ3

ε

T · ν · ezd` = −
[
T (1)
rz ζ

]
+ h.o.t (12)

where the symbol [·] denote the jump of the quantity inside the bracket across the ridge at r = 0. A similar reasoning
can be used to show that

lim
ε→0

∫
Γ2
ε∪Γ4

ε

T · ν · ezd` = −
[
T (1)
rz ζ

]
+ h.o.t (13)

Note that the result of integral (13) is just the classical Peach-Koehler force acting on a disclination inside a bulk
solid while (12) is the additional force due to the free surface, which adds an equal contribution to the vertical force
(thus showing that the free surface acts as a mirror disclination). Summing up (12)-(13) we obtain the total vertical
force fEz acting at the tip of a symmetric elastocapillary ridge:

fEz = fE · ez = −2
[
T (1)
rz ζ

]
+ h.o.t (14)
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