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Abstract: We address regularised versions of the Expectation-Maximisation
(EM) algorithm for Generalised Linear Mixed Models (GLMM) in the context of
panel data (measured on several individuals at different time-points). A random
response y is modelled by a GLMM, using a set X of explanatory variables and
two random effects. The first one introduces the dependence within individuals
on which data is repeatedly collected while the second one embodies the serially
correlated time-specific effect shared by all the individuals. Variables in X are
assumed many and redundant, so that regression demands regularisation. In this
context, we first propose a L2-penalised EM algorithm, and then a supervised
component-based regularised EM algorithm as an alternative.

Keywords: Regularised EM algorithm; Generalised Linear Mixed Model; Au-
toregressive random effect; Panel data analysis.

1 Introduction

One of the main purposes of panel data analysis is to account for the
dependence induced by repeatedly measuring an outcome on each individ-
ual over time. Besides, due to the fact that it is nowadays increasingly
possible to collect large amounts of data, the potentially high level of cor-
relation among explanatory variables should be taken into account. To this
end, ridge-, lasso- and component-based regularisations have recently been
highlighted.
In the Linear Mixed Models (LMM) framework, Eliot et al. (2011) proposed
to extend the classical ridge regression to longitudinal biomarker data. They
suggested a variant of the EM algorithm to maximise a ridge-penalised
likelihood. This variant includes a new step to find the best shrinkage pa-
rameter — in the Generalised Cross-Validation (GCV) sense — at each
iteration.
With a view towards variable selection, Schelldorfer et al. (2014) proposed
a L1-penalised algorithm for fitting a high-dimensional Generalised Lin-
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ear Mixed Models (GLMM), using Laplace approximation and an efficient
coordinate gradient descent.
In the GLM framework, in order both to regularise the linear predictor
and to facilitate its interpretation, Bry et al. (2013) developed a PLS-
type method — Supervised Component-based Generalised Linear Regres-
sion (SCGLR) — which yields explanatory components. Chauvet et al.
(2016) extended SCGLR to GLMM by using an adaptation of Schall’s
algorithm (Schall (1991)).
To the best of our knowledge, the random effects in the previous strategies
are assumed normally distributed with independent levels. However, in the
panel data framework, the question naturally arises of the autocorrelation
of the time-specific random effect. Consequently, our objective is twofold:
on the one hand, to extend the Mixed Ridge Regression of Eliot et al. (2011)
to the GLMMs with an AR(1) random effect; and on the other hand, to
present the main ideas of a new version of SCGLR which handles the high
dimensional case.

2 Model hypotheses

In this section, we recall the main hypotheses of the GLMM framework and
we introduce the random effect distributions. For the sake of simplicity, we
consider balanced panel data with N individuals, each of them observed
at the same T time-points. We denote by n = N × T the total number
of observations. Let X be the n × p fixed effects design matrix, and U
the n × q random effects design matrix. Let also Y be the n-dimensional
random response vector, β the p-dimensional vector of fixed effects, and ξ
the q-dimensional vector of random effects. We observe a realisation y of
Y , but ξ is not observed. We conventionally assume that:

(i) the Yi | ξ, i ∈ {1, . . . , n} are independent and their distribution be-
longs to the exponential family;

(ii) the conditional mean µi = E(Yi | ξ) depends on β and ξ through
the link function g and the linear predictor ηi = xT

i β + uT
i ξ, with

ηi = g(µi).

Less conventionally, we consider two random effects ξ1 and ξ2 with different
roles and distributions:

(i) ξ1 is the individual-specific random effect. Assuming individuals are
independent, we suppose:

ξ1 ∼ NN
(
0, σ2

1IN
)
,

with σ2
1 the unknown “individual” variance component.
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(ii) ξ2 is the serially correlated time-specific effect common to all the
individuals, which can be viewed as some latent phenomenon not
measured in the explanatory variables. As these effects tend to persist
over time, we model them with a stationary order 1 autoregressive
process (AR(1)), i.e. for each t ∈ {1, . . . , T − 1},

ξ2,t+1 = ρξ2,t + νt,

νt
iid∼ N

(
0, σ2

2

)
,

where ρ is the unknown parameter of the AR(1) and σ2
2 the unknown

“temporal” variance component. Such time-specific effects arise nat-
urally for instance in an economic context (e.g. all companies share
a common economic climate which tend to persist over time), or in
biology (e.g. the ecological environment is often too complex to be
directly observed through the explanatory variables).

Finally, ξ1 and ξ2 are assumed independent. Denoting ξ = (ξT
1 , ξ

T
2 )

T
,

U1 = IN ⊗ 1T , U2 = 1N ⊗ IT and U = [U1 |U2], linear predictor η can be
matricially written:

η = Xβ + Uξ.

3 Methods

Owing to the GLMM dependence structure, the Fisher scoring algorithm
was adapted by Schall (1991). We, in turn, adapt Schall’s algorithm by
introducing a regularised EM at each step in order to take into account
the high level of correlation in X and the unconventional random effects
distributions. Two steps appear in our method: the linearisation step and
the estimation step.

Linearisation step. For each i ∈ {1, . . . , n}, a classic order 1 linearisation
of yi around µi is given by: g(yi) ' zi = g(µi)+(yi−µi)g′(µi). Matricially,
this approximation provides a working variable z entering the following
linearised model

M : z = Xβ + Uξ + e,

with Var(e | ξ) = Diag
(

[g′(µi)]
2

Var(Yi | ξ)
)
i=1,...,n

= Γ.

Estimation step. Instead of solving Henderson’s system associated with
M seen as a LMM (as proposed by Schall (1991)), we rather propose a
regularised EM step. We suggest an adaptation of the L2-penalised EM
algorithm of Eliot et al. (2011) for low dimensional data (p < n), and a
supervised component-based regularised EM algorithm for the high dimen-
sional case (p � n), because then, interpretable dimension reduction is
needed.
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3.1 The low dimensional case

Our estimation step is based on Green (1990), who popularised the use
of the EM algorithm for penalised likelihood estimation, and Golub et al.
(1979), who encouraged the use of the GCV for efficiently choosing the ridge
parameter λ. However, contrary to the homoskedastic LMM considered in
Eliot et al. (2011),M contains heteroskedastic errors. We will then opt for
the modified GCV criterion suggested by Andrews (1991), p. 372.
Denoting θ =

(
β, σ2

1 , σ
2
2 , ρ
)
, Algorithm 1 describes the current iteration of

our L2-penalised EM algorithm for GLMM with AR(1) random effect.

(1) Linearisation step. Set:

M[t] : z[t] = Xβ + Uξ + e, with Var(e | ξ) = Γ[t].

(2) Estimation step.

(2.a) Denoting L the complete log-likelihood of the linearised model,
define the associated complete penalised log-likelihood Lpen by:

Lpen(θ; z, ξ) = L(θ; z, ξ)− λ

2
βTβ.

(2.b) Denoting ẑ[t] the fitted values and S
[t]
λ the “hat-matrix”

satisfying the equality ẑ[t] = S
[t]
λ z

[t], set:

λ[t] ←− arg min
λ

GCV(λ) =
n−1

∥∥∥z[t] − S[t]
λ z

[t]
∥∥∥2

Γ[t]−1[
1− n−1tr

(
S

[t]
λ

)]2
 .

(2.c) EM step. Set:

Qpen

(
θ, θ[t]

)
= Eξ|z

[
Lpen(θ; z[t], ξ) | θ[t], λ[t]

]
,

θ[t+1] ← arg max
θ
Qpen

(
θ, θ[t]

)
.

(3) Updating step. Set ξ[t+1] = Eξ|z
(
ξ | θ[t+1]

)
, and update working

variable z[t+1] and variance-covariance matrix Γ[t+1].

Steps (1)-(3) are repeated until stability of parameters β, σ2
1 , σ2

2 and ρ is
reached.

Algorithm 1: Current iteration of the L2-penalised EM algorithm for
GLMM with AR(1) random effect.

3.2 The high dimensional case

In the p � n case, we need to decompose the linear predictor on a small
number of interpretable dimensions. To that end, we propose to iteratively
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maximise a component-based regularised Q−function.
Let C = XU be the set of principal components of X with non-zero
eigenvalues and f = Cw the component we currently seek. Let also φ
denote a structural relevance (SR) criterion (see Bry and Verron (2015)):

φ(w) =

 p∑
j=1

[
cor2

(
xj , f

)]l 1
l

, l > 1.

s ∈ [0, 1] being a parameter tuning the relative importance of the SR with
respect to L, the Q−function would then be:

Qreg

(
θ, θ[t]

)
= Eξ|z

[
Lreg(θ; z, ξ) | θ[t]

]
, with

Lreg(θ; z, ξ) = (1− s)L(θ; z, ξ) + sφ(w).

Parameters s and l are tuned by cross-validation and higher rank compo-
nents are computed like rank 1 component, after adding extra orthogonality
constraints.

4 Numerical results

In order to evaluate the performance of our L2-penalised EM algorithm,
we conducted simulation studies in the canonical Poisson case. We present
some graphical diagnoses in FIGURE 1, which aim at answering three ques-
tions: (1) Is the convergence assured? (2) How good are the estimations?
(3) Are they sensitive to the value of ρ? The answers to these questions is
given in the figure’s caption.
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FIGURE 1. Graphical diagnoses relative to the L2-penalised EM algorithm.
(a),(b): 40 trajectories of the L2-convergence criterion for parameters β and
σ2
1 (A similar behaviour is observed for parameters σ2

2 and ρ). About a hundred
iterations is necessary to achieve convergence. (c): MSEs of parameters β, σ2

1 , σ
2
2

and ρ on simulated data where N = 10 and T ∈ {10, 20, . . . , 100}. As expected,
MSEs of β, σ2

2 and ρ decrease towards zero. In contrast, since N is fixed, the MSE
of σ2

1 is constant. (d): Boxplots of estimated ρ according to real value.
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