Regularising Generalised Linear Mixed Models with an autoregressive random effect

Jocelyn CHAUVET joint work with Catherine TROTTIER and Xavier BRY

IWSM 2017, Groningen, July 7

- 1 Data, motivation and model definition
- 2 A new regularisation framework
- Simulation study
- 4 Conclusions

We consider balanced panel data with:

- ightharpoonup N individuals
- observed at the same R time-points

Notations:

- $\triangleright y_{NR\times 1}$: response vector
- X_{NR×p}: design matrix of the many and redundant explanatory variables

We consider balanced panel data with:

- ightharpoonup N individuals
- observed at the same R time-points

Notations:

- $\triangleright y_{NR\times 1}$: response vector
- X_{NR×p}: design matrix of the many and redundant explanatory variables

Difficulties

- High level of correlation among the explanatory variables
 - → Regularisation is needed
- Individual-specific and time-specific effects
 - → Necessity to take into account the induced complex dependence structure

Example of real data

→ Econometrics: all companies share a common economic climate (latent phenomenon) which tends to persist over time...

Example of real data

Econometrics: all companies share a common economic climate (latent phenomenon) which tends to persist over time...

In general: data with

- a dependence within individuals on which data is repeatedly collected
- a serially correlated time-specific effect shared by all the individuals

The method we propose must

- take into account the dependence structure:
 - → Within-individual dependence modelled by a random effect with independent levels
 - → Time dependence modelled by a random effect with AR(1) levels
 - → **GLMM** in order to deal with non-Gaussian response (e.g. count or binary response)
- handle the high correlations among the explanatory variables
 - → Ridge-based regularisation
 - → Supervised component-based regularisation

GLMM framework

$$Y_i \mid \xi \stackrel{\mathsf{iid}}{\sim} F$$
 belonging to the exponential family $g(\underbrace{\mathbb{E}\left(Y \mid \xi\right)}_{\mu}) = \eta = X\beta + U_1\xi^1 + U_2\xi^2$

- ▶ β fixed effect vector
- ▶ $\boldsymbol{\xi}^1 = (\boldsymbol{\xi}_1^1, \boldsymbol{\xi}_2^1, \dots, \boldsymbol{\xi}_N^1)^T$ the "individual-specific" random effect vector, $U_1 = \operatorname{Id}_N \otimes \mathbf{1}_R$ the associated design matrix
- ▶ $\boldsymbol{\xi}^2 = \left(\boldsymbol{\xi}_1^2, \boldsymbol{\xi}_2^2, \dots, \boldsymbol{\xi}_R^2\right)^T$ the "time-specific" random effect vector, $U_2 = \mathbf{1}_N \otimes \mathsf{Id}_R$ the associated design matrix

Random effects

$$y = (y_{11}, y_{12}, \dots, y_{1R}, y_{21}, y_{22}, \dots, y_{2R}, \dots y_{N1}, y_{N2}, \dots, y_{NR})^T$$

$$\blacktriangleright \xi^1 = \left(\xi_1^1, \xi_2^1, \dots, \xi_N^1\right)^T \sim \mathcal{N}_N\left(0, \sigma_1^2 \operatorname{Id}_N\right)$$

$$ightharpoonup \xi^1 \perp \xi^2$$

- 1 Data, motivation and model definition
- 2 A new regularisation framework
 - Ridge-penalised EM algorithm for LMMs
 - Component-based regularisation of LMMs
 - Extension to GLMMs
- Simulation study
- 4 Conclusions

Principle of penalised EM algorithm

Green, P.J. (1990) On use of the EM for penalized likelihood estimation. Journal of the Royal Statistical Society. Series B (Methodological), 443-452.

$$\begin{split} \mathbf{E} &: \mathcal{Q}_{\mathbf{pen}}\left(\theta \,|\, \theta^{[t]}\right) := \mathbb{E}_{\xi|y}\left[L_{\mathbf{pen}}(\theta;y,\xi) \,|\, \theta^{[t]}\right] \\ \mathbf{M} &: \theta^{[t+1]} \longleftarrow \arg\max_{\theta} \,\mathcal{Q}_{\mathbf{pen}}\left(\theta \,|\, \theta^{[t]}\right) \end{split}$$

Principle of penalised EM algorithm

Green, P.J. (1990) On use of the EM for penalized likelihood estimation. Journal of the Royal Statistical Society. Series B (Methodological), 443-452.

$$\begin{split} \mathbf{E} &: \mathcal{Q}_{\mathbf{pen}}\left(\theta \,|\, \theta^{[t]}\right) := \mathbb{E}_{\xi|y}\left[L_{\mathbf{pen}}(\theta;y,\xi) \,|\, \theta^{[t]}\right] \\ \mathbf{M} &: \theta^{[t+1]} \longleftarrow \arg\max_{\theta} \,\mathcal{Q}_{\mathbf{pen}}\left(\theta \,|\, \theta^{[t]}\right) \end{split}$$

Usual penalised complete log-likelihood

$$\begin{split} L_{\text{pen}}(\theta;y,\xi) &= L(\theta;y,\xi) - \lambda \operatorname{pen}(\boldsymbol{\beta}) \\ &\operatorname{pen}(\boldsymbol{\beta}) = \begin{cases} \|\boldsymbol{\beta}\|_2^2 = \boldsymbol{\beta}^T \boldsymbol{\beta} \\ \|\boldsymbol{\beta}\|_1 \\ \alpha \|\boldsymbol{\beta}\|_2^2 + (1-\alpha) \|\boldsymbol{\beta}\|_1, \quad 0 \leqslant \alpha \leqslant 1 \end{cases} \end{split}$$

Ridge-based regularisation

$$\hookrightarrow$$
 EM algorithm, $\theta = (\beta, \sigma_1^2, \sigma_2^2, \rho)$ and $\xi = (\xi^1, \xi^2)$

$$\begin{aligned} \mathbf{GCV} : \pmb{\lambda}^{[t]} &\longleftarrow \arg\min_{\pmb{\lambda}} \left\{ \mathsf{GCV}(\pmb{\lambda}) = \frac{n^{-1} \left\| y - H_{\pmb{\lambda}}^{[t]} y \right\|^2}{\left[1 - n^{-1} \mathsf{tr} \left(H_{\pmb{\lambda}}^{[t]} \right) \right]^2} \right\} \\ & \mathbf{E} : \mathcal{Q}_{\mathsf{pen}} \left(\theta \, | \, \theta^{[t]} \right) := \mathbb{E}_{\xi \mid y} \bigg[L(\theta; y, \xi) - \pmb{\lambda}^{[t]} \pmb{\beta}^T \pmb{\beta} \, | \, \theta^{[t]} \bigg] \\ & \mathbf{M} : \theta^{[t+1]} \longleftarrow \arg\max_{\theta} \mathcal{Q}_{\mathsf{pen}} \left(\theta \, | \, \theta^{[t]} \right) \end{aligned}$$

Eliot, M., Ferguson, J., Reilly, M.P. and Foulkes, A.S. (2011) *Ridge Regression for Longitudinal Biomarker Data*. The International Journal of Biostatistics, **7**, 1–11.

Component-based regularisation

$$Y_i \mid \xi \stackrel{\text{iid}}{\sim} F$$
 belongs to the exponential family
$$g(\mathbb{E}(Y \mid \xi)) = \eta = \mathcal{K} + U_1 \xi^1 + U_2 \xi^2$$

replaced with

$$\eta = (\boldsymbol{X}\boldsymbol{u})\boldsymbol{\gamma} + U_1\xi^1 + U_2\xi^2$$
 for a single component

extended to

$$\eta = \sum_{k=1}^{K^{\star}} (\boldsymbol{X} \boldsymbol{u_k}) \gamma_k + U_1 \xi^1 + U_2 \xi^2$$
 for K^{\star} components

Regularised complete log-likelihood

With $heta = (u, \gamma, \sigma_1^2, \sigma_2^2,
ho)$ and a trade-off parameter $s \in [0, 1]$

$$L_{\mathsf{reg}}(heta;y,\xi) = (1-s) L(heta;y,\xi) + s \phi(u)$$

- $igcup_{ extstyle extst$
- Structural relevance criterion: measures the closeness of component f to the strongest structures of X

A few words about $\phi(u)$

▶ General formula :

$$\phi(u) = \left(\sum_{j=1}^{J} \omega_j \left[u' N_j u \right]^l \right)^{\frac{1}{l}}$$

Particular case :

$$\phi(u) = \left(\sum_{j=1}^{p} \left[\operatorname{cor}^{2}(Xu, x^{j}) \right]^{\boldsymbol{l}} \right)^{\frac{1}{\boldsymbol{l}}}$$

How many bundles do you see ?

A few words about $\phi(u)$

General formula :

$$\phi(u) = \left(\sum_{j=1}^{J} \omega_j \left[u' N_j u \right]^l \right)^{\frac{1}{l}}$$

Particular case :

$$\phi(u) = \left(\sum_{j=1}^{p} \left[\operatorname{cor}^{2}(Xu, x^{j}) \right]^{\boldsymbol{l}} \right)^{\frac{1}{\boldsymbol{l}}}$$

Iso-value curves of ϕ^l

Ridge-based penalisation

$$L_{\text{pen}}(\theta; y, \xi) = L(\theta; y, \xi) - \lambda \beta^{T} \beta$$

- Obj.: penalise the "large" coefficients
- Sees the high correlations among the explanatory variables as pure nuisance
- $ightharpoonup \eta$ hard to interpret

Component-based regularisation

$$\frac{s}{1-s} L_{\text{reg}}(\theta; y, \xi) = L(\theta; y, \xi) + \frac{s}{1-s} \phi(u)$$

- ► Obj.: give a bonus to the most interpretable bundles in X
- ► Takes advantage of the high correlations among the explanatory variables
- \rightarrow η easier to interpret through decomposition on components

→ Extension to GLMMs

Starting with the classical Fisher Scoring Algorithm for GLMs, we perform:

LINEARISATION step

▶ Linearisation of y_i at μ_i :

$$y_i \simeq z_i = g(\mu_i) + (y_i - \mu_i)g'(\mu_i)$$
$$z_i = \eta_i + e_i$$

► Linearised model:

$$\mathcal{M}: z = X\beta + U_1\xi^1 + U_2\xi^2 + e$$
, with $\mathbb{V}(e) = \Gamma$

ESTIMATION step

Penalised/Regularised EM algorithm on ${\mathcal M}$

Ridge-based penalisation for GLMM-AR(1)

$$\theta = \left(\beta, \sigma_1^2, \sigma_2^2, \rho\right)$$

Linearised model

$$\mathcal{M}^{[t]}: z^{[t]} = X\beta + U_1\xi^1 + U_2\xi^2 + e, \text{ with } \mathbb{V}(e) = \Gamma^{[t]}$$

Ridge estimation

$$\mathsf{GCV} : \boldsymbol{\lambda^{[t]}} \longleftarrow \arg\min_{\lambda} \mathsf{GCV}(\lambda)$$

$$\mathbf{E}:\mathcal{Q}_{\mathrm{pen}}\left(\theta\,|\,\theta^{[t]}\right):=\mathbb{E}_{\xi|z}\Bigg[L\left(\theta\,;\,z^{[t]},\xi\right)-\boldsymbol{\lambda^{[t]}}\boldsymbol{\beta^{T}\beta}\,|\,\theta^{[t]}\Bigg]$$

$$\mathbf{M}: \boldsymbol{\theta}^{[t+1]} \longleftarrow \arg \max_{\boldsymbol{\theta}} \, \mathcal{Q}_{\mathbf{pen}} \left(\boldsymbol{\theta} \, | \, \boldsymbol{\theta}^{[t]} \right)$$

Update

Calculate $\xi^{[t+1]}, z^{[t+1]}, \Gamma^{[t+1]}$ with the updated $\theta^{[t+1]}$

Supervised component-based regularisation for GLMM-AR(1)

$$\theta = \left(u, \gamma, \sigma_1^2, \sigma_2^2, \rho\right)$$

Linearised model

$$\mathcal{M}^{[t]}: z^{[t]} = (Xu)\gamma + U_1\xi^1 + U_2\xi^2 + e, \quad \text{avec } \mathbb{V}(e) = \Gamma^{[t]}$$

SC- estimation

$$\mathsf{E}: \mathcal{Q}_{\mathsf{reg}}(\theta, \theta^{[t]}) := \mathbb{E}_{\xi \mid z} \left[(\mathbf{1} - \boldsymbol{s}) L\left(\theta \, ; \, z^{[t]}, \xi\right) + \boldsymbol{s} \boldsymbol{\phi}(\boldsymbol{u}) \, | \, \theta^{[t]} \right]$$

$$\mathbf{M}: \blacktriangleright \text{ Given } (\theta \setminus u)^{[t]} = \left(\gamma^{[t]}, \sigma_1^{2[t]}, \sigma_2^{2[t]}, \rho^{[t]}\right),$$

$$u^{[t+1]} \longleftarrow \underset{u:||u||=1}{\operatorname{arg\,max}} \mathcal{Q}_{\mathsf{reg}} \left(u \,|\, \theta^{[t]} \right)$$

▶ Given $u^{[t+1]}$,

$$(\theta \setminus u)^{[t+1]} \longleftarrow \underset{\theta \setminus u}{\operatorname{arg\,max}} \ \mathbb{E}_{\xi|z} \left[L\left(\theta \setminus u \, ; \, z^{[t]}, \xi\right) \mid \theta^{[t]} \right]$$

Update: Calculate $\xi^{[t+1]}, z^{[t+1]}, \Gamma^{[t+1]}$ with the updated $\theta^{[t+1]}$

- Data, motivation and model definition
- 2 A new regularisation framework
- Simulation study
 - Data simulation
 - Parameters' calibration
 - Convergence results
 - Comparison between Ridge- and SC-based regularisations
- 4 Conclusions

Poisson regression with log link

Tuning parameter for Ridge regularisation

shrinkage parameter λ (auto-calibration: GCV at each step of the EM algorithm)

Tuning parameters for SC regularisation

- lacktriangle trade-off parameter $m{s}$
- ▶ bundle locality parameter *l* ▶ number of components *K**

standard cross validation

How does convergence look like?

Quality of the estimates

Power for model interpretation

Component plane (1,2)

Data, motivation and model definition A new regularisation framework Simulation study Conclusions

Bibliography

+ Package R : SCGLR

- Chauvet, J., Bry, X., Trottier, C. and Mortier, F. (2016) Extension to mixed models of the Supervised Component-based Generalised Linear Regression. In COMPSTAT: Proceedings in Computational Statistics.
- **Eliot, M., Ferguson, J., Reilly, M.P. and Foulkes, A.S. (2011)** *Ridge Regression for Longitudinal Biomarker Data.* The International Journal of Biostatistics, **7**, 1–11.
- **Green, P.J. (1990)** On use of the EM for penalized likelihood estimation. Journal of the Royal Statistical Society. Series B (Methodological), 443-452.
- Marx, B. D. (1996) Iteratively reweighted partial least squares estimation for generalized linear regression. Technometrics, 38, 4, 374–381.