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Odometry Based on Auto-Calibrating Inertial Measurement Unit
Attached to the Feet

Dinesh Atchuthan1, Angel Santamaria-Navarro2, Nicolas Mansard1, Olivier Stasse1, Joan Solà1,2

Abstract— Location of pedestrian in indoor environment
remains an open problem. A cheap and reliable sensor in this
context is the inertial measurement units (IMU), carried by the
pedestrian while he/she is walking. However, due to the bias of
both the accelerometer and the gyroscope, integrating directly
the inertial measurements leads to tremendous drift, as the state
of the system (position, orientation, velocity, bias) is not fully
observable. In this paper, we consider the specific case where
an IMU is attached to one of the pedestrian’s feet. We exploit
specific prior knowledges (i.e. the fact that the foot lands at zero
velocity on a horizontal plane) in order to make the full state of
the IMU observable. The inertial measurements and these prior
knowledges are gathered in a graphical model (a factor graph),
and are exploited to build a maximum-likelihood estimator. The
technical difficulty is to handle the size of the graph such that
it is tractable in a limited time window, that we do by relying
on the pre-integration technique. In that existing framework,
our contributions are to reformulate the pre-integration method
using quaternions while giving a simpler algebraic formulation,
and to apply this method for estimating the human foot-pose
during walking. We validate these concepts on several long-
range trajectories capture with human subject and compare
the results with ground-truth measurements (coming from a
motion capture system) and previous results of the state of the
art.

I. INTRODUCTION

Context: Indoor person localization is an open challenge
in various situations: location-based life improving services,
firefighters localization and navigation, patients tracking mo-
tion monitoring, medical observation, accident monitoring,
mobility and independence of partially-sighted or blind per-
sons, etc. As GPS are not available indoor, and because
relying on a network of fixed sensors (cameras, RFID) also
raised many open questions, an appealing way to localize a
body in space is to use odometry information measured by
embedded inertial measurement units (IMUs). In this context,
while performing the integration it is mandatory to take
into account the IMU biases. As the biases vary with time
and physical conditions, it must be estimated on-line while
processing the measurements. Furthermore, it is desirable
that additional information coming from other sensors can
be integrated in the same estimation process. Similarly to the
strategies adopted in simultaneous localization and mapping
(SLAM), sparse measurements or additional information
(e.g. coming from intermittent absolute localization, or from
a sparse sensor network) would benefit to the localization
process when available. With these requirements coming
from the context in mind, we propose to define an estimator
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based on graphical models, able to accurately and efficiently
integrate inertial measurements while estimating the IMU
biases. Thanks to the graphical model, the estimator will
then be able to fuse additional measurements coming from
other sensors or additional prior information provided by the
application. The setup considered in this work is a pedestrian
walking on structured terrain (flat floor or stairs) with an IMU
attached to one of his or her feet.

Methodology: Graphical methods have been extensively
used to implement such fusion strategies [1], [2]. They are
well-suited to gather information from sensors and draw
conclusions. The underlying principle is to consider that
despite all the information gathered from the sensors, we
still have uncertainties about the true state of the world due
to imperfections of the sensors. Several states of the world
can thus be considered as probable. Relying on probabilistic
formulations is a way to find out the most probable one.
Furthermore, graphical representation are able to accurately
model complex estimation problems [3] in a versatile way.

Graphical models have been used for large modeling
estimation problems by means of sparse networks of con-
straints and particularly in robotics where SLAM and visual
odometry problems have reached a high degree of maturity in
great part thanks to these tools. The graphical representation
also allows for the design of powerful nonlinear estimation
solvers, which can be built taking into account the needs for
accuracy, robustness and computational performances.

In order to keep the problem tractable and maintain real-
time performance, a key point is to prevent the graph from
being too large given a time window. IMUs are challenging in
this regard, as their high frequency measurement rate create
large sets of data. Pre-integration of IMU measurements
helps to reduce the size of the underlying graph by squeezing
100 to 1000 measures into a single pre-integrated Bayesian
node [4]. Direct pre-integration leads to a dependency of the
resulting node on the initial integration conditions, implying
to integrate again (and again) when an optimizer process
the graph. It was later suggested to make this pre-integrated
data independent from the initial state from which it was
computed [5]. Consequently, the IMU measurements can
simply be disregarded even when the initial “pre-integration”
conditions change while the numerical solver optimized the
maximum-likelihood trajectory.

Contributions: In this paper, we follow a similar method-
ology. We define a graphical model where pre-integrated
data are added at key-frame instants (about 2Hz), summa-
rizing IMU measurements captured at about 1kHz. The state
that we want to estimate considers the position, orientation



and linear velocity (dimension 9) of the IMU attached to
the foot, along with the time-varying accelerometer and
gyroscope biases (dimension 6). We also implement the
prior knowledge that the foot lands horizontally, by adding
Bayesian nodes when the foot lands and takes off. This prior
knowledge make the considered state observable. We then
use a numerical solver to maximize the likelihood of the
measurements and prior knowledge along the past trajectory
in a sliding window.

The first contribution of this paper is to reformulate the
pre-integration method introduced in [5] using quaternion
representation and to give a detailed and simpler algebraic
derivation. The second contribution is to apply this method
for estimating the human foot-pose during walking. To this
end, we build a graphical model formulation of the problem
by gathering information. Once the formulation is completed,
a non-linear least squares optimizer is used to solve the
problem and find the most probable solution in the least-
square sense [6].

II. GRAPH-BASED INERTIAL-KINEMATIC ODOMETRY

A. Quaternion rotations

We define the quaternion-by-vector product � so that

q� v , q⊗ v ⊗ q∗ , (1)

where q∗ denotes the dual quaternion of q. The symbol ⊗
stands for the product of quaternions and � corresponds
to the quaternion-by-vector which performs a 3D rotation
of an input vector v. Notice that if R is the rotation
matrix equivalent to the quaternion q, then q � v = R v.
This straightforward equivalence enables us to define all the
forthcoming IMU pre-integration algebra in a way that allows
a direct transcription between the S3 and SO(3) spaces of
representation.

B. Graph-based iterative optimization

In graph-based optimization, the problem is represented as
a graph, where the nodes refer to the variables, and the edges,
called factors, represent the geometrical constraints that link
between variables produced by the measurements. The state
x is modeled as a multi-variate Gaussian distribution, and
in our case it includes foot poses and velocities (p,q,v)
and IMU biases (ab,ωb) at selected keyframes along the
trajectory (see Fig. 1). For each factor, we can define an error
or a residual r as the discrepancy between a measurement z
and its expectation given the involved state variables,

r(x) = h(x) + v − z, v ∼ N (0,Ω−1) (2)

being h(x) the sensor measurement model and Ω the in-
formation matrix of the measurement Gaussian noise v.
Importantly, the functions h(x) and r(x) are very sparse,
since only a small handful of blocks of x are involved in each
factor, which results in a loosely connected graph. In case of
variables defined on manifolds, such as quaternions or rota-
tion matrices, we must rewrite (2) as r(x) = (h(x)⊕ v)	 z.
The ⊕ and 	 symbols correspond to the addition and

Fig. 1. Detailed factor graph for the initial keyframe and two steps.
Circles: state blocks for position (p), orientation quaternion (q), velocity
(v), accelerometer bias (ab), gyrometer bias (ωb). Orange: initial pose
factor. Red: kinematic factor (deduced from additional sensors). Purple:
zero-velocity factor. Green: IMU’s delta pre-integration factor. Blue: bias
drift factor. Cyan: bias absolute factor.

subtraction operators on the manifold (see e.g. Eq. (25) in
Section III, or Eq. (28–31) in Appendix I).

The maximum a posteriori estimation is obtained by
iteratively minimizing the Mahalanobis squared norm of all
linearized errors

∆x∗ = arg min
∆x

∑
k

‖rk(x̆) + Jk∆x‖2Ω−1
k

(3)

being x̆ the state estimate at the current iteration,
and Jk the Jacobian of the k-th residual rk(x) (with
Jk = ∂(hk(x)	 zk)/∂∆x in the case of variables lying on
a manifold) and Ωk is the information matrix of the k-th
measurement. Current methods use the Cholesky [7], [8] or
the QR [9], [10] matrix factorizations to solve for ∆x∗,
which is then used to update the current state estimate.
The process is iterated until convergence. Incremental meth-
ods [8], [10] update the problem directly on the factorized
matrices, obtaining important speed-ups.

C. Keyframe variables

During a biped walk, we take profit of certain situations
where precise and reliable assumptions can be made. For
example, the foot velocity is null during its support phase.
At these selected instants, we create the keyframes that
will produce a chain of states. These states are linked
by the measurements, forming our factor graph (Fig. 1).
Each keyframe fi contains the following state blocks: the
foot’s position, velocity and orientation data, plus the IMU’s
accelerometer and gyrometer biases,

fi =
[
pi vi qi ab,i ωb,i

]>
. (4)

D. Description of factors

The types of factor considered in our graph are illus-
trated in Fig. 1. Each factor k requires its own information
matrix Ωk, and its residual function rk(x). These residual
functions are detailed hereafter.



1) Absolute factors: These include initial position and
orientation (orange in the figure), zero velocity (purple), and
bias magnitude (cyan). Each residual depends on a single
state block, which is compared against a reference zk,

rk(φi) = φi − zk (5)

where φi is one among {pi,vi,ab,i,ωb,i}. For the quater-
nion we implement the residual using the operator 	 on the
sphere of dimension 3 manifold, denoted S3 (see (30) in
Appendix I for further details),

rk(qi) = qi 	 zk = Log(z∗k ⊗ qi) (6)

2) Bias drift factors (blue): These are relative factors that
allow the bias estimates to drift with time at a controlled rate.
Each bias drift residual depends on two state blocks, namely

r(ab,i,ab,j) = ab,j − ab,i

r(ωb,i,ωb,j) = ωb,j − ωb,i
(7)

3) Complementary factors (red): These relate position
and orientation between two consecutive steps as it can be
provided by other sensors than IMU or methods using human
walking specificities,

r(pi,qi,pj ,qj) =

[
q∗i � (pj − pi)− yk
Log(z∗k ⊗ q∗i ⊗ qj)

]
(8)

where yk and zk are respectively the relative position and
quaternion measurements.

4) IMU pre-integrated factors (green): These factors are
by far the most complex ones and are described in details in
the next section.

III. IMU PRE-INTEGRATION IN S3 AND SO(3)

A. Overview

Due to the different rates of IMU data and keyframe
creations, hundreds of IMU measurements need to be in-
tegrated to generate a motion factor linking two consecutive
keyframes. In addition to that, the integration of the motion
equations in an absolute reference frame strongly depends on
the initial conditions of orientation, velocity and IMU bias.
Therefore, the changes in the estimates of these magnitudes
(inherent to the iterative nature of the optimization) affect
the whole motion integral. Delta pre-integration theory was
developed to avoid the need of re-integrating all IMU data at
each iteration [4], [5]. On the one hand, this theory defines
new motion magnitudes called deltas, which are independent
of the initial conditions for orientation and velocity, and thus
depend only on the IMU data and bias. On the other hand,
the effect of the changes in the bias estimates is linearized
so that the deltas can be corrected a posteriori, i.e., when
computing the residual, using pre-computed Jacobians.

In this section, we revise the IMU pre-integration theory,
providing three contributions: 1) a segmentation of the com-
putation pipeline (from measurements, to body magnitudes,
to the current delta, and to the integrated delta); 2) a physical
interpretation of the delta magnitudes; and 3) a simpler yet
rigorous algebraic approach, valid for both the S3 (quater-
nion) and SO(3) (rotation matrix) manifolds, which takes

profit of the pipeline segmentation and the chain rule to
compute the otherwise cumbersome Jacobians [5]. Important
complements are provided in Appendix I for the sake of
background and completeness.

B. State integration in the absolute reference frame

We define the world-referenced states of the IMU by
x=(p,v,q) where p stands for the position, v for the
velocity and q for the orientation encoded as a quaternion.
The time evolution of x is governed by the kinematic
equation,

ṗ = v

v̇ = g + q� a

q̇ =
1

2
q⊗ ω

(9)

where g denotes the gravity vector and we identify b =
(a,ω) as the body magnitudes, that is, the magnitudes of
acceleration and angular velocity measured by the IMU and
expressed in its reference frame. These body magnitudes are
obtained at discrete times tj from biased and noisy IMU
measurements, i.e.,

aj , am,j − ab,j − an

ωj , ωm,j − ωb,j − ωn ,
(10)

with •m the measurements, •b the biases, and •n the noises.
Assuming constant body magnitudes within the IMU sam-
pling period δt , tk− tj , we have the discrete-time relation:

pk = pj + vjδt+
1

2
gδt2 +

1

2
qj � ajδt

2

vk = vj + gδt+ qj � ajδt

qk = qj ⊗ Exp(ωjδt/2)

(11)

C. Delta definitions

Consider a non-rotating reference frame that is free-falling
at the acceleration of gravity g, and name it Gt. An ideal
(unbiased and noiseless) IMU glued to this frame would
measure null linear accelerations and angular velocities. Any
non-null measurements would be due to a relative motion of
the IMU with respect to Gt.

At a given keyframe instant ti, we initialize Gi at
xi = (pi,vi,qi). At a later keyframe instant tj (j > i), Gj
has fallen according to g, and the state of our moving body
is now at xj = (pj ,vj ,qj). The motion variation, denoted
∆ij , is defined as the state variation in position, velocity and
orientation of our body between Gi and Gj , that is,

∆pij = q∗i �
(
pj − pi − vi∆tij −

1

2
g∆t2ij

)
∆vij = q∗i � (vj − vi − g∆tij)

∆qij = q∗i ⊗ qj

(12)

where ∆tij , tj − ti is the time duration between the two
keyframes. Notice that this definition of ∆ij is the same
as provided in [4], [5], and we have given it here a clear
physical meaning. It is worth to notice that the deltas form a



group under the composition law ∆ik , ∆ij ⊕∆jk, defined
by:

∆pik = ∆pij + ∆vij∆tjk + ∆qij �∆pjk

∆vik = ∆vij + ∆qij �∆vjk

∆qik = ∆qij ⊗∆qjk

(13)

with identity ∆0 = [(0, 0, 0), (0, 0, 0), (1, 0, 0, 0)], and in-
verse ∆ji , ∆−1

ij shuch that ∆−1 ⊕∆ = ∆ ⊕∆−1 = ∆0

(the inverse expression is not given for space reasons). At
any time j we can recover the state estimate xj from the
state estimate xi and the motion delta ∆ij :

pj = pi + vi∆tij +
1

2
g∆t2ij + qi �∆pij

vj = vi + g∆tij + qi �∆vij

qj = qi ⊗∆qij

(14)

D. Incremental delta pre-integration

Substituting the integration Eq. (11) in the delta definitions
(12), we obtain the incremental delta pre-integration,

∆pik = ∆pij + ∆vijδt+
1

2
∆qij � ajδt

2

∆vik = ∆vij + ∆qij � ajδt

∆qik = ∆qij ⊗ Exp(ωjδt)

(15)

with ∆ii = ∆0. Interestingly, (15) is analogous to the motion
of a body in an inertial frame under constant acceleration
and rotation rate. Notice that by letting the reference frame
fall with gravity, we get rid of the dependence on gravity in
the integration equations, and only the body magnitudes drive
the integral. Indeed, we can define a proper delta δjk from the
current body magnitudes bj = (aj ,ωj) , bm,i−bb,j−bn,j
at time tj ,

δpjk =
1

2
ajδt

2

δvjk = ajδt

δqjk = Exp(ωjδt)

(16)

and write the integration (15) as the composition

∆ik = ∆ij ⊕ δjk (17)

described in (13). Typically, we take the biases at the
keyframe time ti, that is, bb,j = bb,i. In the following, we
will identify ∆ with the pre-integrated delta, and δ with the
current delta.

E. Jacobians

We note all Jacobians with Jyx , ∂y/∂x and refer the
reader to Appendix I for details on the development of all
non-trivial Jacobian blocks in this section.

1) Jacobians of the body magnitudes: from Eq. (10) we
have:

Jb
bm

= I6 Jb
bb

= −I6 Jb
bn

= −I6 . (18)

2) Jacobians of the current delta: We have from (16),

J
δjk
bj

=

 1
2Iδt2 0
Iδt 0
0 Jr(ωjδt)δt

 ∈ R9×6 (19)

where we develop the lower-right block as in Appendix I-
E.1.

3) Jacobians of the delta composition: We differentiate
the delta composition (17) described in (13),

J∆ik

∆ij
=

I Iδt −∆Rij

[
δpjk

]
×

0 I −∆Rij [δvjk]×
0 0 δR>jk

 ∈ R9×9 (20a)

J∆ik

δjk
=

∆Rij 0 0
0 ∆Rij 0
0 0 I

 ∈ R9×9 (20b)

where ∆Rij and δRjk are the rotation matrix deltas corre-
sponding to the respective quaternion deltas ∆qij and δqjk.
We develop all the non-trivial blocks as in Appendix I-E.2
and Appendix I-E.3.

F. Incremental delta covariance integration

Let Q∆ be the covariance of the pre-integrated delta, and
Qn the one of the measurement noise. For convenience, we
first compute the covariance of the current delta,

Qδ = Jδbn
Qn Jδbn

>
, (21)

where Jδbn
= Jδb · Jb

bn
is the noise Jacobian, obtained with

(18–19) and the chain rule. The delta covariance is then
integrated with

Q∆ik
= J∆ik

∆ij
Q∆ij J∆ik

∆ij

>
+ J∆ik

δjk
Qδ J∆ik

δjk

>
, (22)

using Jacobians (20), and starting at Q∆ii = 09×9.

G. Delta correction with new bias

Let ∆ and bb be respectively the pre-integrated delta and
the bias values used during pre-integration. Since the bias
estimates change at each iteration of the optimizer, we need
to update the delta according to the new bias values bb. We
do so with the linearized update,

∆ = ∆ + J∆
bb

(bb − bb) , (23)

where J∆
bb

is the pre-integrated bias Jacobian, computed
incrementally using also the chain rule,

J∆ik

bb
= J∆ik

∆ij
J

∆ij

bb
− J∆ik

δjk
J
δjk
bb

. (24)

with J
δjk
bb

= J
δjk
b Jb

bb
. This Jacobian starts at J∆ii

bb
= 09×9.

H. Residuals

The computation of the residuals for the IMU delta factors
(see Fig. 1, green) requires: the state estimates xi and xj ; the
current bias estimates bb,i; the pre-integrated delta ∆ij ; the
bias used during pre-integration bb,i; and the pre-integrated
bias Jacobian J

∆ij

bb
. The process is best understood if split

into smaller steps: we first compute a corrected delta ∆ij



using (23); then we compute a predicted delta ∆̂ij using
(12); and finally we compute the residual with

r(xi,xj ,bb,i) =

 ∆pij − ∆̂pij
∆vij − ∆̂vij

Log(∆̂q
∗
ij ⊗∆qij)

 ∈ R9 . (25)

Its information matrix is given by Ω = Q−1
∆ik.

IV. EXPERIMENTS

We use the dataset made available thanks to Angermann
et. al. [11] to validate our method and compare the results to
provided outputs from the state-of-the-art Kalman filter. Our
method is applied on several scenarios from these dataset and
we present typical results obtained with two representative
cases. The first sets of data correspond to a human walking
back and forth while the second example is related to a
walking pattern describing a eight-shape. Both IMU and
motion capture data are provided at 100 Hz.

Then, we will investigate the use of additional sensors to
demonstrate the feasibility of fusion strategies using a low
cost IMU running at 1 kHz (Invensense’s MPU6050 [12]).

A. Method

Keyframes are created at the beginning and ending of each
support phase of the selected foot according to ZUPT detec-
tion provided by the dataset. Factors active in the graph (see
Fig. 1) are: initial position and yaw; zero velocity, bias drift,
and IMU pre-integration. We only use the bias magnitude
and zero velocity constraint factors in the initial keyframe.
All the graph is optimized after each keyframe creation so
that these estimates can be used for future estimations with
new keyframes. Zero velocity constraints are applied as a
fixed prior for the optimizer, meaning that corresponding
variables will not be estimated but considered as parameters.
As a consequence, we need to be confident that timestamps
detected as zero velocity instants really match static phases
of the IMU. Otherwise we would be imposing a constraint
inducing a wrong estimate of the trajectory.

In order to show how interesting fusion strategies can be,
we simulate the use of an odometry sensor providing the
displacement of the foot between two frames at a frequency
that is lower than IMU. This specific case is a common use
of IMUs in fusion strategies to reduce the drift error due to
IMU’s biases [13]. With a better estimation of its biases, the
IMU can then be used to detect events related the human
wearing the device. Such strategy can be implemented with
RFID sensors or more basically with visual odometry. In
our case, we use motion capture information to reconstruct
odometry between consecutive keyframes, allowing us to
create keyframes during the flying phases of the foot. As
in the usual ZUPT-aided inertial navigation, zero-velocity
constraints are imposed only on keyframes created during
contact phases. Kinematic odometry is also added between
all consecutive keyframes (see Fig. 1).

B. Results

1) State estimation using ZUPT only: As motion capture
data are not used during the experiments, the system is not
provided with enough information to be able to precisely
estimate the vertical orientation of the IMU due to its non-
observability from the IMU measurements directly. As a
consequence, the estimation of the state of the foot is not
able to converge to its real value. In other words, the foot
trajectory can be recovered up to a rotation around the
gravity axis. In the following, we manually translate the
first estimated states to the initial reference one and rotate
the estimated trajectories in order to compare our results
against the ground-truth measurements. Our system is able
to estimate the state of the system to a precision close to the
state-of-the-art 9-state Kalman filter [14] as shown in Fig. 3.

Besides, the experiment shows satisfying results in terms
of computational times. Indeed, 3.1 seconds are enough
to integrate all the data corresponding to a 50 seconds
experiment, that is more than 5000 IMU data, to build and to
optimize the graph each time a keyframe is created with our
framework, with a total of 80 keyframes. It would be hard, if
not currently impossible, to get such results using the IMU
without a proper pre-integration method. The optimization
part is currently handled by Google Ceres optimizer [6] using
the sparse structure of the problem. All in all, it takes 98µs
in average to read and integrate a single IMU measurement
including the computation of jacobians.

2) State estimation using ZUPT and sensor fusion:
The strength of the optimal estimation can also be found
in the fusion strategies. Fig. 2 shows the reconstructed
foot trajectories for the two cases: without and with the
flying keyframe information. Adding kinematic information
between keyframes enhances the observability of the system
and allows to a better estimation. A major advantage of
IMU’s pre-integration theory is the ability to use past pre-
integrations corrected with current estimates of keyframes
and biases as simply as it takes to integrate a single IMU
data. This removes the need of linearization of intermediate
IMU data between previous and current estimates of the state
on which the integration must be performed. We also notice
that the use of a flying keyframe makes the bias estimation
more stable.

V. RELATED WORK

Person localization using a foot-mounted IMU was first in-
troduced in [15]. Pedestrian Dead Reckoning (PDR) methods
(aka Personal Navigation Devices), make use of one or more
IMU installed on the body of the subject. The main idea of
PDR techniques is to integrate inertial measurements with
Zero Velocity Update (ZUPT) constraints to reduce errors
[16]. This work is extensively used in IMU-based human
localization works and various fields [17] analyzes the gait of
a walking person with PDR method to estimate the direction
of the shoe, thus the walking direction, and measure stride
length. Shoe-mounted IMU is still considered as a possible
way to accurately localize persons in an indoor environment
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Fig. 2. Top: trajectory estimation during human walking with an IMU
attached to a foot. Continuous, dashed and dashed-dot lines are respectively:
ground truth, estimation with zero velocity constraints only, estimation
using zero velocity constraint and 1 odometry measurement during foot’s
flying phase. Odometry was here built from motion capture data. Bottom:
Evolution of corresponding estimated IMU biases

due to lower drift errors when compared to body-mounted
solutions [18] .

Various strategies can be considered to improve the lo-
calization results of foot-mounted IMU navigation. Prior in-
formation can be exploited when merging the measurements
of several IMUs, for example relative to the maximum step
length the pedestrian could do when using two foot-mounted
IMUs [19].

Fusion strategies with information coming from different
sensors can also be used to improve localization results as
it is already done in robotics: GPS information [20], [21],
[22], received signal strength indicator (RSSI) from wireless
communication [23] using wireless local area networks or
radio-frequency identification (RFID) tags placed at known
locations [24] along with other drift reduction methods such
as zero velocity updates, zero angular-rate updates (ZARU)
and the use of magnetometers. Using these strategies might
be a successful solution to overcome the drift observed in
methods using IMU and to obtain positioning errors of ap-
proximately 1.5 m [24]. In [25], a foot-mounted IMU is fused
with a waist-mounted visual odometry system to update the
state of the system composed of its position, velocity and
acceleration. This last system was used recently [26] to
design a fusion strategy requiring measurements only once
per human step instead of every time step.
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Fig. 3. Top: trajectory estimation during human 8-shaped walking phases
with an IMU attached to a foot. Stars in blue and red colors are respectively
the reference estimated states provided in the dataset and the estimation with
our approach. The continuous green line is the ground truth as given by
the motion capture system. Middle: Evolution of estimated IMU biases
and orientation of the device. Biases are estimated only for keyframes
and considered as constant between them. Bottom: Evolution of euclidean
distance errors between estimates and the ground truth for this 8-shaped
walking trajectory.

More information can be structured into a map following
a SLAM approach [27], leading to a bounded error growth
to 1 meter. This FootSLAM uses dynamic Bayesian network
and loop-closure strategies. The idea exploited here is to use
the normal human behavior consisting on relying on visual
information to guide the motion and avoid obstacles.

Previously cited example tend to show how important it
is for pedestrian inertial navigation system to be able to deal
with the localization drifts due to the integration of IMU’s
data. From this analysis, we see that two important aspects
have been investigated to solve pedestrian localization: i)
exploiting some specificities of human behavior with the
inertial measurements as prior knowledge and ii) fusing IMU
with additional complementary sensors. In this paper, we
have shown that using a graphical model is a sane and
efficient way to encode prior knowledge about the human
behavior (horizontal foot during zero-velocity phases). While



we are not exploiting any absolute measurement, the drift
resulting of the odometry integration is contained to some
reasonable margin (i.e. comparable to the accuracy obtained
when a rough map is used). An additional feature of our
approach is that it is easy to extend the graphical model,
either with additional prior knowledge, or with measurements
coming from additional sensors. For example, fusing abso-
lute but noisy measurements like GPS, RFID or RSSI would
be straight forward.

VI. CONCLUSION

We have presented a method to measure foot movement
during an IMU attached to the foot and exploit available
knowledge extracted from the gait phases, such as zero
velocity and IMU bias dynamics. Measurements and prior
knowledge have been described in a graphical model where
the full IMU state (position, orientation, velocity, bias) is
observable. We then used nonlinear optimization techniques
based on factor graphs, which has proved to be a flexible
and powerful fusion framework. For this, we have revised the
IMU pre-integration theory, and proposed an implementation
in the quaternions manifold, with simpler derivations than
previous works, and with physical interpretations, which
we believe go in the direction of improving the clarity of
the method. Results showed that this estimation method
is able to properly estimate the bias, then leading to an
accurate odometry where the drift remains reasonable, even
after minutes of integration. The method easily extends to
additional prior knowledge or additional sensors. We also
plan to use it to accurately track the odometry of a biped
robot, while fusing the inertial measurements of the robot
feet with the encoders measurements of its kinematic chain.
Further work are needed to make the system less critical to
wrong ZUPT detections. To achieve this goal we can change
the ZUPT implementation strategy from a fixed parameter to
an estimated one starting with a zero prior and low variance.

APPENDIX I
DEFINITION OF THE DERIVATIVES IN S3 AND SO(3)

A. Exp and Log maps in S3 and SO(3)

We use vectorized versions of the exponential and logarithmic
maps in the rotation groups S3 (quaternion) and SO(3) (rotation
matrix), and denote them with capitalized names Exp() and Log()
(see Fig. 4, left). They operate directly on the vector space R3, and
use either quaternions for S3,

q = Exp(θ) ,

[
cos(θ/2)
u sin(θ/2)

]
(26a)

θu = Log(q) , 2qv
arctan(‖qv‖, qw)

‖qv‖
, (26b)

where q , (qw,qv), or rotation matrices for SO(3),

R = Exp(θ) , I+ sin θ [u]× + (1− cos θ) [u]2× (27a)

θu = Log(R) ,
θ(R−R>)∨

2 sin θ
, (27b)

with θ = cos−1
(

trace(R)−1
2

)
, and where •∨, known as the vee

operator, is the inverse of the skew operator [•]×. Their exact form
(q or R) is always clear by the context. Since the quaternion

✓
q

p
q = p � ✓

✓ = q p

S3

R3

✓
q

S3

R3

q = Exp(✓)

Fig. 4. The S3 manifold is a unit sphere in R4, here represented by a
unit circle (blue), where all unit quaternions live. The tangent space to the
manifold is the hyperplane R3, here represented by a line (red). The Exp()
and Log() operators map elements of R3 to/from elements of S3. The ⊕
and 	 operators relate elements of the manifold with elements in the tangent
space. (Likewise, these figures illustrate the SO(3) manifold.)

implementation is one of our contributions, in the following we
will refer to the rotation groups S3 and SO(3) with the unique
name S3, although everything applies equally to SO(3).

B. The additive and subtractive operators in S3 and SO(3)

The ‘plus’ operator, ⊕ : S3 × R3 → S3, composes a reference
element R ∈ S3 with a (often small) rotation specified by a vector
of θ ∈ R3 that is tangent to the S3 manifold at R, yielding an
element S ∈ S3 (see Fig. 4, right). The ‘minus’ operator, 	 :
S3 × S3 → R3 is the inverse of the above. These operators are
defined for both q and R,

q = p⊕ θ , p⊗ Exp(θ) (28)

S = R⊕ θ , RExp(θ) (29)

θ = q	 p , Log(p∗ ⊗ q) (30)

θ = S	R , Log(R> S) . (31)

C. The four possible derivative definitions
For functions f : Rm → Rn, the derivative is defined classically

using the standard operators {+,−},

∂f(x)

∂x
, lim
δx→0

f(x+ δx)− f(x)
δx

∈ Rn×m ; (32)

for functions g : S3 → S3, we use the operators {⊕,	},

∂g(R)

∂θ
, lim
δθ→0

g(R⊕ δθ)	 g(R)
δθ

∈ R3×3 ; (33)

for functions h : Rm → S3, we use {+,	},

∂h(x)

∂x
, lim
δx→0

h(x+ δx)	 h(x)
δx

∈ R3×m ; (34)

and for functions k : S3 → Rn, we use {⊕,−},

∂k(R)

∂θ
, lim
δθ→0

k(R⊕ δθ)− k(R)
δθ

∈ Rn×3 . (35)

It might be worth noticing that all these Jacobians are independent
of the representation chosen (S3 or SO(3)).

D. Right Jacobian of S3 and SO(3)

We define the right Jacobian as,

Jr(θ) ,
∂ Exp(θ)

∂θ
∈ R3×3 , (36)

and implement it using (34). It admits the closed form [28, pag. 40],

Jr(θ) = I− 1− cos ‖θ‖
‖θ‖2

[θ]× +
‖θ‖ − sin ‖θ‖
‖θ‖3

[θ]2× . (37)



E. Examples
1) Function R3 → S3: The function f(ω) = Exp(ωδt)

produces elements of S3 from vectors ω ∈ R3. Its Jacobian with
respect to ω follows from (34), but is better obtained from (36) and
the chain rule,

∂ Exp(ωδt)

∂ω
=
∂ Exp(ωδt)

∂(ωδt)

∂(ωδt)

∂ω
= Jr(ωδt)δt .

2) Function S3×R3 → R3: The rotation f(R,v) = q�v =
Rv produces vectors of R3 from elements R ∈ S3 and vectors
v ∈ R3. The first Jacobian is defined by (35) and developed as

∂q� v

∂θ
=
∂Rv

∂θ
, lim
δθ→0

(R⊕ δθ)v −Rv

δθ

= lim
δθ→0

RExp(δθ)v −Rv

δθ
= lim
δθ→0

R·(I+ [δθ]×)v −Rv

δθ

= lim
δθ→0

R [δθ]× v

δθ
= lim
δθ→0

−R [v]× δθ

δθ
= −R [v]×

where we used the properties Exp(δθ) ≈ I+ [δθ]× and [a]× b =
− [b]× a. The second Jacobian is defined by (32) and yields,

∂q� v

∂v
=
∂Rv

∂v
, lim
∂v→0

R·(v + ∂v)−Rv

∂v
= R .

3) Function S3×S3 → S3: The function f(Q,R) = q⊗r =
QR produces rotation composition. Its Jacobians are computed
from (33), using the property Exp(Rθ) = RExp(θ)R>,

∂q(θ)⊗ r

∂θ
=
∂Q(θ)R

∂θ
= lim
δθ→0

Log
(
(QR)>(QExp(δθ)R)

)
δθ

= lim
δθ→0

Log
(
R> Exp(δθ)R

)
δθ

= lim
δθ→0

Log
(
Exp(R>δθ)

)
δθ

= R> ,

∂q⊗ r(φ)

∂φ
=
∂QR(φ)

∂φ
= lim
δφ→0

Log
(
(QR)>(QRExp(δφ))

)
δφ

= lim
δφ→0

Log
(
Exp(δφ)

)
δφ

= I .
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Birkhäuser,, 2012, vol. 2: Analytic Methods and Modern Applications.


