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Abstract
We focus in this paper on the simultaneous shape and material optimal design of
shells by an isogeometric-like approach of a new kind, in which geometry and material
properties of the structure are defined by spline functions and the design variables
are the polar parameters at the control points. Different kinds of constraints on the
regularity, the admissibility of the elastic moduli etc, are taken into account and
some numerical examples, proving the effectiveness of the approach, are given.
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1 Introduction

Structural optimization is a subdomain of optimization that is concerned with the best
design of structures, like those of a bridge, an aircraft, a car, a sport device and so on.

The objective of a structural optimization problem can be of different kinds, such as the
maximization of stiffness or strength, the minimization of the weight (a typical objective
in aircraft construction), the maximization of vibration frequencies or of buckling loads
and so on.
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Apart the objective, normally some constraints are needed to well define the optimization
problem; for instance, the maximization of the stiffness is meaningless without a constraint
limiting the mass of the structure. A typical constraint entering structural optimization
problems is the state equation to be satisfied by any admissible design so by the optimal
one too. In structural mechanics, the state equation is actually the equilibrium equation
of the system.

Structural optimization problems can be of different types: shape optimization is con-
cerned with the best shape of a structure, e.g. of a beam [1]; topological optimization
considers the optimal distribution of the matter inside a given volume, for prescribed
boundary conditions and applied forces [2, 3]. A more recent type is that concerning the
optimization of the material properties [4,5]. This branch of structural optimization con-
cerns composite materials and more specifically laminated structures. In such a kind of
problems, the best elastic and/or strength properties are to be found, i.e. the mechanical
characteristics of the meta-material (i.e. of the laminate) must be designed [6–11]. A
particular type of this class of problems is concerned with the best distribution of the
local properties of a laminate. In such a case, the elastic moduli of the anisotropic lam-
inate can vary pointwise and their best distribution is the purpose of the optimization
problem. In these problems, hence, one has to find the best distribution of one or more
tensor fields [12–15].

In this paper, we deal with a new kind of structural optimization problem: the simulta-
neous optimization of the shape and of the material properties distribution for a shell-like
structure.

The purpose of the optimization problem considered in this work is the maximization of
the shell stiffness, to be obtained acting on both its shape and the distribution of its elastic
anisotropic properties, that can vary pointwise. This is hence a combination of shape and
material optimization. Some constraints, concerning namely the mass of the shell or the
mechanical admissibility of the elastic moduli, are part of the problem. This kind of
study, besides being interesting “per se”, could be a contribution to the understanding of
how geometry and distributed anisotropy interact, a topic subject of very few studies, see
e.g. [16].

The approach that we have used in this paper is an isogeometric-like one. The word
isogeometric refers, usually, to numerical techniques in which the solution, or a quantity
of interest, of a given problem is discretized using the basis functions describing the exact
geometry in an isoparametric sense. Introduced by T.R. Hugues [17], these methods
were first implemented in the frame of structural and computational fluid dynamics [18–
20].

Extensive research has recently been devoted to the isogeometric method, whose principle
is based on a direct integration of numerical analysis, optimization and design process in
the same environment. The design variables are the control points associated to the B-
splines or NURBS (Non-Uniform Rational Basis Splines) functions used to parameterize
the shape of the structure and sometimes their weights [21, 22]. The present research
follows previous works done in the same direction, [23,24]; the most important innovation
presented here is the design of the anisotropy properties fields jointly to the design of the
optimal shell shape, that is done using the same isogeometric-like technique used for the
parameterization of the shell shape. This technique, developed during the PhD thesis [25],
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is contemporary to the first two published studies using jointly polar parameters and spline
parametrization of the design variables, [26,27]. However, unlike these papers, where just
the elastic properties are optimized for a fixed geometry, a plate, in our study the design
concerns at the same time the elastic properties and the shell shape.

The word isogeometric is normally reserved to approaches where the interpolation func-
tions for the elements representing the structure in a finite element approach are also
B-splines or NURBS. This is not the case in our study, where a standard finite element
formulation has been used. However, we precise that in this paper the structure behavior
is defined by the classical Nagdhi’s model (deep shell model written in curvilinear coordi-
nates), so that the state equations of the optimization problem are set up on the domains
of charts which define the geometry. Since the three-dimensional structure is parametrized
by standard CAD functions, the Naghdi’s equations are posed on a square or on a trian-
gle and constitute (through the first and second fundamental forms) an isogeometric-like
mechanical interpolation of the structure. Note moreover that, compared with the current
industrial standards, this approach of the shape optimization is naturally interfaced with
CAD software and allows to simplify the classical optimization process by eliminating
the re-meshing steps and the phases of conversion of geometries (from FEM models to
CAD models) which deteriorate the optimization results and require dedicated software.
For these reasons, we have used the term isogeometric-like to denote our approach, some-
times, for the sake of shortness, simply reduced to isogeometric, in the sense specified
above, and, in the end, we have called polar-isogeometric approach the technique pre-
sented in this paper, as based, on one side, on the polar formalism and, on the other side,
on an isogeometric-like method.

The paper is organized as follows: Section 2 focuses, after a brief recall of the general
setting of the considered optimization problem, on the description of the shell model
equation governing the behavior of the structure. Section 3 describes the parameterization
used for the geometry in the standard isogeometric framework. In Section 4 we describe
the polar formalism technique used to represent the elastic tensor. The Section ends with
the parametrization used to represent these polar parameters; moreover, we introduce
some sufficient conditions to be satisfied by the control points of such parameters in order
to ensure the pointwise satisfaction of the admissibility constraints on the elastic tensor.
In Section 5 we give the formulation of the optimization problem in the polar-isogeometric
framework. The design variables are the control points driving the geometry and the polar
parameters. Section 6 presents some numerical examples concerning the optimal design of
anisotropic shell structures. The paper ends with a conclusion and an outlook on possible
future developments.

2 Definition of the Optimization Problem

2.1 General Setting of the Design Problem

A shell is a structure with one dimension (the thickness) small in regard to its other
characteristic dimensions, so as it can be identified to a finite surface, generally chosen
to be its middle-surface, denoted in the following by Ω. We consider here anisotropic
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shells, like those constituted of composite materials, and in particular, referring to the
recent additive manufacturing technologies of fiber placement, we focus on shells whose
anisotropic elastic properties can vary pointwise.

Assuming that the shell thickness is fixed, we are interested in the optimal design of both
shell geometry and material distribution. Hence, the design is denoted by a couple (Ω,E),
where Ω ⊂ E3, the ordinary Euclidean space, and E is the elastic tensor of its constitutive
materials which can vary pointwise on Ω. Let us start by assuming that U , which will be
specified later on, is the displacement field associated to a given applicant design (Ω,E)
of the optimization problem. The displacement U is solution of the state (equilibrium)
equation: find U ∈W such that

a(U ,V ) = l(V ), ∀ V ∈W. (1)

In the above variational problem, see [28] , we have assumed that the structure is subjected
to a system of loads, and a and l are respectively the bilinear form associated to the strain
energy and the linear form of work of the applied loads and W is the space of admissible
displacements.

Here, we consider as optimal design problem the maximization of the structure stiffness;
as well known, [29], this is equivalent to the minimization of the compliance, the work
done by the applied forces, which, in linear elasticity, is exactly twice the strain energy
stocked in the structure (Clapeyron’s theorem). So, in the end, the objective functional
j can be written in the general classical form

j(U ; Ω,E) =
1

2
a(U ,U). (2)

Let us denote by (Ω∗,E∗) the optimal design

(Ω∗,E∗) = arg min j(Ω,E) s.t. (Ω,E) ∈ Evar. (3)

Evar := EΩ × EE; EΩ is the space of admissible geometries which takes into account the
regularity constraint, the boundary conditions specified on the geometry, while EE takes
into account for the admissibility constraints on the elastic tensor.
Within the isogeometric framework, Ω is defined as the image of a parametric domain
ω ∈ R2 throughout the mapping Φ, which in the end means that the mechanical problem
is defined on ω, thanks to classical differential geometry quantities [30]. We assume that
the domain ω is fixed, henceforth the problem (3) turns to find the optimal mapping Φ∗

and E∗, such that Ω∗ = Φ∗(ω).

There are different shell models in the literature, among others the Love’s classical theory
[31], generalizing to shells the classical Kirchhoff’s theory for plates, the Koiter’s model
[32] and the Naghdi’s one [33], which is the corresponding for shells of the Reissner-
Mindlin’s [34] model of plates. We have used in our study the Naghdi’s model, briefly
introduced hereafter.

In the following, unless otherwise specified, Greek indexes range in the set {1, 2} while
Latin indexes in {1, 2, 3}. The Einstein’s summation convention is systematically used
over repeated subscript and superscript. Given a point M in the classical Cartesian space
E3, m denotes its position vector with respect to the origin.
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2.2 Naghdi’s Shell Model

Let us denote by ~a3 the unit vector normal to Ω, ξ = (ξ1, ξ2) and ξ3 respectively the
curvilinear coordinates associated to Ω := Φ(ω) and the normal coordinate throughout
its thickness t; then

Ωt = {X ∈ E3 : x = Φ(ξ) + ξ3~a3, (ξ, ξ3) ∈ ω × [− t
2
,
t

2
]}. (4)

Ω is assumed to be sufficiently regular so that we can define the covariant vectors ~aα

~aα :=
∂Φ

∂ξα
= Φ,α. (5)

The vectors ~aα are linearly independent, i.e a
1
2 = ‖~a1 ∧ ~a2‖ 6= 0, hence the normal vector

is defined as
~a3 :=

~a1 ∧ ~a2

‖~a1 ∧ ~a2‖
. (6)

Equivalently, one writes
~aα ∧ ~aβ = εαβ~a3, (7)

where εαβ (resp. εαβ) are the covariant (contravariant) Levi-Cevita symbols on the surface
defined as follows

εαα = 0, ε12 = −ε21 = a
1
2 and εαα = 0, ε12 = −ε21 = a−

1
2 . (8)

The contravariant vectors ~ai, dual of the covariant basis vectors ~ai, are defined as

~ai · ~aj = δji . (9)

The covariant and mixt components of the curvature tensor are

bαβ = ~aα,β · ~a3 and bλα = ~aλ,α · ~a3. (10)

Given a field ~w, we denote by wi (resp. wj) its covariant (resp. contravariant) coordi-
nates

~w = wj~a
j = wk~ak. (11)

Letting Γλαβ = ~aα,β · ~aλ be the Christoffels symbols, the derivative ~w,α is defined by

~w,α = (wα|β − bαβw3)~aα + (w3|β + bσβwσ)~a3, (12)

where the symbol “ |β” denotes the covariant derivative operation with respect to ξβ defined
below {

wα|β = wα,β − wσΓσα,β,
w3|β = v3,β.

(13)

Kinematical hypotheses. In the Naghdi’s shell theory, [33], the following kinematical
assumptions are made: the normal fiber in the reference configuration is a straight line
which remains straight after deformation but that can rotate, unlike in the Love’s and
Koiter’s shell models. Hence, the displacement of any point of the three-dimensional shell
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is defined through the displacement vector of the middle-surface plus a rotation of the
normal vector ~a3. Let us denote by ~u the displacement of the middle-surface and Ψ the
rotation vector of the normal. The displacement of any particle of the shell, of position
vector Φ(ξ1, ξ2) + ξ3~a3 is defined as

~U = ~u+ ξ3~a3 ∧Ψ(~a3). (14)

~u represents the displacement of the point M , on the middle-surface, of position vector
m = Φ(ξ), and Ψ(~a3) the rotation vector of the normal fiber at the point M .
Let ui be the covariant components of ~u, i.e. ~u = ui~a

i. The rotation vector of the normal
fiber is defined as

Ψ(~a3) = εαβsα~aβ + Ψ3~a3, (15)

where sα are the covariant components and Ψ3 the third component of the rotation vec-
tor. Hence, from (14), the displacement vector associated to the three-dimensional shell
is

~U = ui~a
i + ξ3sα~a

α. (16)

Indeed, the displacement of any particle of the shell is assumed to be described through
five degrees of freedom: three for the displacements and two for the rotations.

Hereafter, we denote by u := (u1, u2, u3) and s := (s1, s2) respectively the vectors of
covariant components of displacement and rotation.

2.3 The State Equation

The displacement is solution of the state problem which in variational form (virtual work
principle), for the static case, reads:

Problem 2.1: State equation

Find [u, s] ∈W ⊂ [H1(ω)]5 such that

a([u, s], [v, r]) = l([v, r]), for all [v, r] ∈W. (17)

l is the virtual work of the applied loads, defined as

l([v, r]) =

∫
ω

f ivi
√
adS +

∫
γ

(N ivi +Mαrα)dl; (18)

dS and dl being respectively the element of area over the parametric domain ω and the
element of length on Γ = Φ(γ), γ ∈ ∂ω. The strain energy bilinear form a(·, ·) is

a([u, s], [v, r]) =

∫
ω

t{Qαβλµγλµ(u)γαβ(v) +
t2

12
Qαβλµχλµ([u, s])χαβ([v, r])+

Eα3β3γβ3([u, s])γα3([v, r])}
√
adS.

(19)

In the previous equations
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• ~f = f i~ai is the force per surface element.

• ~N = N i~ai and ~M = εαβMα.~aβ are respectively the resultant of force and the plane
moment along the boundary Γ.

• Eijkl denote the contravariant components of the elastic tensor E and, Qαβλµ and
Eα3λ3 are respectively the reduce plane and anti-plane parts of the elastic tensor.

• Finally γαβ, χαβ and γα3 are respectively the covariant components of the membrane,
bending and shear strains

γαβ(u) = 1
2
(uα|β + uβ|α)− bαβu3,

χαβ([u, s]) = 1
2

(
sα|β + sβ|α − bσαdσβ(u)− bσβdσα(u)

)
,

γα3([u, s]) = 1
2
(sα + bσαuσ + u3,α),

(20)

where dλµ(u) := uλ|µ − bλµu3.

3 Geometry Definition for the Isogeometric-Like Ap-
proach

The isogeometric approach relies on the fact that the basis functions used for the pa-
rameterization of the fields of interest are the same as those associated to the parametric
geometry in a Computed Aided Design (CAD) environment. These functions are typi-
cally Bézier, B-spline and NURBS functions. Splines are a more general form of Bezier
functions introduced in [35], which in turn have been generalized by NURBS by adding
some weights associated to the different blending functions. The aim of this section is
to briefly recall the parameterization with B-spline functions, used in the following; for a
deep insight in the matter, the reader may refer to [36].

Basis functions definitions In the isogeometric framework, the parametric domain ω
is generally a unit square, called a patch: ω = I1 × I2 := [0, 1]2. Let us note ξ := (ξ1, ξ2)
the parametric coordinates in ω. Assume that each parametric segment Iα is partitioned
using a knot vector Σα comprising a non-decreasing sequence of real numbers

Σα = {ξα1 , ξα2 , · · · , ξαnα+dα+1}, with ξαk ≤ ξαk+1, (21)

where ξαi , nα, and dα represent respectively the knot of index i, the number of univariate
spline basis functions spanning the polynomial space over Iα and the polynomial degrees.
Also dα + 1 is called the order of the spline functions. The breakpoints are not required
to be distinct, their multiplicities define the influence of their respective control points.
Let us note {ξ̂αi }i∈{1,··· ,kα} the distinct breakpoints of Iα, and denote mα

i their respective
multiplicities, satisfying

kα∑
i=1

mα
i = nα + dα + 1. (22)
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Univariate B-spline polynomial. Let I := [0, 1] be the parametric interval parti-
tioned with the knot vector Σ = {ξ1, ξ2, · · · , ξn+d+1}, where n and d are respectively
the number of spline basis polynomial functions and their degree. The univariate spline
functions denoted bdi are defined recursively from (Cox-de-Boor formula, [37])

b0
i (ξ) =

{
1 if ξi ≤ ξ ≤ ξi+1

0 otherwise , i ∈ {1, · · · , n+ d}, (23)

and for all p > 0

bpi (ξ) =
ξ − ξi
ξi+p − ξi

bp−1
i (ξ) +

ξi+p+1 − ξ
ξi+p+1 − ξi+1

bp−1
i+1 (ξ), i ∈ {1, · · · , n+ d− p}, (24)

where the convention 0
0

= 0 is adopted in (24). The B-spline functions satisfy the following
properties

Univariate B-spline properties. Let us consider a knot vector

Σ = {ξ1, ξ2, · · · , ξn+d+1} (25)

partitioning the interval I, and denote k and mi, i = 1 : k respectively the number of
distinct knots and their corresponding multiplicities. The B-spline functions satisfy the
following properties

• Non-negativity: bdi (ξ) ≥ 0 for all ξ ∈ I.

• Local support: supp(bdi ) = [ξi, ξi+d+1].

• Regularity: the functions bdi are at least of regularity Cd−m, m = maxmi
i=1:k

being the

maximum value of multiplicity.

Moreover, in the case of knot vectors such that m1 = mk = d + 1, corresponding to the
so-called clamped or open spline, one has the unit partition property

n∑
i=1

bdi (ξ) = 1 ∀ ξ ∈ I. (26)

Bivariate B-spline polynomials Given two knot vectors Σα = {ξαi }i=1:nα+dα+1 parti-
tioning each parametric interval Iα of ω, the corresponding bivariate B-spline polynomials
of degree dα on the parametric coordinate ξα are defined as

bdij(ξ) = bd
1

i (ξ1)bd
2

j (ξ2), (27)

where d = (d1, d2) and bdαi are the univariate spline basis functions of degree dα along the
αth parametric direction.

The bivariate B-spline functions inherit of the same non-negativity, local support prop-
erties from the univariate ones. The local support of a function bdij is supp(bdij) =

supp(bd
1

i )× supp(bd2j ) and the unit partition property is obtained for knot vectors satisfy-
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ing the conditions mα
1 = mα

kα = dα + 1; {mα
i }k

α

i=1 being the multiplicities of the distinct
breakpoints. Finally the B-spline functions are of class Cr(ω) with r = min dα −mα

α=1,2
, with

mα = max mα
i

i=1:kα
.

Curve and surface definitions Let us denote by B1(Σ, d) the space of univariate
B-spline polynomial functions

B1(Σ, d) = span{bdi , i ∈ {1, · · · , n}}. (28)

A univariate B-spline function φ ∈ B1(Σ, d) is defined as a linear combination of the basis
functions bdi with their associated coefficients ci, i ∈ {1, · · · , n}

φ(ξ) :=
n∑
i=1

cib
d
i (ξ). (29)

For a B-spline curve C := φ(I), the coefficients are the coordinates of the control points,
so that for a curve in the Cartesian space ci ∈ R3.
Let B2(Σ,d) denote the bivariate B-spline space defined as

B2(Σ,d) = span{
(
bdij
)j=1:n2

i=1:n1 }. (30)

We further assume that the middle-surface is defined through a bivariate function Φ :
ω → R3 of the space B2(Σ,d). We denote by pij := (xij, yij, zij) ∈ R3 the coordinate
vector of the control points, i.e.

Φ(ξ) :=

n1,n2∑
i,j=1

pijb
d
ij(ξ). (31)

Figure 1 shows an example of B-spline surface defined using knot vectors of the form
Σα = {0, 0, 0, 0, 1, 1, 1, 1} and d = 3. For simplicity reasons, we introduce and use as

p11
p21

p31

p41

p12
p22

p32

p42

p13
p23

p33

p43

p14
p24

p34

p44

Figure 1: Example of middle-surface with the associated control points

much as possible a unique index for numbering the control points: i = i(k, l) with i =
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(l − 1)n1 + k, and i ∈ {1, · · · , n12 = n1n2}. So the function Φ can be rewritten as

Φ(ξ) =
n12∑
i=1

pib
d
i (ξ) (32)

At this point, one remarks that the shape can be driven by the control points pi. Moreover,
some constraints on the geometry can be stated and handled very easily. For instance, a
fix place boundary condition on the edge of parametric boundary ξ1 = 0, thanks to the
fact that the knots are assumed open or clamped, turns to keep fixed the control points
(p1j)

n2

j=1 associated to that edge.

4 Anisotropy Representation

An anisotropic material has elastic properties changing with the direction. Such properties
are expressed by the elastic tensor. The main goal when designing such materials is to
set up the optimal distribution of the elastic properties. In the case of optimal design of
planar anisotropic structures, it is suitable to make use of the polar formalism, introduced
by Verchery [38] in 1979, to represent a planar elastic tensor using just invariants and
angles. This formalism allows to easily represent rotations and the constraints on the
design variables (the polar parameters).

Moreover, the polar formalism allows to split the elastic tensor into its isotropic and
anisotropic parts; hence it offers the possibility to target and explicitly tune the anisotropy.
More details on the polar formalism can be found in [39–41]. For a complete presentation
of anisotropic elasticity and of the polar method and its applications, the reader can refer
to [5].

The polar formalism has successfully been applied to several different optimization prob-
lems concerning laminated structures, [6–16, 42–48] as well as to some theoretical prob-
lems, [40, 41,49–57].

As said above, the mechanical properties of concern in this study are condensed in the
elasticity tensor E; this is a fourth-rank tensor whose components satisfy the minor and
major symmetries of the indexes:

Eijkl = Ejikl = Eijlk = Eklij, i, j, k, l = 1, 2, 3. (33)

For the case of a plane tensor, which is of interest in our study, as detailed below, the
independent elastic components reduce then to only 6: E1111, E1112, E1122, E1212, E1222

and E2222, in the following generically indicated as Eαβλµ.

In the polar formalism, the components Eαβλµ of the plane elastic tensor are expressed
as

10
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

E1111=T0+2T1+R0 cos 4Φ0+4R1 cos 2Φ1,

E1112=R0 sin 4Φ0+2R1 sin 2Φ1,

E1122=−T0+2T1−R0 cos 4Φ0,

E1212=T0−R0 cos 4Φ0,

E1222=−R0 sin 4Φ0+2R1 sin 2Φ1,

E2222=T0+2T1+R0 cos 4Φ0−4R1 cos 2Φ1.

(34)

In the above equation, T0, T1, R0 and R1 are elastic moduli, while Φ0 and Φ1 are (the
polar) angles. In particular, it can be shown that T0 and T1 are the isotropy invariants
while R0, R1, Φ0 − Φ1 are the anisotropy invariants. The elasticity is then represented
through intrinsic quantities, tensor invariants, and angles, which is particularly suitable
when working with orientation depending properties, like in anisotropy. The choice of
one of the two polar angles fixes the frame: as Φ0 − Φ1 is an invariant, choosing Φ0 or Φ1

corresponds to fix a frame and also the value of the other angle.

It can be shown, see [39], that the polar invariants are linked to the elastic symmetries.
In particular, ordinary orthotropy corresponds to the condition

Φ0 − Φ1 = K
π

4
; K = 0, 1. (35)

The value of K is very important in optimization problems; in fact, it has been seen in
several cases that changing K from 0 to 1 or vice-versa transforms an optimal solution
into an anti-optimal one (i.e the best to the worst), [44]. Taking into account for (35) in
(34), we obtain for an orthotropic layer:

E1111(Φ1) =T0 + 2T1 +RK
0 cos 4Φ1 + 4R1 cos 2Φ1,

E1112(Φ1) =−RK
0 sin 4Φ1 − 2R1 sin 2Φ1,

E1122(Φ1) =− T0 + 2T1 −RK
0 cos 4Φ1,

E1212(Φ1) =T0 −RK
0 cos 4Φ1,

E1222(Φ1) =RK
0 sin 4Φ1 − 2R1 sin 2Φ1,

E2222(Φ1) =T0 + 2T1 +RK
0 cos 4Φ1 − 4R1 cos 2Φ1,

(36)

with
RK

0 = (−1)KR0. (37)

Two other special orthotropies exist: square symmetry (i.e with elastic properties
periodic of π

2
), corresponding to the condition R1 = 0 and R0-orthotropy, corresponding

to R0 = 0. For more details on this subject, the reader is referred to [39,58].

To summarize, in the polar formalism, the following six parameters define the elastic
tensor in any frame:

• two isotropic invariants T0, T1;

• three anisotropic invariants R0, R1, Φ0 − Φ1. For ordinarily orthotropic layers,
these can be replaced by the two quantities RK

0 and R1, still representing the three
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invariants (indeed K ∈ {0, 1})

• the angle Φ1, fixing the frame.

We finally remark that isotropy corresponds to R0 = R1 = 0.

4.1 Elastic Assumptions

In this paper, we consider the optimal design of a shell under the following assumptions:
the shell is locally orthotropic everywhere and homogeneous through the thickness. The
design concerns exclusively the anisotropic part of E, for both the direction and the elastic
moduli.

This is a simplified setting, but it corresponds to a real situation, that of a shell composed
by a quasi-homogeneous orthotropic laminate of identical orthotropic plies, see e.g. [59].
In such a case, the elastic behavior of the laminate is completely determined by a unique
elastic tensor, describing at the same time the extension and the bending response of the
shell, and there is no coupling between extension and bending. In addition, because the
plies are identical, the isotropic part, i.e. the polar invariants T0 and T1, are everywhere
equal to those of the basic layer, so they cannot be affected by the design process, once the
material chosen. We precise, however, that here we simply address the problem specified
hereon, just as a mathematical problem, regardless of whether or not it corresponds to the
above laminate; that is why we still use the symbol E to denote the stiffness tensor.

We also assume that the through-the-thickness properties Eα3β3 are much less important
for the process at hand than the in-plane ones, so they are simply considered as constant
throughout the design process. This fact is justified for thin shells, as we assume the shells
at hand to be; in addition, this approximation is consistent with the fact, always confirmed
by the numerical results, that the optimal shell is the one working in a membrane regime,
where shear and bending energy tends to zero; as a consequence, the transversal shear
moduli Eα3β3 are inessential in this context.

Finally, the main consequence of such assumptions for the optimum design of the shell is
that the number of elastic design variables is reduced to only three: RK

0 , R1 and Φ1: two
elastic moduli and the orthotropy direction.

4.2 Constraints on the Polar Parameters

The polar elastic moduli cannot take arbitrary values, they are submitted to some con-
straints that can be of two types, depending upon whether the shell is homogeneous (i.e.,
composed by a unique layer) or not (i.e., it is a laminated shell):

• Elastic bounds, see [55], resulting from the positive definiteness of E, [5]:

T1[T0 +RK
0 ] > 2R2

1,

T0 > |RK
0 |,

R1 ≥ 0.

(38)
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Such constraints must be satisfied locally by any elastic homogeneous sheet in a
planar elastic state.

• Geometric bounds: it can be shown, see [40], that laminates composed by identical
layers cannot realize all the possible combinations of the values of the elastic moduli.
We could say, in some words, that laminates form a “more restricted” elastic class.
Mathematically speaking, this corresponds to the fact that the bounds on E are
not (38) but some other more restrictive ones, called geometric bounds, because
linked to the stacking sequence. For the case of an orthotropic laminate composed
of orthotropic layers, such geometric bounds are (here, KL, R

K
0
L

= (−1)KLRL
0 and

RL
1 are polar parameters of the basic layer)

2

(
R1

RL
1

)2

− 1 ≤ RK
0

RK
0
L
,

RK
0 ≤ RL

0 ,

0 ≤ R1 ≤ RL
1 .

(39)

Since equation (39) is more restrictive than (38), when the problem concerns the design
of a laminated structure, eq. (38) must be replaced by eq. (39), otherwise, one could
obtain some values for the components of E that cannot be realized in practice through
a laminate composed by identical plies.

4.3 Isogeometric Parameterization for the Polar Parameters

We have to recall now that in the problem at hand, the elastic properties can vary point-
wise throughout the shell. This means that the design variables RK

0 , R1 and Φ1 are actually
design variable fields, with the constraints (38) or (39) to be satisfied everywhere in the
shell. In other words, put in this way the problem is infinitely dimensional with an infinite
number of constraints. A discretization of the problem is hence needed, in order to reduce
its dimension and the number of constraints to a finite value.

Using a standard finite element based discretization, like in [12, 14, 15], would yield to a
huge number of design variables and of constraints. Following an idea originally proposed
in [26], we propose below a new approach, based upon an isogeometric-like parameter-
ization of the polar quantities, in a way similar to that used to parametrize the shell
geometry. Just as in [26], but unlike in [27], where only the polar angle is described in
terms of an isogeometric surface, here we use a parametrization of the invariants RK

0 and
R1, described, like the polar angle, by an isogeometric surface each one, so obtaining a
complete optimization of E. The design parameters associated to E are the polar pa-
rameters defined at each control point of the spline functions describing the fields of the
corresponding polar parameters of E and we derive below a finite set of sufficient con-
straints which guarantee the elastic or geometric bounds to be satisfied everywhere in the
shell.

As already said, we assume the polar parameters fields to be designed under the form of
Bézier, B-spline or NURBS functions. We focus mostly on the parameterizations of the
polar moduli RK

0 are R1 which are mainly involved in the elastic and geometric constraints.

13
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Indeed, our goal is to define a set of constraints on the control points which ensure that
the inequalities (38) are satisfied pointwise. Two parameterizations for R1 are relevant
(here, we refer to the elastic bounds (38), but a similar procedure can be used also for
the case of the geometric bounds (39)):

• a conformal parameterization: R1 is parametrized as the square root of a positive B-
spline; the interest of this change of variable is to simplify the constraints (38) which
become linear. The drawback is that the elastic coefficients and the constraints are
no more differentiable at R1 = 0;

• a direct parametrization: R1 is parameterized by a B-spline but, see Propostion 4.3,
the constraints on the control points depend on the number of control points. How-
ever, this gives the advantage of making the elasticity tensor differentiable with
respect to the control points of the polar parameters.

On the other hand the basis functions used for the parameterization of RK
0 must be the

same as the ones used for the parameterization of R1 or R2
1. The main results of this part,

given in the Proposition 4.2 and 4.3, descend directly from the following Proposition
4.1.
Proposition 4.1. Let Σ = (Σ1,Σ2) and d = (d1, d2) be two couples of knot vectors and
integer numbers

i) The B-spline basis functions of B2(Σ,d) are such that: ∀i ∈ {1, · · · , n12} and n12 =
n1 × n2

∀ ξ ∈ ω := [ξ1
1 , ξ

1
n1+d1+1]× [ξ2

1 , ξ
2
n2+d2+1] and 0 ≤ bdi (ξ) ≤ 1. (40)

ii) Moreover if the end knot-points are of full multiplicity the B-spline functions satisfy
the unit partition property

∀ ξ ∈ ω,
n12∑
i=1

bdi (ξ) = 1. (41)

iii) If C is a B-spline in B2(Σ,d) of control points ci then the relationships ci ≤ 0 for
all i entail that C(ξ) ≤ 0 for any ξ ∈ ω. The Example 4.1 shows that the converse
is false.

iv) If G and H are two B-splines in B2(Σ,d) then for any (a, b, c) ∈ R3 the linear
combination S = aG+ bH + c is a B-spline which belongs to B2(Σ,d). Moreover, if
gi and hi denote respectively the control points of G and H, the control points si of
S are given by

si = agi + bhi + c (42)

Proof The proofs of properties i) and ii) are given in [60]. Property iii) is a consequence
of the positiveness property of the B-spline basis functions. For the property iv), we see
from the equation (41) that the constant function c : ξ 7→ c can be written as

c =
n12∑
i=1

c bdi (ξ) for all ξ ∈ ω (43)
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and thus c is a “B-spline function” in B2(Σ,d), the result is a consequence of the fact that
B2(Σ,d) is a vector space. �

Remark 4.1. B-splines do not, in general, interpolate the endpoints of the control poly-
gon. Their associated knot vectors define the influence of the control points or parameters.
The control polygon will coincide with the B-spline surface at a knot of full multiplicity.
We will consider knot vectors with first and last knot breakpoints of full multiplicity with
respect to the orders of the B-spline function. This point is necessary for the property
(40) in the Proposition 4.1.

It is worth noting, as the following example shows, that the proposed approach yields to
sufficient but not necessary constraints.
Example 4.1. Let us consider the knot vector Σ = {0, 0, 0, 0, 1, 1, 1, 1} and assume d = 3.
The polynomial basis functions are the classical Bernstein functions

b3
1(ξ) = (1− ξ)3, b3

2(ξ) = 3(1− ξ)2ξ, b3
3(ξ) = 3(1− ξ)ξ2, b3

4(ξ) = ξ3. (44)

In this case 0 and 1 are break-points of full multiplicity and the curve Cp interpolates
these endpoints which are below the horizontal line representing the zero ordinate line.
However, as can be noticed on Figure 2, the control points p1 and p2 do not satisfy the
negativity constraint while the value of the spline polynomial is always negative.

p1

Cp

•

•
p2

•
p3

•
p4

z = 0

Figure 2: Example of clamped B-spline. In this particular case, the control points: p1 = −2.0,
p2 = 0.25, p3 = 0.8 and p4 = −2.0 are not all negative while C(ξ) < 0 for all ξ ∈ [0, 1].

4.4 Constraints for Conformal Parameterization

In this case, the polar parameters RK
0 and R2

1 are parametrized by B-splines and we show
in the Proposition 4.2 that this allows to reduce the non-linear constraints (38) to some
linear constraints set on the control points.

Proposition 4.2. Let d = (d1, d2) and Σ = (Σ1,Σ2) be two pairs of integers and knot-
vectors. Assume that R and R0 are two B-spline parameterizations of R2

1 and RK
0 in

B2(Σ,d), written as

R(ξ) =
n12∑
i=1

ribdi (ξ), R0(ξ) =
n12∑
i=1

ri0b
d
i (ξ) (45)
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where nα = card(Σα)− dα − 1 (α = 1, 2) and n12 = n1 × n2. If the following inequalities

T1[T0 + ri0] > 2ri,

−T0 < ri0 < T0,

ri ≥ 0

(46)

are satisfied ∀ i ∈ {1, · · · , n12}, then the inequalities (38) are satisfied for all ξ ∈ ω.
In an analogous way, for the typical case of laminate made of identical orthotropic layers,
the constraints for the geometric bounds (39) are

2
ri

(RL
1 )2
− 1 ≤ ri0

RK
0
L
,

ri0 ≤ RL
0 ,

0 ≤ ri ≤ (RL
1 )2;

(47)

with RK
0
L
, RL

1 the polar parameters of the basic orthotropic layer, defined in Sec. 4.

4.5 Constraints for Direct Parameterization

We now assume that the polar parameter R1 is parametrized by a B-spline. Consider the
case of elastic bounds, this new parameterization only affects the inequality (38)1. We
have the following result:

Proposition 4.3. Let R1 and R0 be two B-spline parametrizations of the polar moduli
R1 and RK

0 , written as:

R1(ξ) =
n12∑
i=1

ri1b
d
i (ξ) and R0(ξ) =

n12∑
i=1

ri0b
d
i (ξ). (48)

Then the inequalities

2(ri1)2 − T1(T0 + ri0)

n12
< 0, ∀i ∈ {1, · · · , n12} (49)

imply the inequality (38)1 to be satisfied for every ξ ∈ ω.

In the case of geometric bounds on the elastic tensor, the direct parameterization in regard
to the conformal one, affects the inequalities (39)1 and (39)2: the sufficient inequalities to
be satisfied, respectively for (39)1 and (39)2 are then

2(
ri1
RL

1

)2 − 1

n12
(1 +

ri0

RK
0
L

) ≤ 0

0 ≤ ri1 ≤ RL
1

(50)

Reader may refer to [25] for the proof which is based on B-spline properties and the use
of the Schwartz inequality.
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The parameterizations stated above for the polar parameters allow to reduce the number
of design variables which are now the control points of their parameterizing B-spline
functions. But Figure 2 of the Example 4.1 shows that defining the constraints directly
on the control points can lead to a reduction of the design space exploration.

Nevertheless, it is possible to use B-spline flexibility to define the constraints on new con-
trol points in order to enlarge the admissible space exploration. More specifically, once
the parametrizations of the polar parameters are set, one can use subdivision (through
Casteljau algorithm) see [61] or knot insertion flexibility of B-spline to define some new
“more interpolating” control points, [36, 60]. By doing so, we can define new control pa-
rameters which are linear combinations of the original control points and more suitable
for the definition of more accurate constraints. This yields to “relax” the bounds of varia-
tion on the original design variables (control points) and allows to enlarge the admissible
space exploration. The constraints will then be checked on the new control points. This
strategy is shown in the following Example.
Example 4.2. (B-spline flexibility for the constraints). Let us return to the Example 4.1.
Figure 3 shows the spline curve with its initial control points pi and some news ones li
and rj, which are associated to the two splines obtained by inserting an interpolant knot
point at the middle (ξ = 1

2
). These new control points satisfy the negativity constraint and

then will help to check and better explore the admissible design.

Subdivision operation is a well known flexibility given by B-spline function. The idea was
first defined for Bezier curves and surfaces with the Casteljau algorithm; see [61]. This
algorithm allows to evaluate a Bezier function at some given parametric coordinates and
also, at the same time, to split or subdivise the Bezier curve at that specific parametric
coordinate. The subdivision technique has been generalized for B-spline functions by Cox-
De-Boor [60], [36].

p1 = l1 •

•
p2

•
p3

•p4 = r4

z = 0

•l2

•l3 •
l4 = r1

•
r2

•r3

Figure 3: Illustration of subdivision on the B-spline curve Cp. The new calculated control
points {li, ri}, i∈ {1, · · · , 4} satisfy the sufficient conditions

Hence, one can choose a certain level of subdivision a priori at which the “sufficient con-
straints” will be checked on the new computed control points and then get a good exploration
of the design space.
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5 Formulating the Shape and Anisotropy Optimization
Problem

Thanks to the isogeometric approach the shape and the material properties are driven
by some control points. We set subsequently the optimal design problem in the polar-
isogeometric framework introduced above.

Let us denote by pi, i ∈ {1, · · · , ñ12} the control points associated to the parameterization
of the shape, and assume that the shape Ω = Φ(ω) is subjected to:

• some box constraints:

∀ ξ ∈ ω, li ≤ Φ(ξ) · ~ei ≤ ui, ∀i ∈ {1, 2, 3}; (51)

where li and ui are respectively the lower and upper bounds on the ith Cartesian
coordinate.

These constraints can be taken into account in the same way as the constraints on
the elastic tensor, by using Proposition 4.1: the sufficient constraints will be put on
the control points of the geometry and read

pj · ~ei ∈ [li, ui], ∀j ∈ {1, · · · , ñ12}, (52)

• bounds on the surface area A of the shell

l0 ≤ A ≤ u0 (53)

where l0 and u0 are the lower and upper bounds on the area A

A =

∫
ω

√
adξ1dξ2; (54)

• a fix place boundary condition on its edge Γ = Φ(γ) of parametric boundary γ ∈ ∂ω.
The four parametric boundaries are the four edges of the unit square domain, i.e

γ = {0} × I, γ = {1} × I, γ = I × {0} or γ = I × {1} with I = [0, 1]. (55)

Let Iω = {1, · · · , ñ12} denote the set of indexes of the control points of Ω = Φ(ω); Iγ be the
subset of indexes of the control points relative to Γ = Φ(γ) such that |Iγ| = ñα, α ∈ {1, 2}
and Iγ = Iω\Iγ the complementary subset of indexes, n = |Iγ| = ñ12 − ñα. The space of
admissible shape EΩ is then

EΩ = {Ω = Φ(ω) s.t. Φ ∈ B2(Σ,d),

p̂ = {pi}i∈Iγ ∈ R3×n and (52), (53) hold
}
.

(56)

As well as the polar parameters moduli RK
0 and R1, the orthotropy angle is assumed to

be parameterized as a B-spline function of given knot vectors and degrees which can be
chosen arbitrarily of the ones of RK

0 and R1.
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Let Φ̂1 = {Φi1}
nΦ
i=1 ∈ RnΦ be the corresponding control points. For notation simplicity,

let nr = n12, and let r̂1 = {ri1}
nr
i=1 ∈ Rnr and r̂0 = {ri0}

nr
i=1 ∈ Rnr be the control points

associated to the parameterizations of R1 and RK
0 . The design space associated to the

elastic tensor is
EE = EgeomE or EE = EelasE ,

depending on whether the structure is a homogeneous or a laminated shell. Also, there
are two possible settings of the spaces EgeomE and EelasE depending on the kind of parameter-
ization used for the polar parameters. For instance, in the conformal case, we have

EelasE =
{
E := E(Φ̂1, r̂0, r̂1) s.t. r̂α, α ∈ {0, 1},

satisfy (46) and Φ̂1 ∈ [−π, π]nΦ
} (57)

and

EgeomE =
{
E := E(Φ̂1, r̂0, r̂1) s.t. r̂α, α ∈ {0, 1},

satisfy (47) and Φ̂1 ∈ [−π, π]nΦ
}
.

(58)

Let us consider the compliance objective function ĵ

ĵ : Rn × RnΦ × Rnr × Rnr → R
[p̂; Φ̂1, r̂0, r̂1] 7→ ĵ(p̂; Φ̂1, r̂0, r̂1) = 1

2
a([u, s], [u, s]).

(59)

The optimal design problem is: Find the optimal solution [Φ∗,E∗] such that

[Φ∗;E∗] = arg min ĵ(p̂; Φ̂1, r̂0, r̂1) s.t. [Φ,E] ∈ E . (60)

After a brief description of the practical formulation and steps of the optimal design
problem in the framework of the polar-isogeometric approach, we give in the next Section
some numerical examples.

6 Some examples

For the numerical resolution of the examples considered in this Section, we have used
NLOPT, a free/open-source library for NonLinear OPTimization. It includes the imple-
mentation of numerous optimization algorithms adapted for global and local optimiza-
tions. The library involves different types of algorithm such as, among others, Moving
Asymptote Method (MMA) or COBYLA (Constrained Optimization by Linear Approx-
imation), which can be gradient-based or derivative-free. We have used the COBYLA
algorithm which appears to yield the best optimization results among the different algo-
rithms.

In all the examples, we always start from a shell in the form of a flat domain with a given
uniform distribution of the anisotropic parameters (e.g., an isotropic distribution). Hence,
we begin all the iterations starting from a plate; during the computation, the plate is more
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and more transformed into a shell and at the same time anisotropy changes pointwise.
During this process, the elastic energy, at the beginning entirely stored as bending energy
in the plate, transforms continuously more and more to membrane energy. The ideal
situation, corresponding to the optimal shell, is the one where all the strain energy of
the shell is in the form of membrane energy, i.e. when the bending energy of the shell
vanishes everywhere.

This is the process driving the initial plate to the final stiffest shell, acting simultaneously
upon shape, i.e. geometry, and anisotropy, i.e. elasticity. So, this process can help to
investigate the mutual influence of these two aspects on the morphogenesis of optimal
anisotropic shells.

Material properties: In the forthcoming examples, the elastic coefficients of the basic
material (i.e. of the basic layer, for the case of a laminate) are:

E2 = E = 9000× 106 Pa
E1 = E3 = 161× 106 Pa
ν12 = ν23 = ν = 0.26

ν13 = 0.26 and G13 =
E

1 + ν

G12 = G23 = 61× 106 Pa.

The polar parameters corresponding to the plane reduced elastic tensor are:

T0 = 1.17× 109 Pa, T1 = 1.16× 109 Pa
RK

0 = 1.11× 109 Pa, R1 = 1.11× 109 Pa, and Φ1 = 0.

We consider up to three different types of optimal design problems, in order to analyze
the incidence of the anisotropy on the shape:

• optimal shape design with an isotropic material (by setting RK
0 = R1 = 0);

• optimal shape design with the specified anisotropic material and a fixed material
orientation throughout the shell;

• joint optimal design of the shape and anisotropy, included the material orientation.

In all the cases, geometric bounds (39) are used in the calculations. The shape is parame-
terized by cubic B-spline polynomial of clamped knot vectors and 4 control points in each
coordinate direction. The polar parameters are defined through B-spline polynomial of
degrees d of clamped knot vectors of the form

Σα = {0, · · · , 0︸ ︷︷ ︸
d+1

, 1, · · · , 1︸ ︷︷ ︸
d+1

}, α ∈ {1, 2}.

The geometry is subjected to box constraints on the control points and to a bounded area
constraint of the form

l0 = (1− εtol)A0 ≤ A ≤ u0 = (1 + εtol)A0,
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that is, the relative variation of the design area with respect to the initial shell area A0

is εtol.

In order to tailor efficiently the locally variable elastic properties, it can be relevant to
use an assembling of patches for the parameterization of the polar parameters. This
does not present any additional difficulty since, provided that the material frame of two
adjacent patches are consistent, the continuity on the polar parameters (if necessary)
is easily obtained by equating the control parameters at the interfaces of the adjacent
patches.

6.1 Optimal Design of a Circular Dome

The first case concerns the design of a circular dome submitted to its own weight and
simply supported at its boundary. The geometry of the initial structure, a circular plate,
and the problem data are represented in figure 4 and table 1. For symmetry reasons,
the optimization is performed on a quarter of the structure and symmetry conditions are
imposed on the elastic displacement.

sym

sym

R

ρ = 1.58× 103Kg/m3

t = 3× 10−2m
R = 1m.

x

y

•
z

Figure 4: Circular plate geometry and boundary conditions.

First case: Shape design with fixed isotropic material
The optimal shape found for the shell is represented in Figure 5. We have checked that
the optimal structure is a shell whose meridional profile is a catenary. It is well known
that the catenary is the form of equilibrium of an arch of constant thickness under the
action of its own weight in which all the internal actions reduce to a pure normal force
(this result is due to R. Hooke, [62], see also [63] or [64]). Such an arch shape optimizes
also its stiffness, because all the strain energy is stored in the structure under the form of
extension energy, while the bending one is reduced to zero; this condition, as well known,
corresponds to the maximum stiffness.

The optimal shell so obtained is, in the same way, submitted to only membrane internal
actions, so that the bending energy vanishes. Actually, the membrane energy part for the
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Table 1: Design problem relative to the circular plate

Geometry & Circular plate of radius R = 1 m
loading: subjected to its own weight

Constraints: • Symmetries with C1 regularity throughout the planes of
symmetry x− z and y − z
• Fix place constraint on the simply supported boundary
• Box constraints
• Bounded area constraints εtol = 0.3

Anisotropy

RK
0 , R1 Φ1

Knots Σα = {0, 0, 0, 0, 1, 1, 1, 1} Σα
Φ1

= {0, 0, 0, 0, 1, 1, 1, 1}

Constraints • geometric bounds (47) bounds on the angle - see (58)

Shape Anisotropy

Number of design 12 48
variables

optimal solution is Em = 98.35%. Figure 6 shows the evolution of the compliance, i.e., of
the strain energy, and the contributions of the membrane and bending parts to the strain
energy, along the optimization procedure. We can remark the migration of the strain
energy from the dominant initial form of bending energy to the final prevailing form of
membrane energy.

Second case: anisotropy and shape design The second case that we consider for
this example is the joint optimization of the polar parameters and of the shape. The polar
parameters are subjected to geometric bounds on their control points and are defined as
B-spline of degrees d = 3. The optimal shape and the orthotropy direction are plotted in
Figure 7. Also in this case the optimal shape is that of a shell with meridional sections
in the form of a catenary. The polar parameters moduli are plotted in Figure 8. One
remarks that these parameters are not only uniform throughout the structure, but also
that both of them take the highest possible value: the optimal shell is that with the
highest possible degree of anisotropy of the two anisotropic phases. We also remark that
the only orthotropy type is the one with K = 0.
Figure 9 shows the variation of the compliance and once again the migration of the strain
energy from the bending to the membrane form throughout the optimization: for the
optimal design, the membrane part is 93.34% of the total strain energy.
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Figure 5: Example 1: optimal shape for isotropic material.
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Figure 6: Example one, shape optimization with isotropic material: evolution of the
compliance through iterations (left) and ratio of the membrane and bending energy to
the total strain energy (right).

6.2 Optimization of a Conical Shell

As second example, we consider the optimization of a conical shell: the starting structure
is a holed circular plate which is simply supported at its external boundary and subjected
to an uniformly distributed vertical load at its inner circular boundary. The radius of the
circular plate is R = 0.8m while that of the hole is r = R

3
. The geometry and conditions

are shown in Figure 10 and Table 3.

For symmetry reasons, the optimization is performed on a quarter of the structure. The
geometry is defined by two sub-structures joined together as described in Figure 10 and
the optimization problem set up is reported in Table 3. The control points associated to
the circular boundary with simply-supported condition are kept fixed while those defining
the internal crown, which carries the applied load, are constrained to have the same z-
coordinate, i.e., the internal circular boundary can move rigidly.

First case: shape design with fixed isotropic material

The optimal shape found is plotted in Figure 11, while the variation of the compliance
and of membrane and bending energy parts during the optimization procedure are plotted
in Figure 12.
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Figure 7: Example one, shape and material optimization: optimal shape and orthotropy
direction field.

Figure 8: Example one, shape and anisotropy optimization: optimal polar moduli fields.

Also in this case we can remark the migration of the strain energy from the bending to
the membrane form: at the end of the calculation, this last is 98.88% of the whole strain
energy.

For this example, the optimal shape is a conical surface, to which corresponds a strain
energy completely stored under the form of membrane energy. The result shown in Figure
11 is not exactly a conical surface, but it is close to it. This is due to the fact that the
solution has not yet perfectly converged, which is attested by the fact that the membrane
energy is not 100% of the whole elastic energy stored in the shell.

Second case: shape design with fixed anisotropic material.

We consider now the optimization of the shape made with the anisotropic material spec-
ified in Sect. 6 under the same constraints on the geometry as in the previous case. In
addition, we fix the angle of orthotropy: Φ1 = π

4
. The optimal shape so found is shown in

Figure 13. In this case we do not obtain a shell with circular cross section, but a wrinkled
surface, which is the apparent consequence of using a fixed anisotropic material with a
fixed orientation throughout the shell. Unlike in the previous case, however, the wrinkles
have an almost rectilinear profile, closer to a conical shape than before. We remark also
that, as well known, wrinkled membranes are very stiff structures and it is interesting
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Figure 9: Example one, shape and material optimization: evolution of the compliance
through iterations (left) and ratio of the membrane and bending energy to the total
strain energy (right).

Table 2: Summary of the global results concerning the first example.

Material

Anisotropic Isotropic

Design init final init final

Compliance (%) 100 0.174 100 0.167
Em(%) 14.11 93.33 1.82 98.95

to notice that when anisotropy enters the design, the optimal shape becomes a wrinkled
surface. Figure 14 shows the variation of the strain energy and of the membrane and
bending parts throughout optimization. In this case, though the tendency is the same of
the previous cases, the final membrane energy is only 87.3% of the whole strain energy
stored in the shell; the remaining 12.7% is in the form of bending energy, which is due to
the presence of the wrinkles.

Third case: shape and anisotropy optimal design

We presently consider the joint optimization of the shape and material properties for this
second example. The parameterization considered for the polar parameters corresponds
to d = 2, thus, considering also the continuity condition between the two patches, there
are 15 design variables for each polar parameter. Figure 15 shows the optimal shape and
orthotropy direction.

We remark that the optimal shape is, like in the first case, a shell close to a conical surface;
in particular, in this case the final surface is closer to a conical one than in the first case.
Also, we notice that the optimal orientation is the same everywhere: the highest elastic
modulus is in the meridional direction, which seems a logical result. Unlike the optimal
material orientation, which is constant throughout the shell, the optimal distribution of
the polar anisotropic moduli RK

0 and R1 is not constant, see Figure 16.
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Figure 10: Example two: geometry and boundary conditions.

Figure 11: Example two: optimal shape for the isotropic case.

In particular, the field of the parameter RK
0 is uniform and almost constant over all the

shell with the presence of only one kind of orthotropy K = 0, while R1 changes, in
particular it increases from top to bottom.

We remark also that the optimal material orientation is different from that, fixed a priori,
of the previous case. The consequence of this is the different optimal shape of the shell,
that now is not wrinkled.

Figure 17 shows also for this case the variation along iterations of the strain energy and
of its membrane and bending parts. The variation is analogous to that of the previous
cases; in particular, one can notice that the convergence is practically reached after 60
iterations and at the end the membrane energy amounts to 97.2% of the whole elastic
energy stored in the shell.

The overall results for the three cases considered for this second example are shown in
Table 4. We can remark that the most effective case is the third one, with a final compli-
ance which is just the 0.004% of the initial one. This shows that acting simultaneously
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Table 3: Description of the conical shell design problem.

Geometry & Holed circular plate of outer radius R = 0.8 m and inner r = R
3

loading: Loaded at its inner boundary

Constraints: • Symmetries with C1 regularity
throughout the planes of symmetry
• Fix place constraint on the simply supported boundary
• The inner loaded circle remains a circle
• Box constraints
• Bounded area constraints εtol = 3

2

Anisotropy

RK
0 , R1 Φ1

Knots Σα = {0, 0, 0, 1, 1, 1} Σα
Φ1

= {0, 0, 0, 1, 1, 1}

Constraints • geometric bounds (47) bounds on the angle - see (58)

Shape Anisotropy

Number of design 25 45
variables

on the geometry and on the material distribution is advantageous.

Table 4: Summary of the different results concerning the second example (final 1: final
value for the first case, final 2 for the second one and final 3 for the third one).

Material

Anisotropic Isotropic

Design init final 2 final 3 init final 1

Compliance (%) 100 0.036 0.004 100 0.105
Em(%) 1.74 87.3 97.2 1.65 98.9

6.3 Plate Submitted to a Torsional Load

The last example that we consider is a square plate with a side of 1 m, clamped at one side
and subjected to two equal but opposite loads applied at the free corners. On the whole,
the plate is hence submitted to a torsional action. The geometry of the plate is sketched
in Figure 18, while in Table 5 we show the data of the problem. The two concentrated
loads producing the torsion of the plate have a value f = 1000 N. The plate is defined by
an assembling of 2 × 2 square plates of length 0.5 m, each being parameterized through
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Figure 12: Example two, shape optimization with isotropic material: evolution of the
compliance through iterations (left) and ratio of the membrane and bending energy to
the total strain energy (right).

Chapter 5. Simultaneous optimization of shape and anisotropy

but only along the z-direction. The number of design variables after considering the constraints
is 9. The total number of constraints associated is 24. The angle of orthotropy is �1 = ⇡

4 .
The optimal shape is plotted on Figure 5.25.

Figure 5.25 Shape design with anisotropy material with an orthotropy
angle �1 = ⇡

4 : Optimal shape corresponding to the holed circular plate
under edge load.

and the orthotropy direction associated on Figure 5.26.

Figure 5.26 Orthotropy direction on the optimal shape design

The optimizer finds a structure with important outline and curvature which creates some pro-
nounced load patches allowing the transmission of the load to the basis of the structure.
Figure 5.27 shows the history of the objective function throughout optimization.

140

Figure 13: Example two: optimal shape for fixed anisotropic material.

a cubic B-splines with open knot vectors and four control points in each parametric
direction. Finally a C1-regularity is imposed at the junction of the patches. The design
is constrained to preserve the boundary: the final shape of the optimal shell must have
the same boundary of the original square plate. The orthotropy is initially oriented with
an angle Φ1 = 0 with respect to the x-axis direction.

First case: shape design with fixed isotropic material

As usual, we first consider that the plate is made with the isotropic material obtained
putting RK

0 = R1 = 0. Figure 19 shows, on the left, the optimal shape so found. It is
interesting to notice that this shape corresponds with one of the fundamental vibration
modes of the plate when it is simply supported along all its boundary.

Second case: shape design with fixed anisotropic material

Like for the previous example, we consider now the optimal shape design with the
anisotropic material given in Sect. 6 and with the material orientation that is fixed
everywhere to Φ1 = 0. The final optimal shape is shown in Figure 19, on the right. Now,
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Figure 14: Example two: optimal shape and material orientation for fixed anisotropic
material. Evolution of the compliance through iterations (left) and ratio of the membrane
and bending energy to the total strain energy (right).

Figure 15: Example two, shape and anisotropy optimization: optimal shape and material
orientation.

the optimal shape has remarkably changed with respect to the previous case: the waves
are more numerous and they decrease going towards the clamped edge. It is interesting
to remark that the greatest curvatures in the shell shape are located near the loaded
corners.

Third case: shape and anisotropy optimal design

Finally, we consider the joint shape and anisotropy optimal design. Figure 20 shows the
optimal shape and material orientation. The optimal shape changes again with respect
to the two previous cases; the optimal distributions of the polar moduli RK

0 and R1 are
represented in Figure 21. Like in the previous examples, they are practically constant
throughout the structure and equal to their maximal allowed value. Also in this case,
there is a unique final type of orthotropy, that with K = 0.

Table 6 summarizes the different optimization results for this third example. Like in
the previous example, also in this case the best result is found for the third case, i.e.,
when shape and anisotropy are optimized. The optimal shapes so found for this example
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Figure 16: Example two, shape and anisotropy optimization. Distribution of the optimal
polar moduli RK

0 and R1.
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Figure 17: Example two: shape and material optimization. Evolution of the compliance
through iterations (left) and ratio of the membrane and bending energy to the total strain
energy (right).

are rather unexpected and surprising is their similarity with the vibration modes of a
simply supported plate. To this purpose, it is interesting to remark how the presence of
anisotropy modifies the shape, changing the number of waves in the shell shape.

7 Conclusions

In this paper we have proposed a problem in a new field of structural optimization:
the joint optimization of shape and material distribution for a shell-like structure. We
have also proposed to tackle such a kind of problem by an approach that we have called
polar-isogeometric, because it marries two distinct mathematical techniques: the polar
formalism for the representation of plane anisotropy and an isogeometric-like approach
for the parametrization of both the shell shape and the fields of the polar parameters.

Starting from a flat shape, i.e. from a plate, we have shown through different examples
that the proposed method is able to drive the computation towards the optimal solu-
tion, the one where the elastic energy of the structure tends to be stored as membrane
energy.
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Figure 18: Example three: geometry, actions and boundary conditions.

5.5. Numerical results

5.37.a – Isotropic material case 5.37.b – Anisotropic material case

Figure 5.37 Optimal design corresponding to the shape optimizations
with isotropic and anisotropic material for the plate under torsion

We remark that in the case of isotropic material, the outline is global whereas in the case of
anisotropic material it is localized nearby the loading region.
Figure 5.38 shows the optimal design corresponding to the cases (2) and (4).

5.38.a – Shape and orthotropy 5.38.b – Anisotropy and shape

Figure 5.38 Optimal shape corresponding to the joint orthotropy/shape
design and global anisotropy/shape design

The associated orthotropy direction fields are represented on figure 5.39.
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Figure 19: Example three: optimal shapes corresponding to the first and second case
(from the left).

The use of the isogeometric approach, which is almost classical in shape design, has been
used also for the parametrization of the variables describing the anisotropy of the shell.
This has been done in order to reduce the number of design variables that become, in
this approach, the control points of the parameterizations. Using the properties of the
spline functions, we have also given a sufficient condition for ensuring the satisfaction of
the bounds on the elastic parameters, to be fulfilled everywhere in the shell.

This is just one of the first works in this field and of course different improvements can
be imagined, we discuss some of them. As a first point, we indicate the possibility of
describing complex shapes using more than one patch. This problem has already been
tackled and partially solved in [25]; the matter is delicate, because continuity conditions
must be specified for the shape and for the elastic parameter fields. If for the first case,
the shape, such conditions are delicate to be written, but rather well defined, for the
second one, the elastic parameters, the definition of such continuity conditions among the
patches is questionable, different possibilities can be imagined, driving towards different
optimal problems.

A second point is the design of laminated shells. This point is rather well solved for plates
and it just needs few amendments to the proposed approach: besides taking into account
for the geometric instead of the elastic bounds, we need to use a specific procedure for
finding a laminate able to have all the properties of the optimal shell, i.e., orthotropic,
quasi-homogeneous and with the optimal distribution of E everywhere. Such a problem
has been already solved satisfactorily for different problems concerning plates, see e.g.
[12, 14, 15, 47], using metaheuristics, e.g. a genetic algorithm. However, a step further in
this direction should be the introduction in the proposed optimization process of some
technological constraints, e.g. on the trajectories and densities of the reinforcing fibers,
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Table 5: Example three: data of the optimum problem.

Geometry & Square plate of unit length
loading: Torsion applied through two concentrated loads

Constraints: • C1 regularity constraints between the patches
• Fix place constraint on the boundary
• Box constraints
• Bounded area constraints εtol = 0.2

Anisotropy

RK
0 , R1 Φ1

Knot Σα = {0, 0, 0, 0, 1, 1, 1, 1} Σα
Φ1

= {0, 0, 0, 0, 1, 1, 1, 1}

Constraints • geometric bounds (47) bounds on the angle - see (58)

Shape Anisotropy

Number of design 36 49
variables

Table 6: Summary of the different results concerning the third example (final 1: final
value for the first case, final 2 for the second one and final 3 for the third one).

Material

Anisotropic Isotropic

Design init final 2 final 3 init final 1

Compliance (%) 100 1.000 0.256 100 5.150
Em(%) 3.28 91.71 94.98 16.48 93.05

using, for instance, the technique already proposed in [27]. For the case of laminated
shells, the use of quasi-homogeneous laminates is almost essential, because the structure
is, at least in some parts, submitted to extension and bending. To avoid this assumption
means, on one hand, to introduce separately the polar parameters for extension and
bending, which doubles the number of design variables for the elastic part, and, on the
other hand, to use some approximation of the feasible domain, because the exact bounds
of the polar parameters for extension and bending, that are not independent, are still
unknown, see [40].

The proposed approach can be used also for other objective functions rather than com-
pliance. In particular, for buckling loads and vibration frequencies, i.e. for problems
concerning eigenvalues, the proposed method can be applied almost directly; more diffi-
cult is the case of strength, because this is represented by a local functional; a possible
way is that introduced in [12], because the use of the isogeometric approach used in this
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Figure 20: Example three, shape and material optimization: optimal shape and material
orientation.

(a) Optimal distribution of RK0 (b) Optimal distribution of R1

Figure 21: Example three, shape and anisotropy optimization: optimal distribution of
the anisotropy polar parameters.

paper can be easily adapted to the polar parameters describing strength in the case of a
tensorial strength criterion.

Finally, the problem considered in this paper has been suggested by industrial applica-
tions: automotive, aeronautics, space and sport engineering are more and more interested
in the optimal design of composite structures, most of them being in the form of shells.
Thanks to the new technologies of fiber placement, the possibility of tailoring anisotropy
is today a true reality; so, the goal is to dispose of mathematical methods able to drive
the design towards optimal solutions.

However, to our opinion, this approach has a wider interest and significance; in fact,
as already said in the text, this approach allows to investigate the reciprocal influence of
material properties and geometrical shape in the morphogenesis of 2D space structures; we
think, namely, to natural forms, like leafs or some skeletal organisms. This approach could
be of interest in trying to investigate how Nature acts when it can dispose of geometry
and material.
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