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❑ Introduction & Problem statement

❑ Experimental analyses

❑ Background of the numerical model

❑ Numerical - experimental comparisons: IR-heating of PE plate

❑ Conclusions

OUTLINE
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RADIATION TRANSPORT IN 

SEMI-CRYSTALLINE POLYMERS
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• Radiation heat transfer equation (RTE) offers a complete solution of radiation transport in optically homogeneous or 

heterogenous media:

• The attenuation of radiation due to both optical scattering and 

absorption may be computed using Beer-Lambert Law:

• Optical scattering behavior is spectral-dependent, where also a scatterer in unfilled semi-crystalline polymer may evolve under 

varying temperature

• Prediction of absorption may thus be quite complex due to the evolution of spatial distributions of scattered light under heating 

Spatial distributions of scattered light 
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TEMPERATURE-DEPENDENT OPTICAL 

PROPERTIES OF PE 

FT-IR Analyses

NIR range MIR range 

• The significant difference between directional-directional (T𝜆
i, r) and directional-

hemispherical transmittance (T𝜆
i, ᴖ) of PE due to optical scattering

Boztepe et al., Int J Mater Form (2017). 

• Spectral-dependenc in optical scattering, especially for λ<2 μm
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TEMPERATURE-DEPENDENT OPTICAL 

PROPERTIES OF PE 

• Temperature - dependent T𝜆
i, r measurements between 25° and128°C, demonstrated that optical scattering becomes weaker.

• The dramatic change in thermo-optical properties of semi-crystalline polymers close to melting range  

Boztepe  et al., 25ème Congrès Français Thermique  (2017)
Geiger et al., Production Engineering (2009)
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TEMPERATURE-DEPENDENT 

TRANSMISSION AND REFLECTION 

TESTS
• Temperature - dependent T𝜆

i, ᴖ and R𝜆
i, ᴖ measurements to obtain temperature-dependent extinction coefficient (β 𝜆 (T)) of PE 

• Identical quenched PE in liquid nitrogen (LN2) samples were prepared in three different thicknesses

• Preliminary tests were performed on both heating devices

Test type Test Device
Spectral Range

(μm)

Sample 

thickness (mm)

Nr. of temperature

steps (25°C-128°C)

T𝜆
i, ᴖ  (T) FT-IR Spectrometer (Perkin Elmer 900VIS) 0.25 - 2.5

0.25 , 0.5 and 

0.75

14

R𝜆
i, ᴖ (T)

Directional-hemispherical reflectometer

(SOC100-HDR)
1 - 25 10

R𝜆
i, ᴖ via SOC100-HDRT𝜆

i, ᴖ  via Perkin Elmer 900VIS

Heating Stage Integrating Sphere

Heating unit

Sample
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TEMPERATURE-DEPENDENT T𝜆
i, ᴖ 

TESTS

• The increase in T𝜆
i, ᴖ is very small until 97°C where also it is more pronounced after ~116°C

• Generally T𝜆
i, ᴖ (128°C) ≈ T𝜆

i, ᴖ (126°C) → The measurements at last temperature step was neglected.

Temperature

increases

Temperature

increases
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TEMPERATURE-DEPENDENT R𝜆
i, ᴖ 

TESTS

• Inverse relation between temperature and R𝜆
i, ᴖ  was all the samples.

• The slight decrease in R𝜆
i, ᴖ is distinctive after 110°C, therefore 2 assumptions were made for β 𝜆 (T) calculations: 

• 1- R𝜆
i, ᴖ (@25°C) for the temperature until 110°C    2- Averaged R𝜆

i, ᴖ for the measurements 110°C <T<128°C

Temperature

increasesTemperature

increases
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DETERMINATION OF β 𝜆 (T)

• β 𝜆 (T) was calculated using SQP algortihm in MATLAB
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Physically determined (measured) parameters

τλ : Spectral transmittivity ρ λ : Spectral reflectivity    βλ : Spectral extinction coefficient  

Aλ
i, (T) = 1 - Rλ

i, (T) - Tλ
i, (T) 

Based on the relation developed for semi-transparent 

optically homogeneous medium

Aλ : Attenuated radiation 

Tλ : Transmitted radiation

Rλ : Reflected radiation

SQP Algorithm

τλ and ρ λ calculated

( ) ( ( ) ( ))T x T D T x
e e   


−  − + 

= =

- 12 computions were performed regarding numerical inputs created for 12 temperature steps (up to 126°C)

- 12 different β 𝜆 (T) values were calculated → Numerical input for radiative source term computations( )rq

Howell et al., Thermal Radiation Heat Transfer, 6th ed.(2015)
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• A typical IR-lamp temperature is around 2000 - 2600 K
• The effect of significant increase in T𝜆

i, ᴖ (°C) for VIS and early NIR ranges (0.5 - 1.6 μm) is seen in β 𝜆 (T) 

• In terms of radiation physics, the change in this spectrum should have an effect on the temperature field predictions on PE
• 95% of the blackbody emissive power (Eλb) is between 0.5λmax < Eλb < 5λmax

max * 2897.7686IR lampT mK − =

0.5 μm< Eλb < 7.2μm

- Regarding to Wien’s displacement law: 

DETERMINATION OF β 𝜆 (T)
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MODELING BACKGROUND -

(TEMPERATURE-DEPENDENT 

THERMOPHYSICAL PROPERTIES)

• Temperature-dependent conductivity (k) of PE was adopted from literature and assumed isotropic.

• Apparent specific heat (Cp,apparent) of PE was determined → Calorimetric DSC analyses using LN2 quenched PE samples

• The total energy required both for increasing T(C) for unit mass of polymer and partial melting of crystalline phase registered by 

DSC signals

Wunderlich. B. Thermal Analysis

of Polymeric Materials (2005)

DSC measurements of PE

,
melt

p apparent p

H
C C

dT


= +

Klein R.. Laser Welding of Plastics (2012)
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MODELING BACKGROUND -

(TEMPERATURE-DEPENDENT 

THERMOPHYSICAL PROPERTIES)

• The model considers the change in density (ρ) of PE considering a two-phase model:

- The degree of crystallinity (X c (%)) of PE was determined from the DSC melting endotherm →

12

W. Glenz et al., Polymer Letters (1970)
(1 )1 crsytalline crsytalline

global crystalline amorphous

X X

  

−
= −

1amorphous crsytallineX X= −

ρcrystalline =1000 kg/m3

ρamorphous = 855 kg/m3

A.Peacock, Handbook of Polyethylene (2000)

U. Gedde and A.Matozzi, Adv Polym Sci (2004)

N.S. Yenikolopyan et al., Polymer Science (1989)

ρ (T) as a function of phase-

transitions (X c (%)) in PE

( ) ( )(1 )T T T

crsytalline crsytalline meltX X + = −
( )T

melt

m

H

H



=



(%)(%)
0

m

m
c

H

H
X




=

• Temperature-dependent melt ratio (αmelt ) was calculated based on melting endotherm and used as numerical input
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MODELING BACKGROUND 

(ITERATIVE CLOSED-LOOP RAYHEAT)

3D Mesh element (x,y,z)

Transfer the temperature (T (oC)) of each 3D mesh 

element for the next iteration

Comsol-to-MATLAB LiveLink

Compute the 3D 

temperature field

Solve Transient Heat Transfer problem

with updated inputs

Interpolate / Iterate the 𝛁.qr [T,x,y,z] and 

𝝆 [T,x,y,z] based on temperature of each mesh 

element

Transfer updated 𝛁.qr
[T,x,y,z] and 

ρ [T,x,y,z] 

Computation of 𝛁.qr (T) for each βλ (T) βλ (T) numerical input 

Computation of Geometrical Optics (Ray Tracing)

Iterative closed-loop

[ , , , ]. ( ) [ , , , ]p r

T
T x y z C k T q T x y z

t



=   −
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IR-HEATING OF PE PLATE 

(EXPERIMENTAL)

• IR-heating of PE plate (78x78x2.2mm) was performed using an IR-lamp (1 kW) at its nominal power (PIR-lamp = 100%)

• Two thermocouples (TC) were attached on the back surface of the plate (positioned 4 and 9 mm away from the edge)

• The back surface was also monitored via IR-camera (AGEMA 880LW) once the back surface is at steady-state temperature

Wood-based barrier for avoiding 

any potential noisy IR-

thermographic measurement
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• A parametric case study was carried out performing two different simulation cases.

• The aim is to investigate two different points:

1 – The accuracy of close-loop iterative simulations using β 𝜆 (T) 

2 – The effect of ignorance the temperature-dependent optical properties of PE on the temperature field predictions

Radiation absorption in polymer medium

Simulation Case - 1 (C1) Constant radiation absorption with 𝛻.qr (25 oC)

Simulation Case - 2 (C2)
Temperature-dependent radiation absorption with 

𝛻.qr [T,x,y,z]) between 25 and 128°C

• Except 𝛻.qr , all the boundary conditions and meshing properties were kept identical

• The boundary conditions chosen identical to the IR-heating experiments

• Numerical simulations were carried out for heating up to 600 seconds   Obtained from IR-heating experiments

IR-HEATING OF PE PLATE (NUMERICAL)
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NUMERICAL-EXPERIMENTAL

COMPARISONS (STEADY-STATE)

• Vertical and horizontal profiles were defined on both IR-thermography and the numerical simulations

• The temperature profiles were compared considering the steady state condition at 600 seconds 

Horizontal 

profile

Vertical 

profile

IR-lamp 

axis

IR-Thermography
Numerical simulations
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NUMERICAL-EXPERIMENTAL

COMPARISONS (STEADY-STATE)

• C-2 built with β 𝜆 (T) closely predicts the temperature in the middle zones (between 15 to 55 mm)

• Somewhat overestimation of temperature was observed close to the edge → Perfect contact assumption for PE plate-barrier 

~1°C

~8°C
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NUMERICAL-EXPERIMENTAL

COMPARISONS (REAL-TIME)

• Real-time temperature measurements: TC recordings and IR-heating were started simultaneously

• The temperature evolution on over time was compared to simulation results obtained on the exact geometrical positions of TCs

• Potential conduction losses between barrier and the plate may be underestimated
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CONCLUSIONS

❑ A numerical model that proposes an approach to consider the optical scattering and the change in its

behavior under heating condition indirectly, without modeling how the light scatters inside of polymer

medium

❑ Under varying temperature, the scattering behavior evolves due to microcrystalline structure evolutions

❑ Temperature-dependent β 𝜆 (T) of PE was experimentally determined and used as numerical input in the

closed-loop iterative model.

❑ Thanks to this, absorption characteristics of PE medium was updated at mesh scale regarding to β 𝜆 (T)

❑ The model closely predicts temperature in the middle zones of PE plate while overestimation of

temperature was observed close to the plate edge

❑ Thermal contact resistance value between barrier and the plate is required
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