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Estimation of extreme conditional quantiles
under a general tail first order condition

Laurent Gardes, Armelle Guillou and Claire Roman
Université de Strasbourg & CNRS, IRMA, UMR 7501,
7 rue René Descartes, 67084 Strasbourg Cedex, France

Abstract. We consider the estimation of an extreme conditional quantile.
In a first part, we propose a new tail condition in order to establish the
asymptotic distribution of an extreme conditional quantile estimator. Next, a
general class of estimators is introduced, which encompasses, among others,
kernel’s or nearest neighbors’ types of estimators. A unified theorem of the
asymptotic normality for this general class of estimators is provided under the
new tail condition and illustrated on the different well-known examples. A
comparison between different estimators belonging to this class is provided on
a small simulation study.
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1 Introduction
To describe the dependence between a real-valued random variable Y and an
explanatory random vector X of dimension p ∈ N\{0}, different approaches can
be used. The most common one is perhaps provided by the conditional mean
m(X) := E(Y |X), which gives information on the central part of the conditional
distribution. However, depending on the applications in mind, it can be also
of interest to consider a conditional quantile instead of m(X) (e.g., median or
quartile). To be more specific, denoting by S(·|x0) := P(Y > ·|X = x0) the
conditional survival function of Y given {X = x0} for some x0 ∈ Rp in the
support of X, the conditional quantile of level α ∈ [0, 1] of Y given {X = x0} is
Q(α|x0) := S←(α|x0) = inf{y ∈ R; S(y|x0) ≤ α} with the convention inf{∅} =
+∞. This conditional quantile presents the advantage to be more robust than
the classical conditional mean.
Given n independent copies (X1, Y1), . . . , (Xn, Yn) of (X,Y ), one question of
interest is of course the estimation of the conditional quantile Q(α|x0) in a
nonparametric way. There exist numerous estimation methods in the literature.
The most common one is the indirect method: starting from a suitable estimator
Ŝn(·|x0) of S(·|x0), the associated estimator of Q(α|x0) is given by

Q̂n(α|x0) := Ŝ←n (α|x0) = inf{y ∈ R; Ŝn(y|x0) ≤ α}. (1)

Estimator (1) is called indirect since, as pointed by Racine and Li (2017), “one
estimates a conditional survival function, and then, one ’backs out’ the inferred
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quantile via inversion”.
An alternative way to estimate a conditional quantile is by using the so-called
check function defined for α ∈ [0, 1] by ρα(v) := v[α − I(−∞,0](v)] where for
any A ⊂ R, IA(x) = 1 if x ∈ A and 0 otherwise. Indeed, since the conditional
quantile is also defined by

Q(α|x0) = arg min
τ∈[0,1]

E [ρα(Y − τ)|X = x0] ,

the estimation of Q(α|x0) can be achieved by replacing the conditional expec-
tation by a suitable estimator and then by solving the minimization problem.
This method of estimation was investigated among others by Koenker and Bas-
set (1978), Koenker et al. (1994) and He and Ng (1999). In this paper, we focus
on the so-called indirect method.
In some applications, we are interested in the tail of the conditional distribution
rather than on its central part. In this case, instead of looking at the conditional
quantile of level α ∈ [0, 1], we consider an extreme conditional quantile, i.e., a
conditional quantile of level αn where αn → 0 as the sample size n increases.
To obtain the asymptotic distribution of an indirect conditional quantile esti-
mator, the following two-step procedure can be used. First, we establish the
asymptotic distribution of the associated conditional survival function estima-
tor. Next, a delta-type method is used to deduce the result on the conditional
quantile estimator from this first step. This requires an additional condition
on the conditional survival function. When the level α is fixed, this condition
is simply that S(·|x0) is continuously differentiable. However, in case of an ex-
treme level, this condition is much more complicated. In this work, we introduce
a new general condition, called Tail First Order Condition, which is the corner-
stone to obtain the asymptotic distribution of any indirect conditional quantile
estimator. As we will see, this condition is more flexible than the one classically
used in extreme value theory.
To understand where the Tail First Order condition comes from, the main in-
gredients of the proof of the asymptotic normality in case of a fixed level α and
of an extreme level αn is outlined in Section 2. In Section 3, this condition is
specified and illustrated on many well-known examples of conditional distribu-
tions. Section 4 is devoted to the study of a general class of extreme conditional
quantile estimators. In particular, a unified theorem for the asymptotic nor-
mality is established. A simulation study is provided in Section 5 where several
examples of estimators belonging to this class, among them, the kernel’s and
nearest neighbors’ type-estimators, are compared. All the proofs of the results
are postponed to Section 6.

2 Description of the methodology
The aim of this paper is to show the asymptotic normality of a general class
of indirect type of conditional quantile estimators when the level is extreme.
This requires a condition, which is not usual in the case of a fixed level α.
To understand where this condition comes from we briefly start to present the
simple case where the level is fixed, and then, we outline the main differences
when it is assumed to be extreme, and we introduce the required condition in
that context.
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Case where the level is fixed − When the level α is fixed, the asymptotic
distribution of (1) can be deduced from the one of the conditional survival
function estimator Ŝn(·|x0). More precisely, if we assume that for some y ∈ R,
there exists a sequence vn(x0)→∞ such that for all sequence εn → 0

vn(x0)
(
Ŝn(y + εn|x0)− S(y + εn|x0)

)
d−→ Λ, (2)

where Λ is some non-degenerate distribution, then if S(·|x0) is a continuously
differentiable function with S[Q(α|x0)|x0] = α

vn(x0)
(
Q̂n(α|x0)−Q(α|x0)

)
d−→ 1

f(Q(α|x0)|x0)
Λ, (3)

where f(·|x0) is the probability density function of Y given X = x0 with
f(Q(α|x0)|x0) 6= 0. The proof of (3) is based on the following remark: for
all z ∈ R, letting σn(x0) := vn(x0)f(Q(α|x0)|x0), one has

P
[
σn(x0)

(
Q̂n(α|x0)−Q(α|x0)

)
≤ z
]

= P[Zn(x0) ≤ zn(x0)], (4)

where,

Zn(x0) := vn(x0)
(
Ŝn(Q(α|x0) + zσ−1n (x0)|x0)− S(Q(α|x0) + zσ−1n (x0)|x0)

)
and zn(x0) := vn(x0)[α − S(Q(α|x0) + zσ−1n (x0)|x0)]. From (2) with y =

Q(α|x0), Zn(x0)
d−→ Λ and since S(·|x0) is continuously differentiable, zn(x0)→

z as n→∞ proving (3). Note that the asymptotic distribution of indirect esti-
mators for a fixed level α has been treated for instance by Berlinet et al. (2001).

Case of an extreme level − We consider the situation where the level of
the conditional quantile is a sequence αn where αn → 0 as the sample size n
increases. Replacing the level α by a sequence αn does not change (at least if
αn does not converge too fast to 0) the estimation procedure. We still estimate
Q(αn|x0) as in (1) just by replacing α by αn. The difference lies in the assump-
tions required to obtain the asymptotic distribution of Q̂n(αn|x0). First, instead
of (2), the following kind of result for the conditional survival function estimator
is required: for some well-chosen sequence yn(x0) → y∗(x0) := Q(0|x0), there
exists a sequence vn(x0)→∞ such that

vn(x0)
(
Ŝn(yn(x0)|x0)− S(yn(x0)|x0)

)
d−→ Λ, (5)

for some non-degenerate distribution Λ. Of course, the sequence vn(x0) depends
on the sequence yn(x0). Since y∗(x0) is the right endpoint, convergence (5)
focus on the asymptotic behavior of Ŝn(·|x0) in the right tail of the condi-
tional distribution. To obtain the asymptotic distribution of Q̂n(αn|x0), we
start again with (4) where α is replaced by αn. In the extreme level case, the
main difficulty is to deal with the non-random sequence zn(x0). More specif-
ically, assuming that S[Q(α|x0)|x0] = α at least for α small enough, we need
to find a general condition on the conditional distribution ensuring that for
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a well-chosen sequence σn(x0) and for a sequence vn(x0) satisfying (5) with
yn(x0) = Q(αn|x0) + zσ−1n (x0)

zn(x0) = −αnvn(x0)

[
S[yn(x0)|x0]

S[Q(αn|x0)|x0]
− 1

]
→ z, (6)

as n→∞ for all z ∈ R. Obviously, assuming that S(·|x0) is a continuously dif-
ferentiable function is not relevant here and the sequence σn(x0) is not necessar-
ily equal to vn(x0)f(Q(αn|x0)|x0). Since Q(αn|x0)→ y∗(x0), a natural general
condition leading to (6) is to assume that for some open interval Ix0

= I ⊂ R
containing 0, there exist positive functions dx0 ≡ d and Ψx0 ≡ Ψ such that for
all t ∈ I,

lim
y↑y∗(x0)

Ψ(y)

(
S[y + td(y)|x0]

S(y|x0)
− 1

)
→ φ−1x0

(t), (7)

where φ−1x0
≡ φ−1 is the inverse of a continuous and strictly decreasing function

φx0 ≡ φ such that φ(t)/t→ −1 as t→ 0.
Indeed, taking σn(x0) = αnvn(x0)/[Ψ(Q(αn|x0))d(Q(αn|x0))] and t−1n (x0) :=
σn(x0)d[Q(αn|x0)], we obtain

zn(x0) = −Ψ[Q(αn|x0)]

tn(x0)

(
S[Q(αn|x0) + ztn(x0)d[Q(αn|x0)]|x0]

S[Q(αn|x0)|x0]
− 1

)
.

Under (7) and assuming that tn(x0) → 0, we can show that zn(x0) → z (see
Section 3, Proposition 1). Next, the random sequence Zn(x0) is treated by (5).
To sum up, in the extreme level case, a natural condition on S(·|x0) to establish
the asymptotic distribution of the conditional quantile estimator is (7). Condi-
tion (7) is referred in what follows to as the Tail First Order condition. Under
this condition and if (5) holds with yn(x0) := Q(αn|x0) + zσ−1n (x0), we have
σn(x0)(Q̂n(αn|x0) − Q(αn|x0))

d−→ Λ. We show in Section 3 that this Tail
First Order condition is satisfied by a larger class of conditional distributions
than the one satisfying the condition classically used in extreme value theory.
Note that while on the fixed level case, the rate of convergence of Q̂n(α|x0) is
proportional to vn(x0) this is no longer the case when estimating an extreme
conditional quantile.

3 A Tail First Order condition
The Tail First Order condition is related to the conditional distribution of Y
given {X = x0} for some x0 ∈ Rp in the support of X. Since x0 is fixed, the
dependence on x0 can be omitted. This is what we do in all this section. For
a given (conditional) survival function S, we denote by Q = S← the associated
quantile and by x∗ = S←(0) the right endpoint.

Definition 1 A survival function S satisfies a Tail First Order (TFO) condi-
tion if for some open interval I ⊂ R containing 0, there exist positive functions d
and Ψ such that for all t ∈ I,

lim
x↑x∗

Ψ(x)

(
S[x+ td(x)]

S(x)
− 1

)
= φ−1(t), (8)

where φ−1 is the inverse of a continuous and strictly decreasing function φ :
J → I such that φ(t)/t→ −1 as t→ 0.
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Note that convergence (8) entails that for all t ∈ I and for x large enough,
x + td(x) < x∗. Consequently, the function Ψ is such that Ψ(x)/S(x) → ∞
as x ↑ x∗. Finally, it is easy to check that φ−1(t)/t → −1 as t → 0. As a
consequence of Dini’s theorem, we obtain the useful properties gathered in the
next proposition.

Proposition 1 If S satisfies a TFO condition, the following statements are
true:
1. Convergence in (8) holds locally uniformly on I.
2. For all t0 ∈ I,

lim
(t,x)→(t0,x∗)

Ψ(x)

t

(
S[x+ td(x)]

S(x)
− 1

)
= lim
t→t0

φ−1(t)

t
.

We give in the next result some equivalent reformulations of the TFO condition.

Proposition 2 The following statements are equivalent:
1. The survival function S satisfies a TFO condition.
2. There exist positive functions a and g such that for all t ∈ J ,

lim
α→0

Q[α+ tg(α)]−Q(α)

a(α−1)
= φ(t). (9)

3. There exist sequences an > 0, bn ∈ R and cn > 0 with ncn → ∞ such that
for all t ∈ I,

lim
n→∞

[ncnS(ant+ bn)− cn] = φ−1(t). (10)

Remarks − 1) The relations between the auxiliary functions involved in (8)
and (9) are: d(·) = a(1/S(·)) and Ψ(·) = S(·)/g(S(·)).
2) A possible choice for the sequences an, bn and cn in (10) is an = a(n),
bn = Q(1/n) and cn = 1/[ng(1/n)]. It is also easy to check that necessarily
g(α)→ 0 as α→ 0.
3) An interpretation of condition (9) is based on the following remark: from the
second statement of Proposition 1,

Q[α+ tg(α)]−Q(α)

tg(α)
∼ −a(α−1)

g(α)
,

as (t, α) → 0. Hence, one can see the function −a(α−1)/g(α) as the derivative
of Q near 0 and in the direction of g(α). This heuristic is confirmed by the next
result which provides a sufficient condition for the TFO condition.

Proposition 3 Assume that Q is a differentiable function and that for some
open interval J ⊂ R containing 0, there exists a positive function g such that
for all t ∈ J ,

lim
α→0

Q′[α+ tg(α)]

Q′(α)
= Θ(t). (11)

If for all t ∈ J ,
∫ t
0

Θ(s)ds =: θ(t) ∈ R where θ is an increasing function on J
such that θ(t)/t → 1 as t → 0 then condition (9) holds with φ(t) = −θ(t) and
a(α−1) = −Q′(α)g(α).

We conclude this section by giving examples of distributions satisfying a TFO
condition.
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Maximum domain of attraction − In extreme value theory, in order to
make inference on the tail of a distribution S, we classically assume that there
exist sequences an > 0 and bn and a non-degenerate distribution function G for
which

lim
n→∞

[1− S(anx+ bn)]
n

= G(x), (12)

for all point of continuity of G. Fisher and Tippett (1928) and Gnedenko (1943)
show that G(x) = Gγ(ax+ b) for some a > 0 and b ∈ R where

Gγ(x) = exp
[
−(1 + γx)−1/γ

]
,

for all x such that 1+γx > 0. A survival function S satisfying (12) is said to be-
long to the maximum domain of attraction of the extreme value distribution Gγ .
The parameter γ ∈ R is called the extreme value index. As established in de
Haan and Ferreira (2006, Theorem 1.1.6), condition (12) is equivalent to assume
the existence of a positive auxiliary function a and a non constant function φ
for which

lim
α→0

Q(tα)−Q(α)

a(α−1)
= φ(t). (13)

From de Haan and Ferreira (2006, Theorem B.2.1), the function φ in (13) is
necessarily of the form φ(t) = c(t−γ − 1)/γ for some c 6= 0 and where γ ∈ R is
always the extreme value index.
The aim of the next result is to show that the TFO condition introduced in this
paper (see Definition 1) is weaker than (12).

Proposition 4 If S satisfies a TFO condition with an auxiliary function g
in (9) such that α/g(α) → c ≥ 0 as α → 0 (with g continuous and strictly
increasing if c = 0) then S satisfies (12).

As a consequence of this result, if a survival function S satisfies the TFO con-
dition with a function g as in Proposition 4, then S also satisfies the TFO
condition with g(α) = α and in this case the TFO condition coincides with
the classical extreme value condition. Remark also that in this situation (i.e.,
g(α) = α), condition (11) is equivalent to assume that

lim
α→0

Q′(tα)

Q′(α)
= t−γ−1,

for some γ ∈ R. This condition coincides with condition (1.1.33) in de Haan
and Ferreira (2006, Corollary 1.1.10).

At this step, a natural question is: “Can we find survival functions that satisfy
the TFO condition but not the classical extreme value one ?” Roughly speaking,
this is equivalent to find survival functions S such that (9) holds with a function
g such that α/g(α) → ∞. An example of such survival functions is given by
super heavy-tailed distributions.

Super heavy-tailed distributions − The term super heavy-tailed is often
attached in the literature to a distribution with a slowly varying survival func-
tion S, i.e., such that for all t > 0,

lim
x→∞

S(tx)

S(x)
= 1. (14)
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It can be shown that these survival functions do not satisfy the classical first
order condition (12). Note that a heavy-tailed distribution corresponds to a
survival function satisfying for all t > 0, S(tx)/S(x) → t−1/γ as x → ∞, for
some γ > 0. Hence, roughly speaking, a super heavy-tailed distribution is a
heavy-tailed distribution with γ = +∞.
Unfortunately, condition (14) is not precise enough for the study of super heavy-
tailed distribution. To define more precisely the class of super heavy-tailed
distribution, we start by remarking that for heavy-tailed distributions, there
exists γ > 0 such that for all s > −1,

lim
α→0

Q[(1 + s)α]

Q(α)
= (1 + s)−γ .

Since super heavy-tailed distribution can be seen as a heavy-tailed distribution
with γ = +∞, we propose to replace in the previous limit γ by γ(α) where
γ(α)→∞ as α→ 0. Since

lim
α→0

(1 + s)−γ(α) =

{
+∞ if s ∈ (−1, 0),
0 if s > 0,

we must replace s by t/γ(α) with t ∈ R to obtain a non-degenerate limit:

lim
α→0

Q[(1 + t/γ(α))α]

Q(α)
= e−t.

The class of super heavy-tailed distributions can thus be defined by the set of
distributions for which there exists a positive function g with g(α)/α → 0 as
α→ 0 such that for all t ∈ R

lim
α→0

Q[α+ tg(α)]

Q(α)
= e−t. (15)

It appears that convergence (15) coincides with the TFO condition with
a(α−1) = Q(α) and φ(t) = e−t − 1. As shown in Proposition 5 below, this
definition is equivalent to the one introduced for instance in Fraga Alves et al.
(2009) where the class of super heavy-tailed distributions is defined as the set
of distributions for which there exists a positive function b such that

lim
x→∞

U [x+ tb(x)]

U(x)
= et (16)

with U(·) := Q(1/·). Note that according to Fraga Alves et al. (2009,
Lemma 4.1), condition (16) implies (14). Furthermore, the function b is such
that b(x)/x→ 0 as x→∞. Remark finally that the right endpoint of a distri-
bution satisfying (16) is necessarily infinite. As examples of super heavy-tailed
distribution satisfying (16), one can cite the standard log-Pareto distribution
given by S(x) = [log(x)]−ξ with ξ > 0 and the log-Weibull distribution for
which S(x) = exp(−ξ logθ x), with ξ > 0 and θ ∈ (0, 1). For these two distribu-
tions, one can take b ∼ U/U ′.

Proposition 5 Conditions (15) and (16) are equivalent. The relation between
the involved functions is b(x) = x2g(x−1).
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4 Extreme conditional quantile estimation
Let (X,Y ) be a random vector taking its values in Rp×R. In all what follows, we
assume that (X,Y ) admits a probability density function (pdf). The marginal
pdf of X is denoted by f . As in the introduction, for all x0 ∈ Rp, let S(·|x0)
and Q(·|x0) be the survival function and the quantile function of the conditional
distribution of Y given {X = x0}, respectively. Given n independent copies
(X1, Y1), . . . , (Xn, Yn) of (X,Y ), the first part of this section is dedicated to the
presentation of a large class of estimators of Q(·|x0). In the second part, we
show that under a TFO condition, the proposed estimators computed with an
extreme level αn → 0 are asymptotically Gaussian.

4.1 A class of conditional quantile estimators
As mentioned in the introduction we focus in this paper on indirect estimators of
Q(·|x0). The first step is thus the estimation of the conditional survival function
S(·|x0). We consider estimators of the form

Ŝn(y|x0) :=

n∑
i=1

Wn,i(x0)I(y,∞)(Yi). (17)

The set of weights {Wn,i(x0), 1 ≤ i ≤ n} is a triangular array of positive
random variables depending on the data X1, . . . Xn as well as on x0 such that

n∑
i=1

Wn,i(x0) = 1.

These properties on the random weights ensure that Ŝn(·|x0) is a well-defined
distribution function. This is crucial to estimate the conditional quantile by
inverting estimator (17). This class of estimators encompasses various classical
estimators of the conditional distribution function, see below for some examples.
The indirect estimator of the conditional quantile of level α ∈ (0, 1) is thus
defined as in (1) by

Q̂n(α|x0) := Ŝ←n (α|x0) = inf{y ∈ R; Ŝn(y|x0) ≤ α}.

Of course, the main feature of the weights {Wn,i(x0), 1 ≤ i ≤ n} is to select
a set of data around x0. For this reason, estimator of the form (17) are called
weighted local estimators.
The kernel based estimator introduced by Nadaraya (1964) and Watson (1964)
is a classical example of weighted local estimator. This estimator is obtained by
using the following random weights in (17):

WNW
n,i (x0, hn) := K

(
Xi − x0
hn

)/ n∑
j=1

K

(
Xj − x0
hn

)
, (18)

where K is a density on Rp and hn is a positive non-random sequence satisfying
hn → 0 as n → ∞. Typically, the probability density function K has a unique
mode at 0 in order to give the largest values of the weights for the observations
close to x0.
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Another possibility to select the observations is to take the kn observations
which are closest to the reference position x0. This approach is called the kn-
Nearest Neighbors’ (kn-NN) method. More specifically, for some norm ‖ · ‖
on Rp, let {Di(x0) := ‖Xi − x0‖, i = 1, . . . , n} be the distances between each
observation and x0 and let D(1)(x0) ≤ . . . ≤ D(n)(x0) the corresponding order
statistics. Denoting by {r(i), i = 1, . . . , n} the ranks of these distances (i.e.,
D(i)(x0) = Dr(i)(x0) for i = 1, . . . , n), the kn-NN estimator is obtained by using
the following random weights in (17):

WNN
n,i (x0, kn) := [(kn − r(i) + 1)+]`

/
kn∑
j=1

j` , (19)

where (·)+ stands for the positive part function and ` ∈ N. For instance, by
taking ` = 0 (with the convention 00 = 0), we affect the same weight to the kn
closest observations. The corresponding weights are referred to as uniform-kn-
NN weights. The choice ` = 1 (resp., ` = 2) leads to triangular-kn-NN weights
(resp., quadratic-kn-NN weights).
Roughly speaking, the main difference between these two sets of weights is that
the kernel based estimator averages over all observations which are within a
fixed distance, whereas the kn-NN approach averages over a fixed number of
observations which might be arbitrarily far away. Of course, one can also think
about a linear combination of (18) and (19). For instance, we can consider the
random weights defined for τ ∈ (0, 1) by

WLC
n,i (x0, τ, hn, kn) :=

τ

Mn
I[0,1]

(∥∥∥∥Xi − x0
hn

∥∥∥∥
∞

)
+

1− τ
kn

I[0,1]
(
r(i)

kn

)
, (20)

where Mn is the random number of random variables among {X1, . . . , Xn} that
belong to Bx0

(hn), the closed ball with respect to ‖ ·‖∞ centered at x0 and with
radius hn.

4.2 Main results
Under general conditions on the random weights {Wn,i(x0), i = 1, . . . , n},
we want to establish the convergence in distribution of a normalized version
of Q̂n(αn|x0) for a level αn converging to 0 as n→∞. As outlined in Section 2,
we first need to find a sequence vn(x0)→∞ and a non-degenerate distribution
Λ such that (under some additional assumptions)

vn(x0)
(
Ŝn(yn(x0)|x0)− S(yn(x0)|x0)

)
d−→ Λ,

for some sequence yn(x0) ↑ y∗(x0). This is done in Theorem 1 where the fol-
lowing notation is used

nx0 :=

(
n∑
i=1

W2
n,i(x0)

)−1
.

Note that the random variable nx0 corresponds, roughly speaking, to the num-
ber of observations used in the estimation procedure. For instance, for the
Nadaraya-Watson’s weights with the uniform kernel K(·) ∝ I[0,1](‖ · ‖∞), it is
easy to check that nx0

is exactly the number of points in Bx0
(hn). For the

uniform-kn-NN weights, one has nx0
= kn, the number of nearest neighbors.
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Theorem 1 Let x0 ∈ Rp and yn(x0) be a sequence converging to the right
endpoint y∗(x0) of the conditional distribution of Y given {X = x0}. As-
sume that there exists a sequence mn(x0) such that nx0/mn(x0)

a.s.−→ 1 and
let v2n(x0) := mn(x0)/S(yn(x0)|x0). Under the conditions

vn(x0) max
1≤i≤n

Wn,i(x0)
a.s.−→ 0 (21)

and

vn(x0)

n∑
i=1

Wn,i(x0) |S(yn(x0)|Xi)− S(yn(x0)|x0)| P−→ 0, (22)

we have that vn(x0)
(
Ŝn (yn(x0)|x0)− S (yn(x0)|x0)

)
d−→ N (0, 1).

To understand the usefulness of conditions (21) and (22), we provide below
the main ideas of the proof of Theorem 1, the complete proof being postponed
to Section 6. Let Y x0

i := Q(Ui|x0) where U1, U2, . . . are independent stan-
dard uniform random variables, independent of the Xi. The random vectors
{(Xi, Q(Ui|Xi)), i = 1, . . . , n} are thus independent and distributed as (X,Y ),
which implies that

Ŝn(yn(x0)|x0)
d
=

n∑
i=1

Wn,i(x0)I(yn(x0),∞)(Q(Ui|Xi)).

In other words, one can work as if Yi = Q(Ui|Xi). The starting point of the
proof is the decomposition

Ŝn (yn(x0)|x0)− S (yn(x0)|x0) =
[
Ŝx0
n (yn(x0))− S (yn(x0)|x0)

]
+

[
Ŝn (yn(x0)|x0)− Ŝx0

n (yn(x0))
]
,

where for all y ∈ R,

Ŝx0
n (y) :=

n∑
i=1

Wn,i(x0)I(y,∞)(Y
x0
i ).

Since E[Ŝx0
n (yn(x0))] = S(yn(x0)|x0), the first term corresponds to the variance

term and the second one to the bias term.
The first part of the proof consists in establishing the asymptotic normality of
the normalized variance term given by:

vn(x0)
[
Ŝx0
n (yn(x0))− S (yn(x0)|x0)

]
,

see Section 6, Proposition 7. This is obtained mainly by applying the Linde-
berg’s theorem and only condition (21) is required. This condition is in fact
equivalent to the Lindeberg’s condition.
In the second part of the proof, we show that the bias term given by

Bn(x0) := vn(x0)
[
Ŝn (yn(x0)|x0)− Ŝx0

n (yn(x0))
]

10



converges to 0 in probability (see Section 6, Proposition 8). The proof is based
on the following remark. Let Wn,x0

be the discrete random measure define for
all A ∈ B(Rp) by

Wn,x0(A) :=

n∑
i=1

Wn,i(x0)δXi(A).

Straightforward calculation leads to

Ŝn(yn(x0)|x0)− Ŝx0
n (yn(x0))

=

∫ n∑
i=1

Wn,i(x0)I(yn(x0),∞)(Q(Ui|·)) (dWn,x0
− dδx0

) .

To control the bias term we need to measure the discrepancy between the two
probability measures Wn,x0 and δx0 . A useful distance between probability
measures is the Wasserstein distance defined for all probability measures P1 and
P2 by W1(P1,P2) = inf {[E(|X1 −X2|)], X1 ∼ P1, X2 ∼ P2}. Condition (22)
can in fact be written in term of the Wasserstein distance as follows

vn(x0)W1(W∗n,x0
, δ∗x0

)
P−→ 0, (23)

where W∗n,x0
and δ∗x0

are the pushforward measures of Wn,x0 and δx0 by the
measurable function S(yn(x0)|·).

We have now all the ingredients to establish the asymptotic distribution of the
conditional quantile estimator of level αn obtained by inverting the estimator
Ŝn(·|x0). This requires the following first order condition on the conditional
distribution of Y given X = x0.

(H) The conditional survival function S(·|x0) satisfies a TFO condition with
positive auxiliary functions Ψx0 ≡ Ψ and dx0 ≡ d.

Let a(1/·) ≡ ax0(1/·) = d[Q(·|x0)] and g(·) ≡ gx0(·) = ·/Ψ[Q(·|x0)]. From
Proposition 2, condition (H) is equivalent to assume that for some open interval
Jx0

= J ⊂ R containing 0, one has for all t ∈ J

lim
α→0

Q(α+ tg(α)|x0)−Q(α|x0)

a(α−1)
= φx0

(t),

where φx0
≡ φ is a continuous and strictly decreasing function such that

φ(t)/t→ −1 as t→ 0.

Theorem 2 Let x0 ∈ Rp and assume that condition (H) holds. Assume that
there exists a sequence mn(x0) such that nx0/mn(x0)

a.s.−→ 1 and let v2n(x0) :=
mn(x0)/αn. If αnmn(x0)→∞, vn(x0)g(αn)→∞,

vn(x0) max
1≤i≤n

Wn,i(x0)
a.s.−→ 0

and

[αnmn(x0)]1/2 sup
|β/αn−1|≤ξ

n∑
i=1

Wn,i(x0)

∣∣∣∣S[Q(β|x0)|Xi]

β
− 1

∣∣∣∣ P−→ 0,
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for some ξ ∈ (0, 1) then

vn(x0)
g(αn)Q(αn|x0)

a(α−1n )

(
Q̂n(αn|x0)

Q(αn|x0)
− 1

)
d−→ N (0, 1).

Recall that if g(α) = α (or equivalently Ψ ≡ 1), condition (H) coincides with
the classical first order condition (13) used in extreme value theory. In this case,
φ(t) ∝ (t−γ(x0)− 1)/γ(x0) where the function γ is referred to as the conditional
extreme value index. Under (13) and if the conditions of Theorem 2 are satisfied,

[αnmn(x0)]
1/2 Q(αn|x0)

a(α−1n |x0)

(
Q̂n(αn|x0)

Q(αn|x0)
− 1

)
d−→ N (0, 1).

Moreover, we know from de Haan and Ferreira (2006, Lemma 1.2.9) that un-
der (13), Q(αn|x0)/a(α−1n ) → 1/γ+(x0), where γ+(x0) = max(γ(x0), 0). So,
under the first order condition (13), the worst rate of convergence is achieved
when γ(x0) > 0. This was expected since the case γ(x0) > 0 corresponds to
heavy-tailed distributions.
Let us now focus on the rate of convergence in Theorem 2 for conditional super
heavy-tailed distribution. Taking the definition of super heavy-tailed distribu-
tions given in Fraga Alves et al. (2009) into account, we have in this case
a(α−1) = Q(α|x0) and g(α)/α→ 0 as α→ 0. Hence, for these distributions,

[αnmn(x0)]
1/2 g(αn)

αn

(
Q̂n(αn|x0)

Q(αn|x0)
− 1

)
d−→ N (0, 1).

Not surprisingly, this rate is worse than the one for heavy-tailed distributions.

Theorem 2 is proved under general conditions on the random weights used to
define the conditional survival estimator (17). We close this section by applying
Theorem 2 to particular weights.

Nadaraya-Watson’s weights − Taking the weights defined in (18) leads to
the well-known Nadaraya-Watson’s estimator of the conditional survival func-
tion:

ŜNW
n (y|x0) :=

n∑
i=1

K

(
Xi − x0
hn

)
I(y,∞)(Yi)

/
n∑
i=1

K

(
Xi − x0
hn

)
. (24)

The corresponding conditional quantile estimator is denoted by Q̂NW
n (αn|x0).

In order to apply Theorem 2, we need to check that the Nadaraya-Watson’s
weights satisfy the required conditions. To this aim, we assume the following
on the kernel function K:

(K) the kernel K is either an indicator function on a cell of Rp or such that
K(x) = L(‖x‖) where L is of bounded variation, continuous on (0,∞) and
with support [0, 1].

It is very easy to check that (K) is satisfied for a large range of usual kernels
such as the uniform kernel (K(t) ∝ I[0,1](‖t‖∞)), triangular (with L(t) ∝ 1− t),
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Epanechnikov kernel (L(t) ∝ 1− t2), biweight kernel (L(t) ∝ (1− t2)2), etc.
We can now state the convergence in distribution of the conditional survival
estimator (24). Recall that f is the pdf of X.

Corollary 1 Let x0 ∈ Rp such that f is continuous at x0 and f(x0) > 0 and let
K be a kernel satisfying (K). Under (H), for sequences hn → 0 and αn ∈ (0, 1)
such that nhpn[αn ∧ (log log n)−1]→∞, α−1n nhpng

2(αn)→∞ and

sup
|β/αn−1|≤ξ
‖x−x0‖≤hn

∣∣∣∣S[Q(β|x0)|x]

β
− 1

∣∣∣∣2 = o

(
1

nhpnαn

)
(25)

for some ξ ∈ (0, 1) we have

g(αn)

αn

Q(αn|x0)

a(α−1n )
(nhpnαn)

1/2

(
Q̂NW
n (αn|x0)

Q(αn|x0)
− 1

)
d−→ N

(
0,
‖K‖22
f(x0)

)
.

Note that under the classical first order condition (13) (i.e., when g(αn) = αn
in (H)), the asymptotic normality of the Nadaraya-Watson conditional quan-
tile estimator has already been obtained in Daouia et al. (2013, Corollary 1).
This last result also requires the use of condition (25) which controls the oscil-
lations of the function Q(αn|·). Of course, the proof of Daouia et al. (2013,
Corollary 1) uses arguments adapted to the Nadaraya-Watson’s estimator while
Theorem 2 can be used for a large range of weighted conditional survival es-
timators. As a consequence, conditions on hn and αn involved in Daouia et
al. (2013, Corollary 1) and in our Corollary 1 are slightly different. More pre-
cisely, the conditions in Daouia et al. (2013, Corollary 1) are nhpnαn →∞ and
nhp+2

n αn → 0 while in our Corollary 1 it is required that nhpnαn → ∞ and
nhpn(log log n)−1 → ∞. Hence, if αn log log n → 0 as n → ∞ (i.e., for large
quantiles), conditions on the sequences hn and αn are weaker in Corollary 1
than in Daouia et al. (2013, Corollary 1).

Nearest Neighbors’ approach − Now, let us consider the kn-NN random
weights defined in (19) and leading to the conditional survival function estimator

ŜKNNn (y|x0) :=

n∑
i=1

[(kn − r(i) + 1)+]`I(y,∞)(Yi)

/
kn∑
j=1

j` ,

with kn ∈ {1, . . . , n}, ` ∈ N and r(i) is the rank of ‖Xi − x0‖ among the ran-
dom variables X1, . . . , Xn. The asymptotic normality of the kn-NN conditional
quantile estimator Q̂KNN

n (αn|x0) is established in the following result.

Corollary 2 Let x0 ∈ Rp. Under (H), for sequences kn →∞ and αn ∈ (0, 1)
such that knαn →∞, α−1n kng

2(αn)→∞ and

(knαn) sup
|β/αn−1|≤ξ

‖x−x0‖≤D(kn)(x0)

∣∣∣∣S[Q(β|x0)|x]

β
− 1

∣∣∣∣2 P−→ 0,

for some ξ ∈ (0, 1), we have

g(αn)

αn

Q(αn|x0)

a(α−1n )
(knαn)

1/2

(
Q̂KNN
n (αn|x0)

Q(αn|x0)
− 1

)
d−→ N

(
0,

(`+ 1)2

2`+ 1

)
.
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The asymptotic variance (`+1)2/(2`+1) is an increasing function of ` and thus
the best choice (at least in term of variance) seems to be ` = 0, i.e., when the
same weight 1/kn is affected to the kn observations closest to x0.

Linear combination of weights − We finally focus on the estima-
tor Q̂LC

n (αn|x0) of Q(αn|x0) obtained by using the linear combination of weights
introduced in (20).

Corollary 3 Let x0 ∈ Rp such that f is continuous at x0 and f(x0) > 0. Let
hn → 0, kn →∞ and αn be sequences such that nhpn/ log log n→∞, `nαn →∞
with `n := (nhpn ∧ kn), α−1n `ng

2(αn)→∞ and

(`nαn) sup
|β/αn−1|≤ξ

‖x−x0‖≤(hn∨D(kn)(x0))

∣∣∣∣S[Q(β|x0)|x]

β
− 1

∣∣∣∣2 P−→ 0,

for some ξ ∈ (0, 1). Under (H) and if there exists κ ∈ [0,∞] such that
kn/(nh

p
n)→ κ, we have

g(αn)

αn

Q(αn|x0)

a(α−1n )
(`nαn)

1/2

(
Q̂LC
n (αn|x0)

Q(αn|x0)
− 1

)
d−→ N

(
0,

C2(κ)

2pf(x0)

)
.

In practice, one can take kn = bκnhpnc with κ > 0. The parameter κ is thus a
tuning parameter that has to be chosen by a data-driven procedure (see Sec-
tion 5.1).

5 Simulation study
In this section, we are interested in the finite sample behavior of the estima-
tor Q̂n(αn|x0) defined in (1) for a given value of x0. The random weights
{Wn,1(x0), . . . ,Wn,n(x0)} used in the expression of the estimator (17) of the con-
ditional survival function S(·|x0) often depend on an hyperparameter λn ∈ Rd,
d ∈ N \ {0}, useful in order to control the smoothness of the estimator. This
is the case for instance for the Nadaraya-Watson’s weights, the kn-NN random
weights or the LC-weights defined in (18), (19) and (20), where λn is equal to
hn, kn and (hn, κ), respectively. In the next section, we propose an adaptive
procedure to select λn in practice.

5.1 Choice of the hyperparameter

For t ∈ Rp, let us denote by Q̂n(αn|t, λn) an estimator of Q(αn|t) depending on
an hyperparameter λn and by Q̂n,−i(αn|t, λn) the estimator computed without
the random pair (Xi, Yi).
Our procedure of selection is based on the following simple remark: for a good
choice of λn, the random value S[Q̂n,−1(αn|X1, λn)|X1] should be close to αn
at least when the observed value of X1 is close to x0. We thus propose to define
our optimal value of λn as λopt := arg min{Λ2

n(λ), λ ∈ Rd}, with

Λn(λ) := E
[
Wn,1(x0)

E [Wn,1(x0)]
S[Q̂n,−1(αn|X1, λ)|X1]

]
− αn.
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Note that the proximity of X1 and x0 is controlled by the random weight
Wn,1(x0). Of course, the function Λn is unknown in practice and should be
estimated. We propose to use the following estimator

Λ̂n(λ) :=

n∑
i=1

Wn,i(x0)I{Yi>Q̂n,−i(αn|Xi,λ)} − αn. (26)

The estimated optimal value of the hyperparameter λn is thus given by

λ̂n,opt := arg min{Λ̂2
n(λ), λ ∈ Rd}. (27)

The estimator (26) can be motivated by the following result.

Proposition 6 If there exists a function ϕ : Rp×Rp×(n−1) 7→ [0,∞) such that
for all i = 1, . . . , n, Wn,i(x0) = ϕ(Xi,X−i) where the matrix X−i is given by
[X1, . . . , Xi−1, Xi+1, . . . , Xn] then E[Λ̂n(λ)] = Λn(λ) for all λ ∈ Rd.

Note that the assumption of Proposition 6 is satisfied for the nearest neighbors’
approach with the function ϕ defined for t ∈ Rp and u = [u1, . . . , un−1] ∈
Rp×(n−1) by

ϕ(t, u) = λ−1I{‖t−x0‖<d(λ)(x0)},

where di(x0) = ‖ui − x0‖, i = 1, . . . , n − 1 and d(1)(x0) ≤ . . . ≤ d(n−1)(x0) are
the corresponding ordered values.
This is also the case for the Nadaraya-Watson’s weights by using the function

ϕ(t, u) = K[(t− x0)/λ]

/(
n−1∑
i=1

K[(ui − x0)/λ] +K[(t− x0)/λ]

)
.

5.2 Finite sample behavior
Using a sample of size n from the random vector (X,Y ), we are interested in
estimating an extreme conditional quantile in the situation where the quantile
level αn is not too small. We consider the situation where X is a real-valued
random variable (p = 1). In a theoretical point of view, we assume that the
conditions of Theorem 2 are satisfied for such a sequence αn. In practice, we
take αn = 20/n and the quantile Q(αn|x0) is estimated using (1). Three sets of
random weights are considered:
i) Nadaraya-Watson’s weights with the Epanechnikov kernel given by

K(u) =
3

4
(1− u2)I[0,1](|u|),

ii) the kn-NN weights with ` = 1 (triangular kn-NN weights),
iii) the linear combination of weights given in (20) with τ = 1/2 and kn =
bκnhnc.
We generate X from a standard uniform distribution and the four following
models have been considered for the conditional survival distribution function
of Y given X:

M1 − Conditional Burr distribution:

S(y|X) =
(

1 + y−ρ/γ(X)
)1/ρ

, y > 0,

where ρ < 0 and for all x ∈ [0, 1], γ(x) = 2x(1− x).
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It is well-known that for this model, condition (13) holds (i.e., condition (H)
with g(α|x0) = α). The parameter ρ is referred in the literature to as the second
order parameter and it affects the bias of the estimator.

M2 − Conditional Beta distribution with parameters θ1 > 0 and θ2(X) where
for all x ∈ [0, 1], θ2(x) = 1/[2x(1− x)].

This conditional distribution satisfies condition (13) with a conditional extreme
value index given by γ(x) = −1/θ2(x) < 0.

M3 − Conditional Gaussian distribution with mean µ(X) = 2X(1 −X) and
variance σ2.

Under this model, condition (13) is satisfied with γ(X) = 0.
We finally consider a model for which condition (13) does not hold.

M4 − Conditional super heavy-tailed distribution:

S(y|X) = exp
{
−ξ[ln(y)]θ(X)

}
, y > 1,

with ξ > 0 and θ(x) = 19(x+ 1/2)(3/2− x)/20 ∈ [0, 0.95].

One can check that this conditional distribution satisfies condition (H) with

a(α−1) = Q(α|x) = exp

{[
ln(1/α)

ξ

]1/θ(x)}

and g(α) = αθ(x)ξ

[
ln(1/α)

ξ

]1−1/θ(x)
.

For each model, N = 500 samples of size n = 1000 have been generated. The
hyperparameter λn is chosen according to (27) and the minimization is achieved

• over a regular grid H of 20 points evenly spaced between 0.05 and 0.3 for
the Nadaraya-Watson’s weights,

• over a grid K of 20 points evenly spaced between 100 and 600 for the
Nearest-Neighbors’ weights,

• over the grid H×F where F is a grid of 5 evenly spaced points between
0.9 and 1.1.

The accuracy of the estimators is measured by the error

ERROR :=
1

N

N∑
i=1

[
Q̂•,in (αn|x0)

Q(αn|x0)
− 1

]2
,

where • has to be replaced by NW (Nadaraya-Watson’s weights), NN (kn-NN
approach) or LC (Linear combination of weights) and the index i refers to
the i− simulation run. The estimation of Q(αn|x0) is done at three different
positions: x0 := x

(1)
0 = (1−

√
1/3)/2 ≈ 0.211, x0 = x

(2)
0 = 1/2 and x0 = x

(3)
0 =

(1 +
√

1/2)/2 ≈ 0.854. The results are gathered in Tables 1 to 4. Based on
these simulations, we can draw the following conclusions:
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• The three methods, NW, NN and LC, perform similarly for the models
M1-M3;

• Concerning model M1, the ERRORs increase as |ρ| decreases. This is
expected since the estimation is much more difficult when ρ is close to
0 where a bias in the estimation appears. Also the ERRORs increase in
general when γ(·) increases;

• Concerning model M2, the ERRORs increase with θ2, i.e., when γ(·) =
−1/θ2(·) increases, and decreases with θ1. Compared to the model M1,
the ERRORs are considerably smaller, but this is not surprising since the
conditional extreme value index is negative in model M2, which means
that the observations are bounded;

• Concerning model M3, the ERRORs are not too much sensitive on the
values of σ, nor on x0. In general the orders of the ERRORs are inter-
mediate between those obtained in the case γ(·) > 0 (model M1) and
γ(·) < 0 (model M2);

• Concerning model M4, the ERRORs depend a lot on the value of ξ.
Indeed, if ξ is too small, the ERRORs increase drastically and in that
case the variability of the results is probably too large to allow a more
precise interpretation of the results. For larger values of ξ (ξ = 1 or 3/2),
the ERRORs are more reasonable, although larger than for the others
models. In that case, a slight increase in θ(·) implies in general a decrease
in the ERROR.

6 Proofs

6.1 Proof of the results given in Section 3
Proof of Proposition 1 −
1. Since S is decreasing and φ−1 is a continuous function, statement 1. is a
direct consequence of Dini’s theorem.
2. It suffices to remark that from the first statement, one has for all t0 ∈ I,

lim
(t,x)→(t0,x∗)

Ψ(x)

(
S[x+ td(x)]

S(x)
− 1

)
= lim
t→t0

φ−1(t).

Proof of Proposition 2 − We first prove that condition (9) implies condi-
tion (8). From de Haan and Ferreira (2006, Lemma 1.1.1), one has

lim
α→0

S[Q(α) + ta(α−1)]− α
g(α)

= φ−1(t),

for all t ∈ I. Replacing α by S(x) leads to

lim
x→x∗

S[x+ ta(1/S(x))]− S(x)

g[S(x)]
= φ−1(t).

Taking an = d(Q(1/n)), bn = Q(1/n) and cn = Ψ(Q(1/n)), we easily show that
1.⇒ 3.
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Finally, let us prove that 3. ⇒ 2. From de Haan and Ferreira (2006,
Lemma 1.1.1), we have that for all t ∈ J ,

lim
n→∞

Q[n−1(1 + tcn)]− bn
an

= φ(t). (28)

Hence, since Q is decreasing and bα−1c ≤ α−1 < bα−1c+ 1,

Q

(
1 + tcbα−1c

bα−1c

)
≤ Q[α(1 + tcbα−1c)] ≤ Q

(
1 + tcbα−1c

bα−1c+ 1

)
. (29)

Using (28), we know that

1

abα−1c

[
Q

(
1 + tcbα−1c

bα−1c

)
− bbα−1c

]
→ φ(t). (30)

Moreover,

Q[(bα−1c+ 1)−1(1 + tcbα−1c)] = Q{bα−1c−1[1 + tcbα−1cξt(bα−1c)]},

where for all m ∈ N,

ξt(m) :=
m

1 +m

(
1− 1

tmcm

)
.

Since mcm → ∞, we have ξt(m) → 1 as m → ∞ . Dini’s theorem together
with (28) entail that

1

abα−1c

[
Q

(
1 + tcbα−1c

bα−1c+ 1

)
− bbα−1c

]
→ φ(t). (31)

Hence, by collecting (29), (30) and (31) we obtain

Q[α+ tg(α)]− b(α)

a(α−1)
→ φ(t),

with g(α) = αcbα−1c, b(α) = bbα−1c and a(α−1) = abα−1c. We conclude the
proof by remarking that

Q[α+ tg(α)]−Q(α)

a(α−1)
=

Q[α+ tg(α)]− b(α)

a(α−1)
+
Q(α)− b(α)

a(α−1)

→ φ(t) + φ(0) = φ(t).

Proof of Proposition 3 − It suffices to remark that

Q[α+ tg(α)]−Q(α)

a(α−1)
=
Q′(α)g(α)

a(α−1)

∫ t

0

Q′[α+ sg(α)]

Q′(α)
ds.

The local uniform convergence (11) concludes the proof.
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Proof of Proposition 4 − From Proposition 2, the TFO condition entails
that ncnS(ant+ bn)− cn → φ−1(t) as n→∞ with cn = 1/[ng(1/n)], an = a(n)
and bn = Q(1/n). First assume that α/g(α) → c as α → 0 with c > 0. We
have that cn → c > 0 as n → ∞ and thus nS(ant + bn) → 1 + φ−1(t)/c. In
particular, we have that S(ant + bn) → 0 and thus that, letting F := 1 − S,
−nS(ant+ bn) ∼ lnFn(ant+ bn) as n→∞. Hence,

lim
n→∞

Fn(ant+ bn) = G(t) = exp

[
−
(

1 +
φ−1(t)

c

)]
,

showing that condition (12) is satisfied. Now, let us consider the case c = 0.
From Proposition 2, we have ncnS(ant + bn) → φ−1(t). Let mn := ncn =
1/g(1/n) =: g̃(n). Since g(α) → 0 as α → 0, mn → ∞ as n → ∞. Since g is
a continuous and increasing function, we have that g̃−1(m) → ∞ as m → ∞.
Letting ãm := ag̃−1(m) and b̃m := bg̃−1(m) we obtain the convergence

lim
m→∞

mS(ãmt+ b̃m) = φ−1(t).

The end of the proof is similar to the one in the case c > 0.

Proof of Proposition 5 − Let us show that (16) implies (15), the converse
being similar. Let g(α) = α2b(α−1). Since g(α)/α → 0 as α → 0, one has for
all t ∈ R

∆(α, t) :=
α

g(α)

[(
1 + t

g(α)

α

)−1
− 1

]
→ −t,

as α→ 0. Hence,

Q[α+ tg(α)]

Q(α)
=
U [α−1 + b(α−1)∆(α, t)]

U(α−1)
.

From Dini’s theorem, the convergence (16) is locally uniform leading to (15).

6.2 Proof of Theorem 1
As explained in Section 4.2, the asymptotic normality of the conditional survival
estimator is established in two steps: a) prove the asymptotic normality of the
variance term and b) show that the bias term is negligible.
The first step is a direct consequence of the following lemma.

Lemma 1 Let {Vn,1, Vn,2, . . . , Vn,n} be a triangular array of independent copies
of a centered random variable Vn. Assume that E(V 2

n ) = 1 and E(|Vn|3) < ∞.
Let Tn := {Tn,i, 1 ≤ i ≤ n} be a triangular array of positive random variables
independent of the Vn,i and such that T 2

n,1 + . . .+ T 2
n,n = 1.

For Tn := max{Tn,i, 1 ≤ i ≤ n}, if E(|Vn|3)Tn
a.s.−→ 0 then

n∑
i=1

Tn,iVn,i
d−→ N (0, 1).

Proof − Let {tn,i, i = 1, . . . , n} be a triangular array of real numbers satisfying

min (tn,i; i = 1, . . . , n) ≥ 0 and
n∑
i=1

t2n,i = 1. (32)
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Let tn := max (tn,i; i = 1, . . . , n) and νn := E(|Vn|3). In a first step, let us show
that if νntn → 0 as n→∞ then, for all z ∈ R,

lim
n→∞

P

(
n∑
i=1

tn,iVn,i ≤ z

)
= Φ(z), (33)

where Φ is the cumulative distribution function of a N (0, 1) distribution. Since
the Vn,i are independent and centered random variables, it suffices to prove that
the Lindeberg condition is satisfied, i.e., that

lim
n→∞

n∑
i=1

t2n,iE
(
V 2
n,iI{tn,i|Vn,i|>ε}

)
= 0,

for all ε > 0. Since tn,i ≤ tn for all i ∈ {1, . . . , n},
n∑
i=1

t2n,iE
(
V 2
n,iI{tn,i|Vn,i|>ε}

)
≤

n∑
i=1

t2n,iE
(
V 2
n,iI{tn|Vn,i|>ε}

)
= E

(
V 2
n I{tn|Vn|>ε}

)
,

since the Vn,i are identically distributed and under (32). Hölder’s inequality
entails that E

(
V 2
n I{tn|Vn|>ε}

)
≤ ν2/3n [P (tn|Vn| > ε)]

1/3. Chebyshev’s inequality
ensures that P (tn|Vn| > ε) ≤ t2n/ε2 and thus E

(
V 2
n I{tn|Vn|>ε}

)
≤ [νntn/ε]

2/3 →
0, as n→∞, by assumption. Convergence (33) is thus proved for all triangular
array {tn,i, i = 1, . . . , n} satisfying (32) with νntn → 0.
Now, remark that for all ω ∈ {νnTn → 0}, convergence (33) entails that∣∣∣∣∣P

(
n∑
i=1

Tn,iVn,i ≤ z
∣∣∣{Tn,i = Tn,i(ω); i = 1, . . . , n}

)
− Φ(z)

∣∣∣∣∣
=

∣∣∣∣∣P
(

n∑
i=1

Tn,i(ω)Vn,i ≤ z

)
− Φ(z)

∣∣∣∣∣→ 0,

as n→∞. Note that the last equality is true since the Tn,i are independent of
the Vn,i. Hence, since P[νnTn → 0] = 1,

lim
n→∞

∣∣∣∣∣P
(

n∑
i=1

Tn,iVn,i ≤ z
∣∣∣{Tn,i; i = 1, . . . , n}

)
− Φ(z)

∣∣∣∣∣ = 0 a.s. (34)

To conclude the proof, let us remark that∣∣∣∣∣P
(

n∑
i=1

Tn,iVn,i ≤ z

)
− Φ(z)

∣∣∣∣∣
≤ E

[∣∣∣∣∣P
(

n∑
i=1

Tn,iVn,i ≤ z
∣∣∣{Tn,i; i = 1, . . . , n}

)
− Φ(z)

∣∣∣∣∣
]

=: Pn.

Since ∣∣∣∣∣P
(

n∑
i=1

Tn,iVn,i ≤ z
∣∣∣{Tn,i; i = 1, . . . , n}

)
− Φ(z)

∣∣∣∣∣ ≤ 1,

the dominated convergence theorem entails that

lim
n→∞

Pn = E

[
lim
n→∞

∣∣∣∣∣P
(

n∑
i=1

Tn,iVn,i ≤ z
∣∣∣{Tn,i; i = 1, . . . , n}

)
− Φ(z)

∣∣∣∣∣
]

= 0,

from (34).
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We can now establish the asymptotic normality of the variance term. Let
σ2
n(x0) := S(yn(x0)|x0)[1 − S(yn(x0)|x0)] and recall that mn(x0) is a sequence

such that nx0/mn(x0)
a.s.−→ 1 and that v2n(x0) = mn(x0)/S(yn(x0)|x0).

Proposition 7 For x0 ∈ Rp, let yn(x0) be a sequence converging to the right
endpoint y∗(x0) of the conditional distribution of Y given {X = x0}. If condi-
tion (21) holds then vn(x0)

(
Ŝx0
n (yn(x0))− S (yn(x0)|x0)

)
d−→ N (0, 1).

Proof − Remark that(
nx0

σ2
n(x0)

)1/2 (
Ŝx0
n (yn(x0))− S (yn(x0)|x0)

)
=

n∑
i=1

Tn,i(x0)Vn,i(x0),

with Tn,i(x0) := (nx0
)1/2Wn,i(x0) and

Vn,i(x0) := [σn(x0)]−1
(
I{Y x0i >yn(x0)} − S(yn(x0)|x0)

)
.

It thus suffices to apply Lemma 1 after remarking that nx0
/σ2

n(x0)
a.s.∼ v2n(x0)

and that

E(|Vn,1(x0)|3) =
1

σ3
n(x0)

{
[S(yn(x0)|x0)]

3
[1− S(yn(x0)|x0)]

+ [1− S(yn(x0)|x0)]
3
S(yn(x0)|x0)

}
= σ−1n (x0)

{
[S(yn(x0)|x0)]

2
+ [1− S(yn(x0)|x0)]

2
}

∼ σ−1n (x0),

as n→∞, since S(yn(x0)|x0)→ 0.

The second step of the proof is treated in the following result.

Proposition 8 Let x0 ∈ Rp and yn(x0) be a sequence converging to the right
endpoint y∗(x0) of the conditional distribution of Y given {X = x0}. If condi-
tion (22) holds then vn(x0)

(
Ŝn (yn(x0)|x0)− Ŝx0

n (yn(x0))
)

P−→ 0.

Proof − Let U1, . . . , Un be independent uniform random variables independent
of the Xi. Since Y x0

i = Q(Ui|x0) and Yi
d
= Q(Ui|Xi) for all i ∈ {1, . . . , n},

Bn(x0)
d
= vn(x0)

n∑
i=1

Wn,i(x0)
[
I(−∞,S(yn(x0)|Xi)) − I(−∞,S(yn(x0)|x0))

]
(Ui).

From Owen (1987, Lemma 3.4.5), one has for all ε > 0,

P(|Bn(x0)| > ε) ≤ ε+ P
{
E
[
|Bn(x0)|

∣∣∣X] > ε2
}

≤ ε+ P

{
vn(x0)

n∑
i=1

Wn,i(x0)E
[
∆n,i(x0)

∣∣∣X] > ε2

}
,

where X := (X1, . . . , Xn) and

∆n,i(x0) :=
∣∣I(−∞,S(yn(x0)|Xi)) − I(−∞,S(yn(x0)|x0))

∣∣ (Ui).
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Introducing the quantity Dn,i(x0) := |S(yn(x0)|Xi) − S(yn(x0)|x0)|, it is easy
to check that

E
[
∆n,i(x0)

∣∣∣X] ≤ E
[∣∣I[S(yn(x0)|x0)−Dn,i(x0),S(yn(x0)|x0)+Dn,i(x0)](Ui)

∣∣ ∣∣∣X]
≤ 2Dn,i(x0).

Remarking that
n∑
i=1

Wn,i(x0)Dn,i(x0) = W1

(
W∗n,x0

, δ∗x0

)
leads to P(|Bn(x0)| > ε) ≤ ε+ P

[
vn(x0)W1

(
W∗n,x0

, δ∗x0

)
> ε2/2

]
. The result is

thus proved by using assumption (23) (or equivalently (22)).

Theorem 1 is thus proved by gathering Propositions 7 and 8.

6.3 Proof of Theorem 2
The proof follows the lines described in Section 2. Let us introduce the sequences
t−1n (x0) := −vn(x0)g(αn) and σ−1n (x0) = a(α−1n )tn(x0). It is easy to check that
for all z ∈ R,

P
{
σn(x0)[Q̂n(αn|x0)−Q(αn|x0)] ≤ z

}
= P {Zn(x0) ≤ zn(x0)} ,

where yn(x0) := Q(αn|x0) + σ−1n (x0)z, zn(x0) = vn(x0)[αn−S(yn(x0)
∣∣x0)] and

Zn(x0) := vn(x0)[Ŝn(yn(x0)|x0) − S(yn(x0)|x0)]. From Proposition 1, condi-
tion (H) entails that for all t0 ∈ I,

lim
(t,y)→(t0,y∗(x0))

Ψ(y)

t

(
S[y + td(y)|x0]

S(y|x0)
− 1

)
= lim
t→t0

φ−1(t)

t
. (35)

Since yn(x0) = Q(αn|x0) + a(α−1n )tn(x0)z = Q(αn|x0) + d(Q(αn|x0))tn(x0)z
with tn(x0)→ 0 as n→∞, (35) entails that as n→∞

zn(x0) ∼ −zvn(x0)tn(x0)g(αn) = z. (36)

Now, to prove that Zn(x0)
d−→ N (0, 1), it suffices to show that conditions (21)

and (22) hold for yn(x0). From (36),

1− S[yn(x0)|x0]

αn
∼ zα−1n v−1n (x0) = z(αnmn(x0))−1/2 → 0, (37)

as n→∞ and thus S[yn(x0)|x0] ∼ αn. This entails that condition

vn(x0) max
1≤i≤n

Wn,i(x0)
a.s.−→ 0

is equivalent to condition (21) with yn(x0). It remains to prove condition (22).
From (37), there exists ξ > 0 such that for n large enough, S(yn(x0)|x0) ∈
[(1− ξ)αn, (1 + ξ)αn]. Hence, for n large enough,
n∑
i=1

Wn,i(x0)

∣∣∣∣S(yn(x0)|Xi)

S(yn(x0)|x0)
− 1

∣∣∣∣ ≤ sup
|β/αn−1|≤ξ

n∑
i=1

Wn,i(x0)

∣∣∣∣S[Q(β|x0)|Xi]

β
− 1

∣∣∣∣ ,
and the proof is complete.
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6.4 Proof of Corollaries 1, 2 and 3
We first recall a useful result dealing with the almost sure convergence of the
statistic

f̂n(x) :=
1

nhpn

n∑
i=1

K

(
Xi − x0
hn

)
,

which is the kernel estimator of the density f of the random value X. The
following result can be found for instance in Dony and Einmahl (2009, Corol-
lary 2.1).

Lemma 2 Let x ∈ Rp such that f is continuous at x and f(x) > 0. If the
kernel K is a bounded density with support included in the unit ball Up of Rp
and if K := {K(γ(t− ·)), γ > 0, t ∈ Rp}, is a pointwise measurable Vapnik-
Chervonenkis (VC) type class of functions from Rp to R then for a sequence
hn → 0 such that nhpn/ log log n→∞, we have that f̂n(x)

a.s.−→ f(x).

Conditions on the family K of functions are not easy to check in practice.
Nevertheless, the measurability condition on K is satisfied whenever K is right-
continuous (see Einmahl and Mason, 2005) or K is an indicator function on a
cell of Rp (see van der Vaart and Wellner, 1996, Example 2.3.4). Concerning
the VC condition, it is satisfied for kernel function K such that K(x) = L(‖x‖)
where L is of bounded variation (see Giné and Nickl, 2015, Exercice 3.6.13).
For the sake of simplicity, we have preferred to replace in Lemma 2 all the
conditions involving the kernel function by the stronger (but simpler to check)
condition (K).

Corollaries 1, 2 and 3 are direct consequences of Theorem 2 and of the three
following lemmas establishing the asymptotic distribution of the corresponding
conditional survival function estimators.

Lemma 3 Let x0 ∈ Rp such that f is continuous at x0 and f(x0) > 0 and let
K be a kernel satisfying (K). For sequences hn → 0 and yn(x0) ↑ y∗(x0) such
that nhpn[S(yn(x0)|x0) ∧ (log log n)−1]→∞ and

sup
‖x−x0‖≤hn

∣∣∣∣ S(yn(x0)|x)

S(yn(x0)|x0)
− 1

∣∣∣∣2 = o

(
1

nhpnS(yn(x0)|x0)

)
,

one has

(nhpnS(yn(x0)|x0))
1/2

(
ŜNW
n (yn(x0)|x0)

S(yn(x0)|x0)
− 1

)
d−→ N

(
0,
‖K‖22
f(x0)

)
.

Proof of Lemma 3 − Let K̃ := K2/‖K‖22 where ‖K‖22 :=
∫
Up K

2(y)dy. It is

easy to check that K̃ also satisfy condition (K). Hence, Lemma 2 entails that
almost surely,

lim
n→∞

‖K‖22
nhpn

nx0
= lim
n→∞

f̂2n(x0)

/[
1

nhpn

n∑
i=1

K̃

(
x0 −Xi

hn

)]
= f(x0).
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Hence, almost surely, nx0
∼ f(x0)nhpn/‖K‖22 =: mn(x0). It is easy to infer that,

as soon as nhpnS(yn(x0)|x0)→∞, we have

mn(x0)

S(yn(x0)|x0)

(
max
1≤i≤n

WNW
n,i (x0, hn)

)2

≤ f(x0)

‖K‖22
1

nhpnS(yn(x0)|x0)

‖K‖2∞
f̂2n(x0)

a.s.−→ 0.

Similarly, using Assumption (K), we have
n∑
i=1

WNW
n,i (x0, hn)

∣∣∣∣S(yn(x0)|Xi)

S(yn(x0)|x0)
− 1

∣∣∣∣ ≤ sup
‖x−x0‖≤hn

∣∣∣∣ S(yn(x0)|x)

S(yn(x0)|x0)
− 1

∣∣∣∣
from which Lemma 3 follows according to Theorem 1.

Lemma 4 Let x0 ∈ Rp. For sequences kn and yn(x0) such that, as n → ∞,
yn(x0) ↑ y∗(x0), knS(yn(x0)|x0)→∞ and

sup
‖x−x0‖≤D(kn)(x0)

∣∣∣∣ S(yn(x0)|x)

S(yn(x0)|x0)
− 1

∣∣∣∣2 = o

(
1

knS(yn(x0)|x0)

)
,

with D(kn)(x0) = ‖Xr(kn) − x0‖, one has

(knS(yn(x0)|x0))
1/2

(
ŜKNN
n (yn(x0)|x0)

S(yn(x0)|x0)
− 1

)
d−→ N

(
0,

(`+ 1)2

2`+ 1

)
.

Proof of Lemma 4 − First, remark that since kn →∞ as n→∞,

(`+ 1)2

2`+ 1

nx0

kn
=

(`+ 1)2

kn(2`+ 1)

(
kn∑
i=1

i`

)2/ kn∑
i=1

i2` → 1,

as n→∞. Thus, nx0
∼ mn(x0) with mn(x0) = (2`+ 1)/(`+ 1)2kn. As soon as

knS(yn(x0)|x0)→∞, we have

mn(x0)

S(yn(x0)|x0)

(
max
1≤i≤n

WNN
n,i (x0, kn)

)2

=
2`+ 1

knS(yn(x0)|x0)
→ 0.

Using the bound
n∑
i=1

WNN
n,i (x0, kn)

∣∣∣∣S(yn(x0)|Xi)

S(yn(x0)|x0)
− 1

∣∣∣∣ ≤ sup
‖x−x0‖≤D(kn)(x0)

∣∣∣∣ S(yn(x0)|x)

S(yn(x0)|x0)
− 1

∣∣∣∣ ,
we prove Lemma 4 by applying Theorem 1.

Lemma 5 Let x0 ∈ Rp such that f is continuous at x0 and f(x0) > 0.
Let hn, kn and yn(x0) ↑ y∗(x0) be sequences such that nhpn/ log log n → ∞,
`nS(yn(x0)|x0)→∞ with `n := (nhpn ∧ kn) and

sup
‖x−x0‖≤(hn∨D(kn)(x0))

∣∣∣∣ S(yn(x0)|x)

S(yn(x0)|x0)
− 1

∣∣∣∣2 = o

(
1

`nS(yn(x0)|x0)

)
.

If there exists κ ∈ [0,∞] such that kn/(nhpn)→ κ then

(`nS(yn(x0)|x0))
1/2

(
ŜLC
n (yn(x0)|x0)

S(yn(x0)|x0)
− 1

)
d−→ N

(
0,

C2(κ)

2pf(x0)

)
,

where C2(κ) := (1 ∧ κ−1)
[
κτ2 + 2pf(x0)(1− τ)2 + 2τ(1− τ) (κ ∧ 2pf(x0))

]
.
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Proof of Lemma 5 − We start by remarking that
n∑
i=1

I[0,1]
(∥∥∥∥Xi − x0

hn

∥∥∥∥
∞

)
I[0,1]

(
r(i)

kn

)
= kn ∧Mn.

Then, straightforward calculation shows that

n−1x0
=

τ2

Mn
+

2τ(1− τ)

kn ∨Mn
+

(1− τ)2

kn
.

Next, since by assumption nhpn/ log log n → ∞ and since the uniform kernel
satisfies condition (K), Lemma 2 ensures that (2hn)−pn−1Mn

a.s.−→ f(x0) as
n→∞. Hence, as a first conclusion, nx0

∼ `n2pf(x0)C−2(κ) =: mn(x0) almost
surely. Furthermore,

max
1≤i≤n

WLC
n,i (x0, τ, hn, kn) ≤ τ

Mn
+

1− τ
kn

.

Hence, using again the almost sure convergence (2hn)−pn−1Mn → f(x0),

lim
n→∞

`n max
1≤i≤n

WLC
n,i (x0, τ, hn, kn) =

τ(κ ∧ 1)

2pf(x0)
+ (1− τ)(κ−1 ∧ 1),

almost surely for all κ ∈ [0,∞]. As a consequence, since `nS(yn(x0)|x0) → ∞,
condition (21) is satisfied. Finally, using the bounds obtained in the proofs of
Lemmas 3 and 4, one has

n∑
i=1

WLC
n,i (x0, τ, hn, kn)

∣∣∣∣S(yn(x0)|Xi)

S(yn(x0)|x0)
− 1

∣∣∣∣
≤ sup

‖x−x0‖≤hn∨D(kn)(x0)

∣∣∣∣ S(yn(x0)|x)

S(yn(x0)|x0)
− 1

∣∣∣∣ ,
and thus condition (22) holds. Theorem 1 concludes the proof.

6.5 Proof of Proposition 6
Proposition 6 is a consequence of the following lemma.

Lemma 6 Let (X,Y, Z)> be a random vector for which (X,Y ) and Z are inde-
pendent. Let g be a measurable function such that g(X,Y, Z) is integrable. One
has E[g(X,Y, Z)] = E[Ψ(X,Z)], where Ψ(x, z) := E[g(x, Y, z)|X = x].

Proof − Since (X,Y ) and Z are independent

E[g(X,Y, Z)] =

∫
g(x, y, z)P(X,Y )(dx, dy)PZ(dz).

Hence

E[g(X,Y, Z)] =

∫ ∫ (∫
g(x, y, z)PY (dy|X = x)

)
PX(dx)PZ(dz)

=

∫ ∫
Ψ(x, z)PX(dx)PZ(dz).

The conclusion follows since X and Z are independent.
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Proof of Proposition 6 − First remark that the assumption on the weights
entails that the Wn,i(x0) are identically distributed. Furthermore, since the
Wn,i(x0) sum to 1, it is clear that E[Wn,1(x0)] = . . . = E[Wn,n(x0)] = 1/n. It
thus remains to show that

E

[
1

n

n∑
i=1

Wn,i(x0)I{Yi>Q̂n,−i(αn|Xi,λ)}

]
= E

[
Wn,1(x0)I{Y1>Q̂n,−1(αn|X1,λ)}

]
= E

[
Wn,1(x0)S[Q̂n,−1(αn|X1, λ)|X1]

]
.

We apply Lemma 6 with X = X1, Y = Y1, Z = X−1 and g(t, y, u) =
ϕ(t, u)I{y>φ(αn,t,u)} where the function φ is such that

Q̂n,−1(αn|X1, λ) = φ(αn, X1,X−1).

The conclusion is straightforward since, with the notation of Lemma 6, Ψ(t, u) =
ϕ(t, u)S(φ(αn, t, u)|t).
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Table 1: ERROR based on 500 samples of size n = 1000 according to the model
M1, for three different values of ρ.

ρ = −2 ρ = −1
NW NN LC NW NN LC

x0 = x
(1)
0 0.04082 0.03314 0.03941 0.04218 0.03359 0.03975

γ(x
(1)
0 ) = 1/3

x0 = x
(2)
0 0.07931 0.07730 0.09417 0.08199 0.08832 0.09737

γ(x
(2)
0 ) = 1/2

x0 = x
(3)
0 0.04125 0.04121 0.04138 0.04156 0.04262 0.04320

γ(x
(3)
0 ) = 1/4

ρ = −0.5
NW NN LC

x0 = x
(1)
0 0.05060 0.03639 0.04500

γ(x
(1)
0 ) = 1/3

x0 = x
(2)
0 0.10928 0.11655 0.12386

γ(x
(2)
0 ) = 1/2

x0 = x
(3)
0 0.03954 0.04021 0.04841

γ(x
(3)
0 ) = 1/4
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Table 2: ERROR based on 500 samples of size n = 1000 according to the model
M2, for three different values of θ1.

θ1 = 1 θ1 = 2
NW NN LC NW NN LC

x0 = x
(1)
0 0.00476 0.00501 0.00541 0.00190 0.00198 0.00217

θ2(x
(1)
0 ) = 3

x0 = x
(2)
0 0.00177 0.00177 0.00197 0.00063 0.00061 0.00068

θ2(x
(2)
0 ) = 2

x0 = x
(3)
0 0.00956 0.01077 0.01076 0.00436 0.00489 0.00509

θ2(x
(3)
0 ) = 4

θ1 = 3
NW NN LC

x0 = x
(1)
0 0.00103 0.00113 0.00116

θ2(x
(1)
0 ) = 3

x0 = x
(2)
0 0.00032 0.00031 0.00034

θ2(x
(2)
0 ) = 2

x0 = x
(3)
0 0.00271 0.00291 0.00303

θ2(x
(3)
0 ) = 4

Table 3: ERROR based on 500 samples of size n = 1000 according to the model
M3, for three different values of σ.

σ = 1/2 σ = 1
NW NN LC NW NN LC

x0 = x
(1)
0 0.00478 0.00553 0.00556 0.00595 0.00642 0.00636

µ(x
(1)
0 ) = 1/3

x0 = x
(2)
0 0.00413 0.00428 0.00423 0.00515 0.00548 0.00516

µ(x
(2)
0 ) = 1/2

x0 = x
(3)
0 0.00672 0.00751 0.00607 0.00591 0.00728 0.00542

µ(x
(3)
0 ) = 1/4

σ = 3/2
NW NN LC

x0 = x
(1)
0 0.00619 0.00725 0.00682

µ(x
(1)
0 ) = 1/3

x0 = x
(2)
0 0.00572 0.00632 0.00579

µ(x
(2)
0 ) = 1/2

x0 = x
(3)
0 0.00618 0.00749 0.00540

µ(x
(3)
0 ) = 1/4
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Table 4: ERROR based on 500 samples of size n = 1000 according to the model
M4, for three different values of ξ.

ξ = 1/2 ξ = 1
NW NN LC NW NN LC

x0 = x
(1)
0 299.83 364.56 291.7 1.0791 1.6770 1.02256

θ(x
(1)
0 ) ≈ 0.871

x0 = x
(2)
0 48.736 744.02 640.94 0.9140 1.5938 1.47679

θ(x
(2)
0 ) = 0.95

x0 = x
(3)
0 153589 86805 2× 106 4.2959 5.4753 15.309

θ(x
(3)
0 ) = 0.83125

ξ = 3/2
NW NN LC

x0 = x
(1)
0 0.2345 0.2498 0.20049

θ(x
(1)
0 ) ≈ 0.871

x0 = x
(2)
0 0.2184 0.2777 0.24919

θ(x
(2)
0 ) = 0.95

x0 = x
(3)
0 0.3049 0.4025 0.82955

θ(x
(3)
0 ) = 0.83125
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