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Abstract. Nowadays, many heterogeneous relational data are stored in
databases to be further explored for discovering meaningful patterns.
Such databases exist in various domains and we focus here on river mon-
itoring. In this paper, a limited number of river sites that make up a
river network (seen as a directed graph) is given. Periodically, for each
river site three types of data are collected. Our aim is to reveal user-
friendly results for visualising the intrinsic structure of these data. To
that end, we present an approach for exploring heterogeneous sequential
data using Relational Concept Analysis. The main objective is to enhance
the evaluation step by extracting heterogeneous closed partially-ordered
patterns organised into a hierarchy. The experiments and qualitative in-
terpretations show that our method outputs instructive results for the
hydro-ecological domain.

1 Introduction

In Europe, according to the recomandations of Water Framework Directive [4],
a special attention should be given to preserving or restoring the good state of
waterbodies. Monitoring and assessing the effect of pollution sources and the one
of restoration processes must be done in order to improve domain knowledge and
to define guidelines for stakeholders.

During an interdisciplinary research project, namely REX1, many and var-
ious hydro-ecological data have been collected periodically between 2002 and
2014 from a river network (seen as a directed graph). These data are about past
restoration projects, temporal evolution of aquatic ecosystems and land use pres-
sures. The REX data have been studied with statistical methods, but relational
information could not be taken into account (e.g. effect of upper restoration).

Therefore, in this paper we deal with heterogeneous sequential data and
we try to make sense of them by means of hierarchies of heterogeneous closed
partially-ordered patterns (cpo-patterns, [2]) that exhibit the natural structure
of these data. Indeed, a cpo-pattern is compact, contains the same information

1 http://obs-rhin.engees.eu
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as the set of sequential patterns it synthesises and is user-friendly thanks to
its representation as a directed acyclic graph. Moreover, a hierarchy provides a
convenient way for navigating to interesting heterogeneous cpo-patterns.

To that end, we extend our self-contained approach RCA-Seq – introduced
in [7] and based on Relational Concept Analysis (RCA, [12]) – for exploring
classical sequential data to exploring heterogeneous sequential data. We propose
to manipulate the data as a directed graph that has heterogeneous itemsets (i.e.
a set of itemsets of different domains) as vertices and binary spatial relations as
edges. Accordingly, we show that RCA-Seq is robust and can be appropriate
for exploring graphs and networks, as well.

The paper is structured as follows. Section 2 gives the theoretical background
of our work. Section 3 describes the analysed heterogeneous hydro-ecological
data. Section 4 introduces a data model used to encode the data into the RCA
input. Section 5 presents the RCA-based exploration step. Section 6 explains
our proposal for directly extracting hierarchies of heterogeneous cpo-patterns
from the RCA output. In Sect. 7 experimental results are discussed. Section 8
presents related work. Finally, we conclude the paper in Sect. 9.

2 Preliminaries

2.1 Heterogeneous CPO-Patterns

Let I = {I1, I2, ..., Im} be a set of items. An itemset IS = (Ij1...Ijk), where
Iji ∈ I, is an unordered subset of I. An itemset IS with k items is referred to
as k-itemset. Let IS be the set of all itemsets built from I. A sequence S is a
non-empty ordered list of itemsets, S = 〈IS1IS2...ISp〉 where ISj ∈ IS. The
sequence S is a subsequence of another sequence S′ = 〈IS′1IS′2...IS′q〉, denoted
as S �s S

′, if p ≤ q and if there are integers j1 < j2 < ... < jk < ... < jp such
that IS1 ⊆ IS′j1, IS2 ⊆ IS′j2, ..., ISp ⊆ IS′jp.

Sequential patterns have been defined by [1] as frequent subsequences discov-
ered in a sequence database. A sequential pattern is associated with a support
θ, i.e. the number of sequences containing the pattern.

Suppose now that there is a partial order (i.e. a reflexive, antisymmetric and
transitive binary relation) on the items, denoted by (I,≤). We say that (I,≤) is a
poset. A multilevel itemset ISml = (Ij1...Ijk), where Iji ∈ I and @Iji , Iji′ ∈ ISml

such that Iji ≤ Iji′ , is a non-empty and unordered set of items that can be at
different levels of granularity (i.e. items from different levels of poset (I,≤)). We
denote by ISml the set of all multilevel itemsets built from (I,≤). The partial
order on the set of all multilevel itemsets (ISml,⊆ml) is defined as follows:
ISml ⊆ IS′ml if ∀Ij ∈ ISml,∃Ij′ ∈ IS′ml, Ij′ ≤ Ij and ∀Il 6= Ij , ∃Il′ 6= Ij′ such
that Il′ ≤ Il.

To illustrate this, let us consider I1 = {a, b, c, d, e,Consonants,Vowels,Letters}
a set of items and (I1,≤) a partial order depicted in Fig.1, where an edge rep-
resents the binary relation is-a, denoted by ≤.



Fig. 1: An example of a partial order on I1 =
{a, b, c, d, e,Consonants,Vowels,Letters}

For example, a ≤ Vowels designates that letter “a” is a vowel. Let be two
itemsets (a b c) and (a Consonants), then (a Consonants) ⊆ml (a b c) since
a ≤ a and b ≤ Consonants (or c ≤ Consonants).

Let H = {I1, I2, ..., In} be a set of distinct sets of items, where Ij with j ∈
{1, ..., n} represents a domain. We note that Ij can be a poset or an unordered
set. Let ISj be the set of all itemsets built from Ij ∈ H. A heterogeneous itemset
ISH = {IS1, IS2, ..., ISn}, where ISj ∈ ISj , is a non-empty and unordered set
of itemsets built from distinct sets of H. In addition, a multilevel heterogeneous
itemset (hereinafter referred to as heterogeneous itemsets) is a set of itemsets
that has at least one multilevel itemset.

Let ISH be the set of all heterogeneous itemsets built from H. The partial
order (ISH,⊆H) is defined as follows: ISH ⊆H IS′H if ∀ISk ∈ ISH, ∃IS′k ∈ IS′H
such that ISk ⊆ IS′k, where ISk, IS

′
k ∈ ISk, k ∈ {1, ..., n}. The order on

heterogeneous itemsets is defined accordingly relying on ⊆ml.
To illustrate this, let us consider H = {I1, I2}, where I1 is partially ordered

as shown in Fig. 1 and I2 = {�,♦,4} is an unordered set of shapes. Further-
more, let be two multilevel heterogeneous itemsets ISH1 = {(Vowels c), (♦)}
and ISH2

= {(a c), (� ♦)}, then ISH1
⊆H ISH2

since (Vowels c) ⊆ml (a c)
(that is a ≤ Vowels and c ≤ c) and (♦) ⊆ (� ♦).

A heterogeneous sequence SH = 〈ISH1
ISH2

...ISHr
〉, where ISHi

∈ ISH
with i ∈ {1, ..., r}, is a non-empty ordered list of heterogeneous itemsets. In
addition, a heterogeneous sequence that has at least one multilevel heterogeneous
itemset represents a multilevel heterogeneous sequence (hereinafter referred to
as heterogeneous sequence). A heterogeneous sequence SH is a subsequence of
another heterogeneous sequence S′H = 〈IS′H1

IS′H2
...IS′Hq

〉, denoted by SH �sH

S′H, if r ≤ q and if there are integers j1 < j2 < ... < jk < ... < jr such that
ISH1

⊆H IS′Hj1
, ISH2

⊆H IS′Hj2
, ..., ISHr

⊆H IS′Hjr
. A frequent heterogeneous

subsequence is called a heterogeneous sequential pattern.
To illustrate this, let be two heterogeneous sequences on the aforementioned

H = {I1, I2}: S1H = 〈{(a Consonants), (� ♦)} {(Letters), ∅}〉 and S2H =
〈{(a d), (� 4 ♦)} {(a c), (�)}〉. Then S1H �sH S2H since

– {(a Consonants), (� ♦)} ⊆H {(a d), (� 4 ♦)}, i.e. a ≤ a, d ≤ Consonants,
(� ♦) ⊆ (� 4 ♦),

– {(Letters), ∅} ⊆H {(a c), (�)}, i.e. a ≤ Letters (or c ≤ Letters), ∅ ⊆ (�).



Partially ordered patterns, po-patterns, have been introduced by [2], to syn-
thesise sets of sequential patterns. Formally, a po-pattern is a directed acyclic
graph G = (V, E , l). V is the set of vertices, E is the set of directed edges such
that E ⊆ V × V, and l is the labelling function mapping each vertex to an item-
set. With such a structure, we can determine a strict partial order on vertices u
and v such that u 6= v : u < v if there is a directed path from tail vertex u to
head vertex v. However, if there is no directed path from u to v, these elements
are not comparable. Each path of the graph represents a sequential pattern, and
the set of paths in G is denoted by PG . A po-pattern is associated to the set
of sequences SG that contain all paths of PG . The support of a po-pattern is
defined as Support(G) = |SG | = |{S ∈ DS |∀M ∈ PG ,M �s S}|. Furthermore,
let G and G′ be two po-patterns with PG and PG′ their sets of paths. G′ is a
sub po-pattern of G, denoted by G′ �g G, if ∀M ′ ∈ PG′ ,∃M ∈ PG such that
M ′ �s M . A po-pattern G is closed, referred to as cpo-pattern, if there exists no
po-pattern G′ such that G ≺g G′ with SG = SG′ . A cpo-pattern whose paths are
heterogeneous sequential patterns is called heterogeneous cpo-pattern.

2.2 RCA

RCA extends the purpose of Formal Concept Analysis (FCA, [5]) to relational
data. RCA applies iteratively FCA on a Relational Context Family (RCF).
An RCF is a pair (K,R), where K is a set of object-attribute contexts and
R is a set of object-object contexts. K contains n object-attribute contexts
Ki = (Gi,Mi, Ii) , i ∈ {1, ..., n}. R contains m object-object contexts Rj =
(Gk, Gl, rj) , j ∈ {1, ...,m}, where rj ⊆ Gk × Gl is a binary relation with k, l ∈
{1, ..., n}, Gk = dom(rj) the domain of the relation, and Gl = ran(rj) the range
of the relation. Gk and Gl are the sets of objects of the object-attribute contexts
Kk and Kl, respectively. RCA relies on a relational scaling mechanism that is
used to transform a relation rj into a set of relational attributes that extends the
object-attribute context describing the set of objects dom(rj). A relational at-
tribute ∃rj(C), where ∃ is the existential quantifier, and C = (X,Y ) is a concept
whose extent contains objects from ran(rj), is owned by an object g ∈ dom(rj)
if rj(g) ∩ X 6= ∅. Other quantifiers can be found in [12]. RCA process consists
in applying FCA first on each object-attribute context of an RCF, and then it-
eratively on each object-attribute context extended by the relational attributes
created using the learnt concepts from the previous step. The RCA result is
obtained when the families of lattices of two consecutive steps are isomorphic
and the object-attribute contexts are unchanged.

3 Heterogeneous Hydro-Ecological Data

We focus on hydro-ecological data concerning Rhine river. These data have been
collected during REX project. A number of 15 river sites (i.e. fixed points) in
the Alsace plain were monitored between 2002 – 2014. These sites make up the



Fig. 2: River network

river network illustrated in Fig. 2 that can be seen as a graph of river sites linked
by a spatial relation is downstream of.

There are three monitored periods of time: 2002 – 2005 (I), 2006 – 2009 (II)
and 2010 – 2014 (III). Periodically, for each river site a heterogeneous itemset
{physico-chemical (PHC) parameters, biological (BIO) indicators, land use}
is gathered. PHC parameters (e.g. temperature, nitrite and dissolved oxygen)
indicate the presence or absence of different types of pollutions (e.g. organic
or nutrient) according to the qualitative values of parameters. BIO indicators
(e.g. Standardised Global Biological Index (IBGN), Biological Index of Diatoms
(IBD) and Fish Biotic Index (IPR)) determine the quality of water. The indica-
tors and parameters have five qualitative values provided by SEQ-Eau2 standard,
namely very good, good, medium, bad and very bad represented respectively by
the colours blue, green, yellow, orange and red. All types of land use (e.g. forests
and urban areas) effect positively or negatively the water quality. The land use
around each monitored river site is assessed within two increasing buffers, pre-
cisely 100 m and 500 m. A type of land use, e.g. buildings, has a qualitative value
according to a percentage of area j covered by it as follows: low if j ∈ [0%, 25%],
medium if j ∈ (25%, 52%] and high if j ∈ (52%, 100%]. These domains are de-
scribed by means of taxonomies as shown in Fig. 3. Let us note that the collected
data concern only the atomic values from these taxonomies (e.g. urban areas).

In addition, a river site is included in a river segment that can be restored at
one or more locations during the whole monitored period of time. There are two
types of restoration: global and wetland. According to the number of restorations
i undertaken during 2002 – 2014, there are three levels of the type of restoration
as follows: L1 if i ∈ (0, 2], L2 if i ∈ (2, 5] and L3 if i ∈ (5,∞).

For instance, by analysing Fig. 4, the heterogeneous itemset {(NITRITEred),
(IBGNgreen), (FORESTSlow 500m INDUSTRIAL AREAShigh 500m)} is associated with river
site S7742 in period 2010 – 2014; the itemset (WetlandL1 GlobalL2) is associated
with river segment 20165 in the whole monitored period.

4 Data Modelling

Our purpose is to highlight how the ecological state of aquatic ecosystem and
the land use in upstream river sites impact the aquatic ecosystem in downstream
river sites and, thus determine the necessity of the restorations of river segments.

2 http://rhin-meuse.eaufrance.fr/IMG/pdf/grilles-seq-eau-v2.pdf
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(a) PHC
parameters

(b) land use (c) BIO
indicators

Fig. 3: Excerpts from the taxonomies over the three analysed domains

To that end, by exploiting the relational nature of the various collected hydro-
ecological data, we propose the data model shown in Fig. 5. This is used to
encode the analysed data into the RCA input. The six rectangles represent the
six sets of objects we manipulate: river segments, river sites, restoration types,
BIO indicators, PHC parameters and land use. These sets are given in Tab. 1.
The set of river sites contains all ordered pairs given by the Cartesian product
of the river sites shown in Fig. 2 and the three monitored periods of time. BIO
indicators, PHC parameters and land use correspond to the taxonomies depicted
in Fig. 3. In addition, let us mention that we consider, firstly, river segments as
target objects since these are restored; and secondly, river sites as non-target
objects since these are assessed to understand the necessity of restorations.

Table 1: Analysed sets of objects; the set of river sites is given by the Cartesian
product of the river sites given in Fig. 2 and the three monitored periods of time

Set Objects
river sites {S7778, S8763, S7741, S6702, S7872, S7742, S7914, S7915, S7743, S7792, S9515,

S8027, S7753, S7965, S8735} × {I, II, III}
river segments 3163, 4548, 5601, 6850, 8614, 8674, 18725, 19754, 19949, 20165, 20346, 26763

land use LAND USE, NEGATIVE LAND USE, POSITIVE LAND USE, BUILDINGS, AGRICULTURE,
URBAN AREAS, INDUSTRIAL AREAS, LANDFILL & MINE SITES, ARABLE LANDS,
PERMANENT CROPS, FORESTS & NATURAL AREAS, FORESTS, HERBACEOUS PLANTS,
WETLANDS, WATERBODIES, CONTINENTAL WATERS, MARINE WATERS

PHC parameters PHC, NITROGEN, NITRITE, AMMONIUM, PHOS, TOTAL PHOSPHORUS, NITRATE,
OXYGEN, OXYGEN SATURATION, DISSOLVED OXYGEN, BIOLOGICAL OXYGEN DEMAND,
TEMPERATURE

BIO indicators IBGN, IBD, IPR
restoration types Wetland, Global

The links between objects are highlighted by using binary relations as follows:



Fig. 4: River segment 20165 ; period III: river site S7742

– spatial relation includes associates a river site with a river segment if the
river site is in the river segment;

– spatial relation is downstream of is used to encode into the RCA input the
river network shown in Fig. 2;

– qualitative relation has restoration L1/L2/L3 associates a river segment with
the type of undertaken restoration;

– qualitative relation has indicator blue/green/yellow/orange/red associates a
river site with a measured BIO indicator;

– qualitative relation has parameter blue/green/yellow/orange/red associates
a river site with a measured PHC parameter;

– spatial-qualitative relation is surrounded by low 100m/low 500m/medium
100m/medium 500m/high 100m/high 500m associates a river site with a
type of land use.

5 Exploration of Heterogeneous Data by Using RCA

In this section we briefly recall and slightly adapt the RCA-exploration step of
sequential data presented in our previous paper [7].

Firstly, the RCA input (RCF) – an excerpt is depicted in Tab. 2 – is built
by relying on the data model shown in Fig. 5 and on the sets of objects given
in Tab. 1. Basically, this RCF encodes all hydro-ecological data collected during
the whole monitored period 2002 – 2014. There is an object-attribute context
for each rectangle out of the data model, precisely KSegments (river segments),
KSites (river sites), KRT (restoration types), KBIO (BIO indicators), KPHC (PHC
parameters) and KLU (land use). KSites has no column since river sites are
described only by using the has indicator, has parameter and is surrounded by
relations. Similarly, KSegments has no column since river segments are described
by using the has restoration relations. As shown in Tab. 2, a nominal scaling is



Fig. 5: Modelling heterogeneous hydro-ecological data

used to build KRT in order to obtain a partial order over the unordered set of
restoration types. In contrast, an ordinal scaling is used to build KBIO, KPHC and
KLU in order to encode the taxonomies given in Fig. 3. In addition, there are 21
object-object contexts, one for each relation out of the data model, e.g. in Tab.
2 RSite-ds-Site (river site is downstream of river site) and RSite-red-BIO

(river site has red BIO indicator).

Secondly, RCA is applied3 to the RCF shown in Tab. 2 and a family of
concept lattices is obtained after four iterations. The RCA output comprises
six concept lattices, one for each object-attribute context, as follows: target lat-
tice LKSegments (river segments), non-target lattice LKSites (river sites), lattice of
restoration types LKRT and the taxonomy lattices LKBIO, LKPHC, LKLU that corre-
spond to the taxonomies illustrated in Fig. 3. The concepts of the latter three
lattices are used to describe river sites by means of the revealed qualitative
relational attributes. Similarly, the concepts of LKRT are used to describe river
segments.

It is worthwhile to mention that the RCA-based exploration step employs a
relational scaling mechanism that relies on quantifier ∃ because the objective is
to capture all the relations between the analysed objects. The target lattice and
non-target one contain respectively 860 and 4554 concepts.

3 using http://dolques.free.fr/rcaexplore
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Table 2: Excerpt of the RCA input composed of object-attribute contexts
(KSites, KRT and KPHC) and object-object contexts (RSite-ds-Site and
RSite-red-BIO).

KSites

(S7743,I)

(S7743,II)

(S7743,III)

(S8735,I))

(S8735,II)

KRT W
e
t
l
a
n
d

G
l
o
b
a
l

Wetland ×
Global ×

KPHC P
H
C

N
I
T
R
O
G
E
N

N
I
T
R
I
T
E

P
H
O
S

PHC ×
NITROGEN × ×
NITRITE × × ×
PHOS × ×

RSite-ds-Site (
S
7
8
7
2
,
I
)

(
S
7
8
7
2
,
I
I
)

(
S
9
5
1
5
,
I
)

(S7743,I) ×
(S7743,II) ×
(S7743,III)

(S8735,I)) × ×
(S8735,II) ×

RSite-red-PHC P
H
C

N
I
T
R
O
G
E
N

N
I
T
R
I
T
E

(S7743,I)

(S7743,II) ×
(S7743,III)

(S8735,I))

(S8735,II) ×

6 Extraction of Heterogeneous CPO-Patterns Organised
into a Hierarchy

To extract a hierarchy of heterogeneous cpo-patterns from the RCA output
(obtained as explained in Sect. 5), we apply and slightly modify the RCA-Seq
approach presented in [7]. Let us note that the hierarchy is directly obtained
since each concept of the target lattice is associated with a heterogeneous cpo-
pattern.

Briefly, starting with a concept from the target lattice, a heterogeneous cpo-
pattern is extracted by navigating interrelated concept intents. For each nav-
igated concept intent, a vertex (labelled with an itemset) is derived from all
(spatial-)qualitative relational attributes (hereinafter referred to as qualitative
relational attributes) whereas an edge is derived from a spatial relational at-
tribute. A qualitative/spatial relational attribute highlights a qualitative/spatial
relation.

In fact, in this paper a vertex derived from a concept intent of the non-target
lattice (river sites) is actually a heterogeneous vertex labelled with a heteroge-
neous itemset. Basically, an itemset of the heterogeneous itemset is built for
each set of qualitative relational attributes, which define the same qualitative
relation, out of the concept intent. Therefore, for a concept intent we analyse
the qualitative relational attributes, which are built using a qualitative relation
rq and concepts from a taxonomy lattice LKtax = (CKtax ,�Ktax), to derive items
as follows:

– from a qualitative relational attribute ∃rq(Ctax), where Ctax ∈ CKtax
, is

derived an item, denoted by “itemq”, where extent(Ctax) = {item} and q is
the item quality according to rq;

– if there is no qualitative relational attribute that highlights relation rq and
the information introduced by this relation is mandatory, then is derived an
item, denoted by “item?” where extent(>(LKtax)) = {item}, that consti-
tutes the 1-itemset obtained for this type of information; conversely, if the



information introduced by this relation is not mandatory, then no item is
derived and, thus ∅ is obtained for this type of information.

Let us mention that a vertex derived from a concept intent of the target
lattice (river segments) is labelled with a multilevel itemset. As described in [7],
this itemset can contain: the abstract item (“??” – different types of restoration
at distinct number of locations), qualitative abstract items (e.g. “?L1” – different
types of restoration at most 2 locations) and/or concrete items (e.g. “GlobalL3”
– global restorations at more than 5 locations).

7 Results and Evaluation

In this section, we present some interesting results obtained with the RCA-Seq
approach applied to the heterogeneous data collected between 2002 – 2014 from
the river network shown in Fig. 2. The evaluation relies on the positive feedback
given by a hydro-ecologist who is well acquainted with cpo-patterns.

By navigating the lattices starting from the target concepts of LKSegments
we obtain a hierarchy of 859 heterogeneous cpo-patterns (the bottom concept
of LKSegments is not considered since generally it is too specific and associated
with no river segment). It is worthwhile to mention that a smaller hierarchy
of cpo-patterns can be extracted by varying the quantifiers employed by the
relational scaling mechanism. In addition, various measures [6] can be used to
select relevant heterogeneous cpo-patterns.

Figure 6 depicts an excerpt from this hierarchy, precisely the organised 1©,
2©, 3©, 4©, 5©, 6© and 7© heterogeneous cpo-patterns.

A cpo-pattern is associated with a set of river segments whose number (sup-
port) is shown in �. The restoration types of these river segments are illustrated
in , e.g. GlobalL1 meaning that the river segments have at most 2 locations
with global restoration. A vertex ( ) is associated with a set of river sites and it
is labelled with PHC parameters and their qualitative values. A vertex can have
additional information: land use ( ) and BIO indicators (♦). In the following,
we focus on the cpo-patterns 1©, 4© and 6©.

CPO-Pattern 1© is associated with 11 (� in Fig. 6) river segments that
contain at most 2 locations with global restoration. In addition, itemset (PHCblue)
reveals locally (i.e. in the associated river segments) a very good PHC state of
water.

CPO-Pattern 4© is associated with 5 river segments that contain at most 2
locations with global restoration. Itemset (IBDgreen) (♦ in Fig. 6) reveals locally
a good ecological state of water based on the analysis of diatom species. In
addition, the PHC state of water is very good for temperature, biological oxygen
demand and nitrogen that represent a part of the abiotic characteristics suitable
for diatom species [11].

CPO-Pattern 6©, which is a more concrete specialisation of 5©, is associ-
ated with 3 river segments that contain at most 2 locations with global and
wetland restorations. Itemset (BIOgreen) (♦ in Fig. 6) reveals locally a good eco-
logical state of the aquatic ecosystem. Since BIO is an abstract item, we cannot



Fig. 6: Excerpt from the hierarchy of heterogeneous cpo-patterns discovered in
the analysed hydro-ecological data. 1©, 2©, 3©, 4©, 5©, 6© and 7© identify
the cpo-patterns. � is the support (number of river segments) of a cpo-pattern;

represents the types of river segment restoration; represents land use; ♦
represents BIO indicators; represents PHC parameters



specify the fauna and flora that underpin this regularity. In addition, itemset
(TEMPERATUREblue) reveals locally a very good PHC state of the water tempera-
ture. Furthermore, locally at 500 m buffer the land use pressures of arable lands
and urban areas are medium whereas at 100 m the land use pressures of urban
areas are high.

Figure 7 depicts a more complex heterogeneous cpo-pattern. This is associ-
ated with the river segments 8674 and 19949 that contain at most 2 locations
with global restoration.

Fig. 7: A complex heterogeneous cpo-pattern extracted from the analysed hydro-
ecological data. A©, B©, C©, D©, E© and F© identify the vertices; � is the support
(number of river segments) of the cpo-pattern; represents the types of river
segment restoration; represents land use; ♦ represents BIO indicators;
represents PHC parameters



The vertices are derived from concepts of LKSites whose extents are as follows:
A©: {(S7743,III), (S7915, III)}, B©: {(S7915,II), (S7743,III)}, C©: {(S7915,
I), (S7743,III)}, D©: {(S7915,II), (S7743,II)}, E©: {(S7914,III)} and F©:
{(S7914,I), (S7914,II), (S7914,III)}. Locally, in the whole monitored period
2002 – 2014 the land use pressures of buildings are medium at 500 m buffer.
In contrast, in the upstream rivers at 500 m buffer on the one hand the land
use pressures of industrial areas and arable lands are low ; on the other hand,
a high percentage of the area is covered with forests that lead to a good eco-
logical state of the aquatic ecosystem in the surroundings. Indeed, by analysing
the E© vertex, itemset (IBGNgreen) (♦, Fig. 7) reveals a good ecological state
of the aquatic ecosystem in the period 2010 – 2014 based on the analysis of
macro-invertebrates. Moreover, water temperature is very good; organic matter
(dissolved oxygen, biological oxygen demand and oxygen saturation) is good and
very good; nitrogenous parameters (nitrite and ammonium), which are related to
organic matter, are as well good and very good; and nutrients (total phosphorous
and nitrate) are very good.

By comparing the E© vertex with the A©, B©, C© and D© vertices, it is noted
a degradation up to one level regarding the qualitative values of PHC parameters
probably caused by the medium building pressures at 500 m buffer, e.g.:

– AMMONIUMblue and DISSOLVED OXYGENblue (very good) from E© are measured
when the surroundings are covered with a low percentage of industrial areas
and arable lands (i.e. the land use pressures are low), while AMONIUMgreen
and DISSOLVED OXYGENgreen (good) from A©, B©, C© and D© are measured
when the surroundings are covered with a medium percentage of buildings
(i.e. the land use pressures are medium);

– TOTAL PHOSPHORUSblue (very good) from E© is measured when in the sur-
roundings the land use pressures are low; TOTAL PHOSPHORUSgreen (good)
from B©, C© and D© is measured when in the surroundings the land use
pressures are medium.

Furthermore, the cpo-pattern shown in Fig. 7 reflects that BIO indicators
seem to be more sensitive (up to two levels of their qualitative values) to land
use pressures [14,15]. For instance, IBGNgreen in upstream rivers ( E©) in contrast
to BIOyellow and IBGNorange locally ( C© and D©, respectively).

To sum up, by means of cpo-patterns, we can help hydro-ecologists to check
well-known correspondences among the analysed ecological factors as well as to
consider lesser-known facts.

8 Related Work

Classical sequential pattern mining approaches deal with sequences whose items
are homogeneous and, therefore cannot be applied to heterogeneous sequences
(i.e. sequences whose items are different in nature). To our knowledge, [9] pro-
posed the first work for exploring multidimensional sequential data. A multidi-
mensional sequence takes the form (d1, d2, ..., dm, S), where S is a sequence of



itemsets and di represents the ith type of information associated with S. The
authors proposed three methods for extracting multidimensional sequential pat-
terns that rely on classical sequential pattern algorithms (e.g. PrefixSpan [8]).
A key drawback of such multidimensional sequences is the additional information
that is constant for all itemsets of sequence S.

In [10], a multidimensional sequence is defined as an ordered list of multidi-
mensional items. A multidimensional item takes the form (d1, d2, ..., dn), where
dk is an item of the kth dimension. Furthermore, each considered dimension is
represented at different levels of granularity by means of partial orders. There-
fore, multilevel sequential patterns can be discovered, as explained in [13]. The
authors proposed the M3SP algorithm that searches for multidimensional and
multilevel sequential patterns in two steps. First, the most specific frequent mul-
tidimensional items, referred to as maf-sequences, are found. Second, the maf-
sequences are used to remodel the original multidimensional sequences and then
these sequences are mined by using algorithm SPADE [16].

Nevertheless, [3] highlighted a limitation of M3SP, i.e. the multidimensional
items do not allow itemsets whose items are of kth dimension. The authors
proposed the MMISP algorithm that considers complex and heterogeneous se-
quences, where a sequence contains elementary sequences (ES), i.e. itemsets
whose items can be of two types: atomic and different in nature taken from
user-defined taxonomies or subsets of unordered sets of items. MMISP does not
discover directly sequential patterns in heterogeneous data since a preprocessing
step is involved, i.e. the original sequences are encoded into classical sequences.
In contrast, RCA-Seq directly searches for cpo-patterns (rather than sequential
patterns) in complex and heterogeneous data and, besides, reveals how these pat-
terns relate to each other. Moreover, our approach generalises the ES proposed
in [3] by considering its atomic items as 1-itemsets.

9 Conclusion

RCA-Seq is an approach for exploring classical sequential data. In this paper,
we have presented an extension of RCA-Seq that highlights its generality, i.e.
the capability to explore sequential data regardless of their complexity. Given
heterogeneous sequential data on river networks, we have shown that hydro-
ecologists can draw valuable insights by exploiting the “richness” (e.g. the addi-
tional information captured by concept extents and the revealed abstract items)
of the RCA-Seq output. In the future, we plan to (i) improve our extension
in order to be applicable to large volumes of heterogeneous sequential data and
(ii) explore with RCA-Seq complex relational data such as social networks and
knowledge graphs.
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