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An Adaptive Method for Cross-Recording Speaker
Diarization

Gaël Le Lan, Delphine Charlet, Anthony Larcher, and Sylvain Meignier,

Abstract—Nowadays, state-of-the-art speaker diarization and
linking systems heavily rely on between-recording variability
compensation methods to accurately process large collections of
recordings. Variability estimation is performed on consequent
training datasets, which must be labeled by speaker. One major
problem of such systems is the acoustic mismatch between
training and target data that degrades performances. Most of the
collections contain lots of speakers speaking in various acoustic
conditions. In this paper, we investigate how unlabeled speakers
can help improve between-recording variability estimation, to
overcome the mismatch issue. We propose a scalable unsupervised
adaptation framework for two types of variability compensation.
The proposed framework consists in adapting a state-of-the-art
diarization and linking system, trained on out-domain data, using
the data of the collection itself. Experiments in mismatch condition
are run on two French Television shows, while the initial training
dataset is composed of Radio recordings. Results indicate that the
proposed adaptation framework reduces the cross-recording DER
of 13% in average for variable collection sizes.

Index Terms—speaker diarization, speaker linking, domain
adaptation.

I. INTRODUCTION

The increasing volume of audio and video data produced
every day by social or traditional media, conferences, meetings
or MOOCs requires powerful tools to automatically index
topics, languages or speakers. The task of speaker diarization
aims at answering the question "who speaks when ?" within a
recording, and can be extended to the task of cross-recording
diarization when it comes to consider a collection of recordings.
Cross-recording diarization is the task of detecting and labeling
speaker segments in a way that each unique speaker will be
identified by a single label across the entire collection.

In the literature, cross-recording speaker diarization is often
considered a complimentary step to the within-recording di-
arization task. Even if the terminology varies (Speaker Linking
in [1][2][3][4], Cross-Show Speaker Diarization for [5][6]),
it tends to normalize to Speaker Diarization and Linking in
[7][8]. Each recording is usually processed separately (within-
recording diarization) before estimated speaker segments are
linked across the collection (cross-recording speaker linking).
In this paper, we use the terms diarization for within-recording
diarization, and linking for cross-recording linking. We will
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also use the term collection, which is a more generic than
show. A show is made of multiple episodes having similar
characteristics, while a collection can be made of multiple
episodes of a show or of episodes of different shows.

Speaker Diarization and Linking is about differentiating
speakers. State-of-the-art approaches combine the i-vector
paradigm [9] to represent speaker segments, and within- and
between-speaker variability compensation to discriminate them
in terms of speaker. I-vectors can be compared using similarity
scores of likelihood ratios. Within- and between-speaker vari-
abilities are estimated over a speaker labeled dataset, which
must include multiple examples of a same speaker in various
acoustic conditions. Such accurate labels are expensive to
create as they require human operators. Due to the important
acoustic mismatch, state-of-the-art models dedicated to a type
of data (e.g. radio) do not guaranty comparable performances
on other domains (television, meetings...). In speaker verifica-
tion, domain adaptation has been studied for the past years to
overcome this acoustic mismatch issue [10][11][12]. Domain
adaptation consists in adapting statistical models dedicated to
a type of data (or domain) to prevent performance degradation
when applying the models on a new domain.

In our prior work [13], we investigated domain adaptation
in the context of speaker diarization and linking. We proposed
an adaptive diarization framework which iteratively extracts
information from the collections it processes to update speaker
variabilities using the Weighted Likelihood domain adaptation
method [10] in mismatch conditions. Speaker variabilities are
modeled through Probabilistic Discriminant Linear Analysis
(PLDA) [14]. In this paper, we extend our previous work with
a study on the scalability of the method, i.e., the adaptation
framework is designed to process collections of variable sizes.
We evaluate the proposed approach for two types of speaker
variability compensations: Within Class Covariance Normal-
ization (WCCN [?]) and PLDA.

The paper is organized as follows. Section II describes
the general architecture of a diarization and linking system.
Section III focuses on the i-vector paradigm and modeling of
speaker variabilities. Section IV addresses domain adaptation
techniques based on the i-vector paradigm. In Section V, the
proposed diarization and linking framework is described. The
data used for the experiments are presented in Section VI while
experimental results are presented and analyzed in Section VII.
Conclusions and perspectives are discussed in Section VIII.
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II. SPEAKER DIARIZATION AND LINKING

Diarization has to answer the question "who speaks when?".
It aims at partitioning audio recordings into homogeneous
segments according to the speaker identity, at different scales.
When applied on a collection of recordings, the task is usu-
ally performed sequentially: 1) at a local scale, diarization
is performed within each recording to produce homogeneous
segments in terms of speaker, 2) at a wider scale, the resulting
segments are linked per speaker across all recordings. Speakers
appearing in more than one recording of a collection are called
recurring (R.) speakers, as opposed to one-time (O.T.) speakers,
who only speak in one recording.

A. Diarization

Diarization consists in processing a single audio recording
to produce a list of segments identified by labels. Each label
corresponds to a supposed speaker. As the number of speakers
and channel variability is usually limited within a single
recording, low complexity models can be used. Diarization is
usually done in 3 steps.

1) Frontend: The frontend consists in extracting acoustic
features from the audio before applying a Speech Activity
Detector to remove noise and silence. The most used acoustic
features are the Mel Frequency Cepstral Coefficients (MFCC).

2) Segmentation: Segmentation is about detecting speaker
changes by comparing consecutive segments of speech to
assess whether they are pronounced by the same speaker or
not. Producing pure segments is essential for the accuracy
of the following linking. This can be achieved with bottom
up approach, which consists in successively applying several
techniques with an increasing modeling complexity, to merge
initial fixed duration segments into longer ones. The lowest
level approach compares two consecutive overlapping windows
of a fixed short duration, using metrics like Generalized Likeli-
hood Ratio (GLR) [15], Kullback-Leibler divergence [16][17]
or Gaussian Divergence [18]. It produces a first set of short
segments.

The highest level segmentation removes the false segment
boundaries detected by the lowest level one. Low-level seg-
ments of sufficient duration enable the application of a more re-
fined method to relieve false segment boundaries. The Bayesian
Information Criterion (BIC) [19] is used to fuse segments
belonging to a same speaker. Contrary to the low-level methods,
BIC can be used to compare consecutive segments of variable
duration, but requires a decision threshold which is usually
empirically chosen to favor purity of the produced segments.
In order to allow higher level speaker representations, such as
GMM-based or i-vector modeling, segments must contain only
one speaker. In some cases the multi-level approach is not used.
For example, in [20], since the data contain only two speakers,
the authors decide to directly cluster a set of fixed duration
small segments in two classes, using the i-vector representation
and a Principal Component Analysis to separate the set into
homogeneous segments.

3) Clustering and refinement: This last step at the scale of
the recording consists in clustering all segments by speaker.
Due to the longer duration of the segments, higher complexity
representations can be used to compare any pair of segments
within the recording. Three main models are described in the
literature : Gaussian, using BIC as similarity measure [21],
Gaussian Mixture Model (GMM), using Cross Likelihood Ra-
tio (CLR) [22][3], and i-vector, using cosine distance or PLDA
likelihood ratio for scoring [21]. For all segments, similarities
between associated models are estimated to perform clustering.
The most used clustering method is the bottom-up hierarchical
agglomerative clustering (HAC) [23][15][24][16][25][26], but
other methods were proposed, like k-means [27], graph-based
[28], or ILP clustering [29].

Segment boundaries are sometimes refined via the Viterbi
algorithm [21][30]: small GMMs are iteratively trained for each
speaker cluster and a Viterbi decoding adjusts the boundaries,
until some convergence criterion is met.

B. Linking

Once diarization has been applied to each recording, the
segments are to be linked across the collection. The aim is to
connect all segments from a same speaker across recordings.
The process is similar with the clustering step of diarization
II-A3, but differs on two points. First, the magnitude of the
number of segments to connect is higher. Second, the variability
between them is higher. Some recurring speakers may appear
in various acoustic conditions across the collection. Thus,
estimating the within-speaker/between-recordings variability is
much more important than when working on a single recording.
Depending on the chronology of the collection aging of the
speakers can strongly increase the within-speaker variability
[31][32].

Since the linking step is similar to the within-recording
clustering, the models and scoring methods are very similar:
Gaussian/BIC [6], GMM/CLR [5][18] and i-vector/cosine or i-
vector/PLDA [28][33]. However, due to the important within-
speaker/between-recording variability, i-vector-based methods
involving compensation techniques like WCCN or PLDA are
preferred in recent literature.

III. THE i-vector PARADIGM

Introduced in [9], i-vectors provide compact representation
of acoustic segments that were previously modeled using
GMMs [34]. According to this paradigm, a GMM mean super-
vector mi,j , modeling session j of speaker i, is an observation
produced by a generative model described by:

mij = µ+ Tφij (1)

In this equation, φ is a random variable for which the
Maximum a Posteriori point estimate is the i-vector φij . µ
is the speaker- and channel-independent supervector, while T
is the Total Variability matrix.
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A. Cosine Scoring and WCCN compensation

Cosine similarity is a simple and well established method to
compare i-vectors [9].

s(φ1,φ2) =
φ1φ2

‖φ1‖‖φ2‖
∈ [−1; 1] (2)

It can be combined with Within Class Covariance Normal-
ization (WCCN) where the within class covariance (WCC)
matrix is the average within-speaker covariance, weighted by
the number of sessions ni of each speaker i [9]. hi is the
average i-vector of speaker i.

W =
1

S

S∑
i=1

1

ni

ni∑
j=1

(φij − hi)(φij − hi)
T (3)

Once estimated the WCC matrix, the variability can be
compensated by rotating the i-vectors according to:

φ̂ij = Lφij (4)

L is the Cholesky decomposition of W−1, W−1 = LLT .

B. PLDA modeling

Introduced for face recognition applications [35], PLDA has
been adapted to speaker identification [14]. The i-vectors are
considered as observations of a probabilistic generative model.
Each i-vector φij , of dimension p, can be decomposed as:

φij = µ+ Φhi + ε (5)

In this equation, the hidden variable hi, called speaker factor,
is speaker-dependent and channel-independent, while ε is the
residual. hi follows a standard normal distribution, while ε is
distributed along N (0,Λ). Φ is of size p × r(r < p). The i-
vectors distribution is N (0,ΦΦT + Λ). ΦΦT represents the
between-speaker variability matrix and Λ the within-speaker
variability matrix. Estimation of µ Φ and Λ is performed with
a speaker labeled training dataset, using the EM algorithm.

In the remaining of this paper, we consider that i-vectors are
centered (i.e., µ = 0) and length-normalized [36]. Training the
PLDA model Θ = (Φ,Λ) consists in estimating the values
maximizing the likelihood:

Lk(ΦΦT ,Λ) =
1

N

S∑
i=1

ni∑
j=1

log(p(φij |ΦΦT ,Λ)) (6)

with

p((φij)|ΦΦT ,Λ) = N ((φij); 0, Φ̃Φ̃T + Λ̃) (7)

Where Φ̃ is a column bloc matrix containing N times Φ and
Λ̃ is a bloc diagonal matrix containing N times Λ, N being
the total number of i-vectors.

The EM algorithm steps are:
• E-step: estimate the a posteriori probability of the hidden

speaker variables hi, using all the observations {φij}ni
j=1

of those speakers.

E[hi] = (NiΦ
TΛ−1Φ + I)−1ΦTΛ−1

ni∑
j=1

φij (8)

E[hih
T
i ] = (NiΦ

TΛ−1Φ + I)−1 + E[hi]E[hi]
T (9)

• M-step : using the previous estimates, update the model.

Φnew =

 S∑
i=1

ni∑
j=1

φijE[hi]
T

( S∑
i=1

NiE[hih
T
i ]

)−1

(10)

Λnew =
1

N

S∑
i=1

ni∑
j=1

[
φijφ

T
ij −ΦnewE[hi]φ

T
ij

]
(11)

IV. DOMAIN ADAPTATION

In real life, acoustic models used to process test data, called
in-domain, are learnt on a different train set, called out-domain.
It often happens that the mismatch between in-domain test data
and out-domain train data strongly affects the performance of
an automatic system processing a type of data it has not been
trained for (the in-domain test data). Domain adaptation aims
at compensating for the acoustic mismatch between in-domain
and out-domain. Usually, a third dataset, called development,
from the in-domain, is used to adapt the out-domain models.
In our work, we do not have such a dataset and decide to
directly use the test set for adaptation. Training of a speaker di-
arization system is especially demanding as the i-vector/PLDA
paradigm requires speaker annotated data to estimate within-
and between- speaker variability. When in-domain data are not
sufficient to estimate a PLDA model, it can be used to adapt
an out-domain model, e.g. estimated on out-domain data. In
[12], it was found that the most important component in a
classical i-vector/PLDA based system for domain adaptation
is PLDA. Thus, we will only present the adaptation methods
focusing on within class covariance [37] and PLDA adaptation
[10][12], but other approaches were proposed, working on the
Total Variability space [38][39][40][?].

A. Within-Speaker Covariance adaptation

In [37], the author focus on the adaptation of Within Speaker
Covariance. The speaker comparison framework is based on i-
vector modeling, combined with Linear Discriminant Analysis
(LDA) for dimensionality reduction and PLDA for scoring.
Since LDA relies on the computation of within- and between-
class covariances, the idea is to adapt the within-speaker
variability by adapting the between-domain variability.

Wnew = W + αWBD (12)

WBD represents the between-domain covariance, while W
stands for the within-class covariance. Boosting the between-
domain variability allows to reduce the Fisher ratio in LDA for
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the between-domain variability directions, which are supposed
to be speaker independent. Consequently, the LDA projection
will not include these directions.

B. PLDA adaptation

Two methods of PLDA adaptation are presented. The choice
of the method depends on the quantity of test data available
for adaptation.

1) Weighted Likelihood: The main idea of Weighted Like-
lihood Domain Adaptation is to express the maximum of
likelihood for PLDA estimation in two terms depending on each
domain, introducing a weighting parameter. It was introduced
in [10]. This method can be used even with a limited quantity
of in-domain data.

L(ΦΦT ,Λ) = αLin(ΦΦT ,Λ)+(1−α)Lout(ΦΦT ,Λ) (13)

Where

Lk(ΦΦT ,Λ) =
1

Nk

Sk∑
i=1

nik∑
j=1

log(p((φij)|ΦΦT ,Λ)) (14)

Nk is the number of k-domain i-vectors and Sk is the number
of speakers. This method allows to chose how influent a dataset
is in regard to the other, for the parameters estimation. Esti-
mation of the adapted PLDA parameters is similar to classical
PLDA, with the introduction of the weighting parameter.

In the literature [10], results show that the adapted PLDA
gives better results than the out-domain PLDA parameters,
and that the Equal Error Rate decreases when the number of
speakers of the in-domain collection increases.

2) A posteriori interpolation: When the in-domain collec-
tion contains enough data (number of sessions superior to the
i-vectors dimension), a faster approximation of the previous
method consists in interpolating the pre-estimated PLDA pa-
rameters. Two PLDA models are separately trained on each
dataset, before being interpolated.

ΦΦT
final = α1ΦΦT

in + (1− α1)ΦΦT
out (15)

Λfinal = α2Λin + (1− α2)Λout (16)

C. Unsupervised adaptation

Sometimes, the in-domain collection is unlabeled [12][41].
In-domain PLDA parameters need to be estimated in an unsu-
pervised way, using clustering to label the data. For example,
in [12], out-domain PLDA parameters are used to compute
similarities between the in-domain i-vectors. The resulting sim-
ilarity matrix is then used to cluster the i-vectors. The obtained
clusters allow to estimate in-domain PLDA parameters, which
can then be interpolated with the out-domain parameters, using
equations 15 and 16. The results show that the interpolation
works best when the in-domain number of speakers is low.
When this number increases, interpolated PLDA tends to give
similar results to the in-domain unsupervised PLDA.

D. Domain adaptation for speaker diarization

Until recently, domain adaptation was mainly studied for the
task of speaker identification/clustering, where the compared
recordings only contain one speaker voice (mostly phone
recordings). Common domain adaptation techniques aim to
estimate a better modeling of a collection variabilities (Total
Variability subspace, between- and within-speaker variability),
starting from an out-domain model, using in-domain data.
Speaker diarization is a more demanding task, where recordings
must be segmented before linking the resulting segments.

V. PROPOSED ADAPTATIVE FRAMEWORK FOR
DIARIZATION

The goal of our work is to focus on how the inaccurate
knowledge of the in-domain collections can help improve an
out-domain-based diarization system, using domain adaptation
techniques. As seen in the previous section IV, modeling the
within- and between- speaker variabilities is a key step in the
adaptation process. The in-domain collections consist of TV
shows and their size increases over time. Some speakers appear
in multiple recordings: we propose to use them to adapt the
system, in an unsupervised way. As we want to be able to
process and adapt over any kind of collection, the adaptation
method must be scalable.

The proposed framework, described in the following sec-
tions, consists in adapting a state-of-the-art diarization system
(baseline), trained on out-domain data (train data), using the
data of the collection itself (target data). The first section is
dedicated to the description of the baseline system, the next
presents the proposed adaptation strategy and the third one
focuses on the issue of the target collection size variability.

A. Baseline Diarization Framework

Figure 1 describes the diarization framework, detailed there-
after. It was developed using the SIDEKIT toolkit [42]. The
supervised baseline framework, described in this section, is
presented with the plain lines, while the proposed unsupervised
adaptation, described in the next one, is presented with the
dashed lines.

The i-vector representation used in the following is estimated
over a GMM/UBM of 256 Gaussians with diagonal covariance,
computed on the train corpus. Out-domain WCCN and PLDA
matrices are also estimated on this speaker labeled corpus. The
dimension of the i-vectors is 200 and PLDA eigenvoice matrix
has a dimension of 100 with no eigenchannel matrix. Those
parameters correspond to the best configuration we found after
performing an exhaustive search.

The within-recording diarization is applied to each record-
ing independently. The front-end consists in the extraction
of 39 features (13 MFCCs with ∆ and ∆∆), followed by
a 2-Gaussian Viterbi-based speech detector. Speaker change
detection is performed with a standard Gaussian divergence
segmentation, using a 20ms sliding window, supplemented by a
Gaussian/BIC segmentation, which merges the initial segments.
Finally, two complete-linkage HAC are successively used to
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Figure 1. Overview of the diarization framework for baseline (plain blue
lines) and adapted (dashed lines) training.

cluster the segments within each recording: Gaussian/BIC,
followed by i-vector/(WCCN/cosine) or i-vector/PLDA as
model/similarity. Before the i-vector extraction, MFCC features
are centered with unit variance, for each BIC segment. The
HAC threshold for the i-vector-based clustering is noted λI .
At the end of the within-diarization step, each within-recording
cluster is represented by the average of its i-vectors.

For the linking step, the previous averaged i-vectors are
reused, either combined with WCCN/cosine or PLDA for simi-
larity computation. Complete-linkage Hierarchical Agglomera-
tive Clustering is used to cluster the i-vectors, with a clustering
threshold λX .

B. Unsupervised Adaptation Framework

The proposed adaptation framework relies on an iterative
adaptation approach to perform the linking. The output of the
baseline cross-recording diarization system consists in speaker
clusters. Among those clusters, some contain segments from
different recordings and can be used to update speaker variabil-
ities (modeled through WCCN and PLDA), using interpolation
methods.

Using updated WCCN or PLDA parameters, the similarities
between i-vectors from all recordings can be refreshed, which
leads to updating the linking, hence the cross-recording diariza-
tion output.

Even if the baseline produces diarization errors, we suppose
the information brought by the target speaker clusters should
refine the within-speaker/between-recording variability estima-
tion. Better parameters should give more accurate clusters,
which could be used for another adaptation loop: we expect
the accuracy of clusters to improve over iterations.

The adaptation methods used for WCCN and PLDA are
detailed in the two following sections.

1) WCCN adaptation: For WCCN adaptation, we propose
to compute a new WCCN matrix, as a weighted sum of
Wtrain, the initial WCCN matrix of the baseline system, and
Wtarget computed over the clusters produced by the baseline
system.

Wadapt = αWtarget + (1− α)Wtrain (17)

2) PLDA adaptation: For scalability reasons, we expect not
to always be able to estimate PLDA using the target clusters
only. To adapt PLDA parameters, the Weighted Likelihood
Domain Adaptation method, presented in section IV-B1 is
chosen.

C. Scalability

The diarization system we work with depends on a triplet
of parameters (λI , λX , α). λI and λX are the within-recording
and cross-recording clustering thresholds, and α the adaptation
parameter. The collections to process are usually stored in
chronological order and their size increases over time. De-
pending on the collections size, it might be useful to give the
target more or less weight in the adaptation process. If we
adapt the parameters with only a few episodes, the number or
speaker clusters used for adaptation is going to be limited, and
the confidence in the in-domain contribution might need to be
limited to avoid an inaccurate estimation.

Instead of setting α empirically, we propose to make it de-
pend on some variables representative of the target collection,
with a formula inspired by MAP adaptation [43]. When it
comes to WCCN computation or PLDA estimation, the number
of speakers (or clusters) and the number of sessions are key
factors. If one of those criteria is too low, estimation can fail
(mainly due to matrix inversion issues). In [10], the authors
showed that the optimal value of α depends on the number
of speakers used for adaptation, using a two-covariance model
and a parameter interpolation method. We want α to be close to
0 (respectively 1) when the number of speakers is rather low
(respectively high), which leads us to propose the following
formula.

α =
Starget

p

Starget
p + rp

(18)

Starget is the number of recurring speakers (ie. speaker clus-
ters containing 3 or more sessions) from the target collection.
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We call r the virtual size of the train collection and p is
a strength factor. r corresponds to the target collection size
for which the influence of both collections is identical. Some
curves describing the formula are presented in figure 2. The
figure represents the evolution of α, depending of the number
of recurring speakers (or clusters), for r = 20 or r = 60 and p
from 1 to 3.

Figure 2. Examples for the proposed formula, for r = 20 or r = 60 and p
from 1 to 3.

VI. EXPERIMENTAL COLLECTIONS

Baseline models for diarization systems were trained on
manually annotated corpus. In this corpus speakers are identi-
fied by their first and last names, providing several sessions for
a large set of speakers. About 220 hours of French broadcast
news drawn from REPERE [44], ETAPE [45] and ESTER[46]
evaluation campaigns were used to build three corpora. The
shows were broadcast between 1998 and 2007, duration of
shows ranges from ten minutes to one hour. The corpora
also contain some broadcasts of Moroccan radio, in French
language. For each show in the corpus, multiple episodes are
available. Only radio shows were used to build the train corpus,
while both target corpora contain TV shows only. This was
chosen to maximize the acoustic mismatch between the train
and target data.

A. Train corpus
The train corpus, used to train the baseline system, is

composed of 317 audio files from ESTER campaign corpora,
taken from radio broadcasts, for a total of 190 hours of speech
duration. For each show, all available episodes are taken.
Many speakers appear in more than one episode, but some
also appear in different shows (politicians, for example). The
corpus contains 3212 unique speakers. Among those speakers,
372 meet our requirements for PLDA training: they appear in
at least three recordings, with a minimum speech time per
recordings of 10s. Thus, this corpus is well suited for an i-
vector/PLDA system training.

B. Target corpora

We define two target collections built from REPERE and
ETAPE corpora. The first one, named LCPtarget, is the
collection of all available episodes of the show LCP Info, a
French TV news broadcast show. The second target corpus,
named BFMtarget, is the collection of all available episodes
of the TV news talk-show BFM Story. Those two corpora
have been chosen because they both contain a decent number
of episodes (more than 40), and there is a large amount of
recurring speakers, who speak for more than 50% of the total
speech duration of the collection. Numerical details about the
two corpora are presented in table I.

Corpus LCPtarget BFMtarget

Episodes 45 42
Labeled speech duration 10h08m 19h57m
One-Time speakers 127 345
Recurring speakers (2+ occurrences) 93 77
R. speakers (3+ occurrences) 48 35
Total speakers 220 422
O.T. speakers speech proportion 20.12% 44,84%
R. speakers (2+ occurrences) s.p. 79.88% 55,16%
R. speakers (3+ occurrences) s.p. 67.06% 45.94%
Average speaker time per episode 1m08s 1m58s

Table I: Composition of target corpora. Annotated speakers
numbers are presented.

VII. EXPERIMENTS

Experiments were evaluated using the Diarization Error
Rate (DER). DER was introduced by the NIST as the frac-
tion of speech time which is not attributed to the correct
speaker, using the best match between references and hy-
pothesis speaker labels. The scoring tool [47] is employed
for within-recording and cross-recording speaker diarization.
Cross-recording speaker diarization aims at labeling a recurring
speaker the same way, in every recording that composes a
collection. For DER computation, a collar of 250ms is used,
and the overlapping speech is included. The 250ms collar
removes between 2 and 3% of the total speech time of each
collection.

In this paper, we mainly focus on the evaluation of the cross-
recording DER, which we will call X-DER in the following
sections, as opposed to I-DER, for within-recording DER.

A. Baseline System

Results of the baseline diarization system are presented
in table II. Three configurations are compared, with different
scoring methods: cosine without normalization, cosine with
WCCN and PLDA. The baseline system is trained on the train
dataset only: WCCN and PLDA matrices are estimated on the
out-domain i-vectors. The UBM dimension is of 256, TV rank
is 200 and PLDA rank is 100, and those dimension will be
fixed for all experiments. For each scoring method and cor-
pora, I-DER and X-DER are shown for the optimal clustering
configuration (λI , λX). As seen in the table II, when looking at
the cross-recording DER, optimal error rates vary from 19.5%
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to 18.1% for the LCP collection and from 22.2% to 15.7%
for BFM . We also note that there is no common configuration
that optimizes X-DER for both collections. The best performing
system uses PLDA as a scoring method, and results show
that using scoring or normalization methods exploiting speaker
variability outperforms the cosine-only system, as expected.
However, compensation methods have more impact on BFM
than LCP .

B. Oracle adaptation

The goal of our work is to focus on how the inaccurate
knowledge of the in-domain collections can help improve an
out-domain-based diarization system, using domain adaptation
techniques. To estimate how much it can improve, we first
perform an experiment where we use oracle in-domain i-
vectors to adapt WCCN or PLDA parameters. This means,
if we have a perfect knowledge about the in-domain speaker
variabilities, how good can domain adaptation methods improve
the results ?

Figure 3. Effect of oracle domain adaptation on the cross-recording DER for
both target corpora, with WCCN or PLDA parameters adapted using oracle
i-vectors, as a function of α.

Results are presented in figure 3. Two scoring methods are
tested, where the baseline WCCN and PLDA parameters are
adapted with the oracle in-domain i-vectors, the weight of
adaptation data α varying from 0.1 to 0.9. Experiments α = 0
and α = 1 are not presented, since α = 0 corresponds to
the baseline experiment, while with α = 1, WCCN or PLDA
estimation is not possible due to the limited quantity of target
data (matrix inversion issues). Only the cross-recording DER
is presented.

For both adaptation strategies, results show that a significant
gain is achievable through adaptation (relative reduction of X-
DER between 22% and 38%). We also note that if optimal
values of α are not the same for both corpora, we still observe
a X-DER reduction whatever α.

C. Iterative adaptation
For this experiment, we stop using oracle i-vectors for

adaptation, and work with the set of target i-vectors, extracted
from the segments produced by the baseline within-recording
diarization pass. After the baseline linking, those i-vectors are
grouped into speaker clusters and can be used to adapt WCCN
or PLDA parameters. Similarity scores are updated and give
a new clustering, which can again be used for adaptation: the
process can be iterated.

Each adaptation experiment depends on a triplet (λI , λX , α),
λI being the within-recording HAC threshold, λX the cross-
recording one, and α the adaptation parameter. Results are
presented in figures 4 and 5, for the PLDA-adapted experiment,
with 4 successive iterations of adaptation. They show that for
various triplets (λI , λX , α), iterative adaptation can gradually
improve the baseline X-DER.

Figure 4. Cross-recording DER for both target corpora, for iterations 0
(baseline) to 4, as a function of α, using PLDA for scoring and adaptation.

Figure 4 presents the results as a function of α, λI and λX
being set, while figure 5 presents them as a function of λX ,
α and λI being set. They show the neighborhood of the best
clustering configuration for LCP (λI = −10;λX = 10;α =
0.5) and for BFM (λI = 10;λX = 10;α = 0.5).

For LCP , the best X-DER is obtained after 4 iterations
of adaptation (14.4%), starting from a baseline X-DER of
(18.1%), the oracle being of 11.3%. For the BFM collection,
the best X-DER is of 13.6%, with a baseline of (15.7%) and an
oracle of (12.6%). Figures show that the main DER reduction
is obtained at the first iteration, but smaller improvements can
be observed with further iterations, especially for the LCP
corpus, where 2 or 3 iterations are necessary for the process to
converge. In our experiments, we saw that for both collections,
the optimal value for α is near 0.5. When looking at figure 5,
we notice that even at an inaccurate cross-recording clustering
threshold, the process can improve the baseline. This is true
when being not too far from the best configuration, otherwise
the process can slightly degrade the baseline DER (as seen for
the BFM collection and λX = −20).
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scoring λI λX
LCPtgt BFMtgt

I-DER X-DER I-DER X-DER

cosine
-10 0 8.6 19.5 13.6 23.8
-40 -20 10.1 24.4 14.4 22.2

WCCN + cos
-30 -30 9.6 19.7 11.9 24.2
-50 -40 9.8 23.0 13.3 17.6
-50 -30 9.9 20.6 13.0 19.0

PLDA
-10 10 8.3 18.1 11.3 24.5
10 10 10.0 19.1 10.6 15.7

Table II: Diarization results of the baseline i-vector based system, for cosine, WCCN and PLDA scoring.

Figure 5. Cross-recording DER for both target corpora, for iterations 0
(baseline) to 4, as a function of λx, using PLDA for scoring and adaptation.

Table III shows the results for various configurations, in-
cluding WCCN adaptation. The dedicated (dedi) configuration
corresponds to a set of parameters (λI , λX , α) which are
optimal for each couple (show, scoring), while the common
configuration corresponds to a set of suboptimal parameters,
but works best for both shows, in average.

scoring WCCN PLDA
show LCP BFM LCP BFM
baselinededi 19.7 17.6 18.1 15.7
baselinecommon 20.6 19.0 19.1 15.7
oraclebest 14.8 13.4 11.2 12.5
adapteddediLCP

18.0 15.4 14.4 15.1
adapteddediBFM

19.8 15.0 14.9 13.4
adaptedcommon 18.0 15.4 14.9 13.4

Table III: Summary of the iterative adaptation results, on the
complete collections, in terms of X-DER.

Table shows that whatever the chosen scoring method, iter-
ative adaptation allows to improve the baseline, whatever the
chosen baseline configuration. The adaptation configuration
can be either the dedicated or the common one. However,
when the adaptation configuration is dedicated to the BFM
collection, the same configuration does not improve the best

baseline DER of the LCP collection, using WCCN normal-
ization and cosine scoring. We note that the best adaptation
results are obtained using a configuration that does not give
the best baseline DER. For example, we saw in figure 4 that
a X-DER of 13.6% could be obtained for the BFM corpus
after adapting on top of its best baseline configuration, but
we found out that another configuration could give even better
results after adapting, to achieve a DER of 13.4%.

D. Scalability

In previous section, we showed that iterative Weighted
Likelihood Domain Adaptation could optimize diarization per-
formances on two different collections. The experiments were
performed on collections of 42 and 45 episodes, using an
arbitrary adaptation parameter α. In this section, we want to
focus on scalability. If a value of 0.5 for α seems to work
for around 40 episodes, we need to verify what happens when
the number of episodes is lower. A low number of episodes
means a low number of recurring speakers, whose contribution
to WCCN or PLDA parameters estimation might be bad. It
might be better to give more weight to a high number of
out-domain speakers than to a limited number of in-domain
speakers for modeling.

We decide to repeat the previous experiment, but on variable
size collections. For each of the two target collections, with
episodes sorted in chronological order, we define N−1 subsets,
each subset k containing the first k episodes of the collection,
for k ∈ [2, N ]. For each subset, the cross-recording diarization
is evaluated, after the baseline and 2 iterations of adaptation,
for both scoring and normalization methods. The data used
for adaptation is from the subset only. Experiments are run
independently on each subset (results obtained for an episode
in a subset can change for the same episode in another subset),
each clustering is performed on the bag of i-vectors obtained
after the within-recording diarization. The results obtained on
a kth subset have no influence on the results of the (k+ 1)th.

The experiments depend on the same three parameters: λI ,
λX , the HAC thresholds, and α, the adaptation parameter.
An exhaustive search is performed for α ∈ [0, 1[. From the
previous section, when working on the full target collections,
we found out that the optimal value for α was close to 0.5 for
both collections.

The best performing configurations for PLDA adaptation are
presented in figures 6 and 7. Each figure is split into two graphs.
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The top one represents the weighted average X-DER for subsets
5 to N, for iterations 0 (baseline) to 2. Under 5 episodes, there
are no recurring speakers to adapt with. The weighted average
X-DER equals to the average X-DER rk of each subset k,
weighted by its total duration dk, the formula is presented in
equation 19. This allows to summarize the performances over
all subsets. On the bottom graph, the bar chart represents the
baseline I-DER for each episode.

waDER =

∑N
k=5 dkrk∑N
k=5 dk

(19)

Figures 6 and 7 show that both iterations improve the
weighted average X-DER, α being set to 0.5 and 0.3, while
the waDER decreases from 15.2% to 13.3% and from 16.3%
to 13.9%, respectively. As seen in section VII-C, the second
iteration does not give as much improvement for the BFM
collection as for the LCP one. When looking at the smallest
subsets, we can see that the process improves the baseline
starting from the 8-th subset. When the number of episodes
is that small, the corresponding number of clusters used for
adaptation is 4 for BFM and 4 for LCP (not presented in the
figures). Even with such a low number of clusters, the use of
a relatively high α seems not to be a problem.

Figure 6. Cross-recording DER of the BFM corpus subsets, for iteration
0 to 2, using PLDA for scoring and adaptation. Experiment parameters are
(λI = 10, λX = 10, α = 0.5).

As for WCCN scoring (not presented in the figures), the
experiment is successful for BFM , with a weighted average
baseline X-DER of 16.2%, decreasing to 14.0% through
adaptation. However, the best result obtained for LCP was a
quasi constant from 18.5% to 18.4%. When looking precisely
at the experiment, we noticed that adaptation was effective
starting from the 20-th subset, but below that index, adaptation
could degrade the baseline X-DER of some subsets up to 50%
in relative.

Figure 7. Cross-recording DER of the LCP corpus subsets, for iteration
0 to 2, using PLDA for scoring and adaptation. Experiment parameters are
(λI = −10, λX = 10, α = 0.3).

E. Optimality of adaptation

Experiments of the previous section showed that the choice
of a fixed value for α was not effective for the LCP collection,
using WCCN/cosine scoring. Depending on the subset size, the
optimal α value might vary. For each set of (λI , λX , scoring),
we repeat the previous experiment 10 times, but on randomized
collections: the episodes order is shuffled in a different way for
each experiment. With α ranging from 0 to 0.9 with a 0.1 step,
we are able to observe what are the optimal values for α, for
each subset, in average. Results are presented in figures 8 and
9, for PLDA and WCCN scoring, respectively.

Figure 8. Isomap of X-DER, relative to the optimal α value, for the PLDA-
based adaptation experiment. The map depends on the subset indexes and the
values of α. BFM configuration is (λI = 10, λX = 10), while for LCP it
is (λI = −10, λX = 10). Boundaries are smoothed using a sliding averaging
window of 5 consecutive episodes (ie subset indexes).

Within each figure, the top graph is for the BFM subsets,
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while the bottom one is for LCP . On each graph, various
areas are presented, depending on the subset indexes and the
values of α. The clearer area corresponds to the α values which
give the best adapted X-DER, we note it α̂. Each boundary
corresponds to the α value where the adapted X-DER reaches a
limit, relative the best X-DER. For example, the second clearer
area corresponds to the range of α values where the adapted
X-DER is between α̂ + 0.2% and α̂ + 0.5%, in absolute. We
also display a light blue hashed area, which corresponds to
an area where the adapted X-DER is above the baseline. We
note that this forbidden area only appears on the upper part
of the graphs, since the bottom limit is the baseline (α = 0
is equivalent to not adapting). When α increases from zero,
it usually improves the baseline X-DER up to a point where
the adaptation degrades it. In conclusion, every area except the
blue hashed one is an area where adaptation improves or equals
the baseline.

Figure 9. Isomap of X-DER, relative to the optimal α value, for the
WCCN/cosine-based adaptation experiment. The map depends on the subset
index and the value of α. BFM configuration is (λI = −30, λX = −40),
while for LCP it is (λI = −40, λX = −30). Boundaries are smoothed using
a sliding averaging window of 5 consecutive episodes (ie subset indexes).

The first thing we note on all graphs is that the optimal α̂
value tends to increase as the collection grows, but with various
trends, depending on the collection and the scoring method. For
PLDA scoring, figures look similar, with an optimality range
of 0.2 to 0.4 for the [α̂, α̂+ 0.2%] interval.

As for WCCN scoring, for the BFM collection, we see that
the optimality range is very large at the beginning and tends
to narrow down to 0.4 for the full collection, while for the
LCP collection, the optimality range is very narrow for small
subsets, the optimal average value being very close to 0 (little
to no adaptation), and spreads to 0.3 for the full collection.
As seen in the previous section, for the LCP -WCCN/cosine
experiment, even for small values of α, adaptation degrades the
baseline DER if the size of the subset is too small.

F. Parameterization

In this section, the fixed adaptation weight α is replaced
by a parametric version, in order to account for the size
of the collection the system is adapted on. The parametric
formula is presented in section V-C and depends on the
recurring speakers found by the previous linking step. The
same randomized experiments of the previous section VII-E
are conducted, but using the parametric formula instead of a
fixed adaptation parameter. An exhaustive search is run for
r ∈ {2, 4, 8, 16, 32, 64, 128} and p ∈ {1, 2, 3}. For each
(scoring, show) couple, the best waDERs, averaged over the
10 randomized collections, are compared for the fixed and
parametric approach. Results are presented in table IV, and
parametric α values corresponding to the best results are
displayed with a dashed black line on figures 8 and 9.

scoring WCCN PLDA
show LCP BFM LCP BFM
baseline 19.6 18.1 17.2 16.3
α 0.5 0.4 0.4 0.5
adaptedfix 18.6 14.2 15.1 13.7
r 32 16 64 16
p 1 1 1 1
adaptedparam 18.3 14.3 15.0 13.8

Table IV: Summary of the iterative adaptation results, com-
paring a fixed adaptation parameter and the proposed para-
metric adaptation formula, average in terms of waDER over
all randomized subsets of each collection. adapted results are
obtained after two iterations of adaptation.

When looking at figures 8 and 9, we see that the parametric
curves follow the optimality area, which corresponds to our
expectations. For the BFM collection, due to the chosen
formula, the curves have to cross sub-optimality areas when the
subsets contain a low number of episodes. Thus, the parametric
approach performs slightly worse than the fixed one: when
looking at the graphs, one can easily draw an horizontal line
which stays in the optimality area for all subsets. As for the
LCP collection, no horizontal curve can match the optimality
area and the parametric approach outperforms the fixed one, as
confirmed in table IV.

G. Analysis & Discussions

This section is dedicated to the analysis of the adaptation
results. As we know the speaker composition of our collections,
we want to study what really happens in terms of cluster
evolution and speaker accuracy through iterative adaptation:
is the DER reduction due to a better accuracy on the little
speaking speakers or to the ability to better cluster recurring
speakers ?

We selected one experiment from section VII-C: iterative
adaptation on the full LCP collection, using PLDA scoring and
parameters (λI = −10, λX = 10;α = 0.5), and represented
it in terms of correct speech attribution from one iteration to
another: it aims to visualize the contributions to Diarization
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Error Rate variations. The first column displays the speakers
for which speech time attribution varies from one iteration
to another, the second columns shows the actual number of
recordings the speakers speak in, the third is their role in
the show (guest or journalist), and the four right columns
describe the speech attribution variations after each iteration of
adaptation. Each cell’s color indicates how much speaker time
was retrieved (blue) or lost (red) at each iteration (the amount
of speech gained or lost being written in the cell), while the
height of each line is proportional to the logarithm of the total
speech time of the corresponding speaker in the collection.
A way to read the figure is for example: the second line is
about Germain Andrieux, which is a journalist and appears in
11 episodes of the show. After the first iteration of adaptation,
198 seconds of true speech were retrieved, while 151 additional
seconds were retrieved after the second iteration, for a total of
349 seconds. The sum of a column corresponds to the total
variation of Speaker Error for an iteration.

The first observation we make is that there are three kind of
speakers for which changes happen. Those who gain correct
speech time in multiple iterations, those who gain or lose in
only one iteration and those who gain then lose (or the other
way) the same amount of speech time between two iterations.

When looking at the recurrence of the speakers (the amount
of recordings they speak in), we note that even some one-
time speakers are affected by the adaptation process, mainly
during the first adaptation. We also notice that most of the
speakers who keep retrieving speech through iterations are
recurring speakers. This means adaptation actually provides
better modeling of the recurring speakers variabilities, which
was our initial motivation for iterating.

Finally we observe that the main contribution to the DER de-
crease is due to the recurring speakers. In the LCP collection,
we know that around 80% of the total speech time is spoken
by recurring speakers.

VIII. CONCLUSION

In this paper, we proposed an iterative adaptation framework
for speaker diarization and linking of multimedia collections.
It proved to be effective for two types of scoring: cosine with
WCCN and PLDA scoring, for variable collection sizes. We
observed a convergence in terms of cross-recording Diarization
Error Rate after 2 or 3 iterations. Due to the observed optimality
ranges of the adaptation parameter, on variable collection sizes,
we proposed a parametric method, depending on the estimated
number of recurring speakers of each collection, to compute
the adaptation parameter.

Results analysis showed that the main contribution to the Di-
arization Error Rate decrease through the adaptation iterations
is due to the gains obtained on the recurring speakers. This
proves how good adaptation improves the modeling of within-
and between-speaker variabilities, for normalization (WCCN)
or scoring (PLDA). The proposed method is well suited for
relatively big collections, which include some recurring speak-
ers. The main advantage of the process is that it only requires
the audio one time per recording, since the whole linking

Figure 10. Analysis of the evolution of correct speech attribution during the
iterative adaptation process. Experiment is on the full LCP collection, with
(λI = −10, λX = 10, α = 0.5) and PLDA scoring. From iter0 (baseline)
to iter4 experiment, the X-DER varies from 18.1% down to 14.4%.

and adaptation process is based on i-vectors, thus computation
requirements are rather low.

Our experiments were run on collections of around 40
recordings, which corresponds to the annual number of
episodes of a weekly show in France. Should the method be
applied to much bigger collections, such as daily shows or
videos sharing platforms, a particular attention should be paid
at the linking process, which is O(n2). One way to overcome
the issue could be incremental linking, which forbids to change
the linking of past recordings [48].
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