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Mathematical analysis of a chemotaxis-type model

of soil carbon dynamic.

Alaaeddine Hammoudi ∗, Oana Iosifescu ∗

Abstract

The goal of this paper is to study the mathematical properties of a
new model of soil carbon dynamics which is a reaction-diffusion system
with a chemotactic term, with the aim to account for the formation
of soil aggregations in the bacterial and microorganism spatial orga-
nization (hot spot in soil). This is a spatial and chemotactic version
of MOMOS (Modelling Organic changes by Micro-Organisms of Soil),
a model recently introduced by M. Pansu and his group. We present
here two forms of chemotactic terms, first a “classical” one and second
a function which prevents the overcrowding of microorganisms. We
prove in each case the existence of a nonnegative global solution, we
investigate its uniqueness and the existence of a global attractor for all
the solutions.

Keywords: Soil organic carbon dynamics, reaction-diffusion-advection
system, positive weak solutions, periodic weak solutions.
Mathematics Subject Classification 2000: 35B09, 35B10, 35D30,
35K51, 35Q92.

1 Introduction.

Chemotaxis is the ability of some bacteria to direct their movement ac-
cording to the gradient of chemicals contained in their environment. In soil,
some bacteria microorganisms that degrade organic carbon (SOC) are motile
and chemotactic. This phenomenon is observed in experiments [1] and on
field. Nevertheless to our best knowledge no model of terrestrial carbon cy-
cle adresses this issue. Indeed, these models are essentially compartimental
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corresponding naturally to systems of ordinary differential equations (e.g
Century, RothC, MOMOS) [2]. They are used globally to estimate soil CO2

emissions in local land management and crop optimization, among other
things.
Very few prototypes of spatial soil organic model have been proposed. Some
of them use systems of partial differential equations: Balesdent et al. [3]
combined vertical directed transport of organic carbon with a degradation
phenomenon and diffusion. More recently, Goudjo et al. [4] proposed a
three dimensional model for dissolved organic matter using also a system of
PDEs. Other authors opted for a finite sequence of interconnected systems
of ordinary differential equations each localized in a soil layer (see [5]).
We previously studied the model MOMOS proposed by Pansu (see [6],[7]),
which is a nonlinear system of ordinary differential equations [8] written as:

ẏ = g(t,y)

where

y =

 u
v
w


and

G(t,y) =

 −k1(t)u− q(t)u2 + k2(t)v + k3(t)w + f(t)
k1(t)u− (k2(t) + k4(t))v

k4(t)v − k3(t)w.


In these equations the unknown umodels the alive microbial biomass, whereas
the unknowns v and w are soil organic matters with distinct decomposition
rates.
In reality, the nonnegative functions ki i ∈ {1, 2, 3, 4}, q and f depend not
only on time but also on space because of the variability in soil clay con-
tent. The phenomena described by MOMOS can also be subjected to the
influence of transport and sedimentation through transport and diffusion.
In order to test the effect of soil heterogeneity we studied in [9] the following
reaction-diffusion-advection initial problem:


∂ui
∂t − div(Ai(t, x)∇ui) + Bi(t, x)∇ui = g+

i (t, x,u), (t, x) ∈ QT := (0, T )× Ω

γ (Ai(t, x)∇ui) · ν + βi(t, x)ui = 0, (t, x) ∈ ΣT := (0, T )× ∂Ω

ui(0) = ui,0 in Ω

where Ω is a domain in Rn representing the soil, Ai is a diffusion matrix
and Bi a transport vector, for each i = 1, 2, 3.
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In [9] the boundary conditions were either of Dirichlet type (γ = 0, βi ≡ 1)
or of Neumann-Robin type (γ = 1, βi(t, x) ≥ 0). The right hand side term
of (1.1) was :

g+(t, x,u) :=

 −k1(t, x)u1 − q(t, x)|u1|u1 + k2(t, x)u2 + k3(t, x)u3 + f(t, x)
k1(t, x)u1 − (k2(t, x) + k4(t, x))u2

k4(t, x)u2 − k3(t, x)u3


where we replaced the term q(t, x)u2

1 with q(t, x)|u1|u1 for more accuracy,
since q(t, x)u1 corresponds to a kinetic coefficient that cannot be negative.
We assumed there that the diffusion matrices Ai were bounded, symmetric
and coercive:

Ai ∈ L∞(QT )n×n,

Ai(t, x)ζ · ζ ≥ c|ζ|2, ∀ζ ∈ Rn, a.e in QT , with c > 0

and the transport vectors Bi were bounded on QT :

Bi ∈ L∞(QT )N , |(Bi(t, x))j | ≤ cmax a.e in QT , for all 1 ≤ j ≤ n.

Also we assumed that the functions kj , βi and q were nonnegative and
bounded, i.e. for all j = 1, 2, 3, 4 and i = 1, 2, 3

kj , q ∈ L∞(QT ), 0 ≤ kj(t, x), q(t, x) ≤ Cmax a.e on QT ,

βi ∈ L∞(ΣT ), 0 ≤ βi(t, x) ≤ Cmax a.e on ΣT ,

where constant Cmax > 0. Finally we assumed that the initial data and
input were nonnegative and bounded :

ui,0 ∈ L2
+(Ω), f ∈ L2

+(QT ), f(t, x) ≤ Cmax a.e on QT .

In [9] we proved first that this model had a unique weak solution. We were
looking for weak solutions, because initial inputs were not regular enough to
give rise to more “regular” solutions. Second, for periodic data, we proved
the existence of a maximal and a minimal periodic solution of this system.
In some particular cases, the minimal and the maximal periodic solutions
coincide and this function becomes a global attractor for any bounded solu-
tion of the periodic system.

In the present work a new PDEs model is considered to take account of
chemotaxis. The chemotactic movement of bacteria to root exudates is well
known to play an important role in rhizosphere colonisation. Field studies
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with tracers and laboratory experiments using soil columns were both used
to demonstrate the effect of chemotaxis on microbial movements. So, the
model proposed here can represent the spatial heterogeneity of soil microbial
biomass, highlighted by recent observations at submicron scale [1]
The new model derived from a simplified MOMOS ODEs model, which com-
prised only two differential equations instead of the three originally, where
the microbial biomass was u and the organic matter was v. As additional
simplifying hypothesis soil temperature, soil moisture, soil texture and or-
ganic input were considered to be isotropic and constant with time. Hence,
the simplified ODEs model can be expressed as:{

u̇ = −k1u− qu2 + k2v

v̇ = −k2v + k1u+ f

with the initial conditions (u0, v0) , where k1 is the microbial mortality rate,
k2 is the soil carbon degradation rate, q is the metabolic quotient and f
is the soil organic carbon input. It can be proven that the unique positive
steady state (u∗0, v

∗
0), is stable [8].

The chemotaxis-type model was finded following the conventional Keller-
Segel approach [10], using an advection-diffusion system. This comprised
two parabolic equations in a smooth domain with no-flux boundary con-
ditions. The advection term was controlled by the gradient of the chemo-
attractant. Applying the same principles to our problem leads to the fol-
lowing reaction-diffusion-chemotaxis system (Ph)

∂tu− a∆u = −βdiv(h(u)∇v)− k1u− q|u|u+ k2v, (t, x) ∈ QT
∂tv − d∆v = −k2v + k1u+ f, (t, x) ∈ ΩT ,

∇u · ν = ∇v · ν = 0, (t, x) ∈ ΣT ,

u(0) = u0, in Ω,

v(0) = v0, in Ω.

(Ph)

The parameter β is the chemotaxis sensitivity, a and d are the diffusion
coefficients of microbes and soil organic carbon respectively, Ω is a smooth
and bounded domain, and h(·) is a continuous function, involved in the
modelling of chemotaxis. As bacteria can release exoenzymes to avoid over-
crowding, the function h can be selected to limit overcrowding, as required.
This new model is, therefore, a new variation of the Keller-Segel approach
[10] with the reaction part modified to fit the MOMOS model. In the first
equation of (Ph), we change again the term qu2 by q|u|u, see [9].
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We prove here (see Appendix 1) the existence of Turing patterns that may
provide possible explanations for the formation of soil aggregations, for the
bacterial and micro-organisms spatial organizations (hotspots in soil) or jus-
tify the formation of the microscopic patterns observed by Vogel et al. [1].
Although spatial heterogeneity can be verified visually in a numerical sim-
ulation (see Appendix 2), formal mathematical analysis is required to con-
firm its emergence and to provide a mathematical proof of the necessary
conditions. The mathematical criteria are based on matrices derived from
equations and analysed using conditions on the determinant, trace and eigen-
values.
Keller-Segel model was the earliest mathematical system involving chemo-
taxis [10]. Many others models emerged specially in biology and ecology.
Most authors focused their efforts essentially on existence and on asymp-
totic behaviour of solutions in one or two dimensional domains in order
to avoid blow-up of solutions (see [11], [12], [13], [14], [15] and references
therein).

Unlike the classical Keller-Segel model, where equations are coupled only
by the chemotactic term, the system of partial differential equations (Ph)
is also coupled through the reaction term. More specifically, the organic
matter will not only attract microorganisms, but part of it will be “trans-
formed”, under a degradation process, to microorganisms. This mechanism
introduces a supplementary linear coupling term in the first equation of this
model. Many authors ([11], [12], [13] and references therein) already consid-
ered reaction coupling terms, but under some restrictive conditions, which
are not verified here. This feed-back in the chemotactic equation is not
compatible with mass conservation of microorganisms, unlike in [12], [15].
Furthermore, neither the boundedness of the microorganisms total mass nor
the positivity and the boundedness (existence of threshold) of the solution
remain immediate, unlike in [13], [11] and [14].

Our main concern here is to prove the existence of a unique solution to this
minimal MOMOS model improved by adding chemotaxis effect. We con-
sider two chemotactic functions h, a “classical” one, h(u) = u, and a second
one which prevents overcrowding of microorganisms, h(u) = u(M − u) if
0 ≤ u ≤M and zero otherwise, proposed by Wrzosek [15].
This paper is organized as follows. Section 2 introduces some notations,
results and tools used throughout the paper. Section 3 presents sufficient
conditions to get global solutions, and to prove the existence of an exponen-
tial attractor, in the case where h(u) = u. Section 4 is concerned with the
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second chemotactic function, where the chemotactic term cancels when u
achieves the threshold M , which helps to prove that any local solution is ac-
tually global. In sections 3 and 4 the domain is two dimensional. In Section
5, still keeping the second form of h and for domains of dimension less than
or equal to 3 (the dimension 3 is particularly interesting in applications), we
prove the existence of a unique solution, with less restrictions on the initial
conditions and forcing term than in section 4. In Appendix 1we prove that
chemotactic term in system (Ph) is mandatory to obtain Turing patterns
and in Appendix 2 we give some numerical simulations.

2 Mathematical preliminary and notations.

Unless it is explicitly indicated, Ω is a bounded region in R2 of C3 class, the
constants a, β, q, d, k1 and k2 are nonnegative, and f is a nonegative func-
tion belonging to an admissible space to be fixed later. In all that follows
C denotes a positive constant which may vary from line to line.
We recall here some known results (see [16], [17] and references therein) that
will help afterwards.

Interpolation space:
For 0 ≤ s0 < s < s1 <∞, Hs(Ω) is the interpolation space [Hs0(Ω), Hs1(Ω)]θ
with s = (1−θ)s0 +θs1 between Hs0(Ω) and Hs1(Ω). Furthermore, we have

‖.‖Hs ≤ ‖.‖1−θHs0‖.‖θHs1 . (2.1)

Embedding theorem:
When 0 < s < 1, Hs(Ω) ⊂ Lp(Ω) for 1

p = 1−s
2 with the estimate

‖ · ‖Lp ≤ Cs‖ · ‖Hs

When s = 1, H1(Ω) ⊂ Lq(Ω) for any 1 ≤ q <∞ and

‖ · ‖Lq ≤ Cq,p‖ · ‖1−p/qH1 ‖ · ‖p/qLp (2.2)

where 1 ≤ p ≤ q <∞.
When s > 1 Hs(Ω) ⊂ C(Ω) with continuous embedding.

Fractional Power of the Laplace operator: (see ([17], Chap 2.7), [12])
Let a0, a1 > 0 be constants and L = −a1∆ + a0 be the Laplace operator
equipped with the Newman boundary conditions, with the domain D(L) =
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{u ∈ H2(Ω); ∂u∂ν = 0 on ∂Ω} = H2
N (Ω). Thus L is a positive definite self-

adjoint operator of L2(Ω). For θ > 0, the fractional power on L is defined
and noted Lθ and Lθ is also a positive definite self-adjoint operator on L2(Ω).
More

D(Lθ) =

{
H2θ(Ω), 0 ≤ θ < 3

4 ,

H2θ
N (Ω), 3

4 < θ ≤ 3
2 ,

with the norm equivalence.

Some useful inequalities
Biler’s lemma (see [18])
Let 0 ≤ u ∈ H1(Ω) and N1

log(u) := ‖(u+ 1)log(u+ 1)‖L1 . For any η > 0,

‖u‖3L3 ≤ η‖u‖H1N1
log(u) + p(η−1)‖u‖L1 , (2.3)

where p(·) denotes here some increasing function.

Let ε ∈ (0, 1]. It is proved in ([13], (2.10)÷ (2.12)) that:

‖∇(u∇v)‖L2 ≤ Cε‖u‖H1‖v‖H2+ε , for all u ∈ H1(Ω), v ∈ H2+ε(Ω) (2.4)

‖∇(u∇v)‖L2 ≤ Cε‖u‖H1+ε‖v‖H2 , for all u ∈ H1+ε(Ω), v ∈ H2(Ω) (2.5)

‖∇(u∇v)‖H1 ≤ C‖u‖H2‖v‖H3 , for all u ∈ H2(Ω), v ∈ H3(Ω). (2.6)

Local Existence
We need first to prove the existence of local solution of (Ph). For this
purpose, we use the result obtained by Yagi and based on the Galerkin
method (see [12], [17]).
Let V and H be seperable Hilbert spaces with dense and compact embedding
V ⊂ H. Let V ′ be the dual space of V and identify H and H ′ to get:

V ⊂ H ⊂ V ′

The duality product between V and V ′ is denoted by < ·, · >. It coincides
with the scalar product on H denoted by (·, ·).
Consider the following Cauchy problem of a semilinear abstract differential
equation:

dU

dt
+AU = G(U) + F (t), 0 < t ≤ T

U(0) = U0, (2.7)
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in the space V ′.
Here, A is the positive definite self-adjoint operator of H defined by a sym-
metric sesquilinear form a(U, Ũ) on V , with < AU, Ũ >V,V ′= a(U, Ũ).

Assumptions on a(·, ·):

(a.i) ‖a(U, Ũ)‖H ≤M‖U‖V ‖Ũ‖V , U, Ũ ∈ V,
(a.ii) a(U,U) ≥ δ‖U‖2V , U ∈ V,

with constants δ, M > 0. The operator A is also bounded from V to V ′.

Assumptions on G(·):
G(.) is a continuous function from V to V ′, which satisfy:
(g.i) For each ζ > 0, there exists an increasing continuous function
φζ : [0,∞)→ [0,∞) such that:

‖G(U)‖V ′ ≤ ζ‖U‖V + φζ(‖U‖H), U ∈ V

(g.ii) For each ζ > 0, there exists an increasing continuous function ψζ :
[0,∞)→ [0,∞) such that:

‖G(U)−G(Ũ)‖V ′ ≤ ζ‖U − Ũ‖V
+ ψζ(‖U‖H + ‖Ũ‖H)× ‖U − Ũ‖H(‖U‖V + ‖Ũ‖V + 1), U, Ũ ∈ V

Finally F (·) ∈ L2(0, T ;V ′) is a given function and U0 ∈ H is an initial value.
Then, we have [12]:

Theorem 2.1. Under assumptions (a.i), (a.ii), (g.i) and (g.ii) and for ev-
ery F (·) ∈ L2(0, T ;V ′) and U0 ∈ H, there exists a unique local solution U
of (2.7) such that:

U ∈ H1(0, T (U0, F );V ′) ∩ C([0, T (U0, F )];H) ∩ L2(0, T (U0, F ), V )

Here T (U0, F ) is determined by the norm ‖U0‖H and ‖F‖L2(0,T ;V ′)

3 First case: h(u) = u.

3.1 Local existence and positivity.

Let ε0 arbitrarily fixed, ε0 ∈ (0, 1). Then:
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Theorem 3.1. Let u0 ∈ L2(Ω), v0 ∈ H1+ε0(Ω) and f ∈ L2(0, T ;Hε0(Ω)) be
nonnegative functions. Then (Ph) has a unique nonnegative local solution
on an interval [0, T0] such that

u ∈ H1(0, T0;H1(Ω)
′
) ∩ C([0, T0];L2(Ω)) ∩ L2(0, T0, H

1(Ω)),

v ∈ H1(0, T0;Hε0(Ω)) ∩ C([0, T0];H1+ε0(Ω)) ∩ L2(0, T0, H
2+ε0
N (Ω)),

where T0 depends only on ‖f‖L2(0,T ;Hε0 (Ω)), ‖u0‖L2(Ω) and ‖v0‖H1+ε0 (Ω).

Proof. First Step: Construction of a unique local solution
Let A1 = −a∆ + k1 and A2 = −d∆ + k2 be two operators with the same
domain H2

N (Ω). A1 and A2 are positive self-adjoint operators on L2(Ω). We
can then define their corresponding fractional power operators (see [17], as
described in the previous section.
Let V = H1(Ω) × H2+ε0

N (Ω) and H = L2(Ω) × H1+ε0(Ω). Identifying H
with its dual space gives: V ⊂ H = H ′ ⊂ V ′ and V ′ = (H1(Ω))′ ×Hε0(Ω)
with the duality product:

< U, Ũ >V,V ′ =< u, ũ >H1,(H1)′ + < A
1+

ε0
2

2 v,A
ε0
2

2 ṽ) >L2,L2 ,

where U = (u, v) ∈ V and Ũ = (ũ, ṽ) ∈ V ′ .
We also set a symmetric sesquilinear form on V × V ,

a(U, Ũ) =

∫
Ω
{a∇u · ∇ũ+ k1uũ}dx+ (A

1+
ε0
2

2 v,A
1+

ε0
2

2 ṽ)L2

for U = (u, v) and Ũ = (ũ, ṽ) ∈ V .
This forms is in fact a linear isomorphism A from V to V ′:

A =

(
A1 0
0 A2

)
and A becomes a positive definite self-adjoint operator in H.
Finally let f(·) ∈ L2(0, T,Hε0(Ω)) and let G : V → V ′ be the mapping:

G(U) :=

(
β∇(u∇v)− q|u|u+ k2v

k1u

)
,

with U = (u, v) ∈ V .
Then (Ph) is the following semilinear differential equation:

dU

dt
+AU = G(U) + F (t) in V ′, 0 < t ≤ T, (3.1)

U(0) = U0,
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where F (t) =

(
0
f(t)

)
.

In order to apply the existence result of Theorem 2.1. to problem (3.1), let
us verify the assumptions on a(·, ·) and G(·).
The assumptions on a(·, ·) are classically satisfied (see for example [12]).
For the conditions on G we have that for an arbitrary U = (u, v) ∈ V and
δ > 0:

‖∇ · (u∇v)‖(H1)′ ≤ C‖u‖L4‖∇v‖L4 ≤ ‖u‖
1
2

L2‖u‖
1
2

H1‖v‖
1
2

H1‖v‖
1
2

H2

≤ ‖u‖
1
2

L2‖u‖
1
2

H1‖v‖
1+ε0

2

H1+ε0
‖v‖

1−ε0
2

H2+ε0

≤ C‖U‖1+
ε0
2

H ‖U‖1−
ε0
2

V ≤ ζ‖U‖V + φζ(‖U‖H)

and

‖v‖(H1)′ ≤ C‖U‖H , ‖u2‖(H1)′ ≤ C‖u‖2L3 ≤ ζ‖u‖H1 + φζ(‖u‖L2).

Finally it is clear that:

‖u‖Hε0 ≤ ζ‖u‖H1 + Cζ(‖u‖L2).

All these inequalities show that the condition (g.i) is fullfiled.
From the embedding theorem we have:

|
∫

Ω
(ũ− u)∇v · ∇ρ dx| ≤ C‖ũ− u‖L2‖ṽ‖H2+ε0‖ρ‖H1

|
∫

Ω
∇(ṽ − v)u · ∇ρ dx| ≤ C‖u‖H1‖ṽ − v‖H1+ε0‖ρ‖H1

and using the interpolation theorem and Young inequality we obtain:

‖u− ũ‖Hε0 ≤ C‖U − Ũ‖ε0V ‖U − Ũ‖
1−ε0
H

≤ ζ‖U − Ũ‖V + Cζ‖U − Ũ‖H

for an arbitrary ζ > 0. On the other hand we have that:

‖u|u| − ũ|ũ|‖(H1)′ ≤ C
(
‖(|u| − |ũ|)u‖L3/2 + ‖(u− ũ)|ũ|‖L3/2

)
≤ C‖u− ũ‖L2

(
‖u‖L6 + ‖ũ‖L6

)
All these inequalities permit to show that condition (g.ii) is fullfiled too.
Second Step: Positivity of the solution
Now let us take the following semilinear system:

dU
dt +AU = G̃(U) + F (t), 0 < t ≤ T

U(0) = U0,
(3.2)
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where A, F and Y0 are defined as previously, and the mapping G̃ : V → V ′

is defined by:

G̃(U) :=

(
β∇(u∇v)− q|u|u+ k2|v|

k1u

)
.

By Theorem 2.1. there exists a local solution U = (u, v) on [0, T0] × Ω,
with T0 depending only on U0 and F . Let us define u+ = max(u, 0) and
u− = max(−u, 0).
We multiply the first equation by −u− and we integrate in space. So

1

2

d

dt
‖u−‖2L2 + a‖∇u−‖2L2 + k1‖u−‖2L2 ≤

∫
Ω
βu−∇v∇u−dx

≤ β‖∇v‖L∞
∫

Ω
u−|∇u−|dx

for 0 < t ≤ T0.
Using Young inequality we get

1

2

d

dt
‖u−‖2L2 + a‖∇u−‖2L2 ≤ ‖∇v‖L∞

(
Cε‖u−‖2L2 + ε‖∇u−‖2L2

)
with ε > 0 small enough and Cε > 0.
Taking ε = a

‖∇v‖L∞
we get

d

dt
‖u−‖2L2 ≤ C‖∇v‖2L∞‖u−‖2L2

≤ C‖v‖2H2+ε0‖u−‖2L2

Since v ∈ L2(0, T0;H2+ε0(Ω)) and ‖u−0 ‖2L2 = 0 by Gronwall Lemma we de-
duce that u is nonnegative on [0, T0]. By classical results on linear parabolic
equations v is nonnegative on [0, T0] too. So, the nonnegative solution U of
(3.2) is also a solution of (3.1).

Remark. If initial conditions U0 and data f are not positive, this theorem
proves anyway the existence of a local solution. However, as this is an
ecology model, only nonnegative solutions make sense.

With minor changes due to our different problem (Ph),we prove as in [13]
the following theorems.
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Theorem 3.2. Let U0 = (u0, v0) ∈ H1(Ω)×H2
N (Ω) and f ∈ L2(0, T ;H1(Ω)).

Then there exists a unique local solution U = (u, v) of (3.1) on an interval
[0, TU0,f ] such that

u ∈ H1(0, TU0,f ;L2(Ω)) ∩ C([0, TU0,f ];H1(Ω)) ∩ L2(0, TU0,f , H
2
N (Ω)),

v ∈ H1(0, TU0,f ;H1(Ω)) ∩ C([0, TU0,f ];H2
N (Ω)) ∩ L2(0, TU0,f , H

3
N (Ω)),

where TU0,f is determined by ‖f‖L2(0,T ;H1(Ω)), ‖u0‖H1(Ω) and ‖v0‖H2(Ω).

Theorem 3.3. Let U0 = (u0, v0) ∈ H2
N (Ω)×H3

N (Ω) and f ∈ L2(0, T ;H2
N (Ω)).

Then there exists a unique local solution U = (u, v) to (3.1) on an interval
[0, TU0,f ] such that:

u ∈ H1(0, TU0,f ;H1(Ω)) ∩ C([0, TU0,f ];H2
N (Ω)) ∩ L2(0, TU0,f , H

3
N (Ω)),

v ∈ H1(0, TU0,f ;H2
N (Ω)) ∩ C([0, TU0,f ];H3

N (Ω)) ∩ L2(0, TU0,f , D(A2
2)(Ω)),

where TU0,f is determined by ‖f‖L2(0,T ;H2(Ω)), ‖u0‖H2(Ω) and ‖v0‖H3(Ω).

3.2 Global existence.

This section is devoted to proving the following result:

Theorem 3.4. Let ε0 ∈ (0, 1) and let u0 ∈ L2(Ω), v0 ∈ H1+ε0(Ω) and
f ∈ L2(0, T,H1(Ω))∩L∞(0, T ;L2(Ω)) be nonnegative functions. Then there
exists a unique global and nonnegative solution (u, v) for the system (Ph)
with h(u) = u such that:

u ∈ H1(0, T ; (H1(Ω))′) ∩ C([0, T ];L2(Ω)) ∩ L2(0, T ;H1(Ω))

v ∈ H1(0, T ;Hε0(Ω)) ∩ C([0, T ];H1+ε0(Ω)) ∩ L2(0, T ;H2+ε0
N (Ω)).

Proof. We proceed in two steps.
First Step
We show that ‖v‖H1(Ω) and N1

log(u) = ‖(u+ 1)log(u+ 1)‖L1(Ω) are bounded
for all t ∈ [0, T0].
We consider the function log(u+1); since ∇log(u+1) = ∇u

u+1 , it follows that

log(u+ 1) ∈ L2(0, T0;H1(Ω)). Noting that

d

dt

∫
Ω
{(u+ 1)log(u+ 1)− u} dx =<

du

dt
, log(u+ 1) >H1, (H1)′

12



we obtain from the first equation of (Ph) multiplied by log(u+ 1) that:

d

dt

∫
Ω
{(u+ 1)log(u+ 1)− u}dx+ 4a

∫
Ω
|∇
√
u+ 1|2 dx

= β

∫
Ω

u

u+ 1
∇u∇v dx+

∫
Ω

(−k1u− qu2 + k2v) log(u+ 1)dx.

So using Stokes theorem we deduce:∫
Ω

u

u+ 1
∇u∇v dx =

∫
Ω

(log(u+ 1)− u)∆v dx ≤ η

2
‖∆v‖2L2(Ω) +

1

2η
‖u‖2L2(Ω).

Since
(k1u+ qu2)log(u+ 1) ≥ k1((u+ 1)log(u+ 1)− u),

if we denote Ψ(t) = ‖(u+ 1)log(u+ 1)− u‖L1(Ω), we get

d

dt
Ψ(t) + k1Ψ(t) ≤ η

2
‖∆v‖2L2(Ω) + (

k2
2

2ε
+
β2

2η
)‖u‖2L2(Ω) +

ε

2
‖v‖2L2(Ω),

with arbitary ε, η > 0.
From the second equation of (Ph) multiplied respectively by v and ∆v we
obtain that

1

2

d

dt

∫
Ω
v2 + d

∫
Ω
|∇v|2dx+ k2

∫
Ω
v2dx = k1

∫
Ω
u v dx+

∫
Ω
vfdx

≤
(k1A

2
+
B

2

)
‖v‖2L2(Ω) +

k1

2A
‖u‖2L2(Ω)+

1

2B
‖f‖2L2(Ω), with arbitrary A,B > 0,

and

1

2

d

dt

∫
Ω
|∇v|2 + d

∫
Ω
|∆v|2dx+ k2

∫
Ω
|∇v|2dx = k1

∫
Ω
u∆v dx+

∫
Ω
f∆v dx

≤
(k1C

2
+
D

2

)
‖∆v‖2L2(Ω) +

k1

2C
‖u‖2L2(Ω)+

1

2D
‖f‖2L2(Ω), with arbitrary C,D > 0.

Choosing ε = d, η = k2, A = k2
2k1
, B = k2

2 , C = d
2k1
, D = d

2 , we deduce

d

dt
(Ψ(t) + ‖v‖2H1(Ω)) +

d

2
‖∆v‖2L2(Ω) + k2‖v‖2H1(Ω) + k1Ψ(t)

≤
(k2

1

k2
+

β2

2k2
+
k2

2

2d
+
k2

1

d

)
‖u‖2L2(Ω) + (

1

k2
+

1

d
)‖f‖2L2(Ω). (3.3)

13



By addition of the first two equation of (Ph) it follows that:

d

dt

(
‖u‖L1(Ω) + ‖v‖L1(Ω)

)
+ q‖u‖2L2(Ω) = ‖f‖L1(Ω), (3.4)

which implies that for all t ∈ [0, T0] we have the inequality :

‖u(t)‖L1(Ω) + ‖v(t)‖L1(Ω)

≤ ‖u0‖L1(Ω) + ‖v0‖L1(Ω) +

∫ t

0
‖f(s)‖L1(Ω)ds (3.5)

As N1
log(u) =

∫
Ω(u+1)log(u+1) dx we have Ψ(t) = N1

log(u(t))−‖u(t)‖L1(Ω).

Let denote δ := max
(

1, 1
q

(k2
1
k2

+ β2

2k2
+

k2
2

2d +
k2

1
d

))
and σ := min(k1, k2) > 0.

Therefore from (3.3), (3.4) and (3.5) we obtain the following inequality:

d

dt

(
N1
log(u(t)) + ‖v(t)‖2H1(Ω) + (δ − 1)‖u(t)‖L1(Ω) + δ‖v(t)‖L1(Ω)

)
+σ
(
N1
log(u(t)) + ‖v(t)‖2H1(Ω) + (δ − 1)‖u(t)‖L1(Ω) + δ‖v(t)‖L1(Ω)

)
≤ σ(δ + 1)(‖u0‖L1(Ω) + ‖v0‖L1(Ω))

+δ‖f(t)‖L1(Ω) + (
1

k2
+

1

d
)‖f(t)‖2L2(Ω) + σδ

∫ t

0
‖f(s)‖L1(Ω)ds

We denote by g(t) = N1
log(u(t))+‖v(t)‖2H1(Ω)+(δ−1)‖u(t)‖L1(Ω)+δ‖v(t)‖L1(Ω).

Since g(t) satisfies the following ordinary differential inequality:

g′(t) + σg(t)

≤ σ(δ + 1)(‖u0‖L1(Ω) + ‖v0‖L1(Ω))

+δ‖f(t)‖L1(Ω) + (
1

k2
+

1

d
)‖f(t)‖2L2(Ω) + σδ

∫ t

0
‖f(s)‖L1(Ω)ds = C,

with C > 0 depending only on ‖f‖L∞(0,T ;L2(Ω)), ‖u0‖L2(Ω) and ‖v0‖H1+ε0 (Ω),
we get

g(t) ≤ e−σtg(0) + C, for all t ≥ 0. (3.6)

Thus the inequality

N1
log(u(t)) + ‖v(t)‖2H1(Ω)

≤ N1
log(u0) + ‖v0‖2H1(Ω) + (δ − 1)‖u0‖L1(Ω) + δ‖v0‖L1(Ω) + C, (3.7)
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holds for all t ∈ [0, T0], where the last constant C > 0 is independent of T0

and depends only on ‖f‖L∞(0,T ;L2(Ω)), ‖u0‖L2(Ω) and ‖v0‖H1+ε0 (Ω).
Second Step.
We take t1 ∈ (0, T0) so that v(t1) ∈ H2

N (Ω) and u(t1) ∈ H1(Ω) and we set
u(t1) = u1 and v(t1) = v1. From Theorem 3.1 we allready know that such
a time t1 exists, arbitrary small. In this step t varies in [t1, T0]. From the
first equation of (Ph) we have:

1

2

d

dt
‖u‖2L2 + a‖∇u‖2L2 + k1‖u‖2L2 + q‖u‖3L3 =

∫
Ω
uv dx +

β

2

∫
Ω
u2∆v dx.

From Young inequality and interpolation inequality (2.1) we get∫
Ω
u2∆v dx ≤ η‖∆v‖3L3 + η−1/2‖u‖3L3(Ω)

≤ ηC‖v‖2H3‖v‖1H1 + η−1/2‖u‖3L3 , with η > 0 arbitrary

Therefore (3.7) together with this yields that∫
Ω
u2∆v dx ≤ ηC‖v‖2H3 + η−1/2‖u‖3L3 ,

In addition∫
Ω
uv dx ≤ χ‖u‖3L3(Ω) + χ−1/2‖v‖3/2

H1(Ω)
, with χ > 0 arbitrary .

Using Biler’s Lemma (2.3) we verify from (3.7) that

‖u‖3L3(Ω) ≤ ηC‖u‖
2
H1 + p(η−1),

with p a positive increasing function, depending on ‖f‖L∞(0,T ;L2(Ω)), ‖u0‖L2(Ω)

and ‖v0‖H1+ε0 (Ω) as well as the constant C > 0.
Thus we deduce the following inequality

1

2

d

dt
‖u‖2L2 + a‖∇u‖2L2 + k1‖u(t)‖2L2 + q‖u‖3L3 (3.8)

≤ ξ(‖v‖2H3 + ‖u‖2H1) + p(ξ−1),

with p a positive increasing function depending on ‖f‖L∞(0,T ;L2(Ω)), ‖u0‖L2(Ω)

and ‖v0‖H1+ε0 (Ω), ξ > 0 an arbitrary constant.
On the other hand we consider v as a solution of the Cauchy problem

d

dt
v +A2v = k1u+ f t1 ≤ t ≤ T0

v(t1) ∈ H1(Ω)

15



in the space H1(Ω). Since k1u + f ∈ L2(t1, T0;H1(Ω)) and v1 ∈ D(A2) =

H2
N (Ω) it follows that v ∈ L2(t1, T0;D(A

3/2
2 ) ∩H1(t1, T0;D(A

1/2
2 ) and

d

dt
A

1/2
2 v = −A3/2

2 v + k1A
1/2
2 u+A

1/2
2 f, t1 ≤ t ≤ T0.

Therefore

d

dt
‖A2v‖2L2 + ‖A3/2

2 v‖2L2 ≤ C{‖A1/2
2 u‖2L2 + ‖A1/2

2 f‖2L2}.

As D(A
3
2 ) ⊂ H3(Ω), we obtain

d

dt
‖A2v‖2L2 + δ‖v‖2H3 ≤ C{‖u‖2H1 + ‖f‖2H1}, (3.9)

with some δ > 0. Let a1 = min(a, k1) > 0. We now sum up (3.8) multiplied
by 2C

a1
, where C > 0 is the constant appearing in (3.9), and (3.9). Then it

follows that:

d

dt

{C
a1
‖u‖2L2 + ‖A2v‖2L2

}
+ C(1− ξ 2C

a1
)‖u‖2H1 + (δ − ξ 2C

a1
)‖v‖2H3

≤ C1{‖f(t)‖2H1 + p(ξ−1)}, (3.10)

with some constant C1 > 0 independent of T0. Choosing ξ small enough we
conclude that:∫ s

t1

(‖v(t)‖2H3 + ‖u(t)‖2H1) dt ≤ C2{‖u1‖2L2 + ‖v1‖2H2 +

∫ T

t1

(‖f(t)‖2H1 + 1) dt}

with some constant C2 > 0 dependent on ‖f‖L∞(0,T ;L2(Ω)) and the initial
condition U0 through ‖u0‖L2 and ‖v0‖H1+ε0 , but independent of T0. The
norms ‖u‖L2(t1,T0;H1(Ω)) and ‖v‖L2(t1,T0;H3(Ω)) do not depend on T0 and hence
those of ‖u‖C([t1,T0];L2(Ω)) and ‖v‖C([t1,T0];H2(Ω)) do not depend either.
In particular this shows that the solution (u, v) can be extended as a weak
solution beyond the T0.

3.3 Exponential attractor.

Let suppose that f is a positive constant function.Then we have the follow-
ing:

16



Proposition 3.5. Let u0 ∈ H2
N (Ω) and v0 ∈ H3

N (Ω) be nonnegative func-
tions. Let u, v be the global solution of (Ph). Then, with some continuous
increasing function p(·) the following estimate holds:

‖u(t)‖H2(Ω) + ‖v(t)‖H3(Ω) ≤ p(‖u0‖H2(Ω) + ‖v0‖H3(Ω) + f),

for 0 < t <∞.

Proof. Using (3.10) we deduce the existence of two constants σ > 0 and
C > 0 such that

‖u(t)‖2L2 + ‖v(t)‖2H2 ≤ Ce−σt(‖u0‖2L2 + ‖v0‖2H2)

+ p(f +N1
log(u0) + ‖v0‖H1) (3.11)

Multiplying the first equation of (Ph) by ∆u and integrating over Ω, gives

1

2

d

dt
‖∇u‖2L2 + a‖∆u‖2L2 + k1‖∇u‖2L2 (3.12)

≤β(ε‖∆u‖2L2 +
1

2ε

∫
Ω
|∇u|2|∇v|2 dx+

1

2ε

∫
Ω
|u|2|∆v|2 dx)

+ ε′‖∇u‖2L2 + Cε′‖∇v‖2L2 ,

where ε, ε′ and Cε′ are positive constants derived from Young inequality.
Using technical inequalities proved in ([13] proposition 4.1) we obtain

1

2

d

dt
‖∇u‖2L2 + (a− βε)‖∆u‖2L2 + (k1 − ε′)‖∇u‖2L2

≤ β

2ε
(

∫
Ω
|∇u|2|∇v|2 dx+

∫
Ω
|u|2|∆v|2 dx) + Cε′‖∇v(t)‖2L2

≤ β

2ε
(η‖∆u‖2L2 + p(‖u‖L2 + ‖v‖H2 + η−1)) + Cε′‖∇v‖2L2 .

Taking η = ε2, ε = a
2β leads to

d

dt
‖∇u‖2L2 + a‖∆u‖2L2 + 2(k1 − ε′)‖∇u‖2L2

≤ β2

a
p(‖u‖L2 + ‖v‖H2(Ω)) + Cε′‖∇v‖2L2 . (3.13)

Take the second equation of (Ph) operated by ∆, choose ∆2v as a test
function and integrate the product in Ω. After some calculations as in [13]
we have

d

dt
‖∇∆v‖2L2 + d‖∆2v‖2L2) + 2k2‖∇∆v‖2L2 ≤

k2
1

d
‖∆u‖2L2 . (3.14)
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We sum (3.14) multiplied by γ and (3.13). Thus we obtain:

d

dt
(‖∇u‖2L2 + γ‖∇∆v‖2L2) + γd‖∆2v‖2L2 + (a− γk2

1

d
)‖∆u‖2L2

+ 2(k1 − ε′)(‖∇u‖2L2 +
k2γ

k1 − ε′
‖∇∆v‖2L2) ≤ p(‖u‖L2 + ‖v‖H2).

Then for γ and ε′ small enough, there exists a positive constant σ′ such that

d

dt
(‖∇u‖2L2 + γ‖∇∆v‖2L2) + σ′(‖∇u‖2L2 + γ‖∇∆v(t)‖2L2)

≤ p(‖u‖L2 + ‖v‖H2). (3.15)

So, we can find χ > 0 such as (3.11) is valid when σ = χ and

‖u(t)‖2H1(Ω) + ‖v(t)‖2H3 ≤ e−χt(‖u0‖2H1 + ‖v0‖2H3)

+ p(f + ‖u0‖L2 + ‖v0‖H2). (3.16)

We verify also that∫ t

0
(‖∆2v(s)‖2L2 + ‖u(s)‖2H2)ds ≤ C(‖v0‖2H3 + ‖u0‖2H1)

+ tp(f + ‖u0‖L2 + ‖v0‖H2).

Finally, taking the first equation of (Ph) operated by ∇ and multiplied by
∇∆u, gives as in [13]

1

2

d

dt
‖∆u‖2L2 + a‖∇∆u‖2L2 = β

∫
Ω
∇(∇ · u∇v) · ∇∆udx

+ k1

∫
Ω
∇u · ∇∆udx+ 2q

∫
Ω
u∇u · ∇∆udx− k2

∫
Ω
∇v · ∇∆udx, (3.17)

that is

1

2

d

dt
‖∆u‖2L2(Ω) + a‖∇∆u‖2L2(Ω) ≤

a

2
‖∇∆u‖2L2

+ C

∫
Ω
|∇(∇ · (u∇v)|2dx+ C(

∫
Ω
|u∇u|2dx+ ‖∇v‖2L2). (3.18)

The terms
∫

Ω |∇(∇ · (u∇v)|2dx and
∫

Ω |u∇u|
2dx of (3.18) can be estimated

(see [13], proof of proposition 4.1, step 6) by

η‖∇∆u‖2L2 + p(‖u‖H1 + ‖v‖H3 ,+η−1)
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With an arbitrary η > 0. Thus we obtain:

1

2

d

dt
‖∆u‖2L2 +

a

2
‖∇∆u‖2L2 + ζ‖∆u‖2L2

≤ η‖∇∆u‖2L2 + p(‖u‖H1 + ‖v‖H3 + η−1). (3.19)

Hence we can find a constant χ > 0 such that (3.16) is valid and

‖u(t)‖2H2 ≤ e−χt‖u0‖2H2 + p(f + ‖u0‖H1 + ‖v0‖H3). (3.20)

To prove the existence of an exponential attractor, we will use the following
result:

Proposition 3.6. Let u0 ∈ L2(Ω), v0 ∈ H1+ε0(Ω) be nonnegative functions.
Then there exists a continuous increasing function p(·), independent of u0

and v0 such that

‖u(t)‖2H2 + ‖v(t)‖2H3 ≤ p(f +N1
log(u0) + ‖v0‖H1(Ω) + t−1)

Proof. Since the proof follows exactly the same ideas and technical difficul-
ties as in the proof of Theorem 4.6 [13] we skip it here.

We can now prove the existence of an exponential attractor: Let H =
L2(Ω)×H1(Ω) and consider the initial value problem

dU

dt
+AU = G(U)

U(0) = U0

(E)

in H, with A as in section 3.1 and D(A) = H2
n(Ω)×H3

n(Ω) and

G(U) :=

(
β∇(u∇v)− q|u|u+ k2v

k1u+ f

)
Let K = {(u, v) ∈ L2

+(Ω) × H1+ε0
+ (Ω)} be the space of initial values and

U0 ∈ K.
We proved already the existence of a unique global solution U = (u, v) con-
tinuous with respect to the initial condition U0. We define then a continuous
semigroup {S(t)t≥0} on K by S(t)U0 = U(t). For a fixed t > 0, S(t) maps
K into K ∩D(A).
Let denote Br := {(u, v) ∈ K; ‖u0‖L2 + ‖v0‖H1+ε0 ≤ r} a bounded ball of K
with radius r > 0.
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Proposition 3.7. There exists a universal constant C > 0 such that the
following statement holds: for each r > 0 there exists a time tr > 0 such
that

sup
t≥tr

sup
U0∈Br

‖S(t)U0‖H2(Ω)×H3(Ω) ≤ C

Proof. Fix 0 < r <∞. By tr and Cr we shall denote some time and positive
constant which depend on r but are uniform in U0 ∈ Br, respectively. By
the Proposition 3.6, there exist a time tr and a constant Cr such that for
t ≥ tr

‖u(t)‖2H2 + ‖v(t)‖2H3 ≤ Cr (3.21)

The desired estimate will be established step by step.

Let us add the first equation of (Ph) and the second one multiplied by 2
and let us integrate in space the result. If Φ(t) := ‖u(t)‖L1 + 2‖v(t)‖L1 we
obtain:

d

dt
Φ(t)+

k2

2
Φ(t) =

∫
Ω

(−qu2 +k1u+
k2

2
u) dx+f |Ω| ≤ { 1

4q
(k1 +

k2

2
)2 +f}|Ω|.

Thus

Φ(t) ≤
{

Φ(0)− 2

k2

( 1

4q
(k1 +

k2

2
)2 + f

)
|Ω|
}
e−

k2
2
t +

2

k2

( 1

4q
(k1 +

k2

2
)2 + f

)
|Ω|,

and we deduce

‖u(t)‖L1 + 2‖v(t)‖L1 ≤ C(Cre
−ct + 1),

with C, c > 0 universal constants and Cr > 0 a constant depending in r.
This shows that there exists a time denoted by tr such that for all t ≥ tr

‖u(t)‖L1 + ‖v(t)‖L1 ≤ C (3.22)

with C > 0 a universal constant.

From (3.6) and (3.22) it follows that

g(t) ≤ (g(0)− C)e−σ(t−tr) + C for t ≥ tr.

Then there exists another time tr and another universal constant C > 0
such that

‖v(t)‖H1 ≤ C and N1
log(u(t)) ≤ C for t ≥ tr.
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From (3.11) and (3.21) we deduce that

‖v(t)‖H2(Ω) + ‖u(t)‖L2(Ω) ≤ Cre−σ(t−tr) + C for t ≥ tr.

and that there exist another time tr and another constant C > 0, such that

‖v(t)‖H2(Ω) + ‖u(t)‖L2(Ω) ≤ C for t ≥ tr.

Finally using (3.20), (3.16) and repeat the argument we finish the proof.

Let B = {(u, v) ∈ H2
N (Ω) × H3

N (Ω) / ‖u‖H2(Ω) + ‖v‖H3(Ω) ≤ C} ∩ K
with C the constant appearing in proposition 3.7. We proved that B is
a compact absorbing set for ({S(t)}t≥0,K). Hence by Temam([19]), there
exist a global attractor A ⊂ K, where A is a compact and connected subset
of K.
Let H = ∪

t≥tB
S(t)B where tB is such that S(t)B ⊂ B. Then H is a

compact set of K with A ⊂H ⊂ K. Since H is absorbing and positively
invariant for {S(t)t≥0} we apply to the dynamical system ({S(t)}t≥0,H )
the following

Theorem. (Theorem 3.1 [20])
Let Γ(t, U0) = S(t)U0 be a mapping from [0, T ]×H into H . If G satisfies

‖G(U)−G(V )‖ ≤ ‖A
1
2 (U − V )‖, U, V ∈H (C1)

and Γ is such that

‖Γ(t, U0)−Γ(s, V0)‖ ≤ CT (|t−s|+‖U0−V0‖H , t, s ∈ [0, T ], U0, V0 ∈H (C2)

for each T > 0, then there is an exponential attractor M for ({S(t)},H ).

Thus we obtain

Theorem 3.8. There exists an exponential attractor M of the dynamical
system ({S(t)}t≥0,H ) in H

Proof. Since the forcing term f is constant and the reaction coupling of the
first equation of (E) is linear in U : k2v, the proof is the same as provided
in ([13], Theorem 5.1).
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4 Second case: h(u) = u(M − u).

Let M be a positive constant and consider a continuous function h̃ of h such
as {

h̃(u) = u(M − u) if 0 ≤ u ≤M,

h̃(u) = 0 otherwise.
(4.1)

Then we have the following:

Proposition 4.1. Let ε0 > 0 and f be a nonnegative function in L2(0, T ;H1(Ω))∩
 L∞(ΩT ). For each nonnegative initial condition (u0, v0) in L2(Ω)×H1+ε0(Ω)
there exists a constant T0 such that 0 < T0 ≤ T and a unique nonnegative
solution (u, v) of (Ph̃) such that:

u ∈ H1(0, T0; (H1(Ω))′) ∩ C([0, T0];L2(Ω)) ∩ L2(0, T0;H1(Ω))

v ∈ H1(0, T0;Hε0(Ω)) ∩ C([0, T0];H1+ε0(Ω)) ∩ L2(0, T0;H2+ε0
ν (Ω))

Proof. The proof is essentially the same as in section 3.2.

Moreover we can prove the following:

Lemma 4.2. Let suppose that M ≥ (
‖f‖L∞(ΩT )

q )
1
2 and M ′ = qM2+k1M

k2
> 0.

If the initial condition (u0, v0) satisfies almost everywhere in Ω the following
inequalities:

0 ≤ u0(x) ≤M, 0 ≤ v0(x) ≤M ′,

then the solution (u, v) of (Ph̃) satisfies:

0 ≤ u(t, x) ≤M 0 ≤ v(t, x) ≤M ′,

almost everywhere in ΩT .

Proof. Let define ũ = M − u and ṽ = M ′ − v. Thus we get:

ũt = a∆ũ− βdiv(h̃(ũ)∇ṽ)− (2qM + k1)ũ+ qũ2 + k2ṽ + qM2 + k1M − k2M
′

ṽt = d∆ṽ − k2ṽ + k1ũ+ k2M
′ − k1M − f

As M ≥ (
‖f‖L∞(ΩT )

q )
1
2 , and M ′ = qM2+k1M

k2
we obtain

qM2 + k1M − k2M
′ = 0

and
k2M

′ − k1M − f ≥ 0.
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We multiply the first equation by −ũ− and the second by −ṽ− and we
integrate in space. Thank to the identity:

∫
Ω h̃(ũ)∇ṽ∇ũ−dx = 0 and since

qũ2ũ−, k2ũ
−ṽ+, k1ṽ

−ũ+ ≥ 0 almost everywhere in Ω, we deduce:

1

2

d

dt
‖ũ−‖2L2(Ω) ≤ (2qM + k1)‖ũ−‖2L2(Ω) + k2

∫
Ω
ṽ−ũ− dx

and
1

2

d

dt
‖ṽ−‖2L2(Ω) ≤ k2‖ṽ−‖2L2(Ω) + k1

∫
Ω
ṽ−ũ− dx.

Taking the sum of the two previous inequalities and using Young inequality
it follows:

d

dt
(‖ũ−‖2L2(Ω) + ‖ṽ−‖2L2(Ω)) ≤ C(‖ũ−‖2L2(Ω) + ‖ṽ−‖2L2(Ω))

for some constant C > 0. By Gronwall lemma we get

‖ũ−‖2L2(Ω) + ‖ṽ−‖2L2(Ω) = 0.

which completes the proof.

Remark. i) If the hypothesis of Lemma 4.2 are fulfilled, thanks to this
Lemma, the solution obtained in proposition 4.1 is global in ΩT ,

ii) By Proposition 4.1 and Lemma 4.2 it follows that (u, v) is also a so-
lution of (Ph), with h(u) = u(M − u).

The uniqueness of the solution is obtained in the following

Theorem 4.3. Let f ∈ L∞(ΩT ) ∩ L2(0, T ;H1(Ω)) be a nonnegative func-

tion. Let h(u) = u(M − u) and suppose that M ≥ (
(‖f‖L∞(ΩT )

q )
1
2 . Let

(u0, v0) ∈ L2(Ω) ×H1+ε0(Ω) such that 0 ≤ u0 ≤ M and 0 ≤ v0 ≤ M ′ with

M ′ = qM2+k1M
k2

. Then there exists a unique global solution for (Ph) which
is nonnegative and such that

u ∈ L∞(ΩT ) ∩H1(0, T ; (H1(Ω))′) ∩ C([0, T ];L2(Ω)) ∩ L2(0, T ;H1(Ω))

v ∈ H1(0, T ;Hε0(Ω)) ∩ C([0, T ];H1+ε0(Ω)) ∩ L2(0, T ;H2+ε0(Ω))

and

0 ≤ u ≤M 0 ≤ v ≤M ′

Proof. We skip here the proof of uniqueness since there is rigorously the
same as in Theorem 5.3.

23



5 A three dimensional domain.

In order to prove the global existence of a solution of system (Ph), we sup-
posed in the previous sections that Ω was a two dimensional domain and
the initial conditions (u0, v0) ∈ L∞(Ω) × H1+ε0(Ω) were nonnegative and
verifying some regularity conditions. These conditions are quite restrictive
for a model of soil organic carbon and three dimensional domains are obvi-
ously more relevant in applications than bidimensional ones.
In this section we prove that if Ω is of dimension less than or equal to 3,
if h = h̃ (4.1) and if both initial conditions and forcing term are nonnega-
tive and less regular that in the previous section : (u0, v0) ∈ (L2(Ω))2 and
f ∈ L2(0, T ;L2(Ω)), then the system (Ph) has a global nonnegative solution.
Furthermore, if (u0, v0) ∈ (L∞(Ω))2 and f ∈ L∞(ΩT ), then the solution is
unique.
Here we use the following setting:

V = H1(Ω)×H1(Ω),

H = L2(Ω)× L2(Ω),

V ′ = (H1(Ω))′ × (H1(Ω))′.

We let h̃ be the continuous function defined by (4.1). Let us consider the
following system:

∂tu− a∆u = −βdiv(h̃(ū)∇v)− k1u− q|u|u+ k2v in ΩT ,

∂tv − d∆v = −k2v + k1u+ f in ΩT ,

∇u · η(x) = ∇v · η(x) = 0 on ΣT ,

u(0, ·) = u0, v(0, ·) = v0 in Ω,

(P-S)

where (u0, v0) ∈ (L2(Ω))2, f ∈ L2(0, T ;L2(Ω)) and ū is a function in
X = L2(ΩT ).
For the sake of simplicity we take dim(Ω) = 3. since all results remain the
same if dim(Ω) < 3.
We will apply the Schauder fixed point theorem but let us first gather some
more information.

First Step: Invariant Ball
For any function ū ∈ X the existence of a unique local solution of (P-S)
(uū, vū) follows by direct application of Theorem 2.1. Additionally we have
the following:
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Proposition 5.1. Let (u0, v0) ∈ (L2(Ω))2 and f ∈ L2(0, T ;L2(Ω)).

1. For any ū ∈ X the unique local solution (uū, vū) of (P-S) is global and
satisfies:

uū ∈ H1(0, T ; (H1(Ω))′) ∩ C([0, T ];L2(Ω)) ∩ L2(0, T ;H1(Ω)),

vū ∈ H1(0, T ; (H1(Ω))′) ∩ C([0, T ];L2(Ω)) ∩ L2(0, T ;H1(Ω)).

2. Furthermore, for all ū ∈ X, there exist two constant R > 0 and C > 0
such that:

‖uū‖L2(ΩT ) ≤ R and ‖u‖W ≤ C (5.1)

where

W = {u ∈ L2(0, T ;H1(Ω)), ut ∈ L2(0, T ; (H1(Ω))′)}.

Proof. To prove that(uū, vū) is global in time, we multiply the first equation
by uū and the second by vū and use Young inequality to get

1

2

d

dt
‖uū‖2L2(Ω)+a‖∇uū‖

2
L2(Ω) +

∫
Ω
{k1|uū|2 + q|uū|3} ≤ k2

∫
Ω
{u2

ū +
1

4
v2
ū}dx

+
M2
ū

4
(
M2

8a
‖∇vū‖2L2(Ω) +

a

2

4

M2
‖∇uū‖2L2(Ω)),

and

1

2

d

dt
‖vū‖2L2(Ω)+d‖∇vū‖

2
L2(Ω) + k2‖vū‖2L2(Ω) ≤

k2

2
‖vū‖2L2(Ω)

+

∫
Ω
{ k

2
1

2k2
u2
ū}dx+

k2

4
‖vū‖2L2(Ω) +

1

k2
‖f‖2L2(Ω).

Multiplying by ρ > 0 the first inequality and adding to the second one gives:

1

2

d

dt
(ρ‖uū‖2L2(Ω) + ‖vū‖2L2(Ω)) +

ρa

2
‖∇uū‖2L2(Ω) + d‖∇vū‖2L2(Ω)

+

∫
Ω
{ρk1|uū|2 + ρq|uū|3} ≤ ρ

M4

32a
‖∇vū‖2L2(Ω) + C

∫
Ω
|uū|2 +

1

k2
‖f‖2L2(Ω),

where C =
k2

1
2k2

+ k2. For ρ = 16ad
M4 we obtain the following inequality:

1

2

d

dt
(ρ‖uū‖2L2 + ‖vū‖2L2(Ω)) +

ρa

2
‖∇uū‖2L2(Ω) +

d

2
‖∇vū‖2L2(Ω)

+

∫
Ω
{(ρk1 − C)|uū|2 + ρq|uū|3} ≤

1

k2
‖f‖2L2(Ω). (5.2)
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If (ρk1 − C) ≥ 0 we finished the proof of part 1. If (ρk1 − C) < 0 then, for

any 0 < λ < ρq, let note Kλ = 4
27

(ρk1−C)3

(ρq−λ)2 < 0. By a simple real analysis

argument, we deduce :

(ρk1 − C)|u|2 + ρq|u|3 ≥ λ|u|3 +Kλ,

for any u ∈ X. Hence the inequality (5.2) becomes:

1

2

d

dt
(ρ‖uū‖2L2(Ω) + ‖vū‖2L2(Ω)) +

ρa

2
‖∇uū‖2L2(Ω) +

d

2
‖∇vū‖2L2(Ω)

+

∫
Ω
{λ|uū|3 +Kλ} ≤

1

k2
‖f‖2L2(Ω).

Since u0, v0 ∈ L2(Ω) we deduce that uū , vū are bounded in L∞(0, T ;L2(Ω))∩
L2(0, T,H1(Ω)), and this bound does not depend on ū . Using interpolation
technique we obtain that uū is bounded in ∈ L4(0, T ; (L3(Ω)) and conse-

quently |uū|uū is bounded in L2(0, T ; (L
3
2 (Ω)), independent of ū.

Combining Hölder inequality, the boundedness of uū, vū in L2(0, T,H1(Ω))
and L4(0, T ; (L3(Ω)) and the continous injection of L2(0, T ;H1(Ω)) into
L2(0, T ; (L3(Ω)) we obtain that ∂tuū, ∂tvū are bounded in L2(0, T ; (H1(Ω))′),
independent of ū. So we finish the proof.

We can then define the mapping Π : X → X such that uū = Π(ū) is the
unique solution of (P-S). From (5.1) the ball BR ⊂ X is invariant by Π.

Second Step: Compactness of Π(BR).
The second statement of the previous proposition implies that Π(BR) ⊂
{u ∈ W, ‖u‖W ≤ C}. But the embedding of W into L2(0, T, L2(Ω)) is com-
pact thanks to the Aubin-Lions lemma.

Third Step: Π is a continuous mapping.
Let zn ∈ BR such that zn → z in L2(ΩT ) strong and let un = Π(zn). Then
Un = (un, vn) satisfies the system (P-S)n:

∂tun − a∆un = −βdiv(h̃(zn)∇vn)− k1un − q|un|un + k2vn in ΩT ,
∂tvn − d∆vn = −k2vn + k1un + f in ΩT ,
∇un · ν = ∇vn · ν = 0 on ΣT ,
un(0, ·) = u0, vn(0, ·) = v0 in Ω,

Since the sequence (un, vn)n≥1 is bounded in W 2 and (L∞([0, T ];L2(Ω)))2,
there exists by the Aubin-Lions lemma a subsequence (not relabeled) such
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that 
un → u in L2(ΩT ), un → u a.e. in (ΩT )

∇un ⇀ ξ in (L2(ΩT ))3

∂tun ⇀ ψ in L2(0, T, (H1(Ω))′).

To prove that ∇u = ξ, we take a test function ϕ ∈ (D(ΩT ))3, so that:∫ T

0

∫
Ω
∇uni ϕ dxdt = −

∫ T

0

∫
Ω
uni ∇ϕ dxdt

Taking the limit when n→∞ of both sides of this equation, we obtain∫ T

0

∫
Ω
ξiϕ dxdt = −

∫ T

0

∫
Ω
ui∇ϕ dxdt =

∫ T

0

∫
Ω
∇uiϕ dxdt,

and we conclude by a density argument. To prove that ∂tu = ψ, we use
a similar computation for the derivative with respect to time, with test
function ϕ ∈ C1

c (0, T,H1(Ω)). Thus we have

un ⇀ u in L2(0, T,H1(Ω)), ∂un ⇀ ∂u in L2(0, T, (H1(Ω))′) (5.3)

|un|un ⇀ |u|u in L2(0, T, L
3
2 (Ω)),

where the last assertion is a straightforward consequence of the upper bound
of sequence |un|un in L2(0, T, L

3
2 (Ω)) and the a.e. convergence of the se-

quence (un)n≥1 in ΩT . We obtain also a similar convergence for vn towards
v as in (5.3).
Finally, thanks to suitable choices of test functions it follows that the limit
function v is solution of the following problem:

∂tv − d∆v = −k2v + k1u+ f in ΩT ,

∇v · ν = 0 on ΣT ,

v(0, ·) = v0 in Ω.

(5.4)

Obviously we prove that ∇vn → ∇v in (L2(ΩT )3 when n→∞ and thereby
vn strongly converges to v in L2(0, T,H1(Ω)). Since h is continous, zn → z in
L2(ΩT ) and∇vn → ∇v in (L2(ΩT )3 there exists a subsequnce (not relabeled)
such that h̃(znk

)∇vnk
→ h̃(z)∇v a.e. in ΩT . As h̃(znk

)∇vnk
is bounded in

L2(ΩT ) we obtain by the dominated convergence theorem :

h̃(znk
)∇vnk

→ h̃(z)∇v in L2(ΩT ),
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and we can pass to the limit in the (P-S)n system. Thus
∂tu− a∆u = −βdiv(h̃(z)∇v)− k1u− q|u|u+ k2v in ΩT ,

∂tv − d∆v = −k2v + k1u+ f in ΩT ,

∇u · ν = ∇v · ν = 0 on ΣT .,

u(0, ·) = u0, v(0, ·) = v0 in Ω.

(5.5)

and we get u = Π(z).
By the uniqueness of the solution (u, v) of (5.5), we deduce that all the
sequence converges. We conclude that Π is a continuous mapping.
We can now apply the Schauder fixed point theorem to prove the existence
statement of the following

Proposition 5.2. Let f be a nonnegative function in L2(0, T ;L2(Ω)). For
each couple of nonnegative functions (u0, v0) ∈ (L2(Ω))2 there exists a non-
negative solution for the problem (Ph), with h = h̃.

To prove the positivity of the solution, we proceed as in section 4:
we multiply the first equation by −u− and the second by −v−, we in-
tegrate in space and we add the two equations. Thanks to the identity∫

Ω h(u)∇v∇u− = 0, a straightforward calculation gives:

d

dt

(
‖u−‖2L2(Ω) + ‖v−‖2L2(Ω)

)
≤ C

(
‖u−‖2L2(Ω) + ‖v−‖L2(Ω)

)
,

with C > 0. We finish the proof by applying the Gronwall lemma.
For the uniqueness of solution of (Ph) problem we have:

Theorem 5.3. Let f ∈ L∞(ΩT ) be a nonnegative function. Consider
(u0, v0) ∈ (L∞(Ω))2 such that 0 ≤ u0 ≤ M and 0 ≤ v0(x) ≤ vM almost
everywhere in Ω, where vM is a positive constant. Then there exists a con-
stant α ≥ 0 such that

0 ≤ u(t, x) ≤Meαt 0 ≤ v(t, x) ≤ vMeαt, (5.6)

and the solution of (Ph) problem is unique, when h = h̃.

Proof. Let ũ = u−Meαt and ṽ = v − vMeαt then we have

ũt = a∆ũ− β∇(h(u)∇ṽ)− k1ũ− qũ2 + k2ṽ

− (αM + k1M + 2quM − k2vM )eαt − qM2e2αt,
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and

ṽt = a∆ṽ + k1ũ+ {f + eαt((−k2 − α)vM + k1M)}.

We take α large enough such that:

f + eαt((−k2 − α)vM + k1M) ≤ 0,

and

αM + k1M − k2vM ≥ 0,

Multiplying the first equation by ũ+ and the second by ṽ+ and then adding
the two equations gives:

1

2

( d
dt
‖ũ+‖2L2(Ω)+

d

dt
‖ṽ+‖2L2(Ω)

)
≤ β

∫
Ω
h(u)∇v∇ũ++C(‖ũ+‖2L2(Ω)+‖ṽ

+‖2L2(Ω))

Thanks to (4.1) β
∫

Ω h(u)∇v∇ũ+ = 0 and we obtain (5.6) by using Gronwall
lemma.
To prove uniqueness, suppose that there exists two solutions (u1, v1) and
(u2, v2). Then ū = u1 − u2 and v̄ = v1 − v2 verify

ūt = a∆ū− β∇(h(u1)∇v1 − (h(u2)∇v2)− k1ū− qu1
2 + qu2

2 + k2v̄,

v̄t = d∆v̄ − k2v̄ + k1ū,

ū0 = v̄0 = 0 a.e in Ω. (5.7)

Multiplying the first equation by ū, the second by v̄ and integrating over Ω
lead to

1

2

d

dt
‖ū‖2L2(Ω) + a‖∇ū‖2L2(Ω) ≤ β

∫
Ω
|(h(u1)∇v1 − h(u2)∇v2)∇ū| dx

+ C(‖ū‖2L2(Ω) + ‖v̄‖2L2(Ω))

and

1

2

d

dt
‖v̄‖2L2(Ω) + +d‖∇v̄‖2L2(Ω) + k2‖v̄‖2L2(Ω) = k1

∫
Ω
ūv̄ dx.

It follows that

1

2

d

dt
‖ū‖2L2(Ω)+a‖∇ū‖

2
L2(Ω) ≤ β

∫
Ω

(
|h(u1)−h(u2)| |∇v1|+h(u2) |∇v̄|

)
|∇ū| dx

+ C(‖ū‖2L2(Ω) + ‖v̄‖2L2(Ω)) (5.8)
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and

1

2

d

dt
‖v̄‖2L2(Ω) + d‖∇v̄‖2L2(Ω) + k2‖v̄‖2L2(Ω) ≤C(‖ū‖2L2 + ‖v̄‖2L2(Ω)) (5.9)

Recalling (5.6) ū and v̄ are bounded in ΩT . Classical parabolic regularity
results and (5.4) imply that v ∈ Lp(0, T,W 2,p(Ω)) for each p ∈ (1,∞). By
Sobolev embedding, there is p > 3 such that ∇v1 ∈ L2(0, T ;L∞(Ω)). Hence∫

Ω
|h(u1)− h(u2)| |∇v1| |∇ū| dx ≤M‖∇v1‖L∞(Ω)‖ū‖L2(Ω)‖∇ū‖L2(Ω)

≤ ε‖∇ū‖2L2(Ω) + Cε‖∇v1‖2L∞(Ω)‖ū‖
2
L2(Ω) (5.10)

and ∫
Ω
h(u2) |(∇v̄)| |∇ū| ≤ M

2
‖∇v̄‖L2(Ω)‖∇ū‖L2(Ω)

≤ ε′‖∇ū‖2L2(Ω) + C ′ε‖∇v̄‖2L2(Ω) (5.11)

We sum up (5.9) and (5.8) multiplied by a constant σ > 0 small enough,
and we use (5.10) and (5.11) with a wise choise of ε, ε′ and σ such that:
ε+ε′ ≤ a and σC ′ε ≤ d. Thereby we prove the existence of a constant C > 0
such that:

d

dt
(σ‖ū‖2L2(Ω) + ‖v̄‖2L2(Ω)) ≤ C(‖∇v1‖L∞(Ω) + 1)(σ‖ū‖2L2(Ω) + ‖v̄‖2L2(Ω))

The Gronwall lemma entail that ‖ū(t)‖L2(Ω) = ‖v̄(t)‖L2(Ω) = 0 for every
t ∈ [0, T ], which completes the proof.
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Appendix 1.

Non-emergence of spatial patterns in (Ph)model without chemo-
taxis term (β = 0).

Firstly we considere the PDEs system (Ph) without chemotaxis term (β =
0). As in Lotka-Volterra systems [21], also known as the predator-prey
equations, diffusion alone cannot disturb a constant equilibrium, and so
spatial heterogeneity cannot emerge. Using the following notation:

x̃ =
√

k1
a x t̃ = k1t α = q

k1
ζ = k2

k1
c = f

k1
D = d

a

we obtain the following non-dimensional equations (we revoke the notation):{
∂tu = ∆u− u− αu2 + ζv
∂tv = D∆v + u− ζv + c

(x, t) ∈ Ω× (0;T ) (1)

with the same initial conditions and boundary conditions as (Ph) system .
Without diffusion, the system (1) has a unique positive steady state:

u∗ =

√
c

α
v∗ =

u∗ + c

ζ
(2)

To assess the steady state stability, the system is linearised around (u∗, v∗).
Setting:

εw1 = u− u∗ εw2 = v − v∗

where 0 < ε� 1, gives the following linear system:{
∂tw1 = ∆w1 − w1 − 2αu∗w1 + ζw2

∂tw2 = D∆w2 + w1 − ζw2
(x, t) ∈ Ω× (0, T ), (3)

with no-flux boundary conditions.
As in Murray [21], we looked for a solution of the form:

w =

(
w1

w2

)
∝ e(ik·x+ρt). (4)

Lets k = |k| be the Euclidean norm of the wave vector. We obtain the
following eigenvalue problem:

Aw = ρw,
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where A is the two by two matrix

A =

(
−1− 2αu∗ − k2 ζ

1 −ζ − k2D

)
.

The eigenvalue ρ depends on k.
Turing instability occurs (which means that spatial patterns appear)

when ρ
(
k2
)
> 0 , for a given value of k. But the matrix A has a strictly

negative trace and a positive determinant, and so ρ
(
k2
)
< 0 for all values

of k . Hence no patterns will emerge in this case.

Emergence of spatial patterns in (Ph) model with β > 0.

Finally, for the model with both diffusion and chemotaxis, it can be proven
that the equilibrium solutions of the equation system (Ph) can be rendered
non-stable under certain conditions, and thus produce patterns and spatial
heterogeneity. As in the previous section, the system (Ph) was linearised
around the steady state (u∗, v∗). We obtain the following system{

∂tw1 = ∆w1 − e∆w2 − w1 − 2αu∗w1 + ζw2

∂tw2 = D∆w2 + w1 − ζw2
(x, t) ∈ Ω× (0, T ), (7)

where

e = βh (u∗)
k1

a
.

Looking for solutions like in (4), the following eigenvalue problem must be
solved:

Bw = ρw, (8)

where B is the two by two matrix

B =

(
−1− 2αu∗ − k2 ζ + ek2

1 −ζ − k2D

)
.

In this case, the trace of matrix B is strictly negative while its determinant
can be strictly negative for some values of k. Thus, taking chemotaxis into
account in the system may lead to the emergence of spatial patterns.
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Appendix 2.

Numerical simulations.

A set of validated parameters derived from studies published [7] was used
to run numerical simulations. The data used came from an Andean Pramo
site near Gavidia, Venezuela. As pattern geometries depend on the shape of
the spatial domain [21], two different forms of spatial domain were tested.
Figures below show the numerical simulations of the soil microbial biomass
compartment for the nearly rectangular and circular domains, using either
h(u) = h1(u) = u which does not prevent explicitly any overcrowding (Fig 1
and 2), or h(u) = h2(u) = u(M−u) which explicitly does prevent overcrowd-
ing (Fig 3 and 4). These figures show the spatial variability and patterns
obtained for soil microbial biomass after 60 days and for the two spatial
domain shapes. The soil microbial biomass pattern agrees with the distri-
bution within the soil matrix of the microbial hot spots at micron scale.
Numerical simulations were performed using COMSOL Multiphysics 5.0.

Figure 1: Spatial microbial biomass distribution when h = h1 after 60 days.
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Figure 2: Spatial microbial biomass distribution when h = h1 after 60 days.

Figure 3: Spatial microbial biomass distribution when h = h2 after 60 days.

Figure 4: Spatial microbial biomass distribution when h = h2 after 60 days.
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