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Data, motivation
Model definition

We consider balanced panel data with:
I N individuals
I observed at the same R time-points

Notations:
I yNR×1 : response vector
I XNR×p : design matrix of the many and redundant

explanatory variables

Difficulties
High level of correlation among the explanatory variables
↪→ Regularisation is needed
Individual-specific and time-specific effects
↪→ Necessity to take into account the induced complex

dependence structure

Jocelyn CHAUVET Regularisation for GLMM–AR(1)



Data, motivation and model definition
A new regularisation framework

Simulation study
Conclusions

Data, motivation
Model definition

We consider balanced panel data with:
I N individuals
I observed at the same R time-points

Notations:
I yNR×1 : response vector
I XNR×p : design matrix of the many and redundant

explanatory variables

Difficulties
High level of correlation among the explanatory variables
↪→ Regularisation is needed
Individual-specific and time-specific effects
↪→ Necessity to take into account the induced complex

dependence structure

Jocelyn CHAUVET Regularisation for GLMM–AR(1)



Data, motivation and model definition
A new regularisation framework

Simulation study
Conclusions

Data, motivation
Model definition

Example of real data
↪→ Econometrics: all companies share a common economic

climate (latent phenomenon) which tends to persist over
time...

In general: data with
I a dependence within individuals on which data is repeatedly

collected
I a serially correlated time-specific effect shared by all the

individuals
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Data, motivation
Model definition

The method we propose must
take into account the dependence structure:
↪→ Within-individual dependence modelled by a random effect

with independent levels
↪→ Time dependence modelled by a random effect with AR(1)

levels
↪→ GLMM in order to deal with non-Gaussian response (e.g.

count or binary response)
handle the high correlations among the explanatory variables
↪→ Ridge-based regularisation
↪→ Supervised component-based regularisation
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GLMM framework

Yi | ξ
iid∼ F belonging to the exponential family

g(E (Y | ξ)︸ ︷︷ ︸
µ

) = η = Xβ + U1ξ
1 + U2ξ

2

I β fixed effect vector

I ξ1 =
(
ξ11, ξ

1
2, . . . , ξ

1
N

)T the "individual-specific" random
effect vector, U1 = IdN ⊗ 1R the associated design matrix

I ξ2 =
(
ξ21, ξ

2
2, . . . , ξ

2
R

)T the "time-specific" random effect
vector, U2 = 1N ⊗ IdR the associated design matrix
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Random effects

y = (y11, y12, . . . , y1R,

y21, y22, . . . , y2R, . . . . . .

yN1, yN2, . . . , yNR)T

I ξ1 =
(
ξ11, ξ

1
2, . . . , ξ

1
N

)T ∼NN (0, σ2
1 IdN

)
I ξ2 =

(
ξ21, ξ

2
2, . . . , ξ

2
R

)T ∼NR (0, Σ), Σij = σ2
2

ρ|i−j|

1− ρ2

I ξ1 ⊥ ξ2
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 Focus on LMMs

Principle of penalised EM algorithm
Green, P.J. (1990) On use of the EM for penalized likelihood estimation.
Journal of the Royal Statistical Society. Series B (Methodological), 443-452.

E : Qpen

(
θ | θ[t]

)
:= Eξ|y

[
Lpen(θ; y, ξ) | θ[t]

]
M : θ[t+1] ←− arg max

θ
Qpen

(
θ | θ[t]

)

Usual penalised complete log-likelihood

Lpen(θ; y, ξ) = L(θ; y, ξ)− λ pen(β)

pen(β) =


‖β‖22 = βTβ

‖β‖1
α‖β‖22 + (1− α)‖β‖1, 0 6 α 6 1
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 Focus on LMMs

Ridge-based regularisation
↪→ EM algorithm, θ =

(
β, σ21, σ

2
2, ρ
)
and ξ =

(
ξ1, ξ2

)

GCV : λ[t] ←− arg min
λ

GCV(λ) =
n−1

∥∥∥y −H [t]
λ y
∥∥∥2[

1− n−1tr
(
H

[t]
λ

)]2


E : Qpen

(
θ | θ[t]

)
:= Eξ|y

[
L(θ; y, ξ)− λ[t]βTβ | θ[t]

]
M : θ[t+1] ←− arg max

θ
Qpen

(
θ | θ[t]

)
Eliot, M., Ferguson, J., Reilly, M.P. and Foulkes, A.S. (2011) Ridge
Regression for Longitudinal Biomarker Data. The International Journal of
Biostatistics, 7, 1–11.
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Ridge-penalised EM algorithm for LMMs
Component-based regularisation of LMMs
Extension to GLMMs

Component-based regularisation
↪→ New linear predictors

Yi | ξ
iid∼ F belongs to the exponential family

g(E (Y | ξ)) = η =���HHHXβ + U1ξ
1 + U2ξ

2

replaced with

η = (Xu)γ + U1ξ
1 + U2ξ

2 for a single component

extended to

η =

K?∑
k=1

(Xuk)γk + U1ξ
1 + U2ξ

2 forK? components
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 Focus on LMMs

Regularised complete log-likelihood

With θ =
(
u, γ, σ2

1, σ
2
2, ρ

)
and a trade-off parameter s ∈ [0, 1]

Lreg(θ; y, ξ) = (1− s) L(θ; y, ξ) + s φ(u)

Log-likelihood : measures (inter alia) the probability that
observations y have been generated from component f = Xu

Structural relevance criterion : measures the closeness
of component f to the strongest structures of X

Jocelyn CHAUVET Regularisation for GLMM–AR(1)



Data, motivation and model definition
A new regularisation framework

Simulation study
Conclusions
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A few words about φ(u)

I General formula :

φ(u) =

 J∑
j=1

ωj
[
u′Nju

]l 1
l

I Particular case :

φ(u) =

 p∑
j=1

[
cor2(Xu, xj)

]l1
l

How many bundles do you see ?

Jocelyn CHAUVET Regularisation for GLMM–AR(1)
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Iso-value curves of φl
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Ridge-based penalisation

Lpen(θ; y, ξ) =

L(θ; y, ξ)−λβTβ

I Obj.: penalise the "large"
coefficients

I Sees the high correlations
among the explanatory variables
as pure nuisance

I η hard to interpret

Component-based regularisation

s

1− s
Lreg(θ; y, ξ) =

L(θ; y, ξ)+
s

1− s
φ(u)

I Obj.: give a bonus to the most
interpretable bundles in X

I Takes advantage of the high
correlations among the
explanatory variables

I η easier to interpret through
decomposition on components
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 Extension to GLMMs

Starting with the classical Fisher Scoring Algorithm for
GLMs, we perform:

LINEARISATION step
I Linearisation of yi at µi:

yi ' zi = g(µi) + (yi − µi)g′(µi)
zi = ηi + ei

I Linearised model:
M : z = Xβ + U1ξ

1 + U2ξ
2 + e, with V(e) = Γ

ESTIMATION step
Penalised/Regularised EM algorithm onM

Jocelyn CHAUVET Regularisation for GLMM–AR(1)
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Ridge-based penalisation for GLMM-AR(1)

θ =
(
β, σ21, σ

2
2, ρ
)

Linearised model

M[t] : z[t] = Xβ + U1ξ
1 + U2ξ

2 + e, with V(e) = Γ[t]

Ridge estimation

GCV : λ[t] ←− arg min
λ

GCV(λ)

E : Qpen

(
θ | θ[t]

)
:= Eξ|z

[
L
(
θ ; z[t], ξ

)
− λ[t]βTβ | θ[t]

]
M : θ[t+1] ←− arg max

θ
Qpen

(
θ | θ[t]

)
Update

Calculate ξ[t+1], z[t+1], Γ[t+1] with the updated θ[t+1]
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Supervised component-based regularisation for GLMM-AR(1)

θ =
(
u, γ, σ21, σ

2
2, ρ
)

Linearised model

M[t] : z[t] = (Xu)γ + U1ξ
1 + U2ξ

2 + e, avec V(e) = Γ[t]

SC- estimation

E : Qreg(θ, θ[t]) := Eξ|z
[
(1− s)L

(
θ ; z[t], ξ

)
+ sφ(u) | θ[t]

]
M : I Given (θ \ u)

[t]
=
(
γ[t], σ2

1
[t]
, σ2

2
[t]
, ρ[t]

)
,

u[t+1] ←− arg max
u:||u||=1

Qreg

(
u | θ[t]

)
I Given u[t+1],

(θ \ u)
[t+1] ←− arg max

θ\u
Eξ|z

[
L
(
θ \ u ; z[t], ξ

)
| θ[t]

]
Update: Calculate ξ[t+1], z[t+1], Γ[t+1] with the updated θ[t+1]
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Poisson regression with log link
I y ∼ P

(
exp(Xβ + U1ξ

1 + U2ξ
2)
)

I X = [ x1 . . . . . . x10︸ ︷︷ ︸
large bundle

↪→ noise

x11 . . . x14︸ ︷︷ ︸
indep. var.
↪→ noise

x15.. x19︸ ︷︷ ︸
small
bundle

x20︸︷︷︸
very small
bundle

]

↪→ predict y

Jocelyn CHAUVET Regularisation for GLMM–AR(1)
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Tuning parameter for Ridge regularisation
I shrinkage parameter λ

(auto-calibration : GCV at each step of the EM algorithm)

Tuning parameters for SC regularisation standard cross validation
I trade-off parameter s
I bundle locality parameter l
I number of components K?

Jocelyn CHAUVET Regularisation for GLMM–AR(1)
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How does convergence look like?
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Quality of the estimates
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Power for model interpretation
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Mixed-SCGLR
with AR(1)

random effect

Suitable for
longitudinal

data

Model
INTERPRE-
TATION
↗

graphical
diagnoses

multidimen-
sional

predictive
structures

ESTIMATION
&

PREDICTION

X

Powerful
trade-off
between

component-
based

regulari-
sation

GLMM
estimation
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