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Abstract: Safety control consists in maintaining the state of a given system inside a specified set of safe
states. Traditionally, the problem is tackled using set-theoretic methods, which are mostly qualitative:
states are partitioned between safety-controllable (i.e. states that belong to the maximal controlled
invariant subset of the safe set) and safety-uncontrollable states. In this paper, we present a quantitative
approach to safety controller synthesis. Our approach makes it possible to compute a measure of safety,
which quantifies how far from the unsafe set (respectively, how close to the safe set) one can stay when
starting from a given controllable (respectively, uncontrollable) state. For finite transition systems, such
a measure can be computed in finite-time using a functional fixed-point iteration. In addition, we show
that the level sets of the functional fixed-point coincide with the maximal controlled invariant subsets of
a parameterized family of sets and that one can synthesize a common safety controller for all the sets
of the family. In the second part of the paper, we show how the approach can be used in the framework
of abstraction-based synthesis to lift these results to infinite transition systems with finite abstractions.
To illustrate the effectiveness of the approach, we show an application of the approach to a simple boost
DC-DC converter.
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1. INTRODUCTION

In system design, safety refers to the ability of a controller
to maintain the state of a system in a specified set of safe
states (see e.g. Tabuada (2009); Girard (2012)). The classi-
cal approach to safety synthesis is based on the notion of
controlled-invariant sets (see e.g. Blanchini and Miani (2008);
Maler (2002); Rungger and Tabuada (2017)), where states are
said to be safety-controllable, or infinite-time reachable (as in
Bertsekas (1972)), if they belong to the maximal controlled-
invariant subset of the safe set. This approach is there-
fore mostly qualitative (states are either safety-controllable or
safety-uncontrollable) and does not allow to compare to states
within the same category. However, intuitively, some states can
be considered as safer than the others (i.e. those that are further
from the unsafe set). Similarly, between two unsafe states, the
one, which is closer to the safe set, would tend to be more
desirable. Hence, it appears natural to take a quantitative ap-
proach where a measure of safety is associated to the states of
the system.

Such quantitative semantics of qualitative specifications, typi-
cally formulated in temporal logic have been given in (Fainekos
and Pappas (2009); Donzé and Maler (2010)). Intuitively, these
semantics measure how much a trajectory can be perturbed
before changing the qualitative value (true or false) of a given
property. Hence, for safety properties, these quantitative se-
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mantics can be interpreted as follows: for safe trajectories, it
measures the minimal distance of the trajectory to the unsafe
set; for unsafe trajectories, it measures the maximal distance of
the trajectory to the safe set. Quantitative semantics of temporal
logic have been used within the model predictive control frame-
work to synthesize receding horizon controllers (Raman et al.
(2015); Sadraddini and Belta (2015)).

In this work, we propose a quantitative approach to safety
control, based on a functional fixed-point iteration. Conver-
gence of the fixed-point in finite-time is guaranteed for finite
transition systems. The level sets of the fixed-point coincide
with the maximal controlled invariant subsets of a family of
sets parameterized by their distance to the safe set. This allows
us to interpret the value of the fixed-point at a given state
as a measure of the safety of that state. Moreover, we show
that a common safety controller can be synthesized for the
whole family of controlled invariant sets. A similar functional
fixed-point iteration can be found in (Chatterjee and Henzinger
(2008)), however, the characterization of the level sets in terms
maximal controlled-invariant sets and results on controller syn-
thesis appear to be new. A second contribution of the paper is
the joint use of the quantitative approach with abstraction-based
techniques (see e.g. Tabuada (2009); Girard (2012)), which al-
low us to lift the results from finite transition systems to infinite
transition systems with finite abstractions. Let us remark that
abstraction-based synthesis of safety controllers with quanti-
tative objectives has also been studied in (Meyer et al. (2015,
2017)). However, in those works, the quantitative objective is
an auxiliary performance cost, which is not directly related to
the safety property.

The paper is organized as follows. In Section 2, we introduce
the class of transition systems and provide a quick overview



of the qualitative approach to the safety control problem. In
Section 3, we introduce the quantitative approach to safety
control for finite transition systems. In Section 4, we extend the
approach to infinite transition systems using abstraction-based
techniques. Finally, in Section 5, we show the effectiveness of
the approach by appyling it to a simple boost DC-DC converter
model.

Notation. In the following, R, R+
0 and N denote the set of real,

nonnegative real and natural numbers, respectively. A relation
R ⊆ X ×Y is identified with the set-valued map R : X → 2Y

where R(x) = {y ∈ Y | (x,y) ∈ R}. The inverse relation of R
is R−1 = {(y,x) ∈ Y × X | (x,y) ∈ R}. The domain of R is
dom(R) = {x ∈ X | R(x) 6= /0}.

2. PRELIMINARIES

In this section, we introduce some concepts which will be
helpful for the rest of the paper. First, the general modeling
framework of transition systems is given and then, some con-
cepts related to safety control are going to be discussed.

2.1 Transition systems

A common modeling framework for discrete, continuous and
hybrid systems are the transition systems (see e.g. Tabuada
(2009)), that are defined as follows:
Definition 1. A transition system T is a quintuple

T = (X ,U,∆,Y,H)

consisting of a set of states X ; a set of inputs U ; a transition
relation ∆ ⊆ X ×U ×X ; a set of observations Y and an output
map H : X → Y .

The transition relation captures the dynamics of the transition
system and (x,u,x′) ∈ ∆, which will be denoted hereafter as
x′ ∈ ∆(x,u), signifies that the state x′ can be reached initiating
from x under the control input u. The set of enabled inputs
at state x is given by enab∆(x) = {u ∈ U | ∆(x,u) 6= /0}. If
enab∆(x) = /0, then x is said to be a blocking state, otherwise
it is said to be non-blocking; the set of non-blocking states is
denoted nbs∆. A transition system is called finite if the state and
input sets X and U are finite sets, whereas a transition system
that is not finite is called infinite. A transition system is called
metric if the output set Y is equipped with a metric d.

In the framework of transition systems, (static state-feedback)
controllers can be defined as follows:
Definition 2. A controller for the transition system T is a map
C : X → 2U such that C(x)⊆ enab∆(x), for all x ∈ X . The con-
trolled transition system TC is defined as TC = (X ,U,∆C,Y,H)
where the transition relation is given by:

x′ ∈ ∆C(x,u) ⇐⇒ [(u ∈C(x))∧ (x′ ∈ ∆(x,u))].

Note that a state x of the controlled system TC is non-blocking
if and only if C(x) 6= /0, i.e. nbs∆C = dom(C).

2.2 Safety specifications

Let us consider a transition system T and Xs ⊆ X a set of safe
states. In practice, Xs can often be defined from a set of safe
outputs Ys ⊆ Y by Xs = H−1(Ys).

The problem considered in this paper, known as safety problem
in computer science, is traditionally referred to as controlled
invariance in control theory. The main objective in safety prob-
lems is to characterize a subset of safe states S ⊆ Xs, such that
when the system’s state is initially in S, it can remain in S
(and thus in Xs) forever under suitable control. Additionally,
one aims at synthesizing a controller which makes it possible to
restrict the behavior of a system so that its state remains inside
the set S. The definition of controlled invariant subset and the
notion of a safety controller are given next.
Definition 3. Let us consider transition system T and Xs ⊆ X a
set of safe states:

• S ⊆ Xs is a controlled invariant subset of Xs if and only if
for all x ∈ S, there exists u ∈ enab∆(x) such that ∆(x,u)⊆
S.

• S? ⊆ Xs is the maximal controlled invariant subset of Xs if
and only if S? is a controlled invariant subset of Xs and for
all controlled invariant subsets S⊆ Xs, we have S⊆ S?.

Notice that the uniqueness of the maximal controlled invariant
subset is a well-known result, see e.g. (Ramadge and Wonham
(1987)). Algorithms for computing the maximal controlled
invariant subset are typically based on fixed-point iteration on
sets, see e.g. (Bertsekas (1972); Maler (2002); Rungger and
Tabuada (2017)). A state x ∈ X is said to be safety-controllable
if x ∈ S?; otherwise, it is said to be safety-uncontrollable.

Given a controlled invariant subset S ⊆ Xs, a safety controller
maintains the state of the system TC inside S:
Definition 4. Let us consider transition system T and Xs ⊆ X a
set of safe states, let S ⊆ Xs be a controlled invariant subset
of Xs. The controller C : X → 2U is a safety controller for
controlled invariant subset S if, S ⊆ dom(C) and for all x ∈ S,
for all u ∈C(x), we have ∆(x,u)⊆ S.

Given a controlled invariant subset S⊆ Xs, it is always possible
to obtain a safety controller C as follows:

C(x) :=
{

/0 if x /∈ S
{u ∈ enab∆(x)| ∆(x,u)⊆ S} if x ∈ S (1)

3. QUANTITATIVE APPROACH TO SAFETY
CONTROLLER SYNTHESIS

The approach to the safety problem presented in the previous
section can be referred to as qualitative, in the sense that the
states of T can be partitioned in two categories: the safety
controllable states (i.e. x ∈ S?) and the safety uncontrollable
states (i.e. x /∈ S?). However, for states within a given category,
the previous approach does not allow to make a distinction. For
instance, given two safety controllable states, one may be inter-
ested to know if one is safer than the other; a similar question
can be asked for safety uncontrollable states. To answer this
question, one needs to take a quantitative approach, i.e. one
needs to have a measure of the level of safety is a given state.
Intuitively, for a safety controllable state, this measure should
quantify how far one can stay from the unsafe set, starting from
that state. Conversely, for an safety uncontrollable state, this
measure should quantify how close one can stay from the safe
set.

The quantitative approach would also be useful for the purpose
of controller synthesis. Indeed, controllers obtained by (1)
through the qualitative approach have non-deterministic values



for safety controllable states and have an empty value (i.e.
are undefined) for safety uncontrollable states. Instead, one
could use the quantitative approach to choose the control input
that would optimize the level of safety of the corresponding
successors.

In this section, we make the assumption that the transition
system T is finite. We believe that similar results can be derived
for classes of infinite transition systems, but at the expense of
more involved technical developments, so the infinite case is
left as future work.

To substantiate the quantitative approach to safety controller
synthesis, let us introduce a cost function h : X → R, which
intuitively quantifies how safe or unsafe is a given state x. If T
is metric, a natural choice for h(x) is the signed distance from
the output H(x) to the safe output set Ys, i.e.

h(x) = ds(H(x),Ys) (2)
with

ds(y,Ys) =

{
sup{δ ≥ 0|B(y,δ )∩S 6= /0} if y /∈ S

− sup{δ ≥ 0|B(y,δ )⊆ S} if y ∈ S

where B(y,δ ) = {y′ ∈Y | d(y,y′)≤ δ} denotes the ball centered
in y of radius δ . A positive value of h(x) means that H(x) lies
outside the safe output set Ys: the larger h(x), the further H(x)
from Ys and thus the more unsafe x. Conversely, a negative value
of h(x) means that H(x) is inside Ys: the smaller h(x), the further
H(x) from the boundary of Ys and thus the safer x.

Then, let us define the sequence (V k)k∈N, where the maps
V k : X → R∪{+∞} are given iteratively as follows. For k = 0,
and x ∈ X , let V 0(x) := h(x). Then, for every subsequent step,
with k ∈ N and x ∈ X , let

V k+1(x) := (3){
max

(
h(x), min

u∈enab∆(x)
max

x′∈∆(x,u)
V k(x′)

)
if x ∈ nbs∆

+∞ if x /∈ nbs∆

The fixed-point is obtained by taking the limit of the sequence:

V ?(x) := lim
k→+∞

V k(x). (4)

For finite state systems, one can show that the fixed-point is
actually reached in a finite number of steps:
Proposition 5. Let T be finite, then the limit (4) exists and
there exists k? ∈ N such that for all k ≥ k?, for all x ∈ X ,
V k(x) = V k?(x) = V ?(x). Moreover, V ? satisfies the following
fixed-point equation, for all x ∈ nbs∆,

V ?(x) = max
(

h(x), min
u∈enab∆(x)

max
x′∈∆(x,u)

V ?(x′)
)
. (5)

Proof. First, we are going to prove that for all x ∈ X , the
sequence (V k(x))k∈N is nondecreasing. This is obviously the
case if x /∈ nbs∆. When x ∈ nbs∆, we have the following

V 0(x) = h(x)

V 1(x) = max
(

h(x), min
u∈enab∆(x)

max
x′∈∆(x,u)

V 0(x′)
)
≥V 0(x)

Assume now, that for some k≥ 1, V k(x)≥V k−1(x) for all x∈X .
Then, for all x ∈ nbs∆,

V k+1(x) = max
(

h(x), min
u∈enab∆(x)

max
x′∈∆(x,u)

V k(x′)
)

≥max
(

h(x), min
u∈enab∆(x)

max
x′∈∆(x,u)

V k−1(x′)
)
=V k(x)

Note that for all x /∈ nbs∆, we also have V k+1(x) ≥ V k(x).
Thus, by induction, it follows that for all k ∈ N, for all x ∈
X , we have V k+1(x) ≥ V k(x), i.e. the sequence (V k(x))k∈N
is nondecreasing. A nondecreasing sequence converges to the
supremum of its range. Thus, the limit (4) exists.

To show that the fixed point is reached in a finite number of
steps, let us remark that for all x ∈ X , for all k ∈ N, V k(x) ∈
h(X)∪{+∞}, which is finite from the finiteness of X . Hence,
for all x∈X , (V k(x))k∈N is nondecreasing with values in a finite
set, which implies that there exists kx ∈ N, such that for all
k ≥ kx, V k(x) = V kx(x) = V ?(x). Let k? = maxx∈X kx, which
by finiteness of X is well-defined. Then, for all x ∈ X , for all
k ≥ k?, V k(x) = V k?(x) = V ?(x). Finally, by (3) with k ≥ k?,
one gets (5). 2

Remark 6. If T was infinite, the previous procedure would need
to be amended as follows. The minimum and maximum in (3)
should be replaced by infimum and supremum, respectively.
While the limit (4) would still exist (V k(x) would remain
nondecreasing), the fixed-point would generally not be reached
in a finite number of steps.

The relation of the quantitative approach described above to the
qualitative approach is highlighted in the following result:
Theorem 7. Let T be finite, then for all a ∈ R, Sa = {x ∈ X |
V ?(x) ≤ a} is the maximal controlled invariant subset of the
set Xa = {x ∈ X | h(x) ≤ a}. Let us consider the controller C?

defined by:

C?(x) =

{
/0 if x /∈ nbs∆

arg min
u∈enab∆(x)

max
x′∈∆(x,u)

V ?(x′) if x ∈ nbs∆
(6)

Then, for all a ∈ R, C? is a safety controller for controlled
invariant subset Sa.

Proof. The proof of this Theorem is twofold: (i) firstly we are
going to prove that the set Sa is a controlled invariant subset
of Xa, and admitting C? as an associated safety controller;
(ii) secondly, we will show that Sa is the maximal controlled
invariant subset Xa.

(i) First, let us remark that dom(C?) = nbs∆. Let x ∈ Sa, since
V ?(x) ≤ a < +∞, it follows that x ∈ nbs∆, thus Sa ⊆ dom(C?).
By (5), we have h(x) ≤ V ?(x) ≤ a and x ∈ Xa, thus, Sa ⊆ Xa.
Then, let u ∈ C?(x), and x′ ∈ ∆(x,u), then by definition of C?

one gets:
V ?(x′)≤ max

z′∈∆(x,u)
V ?(z′) = min

v∈enab∆(x)
max

z′∈∆(x,v)
V ?(z′).

It then follows from (5) that
min

v∈enab∆(x)
max

z′∈∆(x,u)
V ?(z′)≤V ?(x).

Therefore, V ?(x′) ≤ V ?(x) ≤ a and the set Sa is a controlled
invariant subset of Xa and C? is an associated safety controller.

(ii) Now, the maximality of Sa is going to be established. Let
us consider a controlled invariant subset S ⊆ Xa . We need to
prove that S⊆ Sa. We have that for all x ∈ S, V 0(x) = h(x)≤ a.
Assume, now, that for some k ∈ N, for all x ∈ S, V k(x) ≤ a.
Let x ∈ S, then there exists u ∈ enab∆(x) such that ∆(x,u) ⊆ S.
Hence, for all x′ ∈ ∆(x,u), V k(x′)≤ a. This implies that

min
u∈enab∆(x)

max
x′∈∆(x,u)

V k(x′)≤ a.

Moreover, since h(x)≤ a, it follows from (3) that

V k+1(x) = max
(

h(x), min
u∈enab∆(x)

max
x′∈∆(x,u)

V k(x′)
)
≤ a.



By induction, we obtain that for all x ∈ S, for all k ∈N, V k(x)≤
a. Taking the limit, we obtain V ?(x) ≤ a for all x ∈ S and thus
S⊆ Sa. 2

The advantages of the quantitative approach over the qualitative
approach are clear from Theorem 7. Firstly, the quantitative
approach allows us to compute, using a single fixed point it-
eration, the maximal controlled invariant subsets of a param-
eterized family of safe sets. To do the same thing, the quali-
tative approach would require to proceed with one fixed-point
iteration for each value of the parameter. Secondly, while the
qualitative approach, using (1), would synthesize one different
safety controller for each maximal controlled invariant subsets
of the parameterized family, the quantitative approach allows us
to design a common safety controller C? given by (6), for the
whole family of maximal controlled invariant subsets.

We can see from (6), that C? chooses inputs that will minimize
the (worst-case) value of V ? at the next state. It is remarkable
that using controller C?, the function V ? acts as a weak Lya-
punov function (i.e. it is non-increasing) along the trajectories
of the controlled system TC? . Then, the value V ?(x) provides a
measure of the level of safety of x, since the value of V ? and
thus of h along trajectories of TC? starting from state x remains
smaller than or equal to V ?(x). If x is safety uncontrollable,
then V ?(x) > 0, and the outputs of trajectories starting from x
remain at a distance from Ys smaller than or equal to V ?(x).
If x is safety controllable, then V ?(x) < 0, and the outputs of
trajectories starting from x remain at a distance from the unsafe
set Y \Ys greater than or equal to −V ?(x).

4. ABSTRACTION-BASED SYNTHESIS
USING THE QUANTITATIVE APPROACH

In this section, we show how the quantitative approach can be
used in the context of abstraction-based synthesis.

4.1 Approximate alternating simulation and bisimulation

Abstraction-based synthesis requires the use of formal behav-
ioral relationships between transition systems. In the following,
T1 denotes a finite abstraction while T2 denotes the concrete
(possibly infinite) system. We consider transition systems for-
mally related by approximate alternating simulation relations
(Tabuada (2009)) defined as follows:
Definition 8. Let Ti = (Xi,Ui,∆i,Y,Hi) with i = 1,2, be two
metric transition systems with the same set of outputs Y and let
δ ∈R+

0 . A relation R⊆ X1×X2 is a δ -approximate alternating
simulation relation from T1 to T2 if the following are satisfied:

(1) For every x1 ∈ X1 there exists x2 ∈ X2 with (x1,x2) ∈ R;
(2) for every (x1,x2) ∈ R we have d(H1(x1),H2(x2))≤ δ ;
(3) for every (x1,x2) ∈ R and for every u1 ∈ enab∆1(x1) there

exists u2 ∈ enab∆2(x2) such that for every x′2 ∈ ∆2(x2,u2)
there exists x′1 ∈ ∆(x1,u1) satisfying (x′1,x

′
2) ∈ R

We say that T1 is δ -approximately alternatingly simulated by
T2, denoted by T1 �δ T2 if there exists a δ -approximate alter-
nating simulation relation from T1 to T2.

Accordingly, we can define the approximate alternating bisim-
ulation relations (Tabuada (2009)) as follows:
Definition 9. Let Ti = (Xi,Ui,∆i,Y,Hi) with i = 1,2, be two
metric transition systems with the same set of outputs Y and let

δ ∈ R+
0 . A relation R ⊆ X1×X2 is said to be a δ -approximate

alternating bisimulation relation between T1 to T2 if the follow-
ing are satisfied:

(1) R is a δ -approximate alternating simulation relation from
T1 to T2;

(2) R−1 is a δ -approximate alternating simulation relation
from T2 to T1.

We say that T1 is δ -approximately alternatingly bisimilar to T2,
denoted by T1 ∼δ T2, if there exists a δ -approximate alternating
bisimulation relation between T1 and T2.

4.2 Abstraction-based synthesis

In this section, we show how the use of the quantitative ap-
proach on a discrete abstraction makes it possible to obtain
a parameterized family of controlled invariant subsets for the
concrete system.
Theorem 10. Let Ti with i = 1,2, be two metric transition
systems with the same set of outputs Y such that T1 �δ T2 with
δ -approximate alternating simulation relation R. Let Ys ⊆ Y be
a subset of safe outputs and hi be given by (2) with i = 1,2. Let
us assume T1 is finite and let V ?

1 and C?
1 be accordingly given

by (4) and (6). For a ∈ R, let Sa
1 = {x1 ∈ X1|V ?

1 (x1)≤ a}, then

• S̃a
2 = R(Sa

1) is a controlled-invariant subset of Xa+δ

2 =
{x2 ∈ X2| h2(x2)≤ a+δ}.

• A safety controller for S̃a
2 is given for all x2 ∈ X2 by

Ca
2(x2) =

u2 ∈ enab∆2(x2)

∣∣∣∣∣∣
∃x1 ∈ R−1(x2)∩Sa

1,
∃u1 ∈C?

1(x1),
∆2(x2,u2)⊆ R(∆1(x1,u1))


(7)

Proof. We first prove that S̃a
2 is a subset of Xa+δ

2 . For all x2 ∈
S̃a

2, there exists x1 ∈ Sa
1 such that (x1,x2)∈R. From Definition 8,

we have d(H1(x1),H2(x2))≤ δ . From Theorem 7, Sa
1 is a subset

of Xa
1 = {x1 ∈ X1| h1(x1) ≤ a}. Since hi are given by (2) with

i = 1,2, it follows from the triangular inequality that
h2(x2)≤ h1(x1)+d(H1(x1),H2(x2))≤ a+δ .

Hence x2 ∈ Xa+δ

2 .

We now prove that S̃a
2 is a controlled invariant subset admitting

Ca
2 as safety controller. We first prove that S̃a

2 ⊆ dom(Ca
2).

Let x2 ∈ S̃a
2 then there exists x1 ∈ Sa

1 such that (x1,x2) ∈ R.
From Theorem 7, Sa

1 is a controlled invariant subset with C?
1 as

associated safety controller. Hence x1 ∈ Sa
1 ⊆ dom(C?

1). Then,
let u1 ∈C?

1(x1), from Definition 8, there exists u2 ∈ enab∆2(x2)
such that ∆2(x2,u2) ⊆ R(∆1(x1,u1)). It follows from (7) that
u2 ∈Ca

2(x2) and thus x2 ∈ dom(Ca
2).

Now, let x2 ∈ S̃a
2, and ua

2 ∈ Ca
2(x2), then from (7) there exists

x1 ∈ R−1(x2) ∩ Sa
1 and u1 ∈ C?

1(x1) such that ∆2(x2,u2) ⊆
R(∆1(x1,u1)). Since x1 ∈ Sa

1 and u1 ∈ C?
1(x1), it follows from

Theorem 7, that ∆1(x1,u1) ⊆ Sa
1. Hence, ∆2(x2,u2) ⊆ R(Sa

1) =

S̃a
2. Hence S̃a

2 is a controlled invariant subset and Ca
2 is an

associated safety controller. 2

One can see from (7) that the controller Ca
2 generally depends

on the value of the parameter a, while the controller C?
1 for the

abstraction does not and is common for all controlled-invariant
subset Sa

1, a ∈ R. For the concrete system, a common safety



controller for all controlled-invariant subset S̃a
2, a ∈ R, can be

obtained as follows:
Corollary 11. Under the assumptions of Theorem 10, a com-
mon safety controller for S̃a

2, a ∈ R is given for all x2 ∈ X2 by

C2(x2) =

u2 ∈ enab∆2(x2)

∣∣∣∣∣∣∣
∃x1 ∈ arg min

z1∈R−1(x2)
V ?

1 (z1),

∃u1 ∈C?
1(x1),

∆2(x2,u2)⊆ R(∆1(x1,u1))


(8)

Proof. Let a∈R, let x2 ∈ S̃a
2, and x1 ∈ argminz1∈R−1(x2)

V ?
1 (z1).

Since S̃a
2 = R(Sa

1), we have

V ?
1 (x1) = min

z1∈R−1(x2)
V ?

1 (z1)≤ a,

which gives that x1 ∈ Sa
1. Hence, it follows that for all x2 ∈ S̃a

2,
C2(x2) ⊆Ca

2(x2). It then follows from Theorem 10 that C2 is a
safety controller for all S̃a

2, a ∈ R, such that S̃a
2 ⊆ dom(C2).

Then, let x2 ∈ S̃a
2 and x1 ∈ argminz1∈R−1(x2)

V ?
1 (z1), from above

we have x1 ∈ Sa
1 ⊆ dom(C?

1). Then, let u1 ∈ C?
1(x1), from

Definition 8, there exists u2 ∈ enab∆2(x2) such that ∆2(x2,u2)⊆
R(∆1(x1,u1)). It follows from (8) that u2 ∈ C2(x2) and thus
x2 ∈ dom(C2). Hence S̃a

2 ⊆ dom(C2). 2

When both transition systems T1 and T2 are finite, the following
result makes it possible to compare the functions V ?

1 and V ?
2 :

Theorem 12. Let Ti with i = 1,2, be two metric transition
systems with the same set of outputs Y . Let Ys⊆Y be a subset of
safe outputs and hi be given by (2) with i = 1,2. Let us assume
T1 and T2 are finite and let V ?

1 and V ?
2 be accordingly given by

(4). Then,

• If T1 �δ T2, with δ -approximate alternating simulation
relation R, we have

∀(x1,x2) ∈ R, V ?
2 (x2)≤V ?

1 (x1)+δ .

• If T1 ∼δ T2, with δ -approximate alternating bisimulation
relation R, we have

∀(x1,x2) ∈ R, V ?
1 (x1)−δ ≤V ?

2 (x2)≤V ?
1 (x1)+δ .

Proof. We prove the first item. Let (x1,x2) ∈ R, let a =V ?
1 (x1)

and let Sa
1 = {z1 ∈ X1| V ?

1 (z1) ≤ a}. Clearly, x1 ∈ Sa
1 and

therefore x2 ∈ S̃a
2 = R(Sa

1). From Theorem 10, we have that
S̃a

2 is a controlled invariant subset of Xa+δ

2 . By Theorem 7,
Sa+δ

2 = {z2 ∈ X2| V ?
2 (z2) ≤ a+ δ} is the maximal controlled

invariant subset of Xa+δ

2 . Thus, S̃a
2 ⊆ Sa+δ

2 . It follows that
V ?

2 (x2)≤ a+δ =V ?
1 (x1)+δ .

We now prove the second item. T1 ∼δ T2 implies that R is
a δ -approximate alternating simulation relation from T1 to
T2. Then, it results from the above that, for all (x1,x2) ∈ R,
V ?

2 (x2) ≤ V ?
1 (x1)+ δ . R−1 is also a δ -approximate alternating

simulation relation from T2 to T1. Then, for all (x1,x2) ∈ R,
V ?

1 (x1)≤V ?
2 (x2)+δ . 2

5. NUMERICAL RESULTS

In this section, we illustrate the results presented in the previous
sections using the boost DC-DC converter. This electric power
convertor has two operation modes depending on the position
of a switch. It can be modeled as a switched system with two

modes and the two dimensional dynamics associated with both
modes are affine of the form:

ẋ(t) = Ap(t)x(t)+b

with p(t) ∈ {1,2} and x(t) ∈ R2. For numerical values of the
system matrices, see (Girard et al. (2010)).

We sample time with period τ = 0.5 and represent the sampled
dynamics of the switched system as an infinite transition system
T2. Following the approach described in (Girard et al. (2010)),
one can compute δ -approximately (alternatingly) bisimilar dis-
crete abstractions for arbitrary precision δ > 0. Choosing δ =
0.2 and restricting the dynamics of the abstraction to the com-
pact set X = [0.65,1.65]× [4.95,5.95], one obtains a finite ab-
straction T1 with 264196 states. Note that in this approach, there
is no distinction between states and outputs (i.e. the output map
is the identity map).

We consider the safety control problem, which consists in
maintaining the state of the system within the set XS = YS =
[1.1,1.6]× [5.4,5.9]. Using the finite abstraction, we apply
the functional fixed-point algorithm (3), which terminates after
107 iterations. The fixed-point V ?

1 is shown in Figure 1, while
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Fig. 1. Fixed-point V ?
1 of algorithm (3) for the boost DC-

DC converter. The dashed blue lines depict different level
sets Xa

1 of the function h1 for different values of the
parameter a ∈ R. Gray colors depict different level sets
Sa

1 of the function V ?
1 for the same values of a; white color

correspond to states x1 such that V ?
1 (x1) = +∞.
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Fig. 2. Safety controller C?
1 for the boost DC-DC converter.

Light gray: mode 1, dark gray: mode 2, black: both modes
are enabled, white: blocking states.



the resulting safety controller C?
1 given by (6) is shown on

Fig.2. In particular, one can see that V ?
1 characterizes maximal

controlled-invariant subsets of a family of sets parameterized
by their distance to the safe set. Remarkably, the controller C?

1
is a common safety controller for all these controlled-invariant
subsets.

On Figure 3, one can check that V ?
1 acts as a weak Lyapunov

function (i.e. it is non-increasing) for the controlled transition
system T1C?

1
, where we used a lazy implementation of the

controller C?
1 : when there is a choice between mode 1 and 2, the

controller selects the one that is already on. Figure 4 shows a
trajectory of the concrete system T2 (i.e. the switched system),
associated to the trajectory of the controlled abstraction T1C?

1
depicted in Figure 3. It can be witnessed that the trajectory
never goes beyond the safe set, which is represented by the
green dashed lines in the figure. Moreover, the controller tends
to keep to trajectory away from the boundary of the safe set.

6. CONCLUSION

In this paper, we have presented a quantitative approach to
safety controller synthesis. We have shown how using a func-
tional fixed-point iteration, one can compute a measure of
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Fig. 3. Time evolution of the function V ?
1 along a trajectory of

the controlled abstraction T1C?
1
.
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Fig. 4. Trajectory of the concrete system T2, associated to the
trajectory of the controlled abstraction T1C?

1
depicted in

Figure 3. From up to bottom: in blue, time evolution of
the state components and inputs; the dashed green lines
represent the safe set.

safety of the sates of a finite transition system. The measure also
provides a simple design for a safety controller that is common
to a family of parameterized controlled-invariant sets. Using
abstraction-based techniques, we have shown that the approach
can be lifted to infinite transition systems. A numerical example
shows the effectiveness of the approach.

This work opens many further research directions. The most
immediate extension of the work is to adapt the theoretical re-
sults to generalize the functional fixed-point iteration to a class
of infinite transition systems. Secondly, similar quantitative
controller synthesis approaches should be developed for other
types of specifications such as reachability, stability or more
complex properties expressed in some temporal logic. Thirdly,
an intriguing question is to investigate the relation between
quantitative synthesis and the synthesis of robust controllers for
qualitative specifications.
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