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OPTIMAL CORRECTOR ESTIMATES ON PERCOLATION CLUSTERS

PAUL DARIO

Abstract. We prove optimal quantitative estimates on the first-order correctors on supercritical
percolation clusters: we show that they are bounded in d ≥ 3 and have logarithmic growth in d = 2, in
the sense of stretched exponential moments. The main ingredients are a renormalization scheme of
the supercritical percolation cluster, following the works of Pisztora [29] and Barlow [10]; large-scale
regularity estimates developed in the previous paper [7]; and a nonlinear concentration inequality
of Efron-Stein type which is used to transfer quantitative information from the environment to the
correctors.
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1. Introduction

1.1. Motivation and informal summary of results. The main goal of this paper is to prove
optimal bounds on the first-order correctors for the random conductance model on a supercritical
percolation cluster. We show, in the sense of stretched exponential moments, that the correctors are
bounded in dimensions d ≥ 3, and have increments which grow like the square root of the logarithm
of the distance in d = 2.

As explained in [5], tight bounds on the correctors are the crucial ingredient for the derivation of
optimal error and two-scale expansion estimates for the homogenization of general boundary value
problems. They can also inform the performance of numerical algorithms for the computation of
the homogenized diffusivity [26] and of solutions to the heterogeneous equation [2]. The need for
quantitative estimates was also fundamental to the derivation of the quenched central limit theorem
for the corresponding random walk, see [30, 24, 10, 23, 11]. The bounds we present here allow in
particular to obtain much more precise quantitative central limit theorems for this random walk.

Our approach is inspired by recent developments in the quantitative homogenization of uniformly
elliptic random envionments, in particular by the works of Armstrong, Kuusi, Mourrat and Smart [9,
8, 3, 4, 5] and the works of Gloria, Neukamm and Otto [16, 18, 17, 19, 20, 21, 22]. The main
challenge faced in the previous article [7] and in the present one is to adapt the various tools and
proofs, available in the uniformly elliptic setting, to the supercritical percolation cluster. To this
end, a renormalization argument was developed in [7], the main results of which will be recorded
in Section 2, where Z

d was partitioned into triadic cubes of different random sizes, well connected
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2 P. DARIO

in the sense of Antal an Pisztora [1]. This partition allows to distinguish regions of Zd where the
infinite cluster is well-behaved, its geometry looks like the geometry of the lattice Z

d, from regions
where the infinite cluster is badly-behaved. In the first case, it is rather straightforward to adapt
the theory developped in the uniformly elliptic setting. Problems arise where the infinite cluster is
badly-behaved. In this situation the theory cannot be adapted. Fortunately there are few regions
were the cluster is badly-behaved, and the theory of stochastic homogenization in the uniformly
elliptic setting is robust enough to be adapted to the supercritical cluster.

Our strategy to prove the optimal scaling limit of the corrector relies on a concentration inequality
(cf Proposition 2.18), which gives us a convenient way to transfer quantitative information from
the coefficients to the correctors. This idea originates in an unpublished paper from Naddaf and
Spencer [27], and was then developed by Gloria and Otto [19, 20] and Gloria, Neukamm and Otto [18]
(see also Mourrat [25]) to study stochastic homogenization. More precisely, thanks to this inequality
we are able to obtain quantitative estimates on the spatial average of the gradient of the corrector.

We then need one last ingredient to transfer bounds on the spatial average of the gradient of
the corrector to the oscillation of the correctors. This will be achieved by the multiscale Poincaré
inequality, Proposition 2.19. This inequality is a refinement of the Poincaré inequality, more suited
to the study of rapidly oscillating functions such as the corrector.

The model is the following: consider the random conductance model on the infinite percolation
cluster for supercritical bond percolation on the graph (Zd,Bd) in dimension d ≥ 2. Here Bd is the
set of bonds, that is, unordered pairs {x, y} with x, y ∈ Zd satisfying ∣x−y∣ = 1. We are given λ ∈ (0,1)
and a function

a ∶ Bd Ð→ {0} ∪ [λ,1].
We call a({x, y}) the conductance of the bond {x, y} ∈ Bd and we assume that {a(e)}e∈Bd is an i.i.d.
ensemble. We assume that the Bernoulli random variable 1{a(e)≠0} has parameter p > pc(d), where
pc(d) is the bond percolation threshold for the lattice Zd. It follows that the graph (Zd,E(a)), where
E(a) is the set of edges e ∈ Bd for which a(e) ≠ 0, has a unique infinite connected component, which
we denote by C∞ = C∞(a).

Our interest in this paper is the elliptic finite difference equation

(1.1) −∇ ⋅ a∇u = 0 in C∞.

Here the elliptic operator −∇ ⋅ a∇ is defined on functions u ∶ C∞ → R by

(1.2) (−∇ ⋅ a∇u) (x) ∶= ∑
y∼x

a((x, y)) (u(x) − u(y)) .
In [7], we proved that, almost surely, each u solution of (1.1) with at most linear growth can be

written
u(x) = c + p ⋅ x + χp(x),

where c ∈ R, p ∈ Rd and χp is a function, called the corrector, with sublinear growth: there exists
δ > 0 such that,

lim
R→∞

1

R1−δ osc
x∈C∞∩BR

χp(x) = 0,
where we used the notation, for any subset A ⊆ Zd and any function f ∶ A → R

osc
A
f ∶= sup

A

f − inf
A
f.

The sublinear growth of the corrector is a very important property which was proven quantitatively
(as stated above) in [7] and qualitatively in [13]. The main goal of this paper is then to derive the
optimal scaling of the corrector.
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1.2. Notation and assumptions.

1.2.1. General notation for the probabilistic model. We denote by Z
d the standard d-dimensional

hypercubic lattice. A point x ∈ Zd will often be called a vertex. The set of edges of Zd (i.e the set
of unoriented pairs of nearest neighbors) is denoted by Bd ∶= {{x, y} ∶ x, y ∈ Zd, ∣x − y∣1 = 1}. More

specifically, given a subset U ⊆ Z
d, we denote by Bd(U) the set of the edges of U , i.e, Bd(U) ∶={{x, y} ∶ x, y ∈ U, ∣x − y∣1 = 1}. The canonical basis of Rd is denoted by e1, . . . , ed. For x, y ∈ Zd, we

write x ∼ y if {x, y} ∈ Bd. For some fixed parameter λ ∈ (0,1], we define the probability space Ω ∶=
({0} ∪ [λ,1])Bd and we equip this probability space with the Borel σ-algebra F ∶= B ({0} ∪ [λ,1])⊗Bd .
Given an edge e ∈ Bd, we denote by a(e) the projection

a(e) ∶ Ω → {0} ∪ [λ,1],(ωe′)e′∈Bd ↦ ωe.

We denote by a the collection (a(e))e∈Bd and we refer to this mapping as the environment. For every

U ⊆ Zd, we denote by F(U) ⊆ F the σ-algebra generated by the mappings (a(e))e∈Bd(U).
We fix a probability measure P0 supported in {0} ∪ [λ,1] satisfying the property,

(1.3) p ∶= P0 ([λ,1]) > pc(d).
where pc(d) is the bond percolation threshold for the lattice Z

d. We then equip the measurable

space (Ω,F) with the i.i.d. probability measure P = P⊗Bd0 such that the sequence of random variables(a(e))e∈Bd is an i.i.d. family of random variables of law P0. The expectation with respect to P is
denoted by E.

Given an environment a, we say that an edge e ∈ Bd is open if a(e) > 0 and closed if a(e) = 0.
Given two vertices x, y ∈ Zd, we say that there is a path connecting x and y if there exists a sequence
of open edges of the form {x, z1}, . . . ,{zn, zn+1}, . . . ,{zN , y}. The two vertices x and y are then
said to be connected, we denote x ↔a y, if there exists a path connecting x and y. A cluster is a
connected subset C ⊆ Z

d. Thanks to (1.3), we know that, P–almost surely, there exists a unique
maximal infinite cluster [12]. This cluster is denoted by C∞ ∶= C∞(a).

We also denote by Ed ∶= {(x, y) ∶ x, y ∈ Zd, x ∼ y} the set of oriented edges. More generally, we

define, for a subset U ⊆ Zd, Ed(U) ∶= {(x, y) ∶ x, y ∈ U,x ∼ y}.
For x ∈ Zd, we define the translation τx on Ω to be the application

τx ∶ Ω → Ω,(ωe)e∈Bd ↦ (ωe+x)e∈Bd .
Note that the measure P is stationary with respect to the Z

d-translations: for each x ∈ Zd,

(1.4) (τx)∗ P = P,
where (τx)∗ P is the pushforward measure defined by, for each A ∈ F , (τx)∗ P(A) = P (τ−1x (A)).
1.2.2. Notation for functions. We define a vector field to be a function G ∶ Ed → R satisfying the
following antisymmetry property: for each (x, y) ∈ Ed,

G(x, y) = −G(y,x).
Given a function u ∶ Zd → R, we define its gradient ∇u to be the vector field

(∇u)(x, y) ∶= u(x) − u(y).
For a random function defined on a cluster C , u ∶ C → R, we define ∇u to be the vector field defined
by

(1.5) (∇u)(x, y) ∶= { u(x) − u(y) if x, y ∈ C and a ({x, y}) ≠ 0,
0 otherwise.
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and a∇u to be the vector field defined by

(a∇u) (x, y) ∶= a ({x, y}) (∇u)(x, y).
We typically think of C as being the infinite cluster C∞.

For q ∈ Rd, we denote by q the constant vector field, defined according to the formula

q(x, y) ∶= q ⋅ (x − y).
For a given vector field G, we define, for every x ∈ Zd,

(1.6) ∣G∣ (x) ∶= ⎛⎝
1

2
∑

(x,y)∈Ed

∣G(x, y)∣2⎞⎠
1

2

.

Given a subset U ⊆ Zd, we equip the space of vector fields with a scalar product, defined by

⟨F,G⟩U ∶= ∑
(x,y)∈Ed(U)

F (x, y)G(x, y).
We will also frequently make use of the following notation, given a vector field G, we define

⟨G⟩U = ∑
(x,y)∈Ed(U)

G(x, y)(x − y).
Given an environment a, two functions u, v ∶ Zd → R, and a subset U ⊆ Zd, the Dirichlet form can
be written with the previous notation as

⟨∇u,a∇v⟩U = ∑
(x,y)∈Ed(U)

(u(x) − u(y))a ({x, y}) (v(x) − v(y)) .
We then define the elliptic operator −∇ ⋅ a∇ by, for each u ∶ Zd → R and x ∈ Zd,

(−∇ ⋅ a∇u) (x) ∶= ∑
x∼y

a({x, y})(u(x) − u(y)).
For a given a subset U ⊆ Zd, we define the random set of a-harmonic functions in U by,

A(U) ∶= {u ∶ U ↦ R ∶ (−∇ ⋅ a∇u) (x) = 0, x ∈ intaU} ,
where intaU is the interior of U with respect to the environment a, defined according to

intaU ∶= {x ∈ U ∶ ∀y ∈ Zd, (y ∼ x and a({x, y}) ≠ 0) Ô⇒ y ∈ U} .
Given a subset U ⊆ Zd and a function w ∶ U → R, we generally denote sums by integrals; for instance,

(1.7) we write ∫
U
w(x)dx instead of ∑

x∈U
w(x).

If U is a finite (resp. a continuous) set, we denote its cardinality (resp. its Lebesgue measure) by∣U ∣. It will always be clear from context whether we are referring to the continuous integral (resp.
to the Lebesgue measure) or to the discrete integral (resp. the cardinality). The normalized integral
for a discrete (resp. continuous) function w ∶ U → R defined on a discrete (resp. continous) subset
U ⊆ Zd (resp. U ⊆ Rd) is denoted

⨏
U
w(x)dx = 1

∣U ∣ ∫U w(x)dx.
To shorten the notation, we sometimes write

(w)U ∶= ⨏
U
w(x)dx.
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We denote by C∞c (Rd,R) (resp. C∞(Rd,R)) the set of smooth compactly supported (resp.
smooth) functions in R

d and by S(Rd) the Schwartz space, i.e,

S(Rd) ∶= {f ∈ C∞(Rd,R) ∶ ∀ (k,α1,⋯, αd) ∈ Nd+1, sup
x∈Rd

∣x∣k ∣∂α1

1 ⋯∂αd

d
f(x)∣ <∞}

and by S ′(Rd) (or S ′) its topological dual, the space of tempered distribution. Given Ω ⊆ R
d a

domain, we denote by C∞c (Ω,R) (resp. C∞(Ω,R)) the set of smooth compactly supported (resp.
smooth) functions in Ω.

For q ∈ [1,∞), we denote the Lq and normalized Lq norms by

∥w∥Lq(U) ∶= (∫
U
∣w(x)∣q dx)

1

q

and ∥w∥Lq(U) ∶= (⨏
U
∣w(x)∣q dx)

1

q

.

Moreover, we write ∥w∥L∞(U) ∶= supx∈U ∣w(x)∣. For k ∈ N, we denote by W k,q(Ω) the Sobolev

space, by W k,q
0 (Ω) the closure of C∞c (Ω,R) in W k,q

0 (Ω) , and by W k,q
loc
(Ω) the space of local Sobolev

functions. For k ∈ Z with k < 0, we denote by W k,q(Ω) the topological dual of W −k,p
0 (Ω), with

p = q
q−1 .

For vectors of Rd, we denote by ∣ ⋅ ∣ the ℓ∞ norm, i.e., ∣x∣ =maxi=1,...,d ∣xi∣. This distance can then

be extended to a pseudometric on the subsets of Zd by dist(U,V ) = infx∈U,y∈V ∣x − y∣.
We also use the notation BR(x) to denote the closed ball centered in x ∈ Zd with radius R > 0

with respect to the ℓ∞ norm. The ball BR(0) is simply denoted BR.

1.2.3. Notation for cubes. A cube is a subset of Zd of the form

(z + (−N,N)d) ∩Zd, N ∈ N, z ∈ Zd.

For the cube given in the previous dipslay, which we denote by ◻, we define its center and its size
to be the point z ∈ Zd and the integer 2N −1. We denote its size by size(◻). In particular, with this

convention, we have ∣◻∣ = (size(◻))d. For a nonnegative real number r > 0 and a cube ◻, of center
z ∈ Zd and size N ∈ N, we denote by r◻ the cube

r◻ ∶= (z + (−rN, rN)d) ∩Zd.

This notation is nonstandard because the multiplication by r only affects the size of the cube, indeed
the cube r◻ has size ⌊r size(◻)⌋, but the center of the cube remains unchanged. We now introduce
a specific category of cubes, namely the triadic cubes. A triadic cube is a cube of the form

(1.8) ◻n(z) ∶= (z + (−1
2
3n,

1

2
3n)d) ∩ Zd, n ∈ N, z ∈ 3nZd.

To simplify the notation, we also write ◻n = ◻n(0). This collection of cubes enjoys a number of very
convenient properties. First, any two triadic cubes (of possibly different sizes) are either disjoint or
else one is included in the other. Moreover, for every m,n ∈ N with n ≤m, the triadic cube ◻m can
be uniquely partitioned into 3d(m−n) disjoint triadic cubes of size 3n, i.e, cubes of the form ◻n(z)
with z ∈ 3nZd. We denote by T the collection of triadic cubes and by Tn the collection of triadic
cubes of size 3n, i.e., Tn ∶= {z +◻n ∶ z ∈ 3nZd}.

For each n ∈ N and each ◻ ∈ Tn, we define the predecessor of ◻, to be the unique triadic cube◻̃ ∈ Tn+1 such that ◻ ⊆ ◻̃. If ◻̃ is the predecessor of ◻, then we also say that ◻ is a successor ◻̃.
In particular, a cube of T0 does not have any successor, while each cube of T ∖ T0 has exactly 3d

successors.
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1.2.4. The Os notation. We next introduce a series of notation and properties which will be useful
to measure the stochastic integrability and sizes of random variables. Given two parameters s, θ > 0
and a nonnegative random variable X, we denote by

X ≤ Os(θ) if and only if E [exp((X
θ
)s)] ≤ 2.

Note that by Markov’s inequality, the tail of a random variable X satisfying X ≤ Os(θ) decreases
exponentially fast, that is to say, for every t > 0,

P [X ≥ θt] ≤ 2exp (−ts) .
For a given sequence (Yi)i∈N of nonnegative random variables and a sequence (θi)i∈N of nonnegative
real numbers, we write

X ≤∑
i∈N
YiOs(θi),

if there exists a sequence of nonnegative random variables (Zi)i∈N such that for each i ∈ N, Zi ≤ Os(θi)
and

X ≤∑
i∈N
YiZi.

We now record some properties pertaining to this notation. All these properties are proved in [5,
Appendix A] and we refer to this reference for the proofs. This notation is compatible with the
addition, meaning that, for any s > 0, there exists a constant C depending only on s, which may be
taken to be 1 if s ≥ 1,
(1.9) X1 ≤ Os(θ1) and X2 ≤ Os(θ2) Ô⇒ X + Y ≤ Os(C(θ1 + θ2)).
More generally, for any s > 0, there exists a constant C(s) < ∞ such that, for every measure space(X,F , µ), every jointly measurable family {X(x)}x∈E of nonnegative random variables and every
mesurable function θ ∶ E → R+, we have

(1.10) ∀x ∈ E, X(x) ≤ Os(θ(x)) Ô⇒ ∫
E
X(x)dµ(x) ≤ Os (C ∫

E
θ(x)dµ(x)) .

Moreover the constant can be chosen to be

(1.11)

⎧⎪⎪⎨⎪⎪⎩
C(s) = ( 1

s ln 2
) 1s if s < 1

C(s) = 1 if s ≥ 1.

From the definition, we have, for each λ ∈ R+,

X ≤ Os(θ) Ô⇒ λX ≤ Os(λθ).
This notation is also compatible with the multiplication in the sense that

(1.12) ∣X1∣ ≤ Os1(θ1) and ∣X2∣ ≤ Os2(θ2) Ô⇒ ∣XY ∣ ≤ O s1s2
s1+s2

(θ1θ2) .
Moreover, it is easy to check that one can decrease the integrability exponent s, i.e., for each 0 < s′ < s,
there exists a constant C ∶= C(s′) <∞ such that

(1.13) X ≤ Os(θ1) Ô⇒ X ≤ Os′(Cθ1).
1.3. Statement of the main results. Denote by A1 the (random) vector space of a-harmonic
functions with at most linear growth, i.e,

A1 ∶= {u ∶ C∞ → R ∣ lim
R→∞

1

R2
∥u∥L2(C∞∩BR) = 0}

By Theorem 2 of [7], we know that, P-almost surely, the space A1 has dimension d + 1 and that
every function u ∈ A1 can be written u = c+ p ⋅x+χp(x), with c ∈ R and p ∈ Rd. The family {χp}p∈Rd

is called the correctors. We already proved the sublinear growth of the correctors, indeed by [7,
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(1.22)], we know that there exist two exponents δ ∶= δ(d,p, λ) > 0, s ∶= s(d,p, λ) > 0 and a constant
C ∶= C(d,p, λ) such that, for each R ≥ 1,

(1.14) osc
C∞∩BR

χp ≤ Os (C ∣p∣R1−δ) .
The sublinear growth of the corrector can also be expressed with a minimal scale, indeed by [7,
(1.18)], there exists a random variable X satisfying

X ≤ Os(C),
such that for each R ≥ X ,
(1.15) ∥χp − (χp)C∞∩BR

∥
L2(C∞∩BR)

≤ C ∣p∣R1−δ.

Moreover, the corrector satisfies the following stationarity property, for each x, y ∈ Zd, each p ∈ Rd

and each z ∈ Zd

(1.16) (χp(x) − χp(y))1{x,y∈C∞}(a) = (χp(x + z) − χp(y + z))1{z+x,z+y∈C∞}(τza)
The first main theorem of this article gives optimal scaling bounds of the correctors in the Lq norm.

Theorem 1 (Optimal Lq estimates for first-order correctors). There exist two exponents s ∶=
s(d,p, λ) > 0, k ∶= k(d,p, λ) < ∞ and a constant C(d,p, λ) < ∞ such that for each R ≥ 1, each
q ≥ 1, and each p ∈ Rd,

(1.17) (R−d∫
C∞∩BR

∣χp − (χp)C∞∩BR
∣q)

1

q ≤
⎧⎪⎪⎨⎪⎪⎩
Os (C ∣p∣qk log 1

2 R) if d = 2,

Os (C ∣p∣qk) if d ≥ 3.

In Section 5, we improve this Lq bound into an L∞ bound.

Theorem 2 (Optimal L∞ estimates for first-order correctors). There exist an exponent s ∶=
s(d,p, λ) > 0 and a constant C(d,p, λ) <∞ such that for each x, y ∈ Zd and each p ∈ Rd,

∣χp(x) − χp(y)∣1{x,y∈C∞} ≤
⎧⎪⎪⎨⎪⎪⎩
Os (C ∣p∣ log 1

2 ∣x − y∣) if d = 2,

Os (C ∣p∣) if d ≥ 3.

1.4. Outline of the paper. The rest of the paper is organised as follows. In Section 2, we recall
(mostly without proof) some properties of the infinite cluster which were stated and proved in [7] to
develop a quantitative homogenization theory on the infinite percolation cluster. In subsections 2.5
and 2.6, we state the concentration inequality and the multiscale Poincaré inequality, which are
the two key ideas in the proof of Theorem 1. In Section 3, we use the concentration inequality
and the properties of the infinite cluster recorded in Section 2 to obtain an estimate on the spatial
averages of the correctors. In Section 4, we use the result established in Section 3 combined with the
multiscale Poincaré inequality to prove the optimal bound on the gradient of the correctors, stated
in Theorem 1. In Section 5 we use the Lq bounds obtained in Section 4 to upgrade the bounds into
an L∞ bound, i.e, we prove Theorem 2. In Appendix A, we give a proof of the multiscale Poincaré
inequality stated in subsection 2.6. In Appendix B, we give the proof of a technical lemma used in
Section 3.

Acknowledgement. I would like to thank Scott Armstrong and Jean-Christophe Mourrat for
helpful discussions and comments.

2. Preliminaries

In this section we record some properties about the infinite percolation cluster in the supercritical
regime. Most of these properties were established in [7].
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2.1. Triadic partitions of good cubes.

2.1.1. A general scheme for partition of good cubes. The construction of the partition is accomplished
by a stopping time argument reminiscent of a Calderón-Zygmund-type decomposition. We are given
a notion of “good cube” represented by an F-measurable function which maps Ω into the set of all
subsets of T . In order words, for each a ∈ Ω, we are given a subcollection G(a) ⊆ T of triadic cubes.
We think of ◻ ∈ T as being a good cube if ◻ ∈ G(a). As usual, we typically drop the dependence
on a and just write G.
Proposition 2.1 (Proposition 2.1 of [7]). Let G ⊆ T be a random collection of triadic cubes, as
above. Suppose that G satisfies, for every ◻ = z +◻n ∈ T ,
(2.1) the event {◻ /∈ G} is F(z +◻n+1)–measurable,

and, for some constants K,s > 0,

sup
z∈3nZd

P [z +◻n /∈ G] ≤K exp (−K−13ns) .
Then, P–almost surely, there exists a partition S ⊆ T of Z

d into triadic cubes with the following
properties:

(i) All predecessors of elements of S are good: for every ◻,◻′ ∈ T ,
◻′ ⊆ ◻ and ◻′ ∈ S Ô⇒ ◻ ∈ G.

(ii) Neighboring elements of S have comparable sizes: for every ◻,◻′ ∈ S such that dist(◻,◻′) ≤
1, we have

1

3
≤ size(◻′)

size(◻) ≤ 3.
(iii) Estimate for the coarseness of S: if we denote by ◻S(x) the unique element of S containing

a point x ∈ Zd, then there exists C(s,K,d) < ∞ such that, for every x ∈ Zd,

size (◻S(x)) ≤ Os(C).
(iv) Minimal scale for S. For each t ∈ [1,∞), there exists C ∶= C(t, s,K,d) < ∞, an N-valued

random variable Mt(S) and exponent r ∶= r(t, s,K,d) > 0 such that

Mt(S) ≤ Or(C)
and for each m ∈ N satisfying 3m ≥Mt(S),

1

∣◻m∣ ∑x∈◻m

size (◻S(x))t ≤ C and sup
x∈◻m

size (◻S(x)) ≤ 3 dm
d+t .

Moreover, a careful investigation of the proof of the proof of [7, Proposition 2.1] shows that the
assumption (2.1) is only useful to prove (iv). In particular the following proposition can be extracted
from the proof of [7, Proposition 2.1]. It will be useful to define the partition U in Definition 3.7.

Proposition 2.2 (Proposition 2.1 of [7]). Let G ⊆ T be a random collection of triadic cubes, as
above. Suppose that G satisfies, for every ◻ = z +◻n ∈ T , and, for some constants K,s > 0,

sup
z∈3nZd

P [z +◻n /∈ G] ≤K exp (−K−13ns) .
Then, P–almost surely, there exists a partition S ⊆ T of Z

d into triadic cubes with the following
properties:

(i) All predecessors of elements of S are good: for every ◻,◻′ ∈ T ,
◻′ ⊆ ◻ and ◻′ ∈ S Ô⇒ ◻ ∈ G.
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(ii) Neighboring elements of S have comparable sizes: for every ◻,◻′ ∈ S such that dist(◻,◻′) ≤
1, we have

1

3
≤ size(◻′)

size(◻) ≤ 3.
(iii) Estimate for the coarseness of S: if we denote by ◻S(x) the unique element of S containing

a point x ∈ Zd, then there exists C(s,K,d) < ∞ such that, for every x ∈ Zd,

size (◻S(x)) ≤ Os(C).
2.1.2. The partition P of well-connected cubes. We apply the construction of the previous subsection
to obtain a random partition P of Zd which simplifies the geometry of the percolation cluster. This
partition plays an important role in the rest of the paper. For bounds on the “good event” which
allows us to construct the partition, we use the important results of Pisztora [29], Penrose and
Pisztora [28] and Antal and Pisztora [1]. We first recall some definitions introduced in those works.

Definition 2.3 (Crossability and crossing cluster). We say that a cube ◻ is crossable (with respect
to a ∈ Ω) if each of the d pairs of opposite (d − 1)–dimensional faces of ◻ is joined by an open
path in ◻. We say that a cluster C ⊆ ◻ is a crossing cluster for ◻ if C intersects each of the(d − 1)–dimensional faces of ◻.
Definition 2.4 (Good cube). We say that a triadic cube ◻ ∈ T is well-connected if there exists a
crossing cluster C for the cube ◻ such that:

(i) each cube ◻′ with size(◻′) ∈ [ 1
10

size(◻), 1
2
size(◻)] and ◻′ ∩ 3

4
◻ ≠ ∅ is crossable; and

(ii) every path γ ⊆ ◻′ with diam(γ) ≥ 1
10

size(◻) is connected to C within ◻′.
We say that ◻ ∈ T is a good cube if size(◻) ≥ 3, ◻ is well-connected and each of the 3d successors
of ◻ are well-connected. We say that ◻ ∈ T is a bad cube if it is not a good cube.

The following estimate on the probability of the cube◻n being good is a consequence [29, Theorem
3.2] and [28, Theorem 5], as recalled in [1, (2.24)].

Lemma 2.5 ([1, (2.24)]). For each p ∈ (pc,1], there exists C(d,p) < ∞ such that, for every m ∈ N,
(2.2) P [◻n is good] ≥ 1 −C exp (−C−13n) .

It follows from Definition 2.4 that, for every good cube ◻, there exists a unique maximal crossing
cluster for ◻ which is contained in ◻. We denote this cluster by C∗(◻). In the next lemma, we
record the observation that adjacent triadic cubes which have similar sizes and are both good have
connected clusters.

Lemma 2.6 (Lemma 2.8 of [7]). Let n,n′ ∈ N with ∣n − n′∣ ≤ 1 and z, z′ ∈ 3nZd such that

dist (◻n(z),◻n′(z′)) ≤ 1.
Suppose also that ◻n(z) and ◻n′(z′) are good cubes. Then there exists a cluster C such that

C∗(◻n(z)) ∪ C∗(◻n′(z′)) ⊆ C ⊆ ◻n(z) ∪◻n′(z′).
We next define our partition P.

Definition 2.7. We let P ⊆ T be the partition S of Zd obtained by applying Proposition 2.1 to the
collection G ∶= {◻ ∈ T ∶ ◻ is good} .
More generally, for each y ∈ Zd, we let be Py ⊆ T be the partition S of Zd obtained by applying
Proposition 2.1 to the collection

G ∶= {y +◻ ∶ ◻ ∈ T and y +◻ is good} .
From the construction of P and Py, we also have

Py = y +P(τ−ya) = {y +◻ ∶ ◻ ∈ P(τ−ya)} .
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The (random) partition P plays an important role throughout the rest of the paper. We also
denote by P∗ the collection of triadic cubes which contains some element of P, that is,

P∗ ∶= {◻ ∶ ◻ is a triadic cube and ◻ ⊇ ◻′ for some ◻′ ∈ P} .
Notice that every element of P∗ can be written in a unique way as a disjoint union of elements
of P. According to Proposition 2.1(i), every triadic cube containing an element of P is good. By
Proposition 2.1(iii) and Lemma 2.5, there exists C(d,p) <∞ such that, for every x ∈ Zd,

(2.3) size (◻P(x)) ≤ O1(C).
By the properties of P given in Proposition 2.1(i) and (ii) and Lemma 2.6, the maximal crossing
cluster C∗(◻) of an element ◻ ∈ P∗ must satisfy C∗(◻) ⊆ C∞, since the union of all crossing
clusters of elements of P is unbounded and connected. Notice also that, although we may not have
C∗(◻) = C∞ ∩◻, by definition of the partition P and (ii) of Definition 2.4, we have that, for every
cube ◻ ∈ P, there exists a cluster C such that

(2.4) C∞ ∩◻ ⊆ C ⊆ ⋃
◻′∈P, dist(◻,◻′)≤1

◻′.
In other words, for any cube ◻ ∈ P and every x, y ∈ C∞∩◻, there exists a path linking x to y staying
in ◻ or in its neighbors.

It is also interesting to note that, for m ∈ N such that 3m ≥M2d (P), C∗(◻m), C∞ ∩◻m and ◻m

are of comparable size, precisely, there exists a constant C ∶= C(d,p) <∞ such that

(2.5) C−1∣◻m∣ ≤ ∣C∗(◻m)∣ ≤ ∣C∞ ∩◻m∣ ≤ ∣◻m∣ .
This result is a consequence of the Cauchy-Schwarz inequality and the three relations, under the
assumption 3m ≥M2d (P), which implies in particular that ◻m is good,

∑
◻∈P,◻⊆◻m

1 ≤ C∗(◻m), ∑
◻∈P,◻⊆◻m

size (◻P)d = ∣◻m∣ and ∑
◻∈P,◻⊆◻m

size (◻P)2d ≤ C ∣◻m∣ .
The first inequality comes from the fact that each cube of P contained in ◻m must have non-empty
intersection with C∗(◻m), the second is the preservation of the volume and the third is where we
use the assumption 3m ≥M2d (P).

Given ◻ ∈ P, we let z(◻) denote the element of C∗(◻) ∩ ◻n(z) which is closest to z in the
Manhattan distance; if this is not unique, then we break ties by the lexicographical order.

Definition 2.8. Given a function u ∶ C∞ → R, we define the coarsened function with respect to P to
be [u]P ∶ Z

d → R

x ↦ u (z (◻P(x))) .
The reason we use the coarsened function is that it is defined on the entire lattice Z

d and not on
the infinite cluster. This allows to make use of the simpler and more favorable geometric structure
of Zd. The price to pay is the difference between u and [u]P . This depends on the coarseness of the
partition P and the control one has on ∇u in a way that is made precise in the following proposition.
The dependence on the coarseness of P is present via the size of the cubes of the partition. Recall
that the notation ∣F ∣(x) for a vector field F is defined in (1.6).

Proposition 2.9 (Lemma 3.2 of [7]). For every triadic cube ◻ ∈ P∗, 1 ≤ s < ∞ and w ∶ C∞ → R,

(2.6) ∫
C∗(◻)

∣w(x) − [w]P(x)∣s dx ≤ Cs∫
C∗(◻)

size(◻P(x))sd ∣∇w∣s (x)dx.
More generally, for any family of disjoint cubes {◻i}i∈I ∈ (P∗)I , we have

(2.7) ∫
C∗(∪i∈I◻i)

∣w(x) − [w]P(x)∣s dx ≤ Cs∫
C∗(∪i∈I◻i)

size(◻P(x))sd ∣∇w∣s (x)dx,
where C∗ (∪i∈I◻i) denotes the union of the maximal clusters of each connected component of ∪i∈I◻i.



OPTIMAL CORRECTOR ESTIMATES ON PERCOLATION CLUSTERS 11

Remark 2.10. Unfortunately, we do not have C∗ (∪i∈I◻i) = ⋃i∈I C∗ (◻i). The problem is the same
than the one we had in (2.4) and thus (2.7) can not be directly obtained from (2.6). Nevertheless,
thanks to this equation, we do have the inclusion

(2.8) C∞ ∩◻ ⊆ C
⎛
⎝ ⋃
◻′∈P, dist(◻,◻′)≤1

◻′⎞⎠ .
Moreover we can control the Ls norm of the vector field ∇ [w]P depending on the Ls norm of ∇w

and the coarseness of the partition P thanks to the following Proposition.

Proposition 2.11 (Lemma 3.3 of [7]). For every triadic cube ◻ ∈ P∗, 1 ≤ s < ∞ and w ∶ C∞ → R,

(2.9) ∫
C∗(◻)

∣∇ [w]P ∣s (x)dx ≤ Cs∫
C∗(◻)

size(◻P(x))sd−1 ∣∇w∣s (x)dx.
More generally, for any family of disjoint cubes {◻i}i∈I ∈ (P∗)I , we have

(2.10) ∫
C∗(∪i∈I◻i)

∣∇ [w]P ∣s (x)dx ≤ Cs∫
C∗(∪i∈I◻i)

size(◻P(x))sd−1 ∣∇w∣s (x)dx.
2.2. Elliptic inequalities on the supercritical percolation cluster. In this section, we record
some simple elliptic inequalities, the Caccioppoli inequality and the Meyers estimate. These inequal-
ities were written in [7] for harmonic functions. In our context, we need to apply these results when
the right-hand term is not 0 but the divergence of a vector field. The inequalities are consequently
written in this more general setting.

Proposition 2.12 (Caccioppoli inequality). Assume that we are given a function u ∶ C∞ → R and
a vector field ξ ∶ Ed → R satisfying the following condition

(2.11) ξ(x, y) = 0 if a(x, y) = 0 or x, y ∉ C∞.

In particular, gradients of functions defined on the infinite cluster satisfy this condition by (1.5).
Assume additionally that u and ξ satisfy the following equation,

−∇ ⋅ (a∇u) = −∇ ⋅ ξ in C∞.

Select two open bounded sets U,V ⊆ Rd such that V ⊆ U and dist(V,∂U) ≥ r ≥ 1. Then there exists
C(λ) <∞ such that

(2.12) ∫
C∞∩V

∣∇u∣2 (x)dx ≤ C
r2
∫

C∞∩(U∖V )
∣u(x)∣2 dx +C ∫

C∞∩U
∣ξ∣2(x)dx.

Remark 2.13. This version of the Caccioppoli inequality is more general than the one proved in [7,
Lemma 3.5], since a divergence form right-hand term was added. This extra term will be useful in
the proof of the Meyers estimate, Proposition 2.14, which will be an important ingredient in the
proof of Theorem 1.

Proof. Select a function η ∶ Zd → R satisfying

(2.13) 1V ≤ η ≤ 1, η ≡ 0 on R
d∖U, and ∀x, y ∈ Zd such that x ∼ y, ∣η(x) − η(y)∣2 ≤ C (η(x) + η(y))

r2
.

We also denote by Ea

U ∶= {(x, y) ∈ Ed ∶ x, y ∈ C∞ ∩U and a(x, y) ≠ 0} . Testing the equation satisfied
by u against ηu yields

∑
(x,y)∈Ea

U

(η(x)u(x) − η(y)u(y)) ξ(x, y)
= ∑
(x,y)∈Ea

U

(η(x)u(x) − η(y)u(y)) a({x, y})(u(x) − u(y))
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But we have

∑
(x,y)∈Ea

U

(η(x)u(x) − η(y)u(y)) ξ(x, y)
= ∑
(x,y)∈Ea

U

η(x) (u(x) − u(y)) ξ(x, y) + ∑
(x,y)∈Ea

U

u(y) (η(x) − η(y)) ξ(x, y)
and

∑
(x,y)∈Ea

U

(η(x)u(x) − η(y)u(y)) a({x, y})(u(x) − u(y))
= ∑
(x,y)∈Ea

U

η(x) (u(x) − u(y))a({x, y})(u(x) − u(y))
+ ∑
(x,y)∈Ea

U

u(y) (η(x) − η(y))a({x, y})(u(x) − u(y)) .
Thus we obtain

∑
(x,y)∈Ea

U

η(x)a({x, y})(u(x) − u(y))2
≤ ∑
(x,y)∈Ea

U

∣u(y)∣ ∣η(x) − η(y)∣a({x, y}) ∣u(x) − u(y)∣
+ ∑
(x,y)∈Ea

U

η(x) ∣u(x) − u(y)∣ ∣ξ(x, y)∣
+ ∑
(x,y)∈Ea

U

∣u(y)∣ ∣η(x) − η(y)∣ ∣ξ(x, y)∣ .
We first estimate the first term in the right-hand side according to the following computation

∑
(x,y)∈Ea

U

∣u(y)∣ ∣η(x) − η(y)∣a({x, y})(u(x) − u(y))

≤ C ∑
(x,y)∈Ea

U

∣η(x) − η(y)∣2
η(x) + η(y) ∣u(y)∣2

+ 1

4
∑

(x,y)∈Ea

U

(η(x) + η(y))a({x, y})2 (u(x) − u(y))2

≤ C
r2

∑
(x,y)∈Ea

U

1{η(x)≠η(y)}(u(y))2 + 1

2
∑

(x,y)∈Ea

U

η(x)a({x, y})2 (u(x) − u(y))2 .
The second term in the right-hand side can be estimated similarly, using the assumption a ≥ λ1{a≠0},

∑
(x,y)∈Ea

U

η(x) (u(x) − u(y)) ξ(x, y)

≤
⎛⎜⎝ ∑
(x,y)∈Ea

U

η(x) (u(x) − u(y))2⎞⎟⎠
1

2 ⎛⎜⎝ ∑
(x,y)∈Ea

U

η(x) ∣ξ(x, y)∣2⎞⎟⎠
1

2

≤ 1√
λ

⎛⎜⎝ ∑
(x,y)∈Ea

U

η(x)a({x, y})(u(x) − u(y))2⎞⎟⎠
1

2 ⎛⎜⎝ ∑
(x,y)∈Ea

U

η(x) ∣ξ(x, y)∣2⎞⎟⎠
1

2

≤ C
⎛⎜⎝ ∑
(x,y)∈Ea

U

η(x)a({x, y})(u(x) − u(y))2⎞⎟⎠
1

2 ⎛⎜⎝ ∑
(x,y)∈Ea

U

∣ξ(x, y)∣2⎞⎟⎠
1

2

.



OPTIMAL CORRECTOR ESTIMATES ON PERCOLATION CLUSTERS 13

We then estimate the third term in the right-hand side similarly

∑
(x,y)∈Ea

U

∣u(y)∣ ∣η(x) − η(y)∣ ∣ξ(x, y)∣ ≤ 1

2
∑

(x,y)∈Ea

U

∣η(x) − η(y)∣2
η(x) + η(y) ∣u(y)∣2

+ 1

2
∑

(x,y)∈Ea

U

(η(x) + η(y)) ξ(x, y)2

≤ C
r2

∑
(x,y)∈Ea

U

1{η(x)≠η(y)}(u(y))2
+ ∑
(x,y)∈Ea

U

ξ(x, y)2.

Combining the previous displays and denoting X ∶= (∑(x,y)∈Ea

U
η(x)a({x, y})(u(x) − u(y))2) 1

2

, we

obtain the inequality

X2 ≤ C
⎛⎜⎝ ∑
(x,y)∈Ea

U

∣ξ(x, y)∣2⎞⎟⎠
1

2

X + C
r2

∑
(x,y)∈Ea

U

1{η(x)≠η(y)}(u(y))2 + ∑
(x,y)∈Ea

U

∣ξ(x, y)∣2 .

This implies

X2 ≤ C
r2

∑
(x,y)∈Ea

U

1{η(x)≠η(y)}(u(y))2 + ∑
(x,y)∈Ea

U

∣ξ(x, y)∣2 .
We obtain (2.12) after rewriting the previous inequality, using a ≥ λ1{a≠0} and (2.13). �

The second important elliptic estimate needed in this article is the Meyers estimate. This estimate
was also proved in [7] in the case of a-harmonic functions but is needed in the proof of Theorem 1
in the more general case when the right-hand term is the divergence of a vector field.

Proposition 2.14 (Meyers estimate). There exist a constant C ∶= C(d,λ,p) < ∞, two exponents
s ∶= s(d,λ,p) > 0 and ε ∶= ε(d,λ,p) > 0 and a random variable MMeyers ≤ Os(C) such that for each
m ∈ N with 3m ≥MMeyers, and each function v ∶ C∞ → R satisfying

−∇ ⋅ (a∇v) = −∇ ⋅ ξ in C∞,

for some vector field ξ ∶ Ed → R satisfying (2.11), the following estimate holds,

(2.14) ( 1

∣◻m∣ ∫◻m∩C∞
∣∇v∣2+ε (x)dx)

1

2+ε

≤ C ⎛⎝
1

∣4
3
◻m∣ ∫ 4

3
◻m∩C∞

∣∇v∣2 (x)dx⎞⎠
1

2

+C ⎛⎝
1

∣4
3
◻m∣ ∫ 4

3
◻m∩C∞

∣ξ∣2+ε (x)dx⎞⎠
1

2+ε

.

Proof of Proposition 2.14. The results of Proposition 3.8 and Definition 3.9 of [7] can be adapted in
our context to prove the following result: there exist a constant C ∶= C(d,λ,p) <∞, two exponents
s ∶= s(d,λ,p) > 0 and ε ∶= ε(d,λ,p) > 0 and a random variableM ≤ Os(C) such that for each m ∈ N
satisfying 3m ≥M, each function v ∶ C∞ → R satisfying

−∇ ⋅ (a∇v) = −∇ ⋅ ξ in C∞
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for some vector field ξ ∶ Ed → R satisfying (2.11), the following estimate holds,

(2.15) ( 1

∣◻m∣ ∫◻m∩C∗( 43◻m)
∣∇v∣2+ε (x)dx)

1

2+ε

≤ C ⎛⎝
1

∣4
3
◻m∣ ∫C∗( 4

3
◻m)
∣∇v∣2 (x)dx⎞⎠

1

2

+C ⎛⎝
1

∣4
3
◻m∣ ∫C∗( 4

3
◻m)
∣ξ∣2+ε (x)dx⎞⎠

1

2+ε

where C∗ (43◻m) denotes the largest cluster included in 4
3
◻m. The Meyers estimate is indeed a

consequence of the three following ingredients: the Caccioppoli inequality, the Sobolev inequality
and the Gehring lemma. But Proposition 2.12 provides a version of the Caccioppoli inequality
well-suited to deal with a divergence form right-hand side. The Sobolev inequality is valid for any
function (and not simply for a-harmonic functions). The usual version of the Gehring Lemma, see
for instance Theorem 6.6 & Corollary 6.1 of [15], is general enough to be applied in our context.

We now show how to pass from (2.15) to (2.14). By Proposition 2.1 and (2.4), there exists an
exponent t ∶= t(d) <∞ such that for each m ∈ N satisfying 3m ≥Mt(P), we have

◻ ∩ C∗ (4
3
◻m) = C∞ ∩◻m.

This also gives

C∗ (4
3
◻m) ⊆ C∞ ∩ 4

3
◻m.

Thus, if we set MMeyers = max (M,Mt(P)) ≤ Os(C), we have, for each m ∈ N satisfying 3m ≥MMeyer,

( 1

∣◻m∣ ∫◻m∩C∞
∣∇v∣2+ε (x)dx)

1

2+ε

≤ C ⎛⎝
1

∣4
3
◻m∣ ∫ 4

3
◻m∩C∞

∣∇v∣2 (x)dx⎞⎠
1

2

+C ⎛⎝
1

∣4
3
◻m∣ ∫ 4

3
◻m∩C∞

∣ξ∣2+ε (x)dx⎞⎠
1

2+ε

,

which is the desired estimate. The proof of Lemma 2.14 is complete. �

2.3. Solving the Poisson equation with divergence form source term. In this section we
study the existence and uniqueness of the equation −∇⋅a∇u = ∇⋅ξ on the infinite cluster C∞. Recall
the notation Ea

U introduced in the proof of the Caccioppoli inequality, Proposition 2.12. We then
denote by

Ea

d ∶= {(x, y) ∈ Ed ∶ x, y ∈ C∞ and a(x, y) ≠ 0} = Ea

Zd .

The results of this section can be summarized in the two following propositions.

Proposition 2.15 (Gradient of Green’s function). Let a ∈ Ω an environment in a set of probability
1 such that there exists a unique maximal infinite cluster. Let e = (x, y) be an edge of Ea

d , there exist
a constant C ∶= C(d,λ) <∞ and a function Ge ∶ C∞ → R satisfying

(2.16) sup
e′∈Ea

d

∣∇Ge(e′)∣ ≤ C and ⟨∇Ge,∇Ge⟩
C∞
≤ C,

solution of the equation
−∇ ⋅ a∇Ge = δx − δy in C∞,

in the sense that for each function h ∶ C∞ → R satisfying ⟨∇h,∇h⟩
C∞
<∞, we have

⟨∇Ge,a∇h⟩
C∞
= ∇h(e).

Moreover, we have, for each e, e′ ∈ Ea

d ,

(2.17) ∇Ge(e′) = ∇Ge′(e).
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Proposition 2.16. Let a ∈ Ω an environment in a set of probability 1 such that there exists a unique
maximal infinite cluster. Let ξ ∶ Ed → R be a vector field satisfying

(2.18) ξ(x, y) = 0 if a(x, y) ≠ 0 or x, y ∉ C∞.

If ξ satisfies ⟨ξ, ξ⟩
C∞
<∞ then there exists a unique (up to a constant) solution wξ of

−∇ ⋅ a∇wξ = −∇ ⋅ ξ in C∞,

in the sense that for each function h ∶ C∞ → R satisfying ⟨∇h,∇h⟩
C∞
<∞, we have

⟨∇wξ,a∇h⟩C∞ = ⟨ξ,∇h⟩C∞ .
Additionaly, we have the equality

(2.19) ∇wξ(⋅) = ∑
e∈Ea

d

ξ(e)∇Ge (⋅) .
Proof of Proposition 2.15. In this proof, we denote by Ḣ1 the space of functions defined on the
infinite cluster whose gradient is L2, i.e

Ḣ1 ∶= {u ∶ C∞ → R ∶ ⟨∇u,∇u⟩
C∞
<∞} ,

and look at the minimization problem

inf
u∈Ḣ1

1

2
⟨∇u,a∇u⟩

C∞
−∇u(e).

Let un be a minimizing sequence. For this sequence, we have,

⟨∇un,∇un⟩C∞ ≤ C.
By a diagonal extraction argument, one can assume that for each edge e′ in C∞, ∇un(e′) converges
to a limit denoted by F (e′). By integrating on loops of the cluster, on can see that the vector field
F (e′) is in fact a gradient vector-field thus there exists a function Ge ∶ C∞ → R such that, for each
e′ ∈ Ed (C∞),

∇un(e′) Ð→
n→∞

∇Ge(e′).
By the previous result and Fatou’s Lemma, we obtain

1

2
⟨∇Ge,a∇Ge⟩

C∞
−∇Ge(e) = inf

u∈Ḣ1

1

2
⟨∇u,a∇u⟩

C∞
−∇u(e)

and

⟨∇Ge,∇Ge⟩
C∞
≤ C.

By the first variations, we have, for each h ∈ Ḣ1,

⟨∇Ge,a∇h⟩
C∞
= ∇h(e).

To prove (2.17), test the function Ge against the function Ge′ , this yields

∇Ge′(e) = ⟨∇Ge,a∇Ge′⟩
C∞

= ∇Ge(e′).
This also yields, by the Cauchy-Schwarz inequality

∣∇Ge′(e)∣ ≤ (⟨∇Ge,∇Ge⟩
C∞
) 12 (⟨∇Ge,∇Ge′⟩

C∞

)
1

2 ≤ C.
The proof of Proposition 2.15 is complete. �
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Proof of Proposition 2.16. The first part of the proof of Proposition 2.16 is similar to the proof of
Proposition 2.15 and left to the reader. We only prove (2.19). First note that the right-hand side
of (2.19) is well defined. Indeed, we have, for each e′ ∈ Ea

d ,

∑
e∈Ea

d

∣ξ(e)∇Ge (e′)∣ = ∑
e∈Ea

d

∣ξ(e)∇Ge′ (e)∣ ≤ ⎛⎝ ∑e∈Ea

d

∣ξ(e)∣2⎞⎠
1

2 ⎛
⎝∑e∈Ea

d

∣∇Ge′ (e)∣2⎞⎠
1

2

< ∞.

Then note that, by integrating on loops of the cluster, the right hand side of (2.19) is a gradient
vector-field, thus there exists a function f ∶ C∞ → R such that ∇f(⋅) = ∑e∈Ea

d
ξ(e)∇Ge (⋅).

We first make the extra assumption (which will be removed later)

∑
e∈Ea

d

∣ξ(e)∣ <∞.

With this extra assumption, we compute, for each vector field γ ∶ Ed → R,

∑
e∈Ea

d

∣∇f(e)a(e)γ(e)∣ ≤ ∑
e,e′∈Ea

d

∣ξ(e′)∇Ge(e′)γ(e)∣

≤ ∑
e′∈Ea

d

∣ξ(e′)∣ ⎛⎝∑e∈Ea

d

∣∇Ge(e′)∣2⎞⎠
1

2 ⎛
⎝ ∑e∈Ea

d

∣γ(e)∣2⎞⎠
1

2

≤ ∑
e′∈Ea

d

∣ξ(e′)∣ ⎛⎝∑e∈Ea

d

∣∇Ge′(e)∣2⎞⎠
1

2 ⎛
⎝ ∑
e∈Ed(C∞)

∣γ(e)∣2⎞⎠
1

2

≤ C ⎛⎝ ∑e′∈Ea

d

∣ξ(e′)∣⎞⎠
⎛
⎝ ∑e∈Ea

d

∣γ(e)∣2⎞⎠
1

2

.

In particular, we deduce from this computation that f ∈ Ḣ1 and

⎛
⎝ ∑e∈Ea

d

∣∇f(e)∣2⎞⎠
1

2

≤ C ⎛⎝ ∑e′∈Ea

d

∣ξ(e′)∣⎞⎠ .

Then by Fubini’s Theorem

⟨∇f,a∇h⟩
C∞
= ⟨ ∑

e∈Ea

d

ξ(e)∇Ge,a∇h⟩
C∞

= ∑
e∈Ea

d

ξ(e) ⟨∇Ge,a∇h⟩
C∞
= ∑

e∈Ea

d

ξ(e)∇h(e).

By uniqueness, we obtain

∇wξ = ∇f = ∑
e∈Ea

d

ξ(e)∇Ge (e′) .
We then remove the assumption ∑e∈Ea

d
∣ξ(e)∣ < ∞. To do so, let ξ ∶ Ed → R be a vector field

satisfying (2.18) such that ∑e∈Ea

d
∣ξ(e)∣2 <∞ and let ξn be a sequence of vector fields satisfying (2.18)

such that

∑
e∈Ea

d

∣ξn(e)∣ <∞ and ∑
e∈Ea

d

∣ξn(e) − ξ(e)∣2 Ð→
n→∞

0.
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But we have

∑
e∈Ea

d

∣(ξ(e) − ξn(e))∇Ge (e′)∣ = ∑
e∈Ea

d

∣(ξ(e) − ξn(e))∇Ge′ (e)∣

≤ ⎛⎝ ∑e∈Ea

d

∣ξ(e) − ξn(e)∣2⎞⎠
1

2 ⎛
⎝ ∑e∈Ea

d

∣∇Ge′ (e)∣2⎞⎠
1

2

≤ C ⎛⎝ ∑e∈Ea

d

∣ξ(e) − ξn(e)∣2⎞⎠
1

2

.

Thus for each e′ ∈ ⟨∇Ge,a∇Ge′⟩
C∞

,

∇wξn(e′) = ∑
e∈Ea

d

ξn(e)∇Ge (e′) Ð→
n→∞

∑
e∈Ea

d

ξ(e)∇Ge (e′) .
To complete the proof, we show that for each e′ ∈ Ea

d ,

∇wξn(e′) Ð→
n→∞

∇wξ(e′).
More precisely, we show that

(2.20) ∑
e′∈Ea

d

(∇wξ(e′) −∇wξn(e′))2 Ð→
n→∞

0.

To prove this note that for each function h ∈ Ḣ1,

⟨∇(wξ −wξn) ,a∇h⟩C∞ = ⟨ξ − ξn,∇h⟩C∞ .
This allows the following computation

∑
e′∈Ea

d

(∇wξ(e′) −∇wξn(e′))2

≤ C ⟨∇(wξ −wξn) ,a∇(wξ −wξn)⟩C∞
≤ C ⟨ξ − ξn,∇wξ −∇wξn⟩C∞
≤ C ⎛⎝ ∑e′∈Ea

d

(∇wξ(e′) −∇wξn(e′))2⎞⎠
1

2 ⎛
⎝ ∑e′∈Ea

d

(ξ(e′) − ξn(e′))2⎞⎠
1

2

.

This implies (2.20) and completes the proof of Proposition 2.16. �

2.4. Regularity theory. In this subsection, we record a result from the regularity theory estab-
lished in [7] giving a Lipschitz bound for the gradient of a-harmonic functions. This result is only
a small part of the regularity theory established in [7, Theorem 2], but is the only result needed in
the proof of Theorems 1 and 2.

Proposition 2.17 (Regularity theory). There exist a constant C ∶= C(d,p, λ) > 0, an exponent
s ∶= s(d,p, λ) > 0 and a random variable X satisfying

(2.21) X ≤ Os(C),
such that for each u ∶ C∞ ↦ R solution of the equation

(2.22) −∇ ⋅ a∇u = 0
and each R ≥ r ≥ X , we have

∥∇u∥L2(C∞∩Br) ≤ C ∥∇u∥L2(C∞∩BR) .
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We also introduce the notation, for each x ∈ Zd

X (x) ∶= X ○ τx.
This proposition is much weaker than Theorem 2 of [7], it is indeed a consequence of the Cacciop-

poli inequality and Theorem 2 (iii) of [7] for k = 0. For the sake of completeness, we write down how
to deduce this proposition from the two tools we just mentionned.

Proof. First, Theorem 2 (iii) of [7] for k = 0 tells us that there exists a random variable X satisfy-
ing (2.21) such that for every u ∶ C∞ ↦ R solution of (2.22) and each R ≥ r ≥ X ,
(2.23) inf

c∈R ∥u − c∥L2(C∞∩Br) ≤ C
r

R
inf
c∈R ∥u − c∥L2(C∞∩BR)

We then estimate the term on the right-hand side by the Caccioppoli inequality (Proposition 2.12
with ξ = 0), this yields

(2.24) ∥∇u∥L2(C∞∩Br) ≤
C

r
inf
c∈R ∥u − c∥L2(C∞∩B2r) .

We then estimate the second term on the right-hand side. The idea is to apply the Poincaré inequality,
unfortunately due to the non Euclidean structure of the infinite percolation cluster, this inequality
cannnot be directly applied. Instead, we apply the Sobolev inequality, Proposition 3.4 of [7], to
obtain

inf
c∈R ∥u − c∥L2(C∞∩BR) = ∥u − (u)C∞∩BR

∥
L2(C∞∩BR)

≤ C ⎛⎝ ∑
◻′∈P,◻′∩BR≠∅

size(◻′)2d ∫◻′∩C∞ ∣∇u∣
2d
d+2 (x)dx⎞⎠

d+2
2d

.

The inequality presented in Proposition 3.4 of [7] is written for triadic cubes, but can be easily
adapted to our context by making X larger so that BR contains a cube of P if necessary. In view
of (2.3), this extra assumption does not impact the condition (2.21).

We then apply the Hölder inequality with exponents p = d+2
2

and its Hölder conjugate q = d+2
d

to
the previous computation to obtain

inf
c∈R ∥u − c∥L2(C∞∩BR) ≤ C

⎛
⎝ ∑
◻′∈P,◻′∩BR≠∅

size(◻′)3pd+d⎞⎠
1

d ∥∇u∥L2(C∞∩BR) .

Without loss of generality one can assume X ≥M3pd (P), with this assumption, we have

⎛
⎝ ∑
◻′∈P,◻′∩BR≠∅

size(◻′)3pd+d⎞⎠
1

d

≤ CR.

Combining the previous displays yields

(2.25) inf
c∈R ∥u − c∥L2(C∞∩BR) ≤ CR ∥∇u∥L2(C∞∩BR) .

A combination of (2.23), (2.24) and (2.25) shows for each R ≥ 2r ≥ X
∥∇u∥L2(C∞∩Br) ≤ C ∥∇u∥L2(C∞∩BR) .

But for each 2r ≥ R ≥ r, we have

∥∇u∥L2(C∞∩Br) ≤ 2
d
2 ∥∇u∥L2(C∞∩BR) .

Combining the two previous displays shows for each R ≥ r ≥ X ,
∥∇u∥L2(C∞∩Br) ≤ C ∥∇u∥L2(C∞∩BR)

and the proof is complete. �
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We now present the two main tools to prove Theorem 1. The first one is a concentration inequality,
thanks to which we can obtain some quantitative control on the spatial average of the gradient at
scale R, cf Proposition 3.3. We then deduce Theorem 1 from Proposition 3.3 thanks to the Poincaré
inequality.

2.5. Concentration inequality for stretched exponential moments. The following concentra-
tion inequality is the key point in the proof of Proposition 3.3 in the next section. A proof of this
inequality can be found in [6, Proposition 2.2].

Proposition 2.18 (Proposition 2.2 of [6]). Fix β ∈ (0,2). Let X be a random variable on (Ω,F ,P)
and set for each e ∈ Bd(Zd),

X ′e = E [X ∣F (Bd ∖ {e})] and V[X] = ∑
e∈Bd
(X −X ′e)2 ,

then there exists C ∶= C(d,β) <∞ such that

E [exp (∣X −E[X]∣β)] ≤ CE [exp((CV[X]) 2β

2−β )] .
2.6. Multiscale Poincaré inequality. The next proposition is a version of the multiscale Poincaré.
It controls the oscillation of a function in the Lq norm (left-hand term of (2.26)) by the spatial average
of the gradient of the function (right-hand term of of (2.26)).

Proposition 2.19 (Multiscale Poincaré inequality, heat kernel version). For each r > 0, we define

Φr ∶ R
d → R

x ↦ r−d exp (− ∣x∣2
r2
) .

For each q ≥ 1, there exists a constant C ∶= C(d, q) < ∞ such that for each tempered distribution

u ∈W 1,q
loc
(Rd) ∩ S ′(Rd) and each R > 0,

(2.26) ∥u − (u)BR
∥Lq(BR) ≤ C

⎛
⎝∫Rd

R−de−
∣x∣
2R (∫ 2R

0
r ∣Φr ∗∇u(x)∣2 dr)

q

2⎞
⎠

1

q

.

Moreover the dependence on the variable q of the constant C can be estimated as follows, for each
q ≥ 2

C(d, q) ≤ Aq 3

2

for some constant A ∶= A(d) <∞.

The proof of this proposition heavily relies on [5, Proposition D.1 and Remark D.6] and is presented
in Appendix A.

3. Estimates of the spatial averages of the first-order correctors

We now have all the necessary tools to prove the optimal Lq bounds of the corrector, stated
in Theorem 1. The idea is to first prove Proposition 3.3 thanks to the concentration inequality,
Proposition 2.18. We then deduce the bound on the coarsened correctors thanks to the multiscale
Poincaré inequality, Proposition 2.19 and remove the coarsening thanks to Proposition 2.9. This
eventually yields (1.17).

Definition 3.1. Fix a function η ∈ C∞c (B 1

2

) satisfying
∀x ∈ Rd, η(x) ≥ 0 and ∫

Rd
η(x)dx = 1.
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Given a function w ∶ C∞ ↦ R, we consider the function [w]P defined on the entire lattice Z
d. We

then extend this function to a function constant by part on R
d by setting, for each x ∈ Zd and each

y ∈ x+B 1

2

, [w]P (y) = [w]P (x). We then smoothen this function by convoluting against η and define

[w]ηP ∶ R
d → R

x ↦ ([w]P ∗ η) (x).
This creates a smooth function defined on R

d. This property will be convenient when we apply
the multiscale Poincaré inequality, to obtain Theorem 1. This is the only reason we need to go from
a discrete function defined on Z

d to a continuous function defined on R
d. Additionally, this function

satisfies a number of convenient properties, recorded in the following proposition.

Proposition 3.2. Given a function w ∶ C∞ ↦ R, the function [w]ηP defined in Definition 3.1 satisfies

(i) For each x ∈ Zd, [w]ηP (x) = [w]P (x).
(ii) For each x ∈ Zd and each y ∈ Zd +B 1

2

, we have,

∣∇ [w]ηP (y)∣ ≤ C ∣∇ [w]P ∣ (x),
for some constant C depending only on d and η.

We now state the main technical proposition of this article.

Proposition 3.3. For each R ≥ 1, and each x ∈ Rd, the quantity ∇(ΦR ∗ [χp]ηP) (x) is well-defined
and there exist an exponent s ∶= s(d,p, λ) > 0 and a constant C ∶= C(d,p, λ) <∞ such that it satisfies

(3.1) ∣∇(ΦR ∗ [χp]ηP) (x)∣ ≤ Os (C ∣p∣R− d
2 ) ,

where we used the notation introduced earlier for the Gaussian function

ΦR ∶ R
d → R

x ↦ R−d exp (− ∣x∣2
R2 ) .

Before starting the proof, note that the application p → χp is linear. Thus, we can assume
without loss of generality that ∣p∣ = 1 to simplify the computations. To verify that the quantity
∇(ΦR ∗ [χp]ηP) (x) is well-defined, it is sufficient to check that, for each x ∈ Rd and each R > 0,

∫
Rd

exp(− ∣x − y∣2
R2

) ∣∇ [χp]ηP (y)∣ dy <∞ P − almost surely

To prove this, we actually show the stronger estimate, for each x ∈ Rd

(3.2) ∣∇ [χp]ηP (x)∣ ≤ Os(C).
By (ii) of Proposition 3.2, it is enough to prove, for each edges e = (x, y) ∈ Rd,

(3.3) ∣∇ [χp]P (e)∣ ≤ Os(C).
By Proposition 2.11, we have

∣∇ [χp]P (e)∣ ≤ ∫
C∗(◻P(x)∪◻P(y))

∣∇ [χp]P ∣ (x′)dx′
≤ C ∫

C∗(◻P(x)∪◻P(y))
size (◻P(x′))d−1 ∣∇χp∣ (x′)dx′

≤ C ∫
C∞∩B(x,C size(◻P(x)))

size (◻P(x′))d−1 ∣∇χp∣ (x′)dx′
≤ C ∑

x′∈Zd

1{x′∈C∞∩B(x,C size(◻P(x)))} size (◻P(x′))d−1 ∣∇χp∣ (x′).
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Moreover for each x ∈ Zd, size (◻P(x)) ≤ Os(C), we have

(3.4) 1{x′∈B(x,C size(◻P(x)))} ≤ C
size (◻P(x))d+1∣x − x′∣d+1 ∨ 1 ≤ Os(C)∣x − x′∣d+1 ∨ 1 ,

where we used the notation a∨b =max(a, b). Applying Proposition (2.17) to the a-harmonic function
u(x) = p ⋅x+χp(x), the Caccioppoli inequality and using the assumption ∣p∣ = 1, we obtain, for each

x′ ∈ Zd,

∣∇χp∣ (x′)1{x′∈C∞} ≤ C +CX (x′)d2 ∥∇u∥L2(C∞∩BX(x′)(x′))
≤ C +CX (x′)d2 lim inf

R→∞
∥∇u∥L2(C∞∩BR(x′))

≤ C + C
R
X (x′)d2 lim inf

R→∞
∥u − (u)

C∞∩BR(x′) ∥L2(C e
∞∩BR(x′)).

By (1.14), we have

limsup
R→∞

1

R
∥u − (u)

C∞∩BR(x′) ∥L2(C∞∩BR(x′)) ≤ 1 a.s.

This shows, for each x′ ∈ Zd

(3.5) ∣∇χp∣ (x′)1{x′∈C∞} ≤ Os(C).
Combining the previous estimate with (3.4), we obtain, for each x′ ∈ Zd

1{x′∈C∞∩B(x,C size(◻P(x)))} size (◻P(x′))d−1 ∣∇χp∣ (x′) ≤ Os(C)∣x − x′∣d+1 ∨ 1 .
Since ∑x∈Zd∖{y} 1

∣x−y∣d+1 < ∞, we can use (1.10) to get

∑
x′∈Zd

1{x′∈C∞∩B(x,C size(◻P(x)))} size (◻P(x′))d−1 ∣∇χp∣ (x′) ≤ Os(C).
Combining the previous displays shows that for each e ∈ Ed,

∣∇ [χp]P (e)∣ ≤ Os(C).
By (1.10) and (3.2), we have, for each x ∈ Rd and each R > 0,

∫
Rd

exp(− ∣x − y∣2
R2

) ∣∇ [χp]ηP (y)∣ dy ≤ Os (CRd) .
This implies in particular the desired estimate.

We now turn to the proof of (3.1). Fix some x′ ∈ Rd and denote by X = ∇(ΦR ∗ [χp]ηP) (x′). We
are going to prove

∣X ∣ ≤ Os (CR− d
2 ) ,

The main idea of the proof is to apply Proposition 2.18 to X. To do so, we need to prove the two
following results.

Result 1. ∣E[X]∣ ≤ CR− d
2 .

Result 2. V[X] ≤ Os (CR−d).
Proof of Result 1. For each x, y, z ∈ Zd with x ∼ y, denote by τza the translated environment

defined by

τza({x, y}) = a({x − z, y − z}).
By the uniqueness of the gradient of the corrector, we have, for almost every environment and each
x, y, z ∈ Zd with x, y ∈ C∞, x ∼ y, a({x, y}) ≠ 0,
(3.6) ∇χp((x + z, y + z))(τza) = ∇χp((x, y))(a).
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For k ∈ N, we construct the 3kZd-stationnary partition Pk
stat by applying Proposition 2.1 to the

collection of triadic cubes

Gkstat ∶= G⋃( ∞⋃
n=k
Tn) .

This collection of cube is 3kZd-stationnary: for every environment a, every x ∈ Zd, z ∈ 3kZd,

(3.7) size (◻Pk
stat

(x + z)) (τza) = size (◻Pk
stat

(x)) (a).
With a proof similar to the proof of [7, Proposition 2.1 (iv)], we derive

(3.8) P [∃x ∈ ◻k, ◻P(x) ≠ ◻Pk
stat

(x)] ≤ C exp (−C−13k) .
We then define, for u ∶ C∞ → R, the coarsened function with respect to the partition Pk

stat by the
formula

[u]Pk
stat

∶= u(zstat (◻Pk
stat

(x)))
with the notation, for ◻ ∈ T ,

(3.9) zstat (◻) ∶=
⎧⎪⎪⎨⎪⎪⎩
z (◻) if z (◻) ∈ C∞ and ◻is a good cube,
argmin
z∈C∞

dist (z,◻) otherwise.

If there is more than one choice in the argument of the minima, we select the one which is minimal
for the lexicographical order. In particular, combining (3.6) and (3.7) yields

(3.10) ∇ [χp]ηPk
stat

is 3kZd − stationnary,

where [χp]ηPk
stat

is defined from [χp]Pk
stat

by a convolution with η, as in Definition 3.1. We fix k ∈ Zd

such that 3k ≤ R 1

2 ≤ 3k+1 and split the proof of Result 1 into three steps.

(i) In Step 1, we prove

E [∣∇(ΦR ∗ [χp]ηP) (x′) −∇(ΦR ∗ [χp]ηPk
stat

)(x′)∣] ≤ CR− d
2 .

(ii) In Step 2, we prove

E [∫
x′+(− 3k

2
, 3

k

2
)d ∇ [χp]ηPk

stat

(x)dx] = 0.

Note that we wrote (−3k

2
, 3

k

2
)d and not ◻k because we are referring to the continuous cube

and not the discrete one as it was defined in (1.8).
(iii) In Step 3, we use the result obtained in Step 2 to show

∣E [∇(ΦR ∗ [χp]ηPk
stat

)(x′)]∣ ≤ CR− d
2 .

Result 1 is then a consequence of the main results of Steps 1 and 3.
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Step 1. The main result of this step is a consequence of the following computation, by (1.5),
Proposition 3.2 and Proposition 2.11,

E [∣∇(ΦR ∗ [χp]ηP) (x′) −∇(ΦR ∗ [χp]ηPk
stat

)(x′)∣]
(3.11)

≤ E
⎡⎢⎢⎢⎢⎣
∣∫

B
R2(x′)

(∇ [χp]ηP (x) −∇ [χp]ηPk
stat

(x))ΦR(x − x′)dx∣1{∃x∈B
R2(x′) ∶◻Pk

stat

(x)≠◻P(x)}
⎤⎥⎥⎥⎥⎦

+E [∣∫
Rd∖B

R2(x′)
(∇ [χp]ηP (x) −∇ [χp]ηPk

stat

(x))ΦR(x − x′)dx∣] .
The first term on the right-hand side can be estimated crudely the following way. We denote U0 the
set

U0 ∶= ⋃
x∈B

R2(x′)
◻P(x),

we then enlarge this set by adding two additional layers of cubes and define

U1 ∶= ⋃
◻∈P,dist(◻,U)≤1

◻ and U ∶= ⋃
◻∈P,dist(◻,U1)≤1

◻.
With these definitions, the definition of ∇ [χp]ηPk

stat

, which essentially amounts to (3.9), and (2.4), we

have, for each x ∈ BR2 (x′),
∣∇ [χp]ηPk

stat

(x)∣ ≤ ∫
C∞∩U

∣∇χp∣ (y)dy.
Similarly, by definition of ∇ [χp]ηP and the properties of the partition P, we have, for each x ∈
BR2 (x′),

∣∇ [χp]ηP (x)∣ ≤ ∫
C∞∩U

∣∇χp∣ (y)dy.
This leads to the estimate

∣∫
B

R2(x′)
(∇ [χp]ηP (x) −∇ [χp]ηPk

stat

(x))ΦR(x − x′)dx∣(3.12)

≤ C (∫
C∞∩U

∣∇χp∣ (y)dy)∫
B

R2(x′)
ΦR(x − x′)dx

≤ C ∫
C∞∩U

∣∇χp∣ (y)dy.
This term can be estimated thanks to the regularity theory, Proposition 2.17 applied to the a-
harmonic function x↦ p ⋅ x + χp. Denote

R′ ∶= inf {R > 0 ∶ U ⊆ BR (x′)} ,
fix some z ∈ Zd such that U ⊆ BR′(z). With this notation, we can compute

∫
C∞∩U

∣∇χp∣ (y)dy ≤ C ∣U ∣ +C ∫
C∞∩U

∣p +∇χp∣ (y)dy(3.13)

≤ C ∣U ∣ +C ∫
C∞∩BR′(x′)

∣p +∇χp∣ (y)dy
≤ C ∣U ∣ +CR′d (⨏

C∞∩BR′(x′)
∣p +∇χp∣2 (y)dy)

1

2

≤ C ∣U ∣ +CR′ d2 max (X (x′) ,R′) d2 lim inf
R→∞ (⨏C∞∩BR(x′)

∣p +∇χp∣2 (y)dy)
1

2
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But, by (1.15) and the Caccioppoli inequality, we have

lim inf
R→∞ (⨏C∞∩BR(x′)

∣p +∇χp∣2 (y)dy)
1

2 ≤ 1,
thus

∫
C∞∩U

∣∇χp∣ (y)dy ≤ C ∣U ∣ +CR′ d2 max (X (z),R′) d2 .
By the properties of the partition P, and (1.10),

∣U ∣ = C ∣U1∣ ≤ C ∣U0∣ ≤ C ∑
x∈B

R2(x′)
size (◻P(x))d ≤ Os (CR2d) .

Similarly, we have the crude bound

R′ ≤ C ∑
x∈B

R2(x′)
size (◻P(x)) ≤ Os (CR2d) .

Combining the previous displays shows

∣∫
B

R2(x′)
(∇ [χp]ηP (x) −∇ [χp]ηPk

stat

(x))ΦR(x − x′)dx∣ ≤ Os (CR2d2) .
By (3.8), we also have

P [∃x ∈ BR2(x′) ∶ ◻Pk
stat

(x) ≠ ◻P(x)] ≤ ∑
z∈3kZd∩B

R2(x′)
P [∃x ∈ z +◻k ∶ ◻Pk

stat

(x) ≠ ◻P(x)]

≤ R
2d

3dk
P [∃x ∈ ◻k ∶ ◻Pk

stat

(x) ≠ ◻P(x)]
≤ CR

2d

3dk
exp (−C−13k) .

In particular, since k has been chosen such that 3k ≤ R 1

2 < 3k+1, for each q > 0, there exists a constant
C ∶= C(d,p, λ, q) <∞ and an exponent s ∶= s(d,p, λ, q) > 0 such that

1{∃x∈B
R2(x′) ∶◻Pk

stat

(x)≠◻P(x)} ≤ Os(CR−q).
Combining the three previous displays with q chosen large enough (here we need q ≥ 2d2 + d

2
), the

Cauchy-Schwarz inequality and (1.12), we obtain

∣∫
B

R2(x′)
(∇ [χp]ηP (x) −∇ [χp]ηPk

stat

(x))ΦR(x − x′)dx∣1{∃x∈B
R2(x′) ∶◻Pk

stat

(x)≠◻P(x)}
≤ Os (CR− d

2 ) ,
which yields in particular

E

⎡⎢⎢⎢⎢⎣
∣∫

B
R2(x′)

(∇ [χp]ηP (x) −∇ [χp]ηPk
stat

(x))ΦR(x − x′)dx∣1{∃x∈B
R2(x′) ∶◻Pk

stat

(x)≠◻P(x)}
⎤⎥⎥⎥⎥⎦
≤ CR− d

2 .

We now focus on estimating the second term on the right-hand side of (3.11). With the same
computation as the one we just wrote, we obtain,

∫
B

R2 (x′)
∣∇ [χp]ηP (x) −∇ [χp]ηPk

stat

(x)∣ dx ≤ Os (CR2d2+2d) ,
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indeed the proof is the same, we only need to replace ∫B
R2(x′)ΦR(x−x′)dx by CR2d in (3.12). Since

this result is true for any R ≥ 1, we obtain, for any n ∈ N,
∫

C∞∩(◻n+1∖◻n)
∣∇ [χp]ηP (x) −∇ [χp]ηPk

stat

(x)∣ dx ≤ ∫
C∞∩B3n

∣∇ [χp]ηP (x) −∇ [χp]ηPk
stat

(x)∣ dx
≤ Os (C3n(d2+d)) .

This allows the computation

E [∣∫
Rd∖B

R2 (x′)
(∇ [χp]ηP (x) −∇ [χp]ηPk

stat

(x))ΦR(x − x′)dx∣]
≤

+∞
∑

n=⌊2 log3(R)⌋
E [exp(−32n

R2
)R−d∫

C∞∩(◻n+1∖◻n)
∣∇ [χp]ηP (x) −∇ [χp]ηPk

stat

(x)∣ dx]

≤
+∞
∑

n=2 log3(R)
exp(−32n

R2
)R−d∣p∣3n(d2+d)

≤ C exp (−C−1R2) .
Combining the estimates of the first and the second terms of the right-hand side completes the proof
of Step 1.

Remark 3.4. The same proof shows the stronger result : for each q > 0, there exists C ∶=
C(d,p, λ, q) <∞ such that for each R ≥ 1 and k ∈ N such that 3k ≤ R 1

2 < 3k+1,
E [∣∇(ΦR ∗ [χp]ηP) (x′) −∇(ΦR ∗ [χp]ηPk

stat

)(x′)∣] ≤ CR−q
but the proof of Theorem 1 only requires the result with q = d

2
.

Step 2. We prove the main result of this step by combining the stationarity property (3.10) with
the sublinear growth of the corrector. First notice that by (1.14), we have, for each R > 1,

osc
C∞∩BR

χp ≤ Os (CR1−δ) .
By the Stokes formula we have, for each n ∈ N, large enough (depending on the environment)

∣∫
x′+(− 3nk

2
, 3

nk

2
)d ∇ [χp]ηPk

stat

(x)dx∣ =
RRRRRRRRRRRR∫∂(x′+(− 3nk

2
, 3

nk

2
)d) [χp]ηPk

stat

(x)n(x)dx
RRRRRRRRRRRR

≤ 3kn(d−1) osc
C∞∩B3kn

(x′)χp

≤ 3kn(d−1)Os (C3kn(1−δ))
≤ Os (C3kn(d−δ)) .

This yields in particular

∣E [∫
x′+(− 3nk

2
, 3

nk

2
)d ∇ [χp]ηPk

stat

(x)dx]∣ ≤ C3kn(d−δ)

Or we also have, by (3.10).

E [∫
x′+(− 3k

2
, 3

k

2
)d ∇ [χp]ηPk

stat

(x)dx] = ∑
z∈x′+(3kZd∩◻kn)

E [∫
z+(− 3k

2
, 3

k

2
)d ∇ [χp]ηPk

stat

(x)dx]

=
3dkn

3dk
E [∫

x′+(− 3k

2
, 3

k

2
)d ∇ [χp]ηPk

stat

(x)dx] .
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Combining the two previous results shows

∣E [∫
x′+(− 3k

2
, 3

k

2
)d ∇ [χp]ηPk

stat

(x)dx]∣ ≤ C3dk3−knδ.

Sending n to ∞ shows

∣E [∫
x′+(− 3k

2
, 3

k

2
)d ∇ [χp]ηPk

stat

(x)dx]∣ = 0
and the proof is complete.

Step 3. First notice that

E [(ΦR ∗∇ [χp]ηPk
stat

)(x′)] = (ΦR ∗E [∇ [χp]ηPk
stat

]) (x′).
By (3.10), the function

f ∶ R
d → R

d

x ↦ E [∇ [χp]ηPk
stat

(x)]
is 3kZd-periodic, consequently there exists (an)n∈Zd ∈ (Cd)Zd

such that

f(x) = ∑
n∈Zd

an exp(2iπn ⋅ x
3k

) .
With this formula, the previous display can be rewritten

(ΦR ∗ E [∇ [χp]ηPk
stat

]) (x′) = ∑
n∈Zd

an∫
Rd

ΦR(x − x′) exp (2iπn ⋅ x
3k

) dx.
Or, we know that

∫
Rd

ΦR(x − x′) exp (2iπn ⋅ x
3k

) dx = π d
2 exp(2iπRn ⋅ x′

3k
) exp(− ∣πRn∣2

32k
) .

Combining the previous displays proves the inequality

(ΦR ∗E [∇ [χp]ηPk
stat

]) (x′) = ∑
n∈Zd

anπ
d
2 exp(2iπRn ⋅ x′

3k
) exp(− ∣πRn∣2

32k
) .

Notice that the main result of Step 2 is equivalent to the following equality

a(0,⋯,0) = 0.
Using this relation and the Cauchy-Schwarz inequality, we obtain

(3.14) ∣(ΦR ∗E [∇ [χp]ηPk
stat

]) (x′)∣2 ≤ C ⎛⎝ ∑
n∈Zd∖(0,⋯,0)

∣an∣2⎞⎠
⎛
⎝ ∑
n∈Zd∖(0,⋯,0)

exp(−2 ∣πRn∣2
32k

)⎞⎠ .
In particular, since k was chosen such that 3k ≤ R 1

2 < 3k+1, we have

(3.15) ∑
n∈Zd∖(0,⋯,0)

exp(−2 ∣πRn∣2
32k

) ≤ C exp (−C−1R) .
Moreover, we have

∑
n∈Zd

∣an∣2 = ∫(− 3k

2
, 3

k

2
)d ∣E [∇ [χp]ηPk

stat

(x)]∣2 dx
≤ E [∫(− 3k

2
, 3

k

2
)d ∣∇ [χp]ηPk

stat

(x)∣2 dx] .
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As in Step 1, we define

U0 ∶= ⋃
x∈◻k

◻P(x), U1 ∶= ⋃
◻∈P,dist(◻,U)≤1

◻ and U ∶= ⋃
◻∈P,dist(◻,U1)≤1

◻

to obtain the estimate, for each x ∈ (−3k

2
, 3

k

2
)d,

∣∇ [χp]ηPk
stat

(x)∣ ≤ ∫
C∞∩U

∣∇χp∣ (y)dy.
As in Step 1, we define

R′ ∶= inf {R > 0 ∶ U ⊆ BR} ,
and we fix some z ∈ Zd such that U ⊆ BR′(z). The same computation as (3.13) yields

∫
C∞∩U

∣∇χp∣2 (y)dy ≤ C ∣U ∣∣p∣2 +C ∣p∣2max (X ,R′)d
and

∣U ∣ ≤ C ∑
x∈◻k

size (◻P(x))d ≤ Os (C3kd) .
Similarly, we have the crude bound

R′ ≤ C (3k + size (◻P(0))) ≤ Os (C3k) .
Combining the previous displays shows

∫(− 3k

2
, 3

k

2
)d ∣∇ [χp]ηPk

stat

(x)∣2 dx ≤ 3kd (∫
C∞∩U

∣∇χp∣ (y)dy)2

≤ 3kd∣U ∣∫
C∞∩U

∣∇χp∣2 (y)dy
≤ C3kd∣U ∣ (∣U ∣ +max (X ,R′)d)

By (1.12), this gives

∫(− 3k

2
, 3

k

2
)d ∣∇ [χp]ηPk

stat

(x)∣2 dx ≤ Os (C ∣p∣233kd) .
Taking the expectation yields

∑
n∈Zd

∣an∣2 ≤ E [∫(− 3k

2
, 3

k

2
)d ∣∇ [χp]ηPk

stat

(x)∣2 dx] ≤ C33kd.

Combining this with (3.14) and (3.15), we obtain

∣(ΦR ∗E [∇ [χp]ηPk
stat

]) (x′)∣2 ≤ CR 3d
2 exp (−C−1R) ≤ C exp (−C−1R) ,

where we increased the value of the constant C in the second inequality to absord the term R
3d
2 .

This implies in particular the main result of Step 3 and completes the proof of Result 1.

Proof of Result 2. We recall Proposition 2.18 and the notation X = ∇(ΦR ∗ [χp]ηP) (x′). Given

an environment a ∈ Ω and an edge e = (x, y) ∈ Ed, we want to estimate (X −X ′e)2. To do so, we
need to understand how changing the value of the edge e can impact the infinite cluster C∞ and the
partition P. This is studied in the following lemma.

Lemma 3.5. There exist two constants C0 ∶= C(d) <∞ and C ∶= C0(d) <∞ such that for each edge
e = (x, y) ∈ Ed, environments a, ã ∈ Ω satisfying a(e′) = ã(e′) for each edge e′ ∈ Ed ∖ {e} and for
every z ∈ Zd ∖B (x,C0 size (◻P(x))),

size (◻P(ã)(z)) ≤ C size (◻P(a)(x)) .
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Moreover, if z ∈ Zd ∖B (x,C0 size (◻P(x))) then
size (◻P(ã)(z)) = size (◻P(a)(z)) .

Proof of Lemma 3.5. The main ingredients of the proof are the following:

(1) If a good cube◻ ∈ P∗ is such that 3◻∩{x, y} = ∅ then ◻ is a good cube under the environment
ã.

(2) By the properties of the partition P, every cube ◻ ∈ P which does not contain x nor y is
crossable under the environment ã. The predecessors of ◻P(x) and ◻P(y) are also crossable
under the environment ã.

(3) Notice that by resampling one edge we cannot create an isolated cluster which is not con-
nected to C∞ of size larger than C size(◻P(x)), for some C0 ∶= C0(d) <∞. In particular, there
exists a constant C ∶= C(d) <∞ such that every good cube of size larger than C size (◻P(x))
under the environment a satisfies (ii) of Definition 2.6 under the environment ã.

(4) There exists a constant C ∶= C(d) <∞ such that every cube of size larger than C size (◻P(x))
intersecting ◻P(x) is crossable by a cluster which does not intersect ◻P(x).

(5) If, for y ∈ B (x,C0 size (◻P(x))), ◻P(y) is larger than C size (◻P(x)), then x belongs to◻P(y) or one of its neighbors and thus size (◻P(y)) ≤ C size (◻P(x)).
Combining these properties shows that every good cube ◻ under the environment a satisfying
size(◻) ≥ C size (◻P(x)) is a good cube under the environment ã. It is then straightforward to see
from the previous remarks and the construction of the partition P in the proof of Proposition 2.1
that the conclusion of the lemma is valid. �

To estimate (X −X ′e)2, we introduce an extended probability space by doubling the variables(Ω′,F ′,P′) = (Ω ×Ω,F ⊗F ,P ⊗ P). For a given environment (a(e), ã(e))e∈Bd ∈ Ω′, we denote
by pr1 (resp. pr2) the first (resp. second) projection, i.e, pr1 ((a(e), ã(e))) = (a(e))e∈Bd (resp.
pr2((a(e), ã(e))) = (ã(e))e∈Bd). Any random variable Z defined on (Ω,F ,P) can be seen as a random
variable defined on (Ω′,F ′,P′) by the formula Z = Z ○ pr1, i.e, Z ((a(e), ã(e))e∈Bd) = Z ((a(e))e∈Bd).
All the random variables in this proof must be considered as random variable on (Ω′,F ′,P′), unless
explicitely stated.

We will denote E
′ the expectation of a random variable Z ∶ Ω′ → R with respect to the measure

P
′. For a constant C ∈ (0,∞) and an exponent s > 0, we denote

Z ≤ O′s(C) if and only if E′ [exp ((Z
C
)s)] ≤ 2.

In particular any random variable Z defined on (Ω,F ,P) satisfying Z ≤ Os(C) satisfies, as a random
variable defined on (Ω′,F ′,P′), Z ≤ O′s(C).

Given an enlarged environment given the enlarged environment (a(e), ã(e))e∈Bd , we denote by a

the environment (a(e))e∈Bd and by ae
′
the environment ((a(e))e∈Bd∖{e′}, ã(e′)). Similarly, given Z

a random variable defined on Ω and e′ ∈ Bd an edge, we denote by Ze the random variable defined
on (Ω′,F ′,P′) by the formula, for each (a(e), ã(e))e∈Bd ∈ Ω′

Ze′ ((a(e), ã(e))e∈Bd) ∶= Z (ae′) .
We give a similar definition for partitions, Pe′ will denote the random partition of Zd under the
environment ae

′
, and for the infinite cluster (P′ almost surely there exists a unique infinite cluster

under the environment ae
′
which will be denoted C

e′∞).
To prove Result 2, we will prove the following estimate

(3.16) ∑
e∈Bd
∣∇(ΦR ∗ ([χp]ηP − [χp]η,eP )) (x′)∣2 ≤ O′s ( CRd

) .
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This is enough to prove Result 2, indeed with the same argument as in [5, Lemma 2.3],

E

⎡⎢⎢⎢⎢⎣
exp
⎛
⎝
⎛
⎝
∑e∈Bd (X −X ′e)2

CR−d
⎞
⎠
s⎞
⎠
⎤⎥⎥⎥⎥⎦

= ∫
Ω
exp
⎛⎜⎝
⎛⎜⎝
∑e∈Bd ∣∫Ω∇(ΦR ∗ ([χp]ηP − [χe

p]ηPe)) (x′)dP(ã)∣2
CR−d

⎞⎟⎠
s⎞⎟⎠ dP(a)

≤ ∫
Ω
exp
⎛⎜⎝
⎛⎜⎝∫Ω

∑e∈Bd ∣∇(ΦR ∗ ([χp]ηP − [χe
p]ηPe)) (x′)∣2

CR−d dP(ã)⎞⎟⎠
s⎞⎟⎠ dP(a)

≤ C ∫
Ω
∫
Ω
exp
⎛⎜⎝
⎛⎜⎝
∑e∈Bd ∣∇(ΦR ∗ ([χp]ηP − [χe

p]ηPe)) (x′)∣2
CR−d

⎞⎟⎠
s⎞⎟⎠ dP(a)dP(ã)

≤ CE
′
⎡⎢⎢⎢⎢⎢⎣
exp
⎛⎜⎝
⎛⎜⎝
∑e∈Bd ∣∇(ΦR ∗ ([χp]ηP − [χe

p]ηPe)) (x′)∣2
CR−d

⎞⎟⎠
s⎞⎟⎠
⎤⎥⎥⎥⎥⎥⎦

≤ 2C.
This yields, after redefinition of the constant C,

∑
e∈Bd
(X −X ′e)2 ≤ Os ( C

Rd
) .

Before starting the proof of (3.16), we need to give a meaning to the quantity, for e = {x, y} ∈ Bd,
[χe

p]ηP
as a random variable defined on Ω′. Since we do not necessarily have C∞ = C

e∞, we cannot simply
write [χe

p]P (x) = χe
p (z (◻P(x))). Nevertheless, since the two environments ((a(e′))e′∈Bd∖{e}, ã(e))

and (a(e′))e′∈Bd are only different by one edge, we have either C∞ ⊆ C
e∞ or C

e∞ ⊆ C∞. In the former

case, we can define [χe
p]P (x) = χe

p (z (◻P(x))). In the latter case, C∞ ∖ C
e∞ is connected to C∞ by

the edge e. Without loss of generality, we denote by e = (x, y) and assume that x ∈ C
e∞. One can

then check that the function

(3.17)
w ∶ C∞ → R

z ↦ χe
p(z)1{z∈C e

∞} + (p ⋅ (x − z) + χe
p(x))1{z∉C e

∞}
is a solution of

−∇ ⋅ (a∇ (p ⋅ x +w)) = 0
and more precisely that x → p ⋅ x +w(x) ∈ A1(C∞). In particular, this gives

w = χp + c
Thus we can define, [χe

p]P = [w]P .
We then extend [χe

p]P to a piecewise constant function on R
d and convolve it with η, as in Defini-

tion 3.1, to obtain a smooth function [χe
p]ηP and it satisfies in particular

(3.18) ∇ [χe
p]ηP = ∇ [χp]ηP .

To prove the estimate (3.16), we split the sum into two terms

(3.19) ∣∇(ΦR ∗ ([χp]ηP − [χe
p]ηPe)) (x′)∣2

≤ 2 ∣∇(ΦR ∗ ([χe
p]ηP − [χe

p]ηPe)) (x′)∣2 + 2 ∣∇(ΦR ∗ ([χp]ηP − [χe
p]ηP)) (x′)∣2 .
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Step 1. We estimate the first term on the right-hand side the following way, using Proposition 3.2,
Lemma 3.5 and Proposition 2.9 with s = 1,

∣(ΦR ∗ (∇ [χe
p]ηP −∇ [χe

p]ηPe)) (x′)∣2
≤ (∫

Zd∩B(x,C size(◻P(x))) ∣∇ [χ
e
p]P (y)∣ + ∣∇ [χe

p]Pe (y)∣ dy)2 sup
y∈B(x,C size(◻P(x)))

Φ2
R(y − x′)

≤ C (∫
C e
∞∩B(x,C size(◻P(x))) size (◻P(x))

d−1 (∣∇χe
p∣ (y) + 1) dy)

2

sup
y∈B(x,C size(◻P(x)))

Φ2
R(y − x′).

The ”+1” term on the right-hand side comes from the fact that we assumed ∣p∣ = 1 combined with
the definition of w in (3.17), in the case when C

e∞ ⊆ C∞. This gives

∣(ΦR ∗ (∇ [χe
p]ηP −∇ [χe

p]ηPe)) (x′)∣2
≤ C size (◻P(x))3d−2∫

C e
∞∩B(x,C size(◻P(x))) (∣∇χe

p∣2 (y) + ∣p∣2) dy sup
y∈B(x,C size(◻P(x)))

Φ2
R(y − x′).

Moreover, there exists a constant C(d) < ∞ such that, for each x ∈ Zd,

(3.20) exp(−∣x∣2) ≤ C 1

∣x∣ d+12 ∧ 1.
We denote by ζ the function on the right-hand side, i.e, ζ(x) ∶= C 1

∣x∣ d+12 ∧ 1. We similarly denote

ζR(x) = 1
Rd ζ ( xR). We will use this function instead of ΦR to complete the estimate of the term on

the right-hand side because, since it is decreasing slower than ΦR, it satisfies the following properties

sup
y∈B(x,C size(◻P(x)))

ζ2R(y − x′) ≤ C size (◻P(x))d+1 inf
y∈B(x,C size(◻P(x))) ζ

2
R(y − x′)

and

∑
x∈Zd

ζ(x − x′)2 < ∞.
In particular, the previous estimate can be rewritten

∣(ΦR ∗ (∇ [χe
p]ηP −∇ [χe

p]ηPe)) (x′)∣2
≤ C size (◻P(x))4d−1 ∫

C e
∞∩B(x,C size(◻P(x))) ζR(y − x

′)2 (∣∇χe
p∣2 (y) + 1) dy.

Summing over all the edges e ∈ Bd gives

∑
e∈Bd
∣(ΦR ∗ (∇ [χe

p]ηP −∇ [χe
p]ηPe)) (x′)∣2(3.21)

≤ C ∑
x∈Zd

size (◻P(x))4d−1 ∫
C e
∞∩B(x,C size(◻P(x))) ζR(y − x′)2 (∣∇χe

p∣2 (y) + 1) dy

≤ C ∑
y∈C e

∞

ζR(y)2 (∣∇χe
p∣2 (y) + 1)⎛⎝∑

x∈Zd

size (◻P(x))4d−1 1{y∈B(x,C size(◻P(x)))}
⎞
⎠ .

But, since for each x ∈ Zd, size (◻P(x)) ≤ O′s(C), we have

1{y∈B(x,C size(◻P(x)))} ≤ C
size (◻P(x))d+1∣x − y∣d+1 ≤ O′s(C)∣x − y∣d+1

and thus, by (1.12)

size (◻P(x))4d−1 1{y∈B(x,C size(◻P(x)))} ≤
O′s(C)∣x − y∣d+1 .
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Since ∑x∈Zd∖{y} 1
∣x−y∣d+1 < ∞, we can use (1.10) to obtain

(3.22) ∑
x∈Zd

size (◻P(x))4d−1 1{y∈B(x,C size(◻P(x)))} ≤ O′s(C).
Moreover, by (1.10) applied to the function u(x) = p ⋅ x + χp(x) and the Caccioppoli inequality, we

have, for each y ∈ Zd, and each R ≥ X e(y) ∶= X e((τya, τyã)),
∣∇χe

p(y)∣1{y∈C e
∞} ≤ C +CX e(y)d2 ∥∇u∥L2(C e

∞∩BXe(y))
≤ C +CX e(y)d2 ∥∇u∥L2(C e

∞∩BR)

≤ C + C
R
X e(y)d2 ∥u − (u)

C e
∞∩BR

∥L2(C e
∞∩BR).

By (1.14), we have

limsup
R→∞

1

R
∥u − (u)

C e
∞∩BR

∥L2(C e
∞∩BR) ≤ 1 a.s.

Combining the previous displays yields

∣∇χe
p(y)∣1{y∈C e

∞} ≤ C +CX e(y)d2 ,
which can be rewritten

(3.23) ∣∇χe
p(y)∣1{y∈C e

∞} ≤ O′s(C).
Injecting (3.22) and (3.23) into the previous computation (3.21) gives

∑
e∈Bd
∣(ΦR ∗ (∇ [χe

p]ηP −∇ [χe
p]ηPe)) (x′)∣2 ≤ C ∑

y∈Zd

ζR(y)2O′s(C).
Since ∑y∈Zd ζR(y)2 ≤ C

Rd , we can use (1.10) to obtain

∑
e∈Bd
∣(ΦR ∗ (∇ [χe

p]ηP −∇ [χe
p]ηPe)) (x′)∣2 ≤ O′s ( CRd

) .
This completes the proof of the estimate of the first term on the right-hand side of (3.19).

Step 2. We now estimate the second term on the right-hand side of (3.19)

∣(ΦR ∗ (∇ [χp − χe
p]ηP)) (x′)∣2 ≤ O′s ( CRd

) .
To prove this estimate, we need to distinguish three cases, we recall that we denoted e = (x, y).

Case 1. (x ∉ C∞ and y ∉ C∞) or a = ae. In that case, C∞ = C
e∞, and for each z ∈ C∞, χp(z) = χe

p(z).
In particular, this yields

∣(ΦR ∗ (∇ [χp − χe
p]ηP)) (x′)∣2 = 0.

Case 2. C∞ ≠ C
e∞. In that case, (3.18) is true. It implies

∣(ΦR ∗ (∇ [χp − χe
p]ηP)) (x′)∣2 = 0.

Case 3. x, y ∈ C∞ and C∞ = C
e∞ and a ≠ ae. We compute

−∇ ⋅ (a∇(χp − χe
p)) = ∇ ⋅ ((a − ae)∇(p ⋅ z + χe

p)) ,
which can be rewritten

(3.24) −∇ ⋅ (a∇(χp − χe
p)) = (a − ae) (x, y) (p ⋅ (x − y) + χe

p(x) − χe
p(y)) (δx − δy) .
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Recall the notation Ge introduced in Proposition 2.15. In the rest of the proof, we use the following
notation. If the edge e = (x, y) does not belong to the infinite cluster, i.e if a(e) = 0, then denote by
e1,⋯, en a path of edges of the infinite cluster linking x to y and denote by

(3.25) Ge ∶=
n

∑
i=1
Gei .

This function is the unique solution (up to a constant) of the equation

−∇ ⋅ a∇Ge = δx − δy.
We can solve (3.24) by using Proposition 2.15. Indeed the function χp − χe

p −(a − ae) (x, y) (p ⋅ (x − y) + χe
p(x) − χe

p(y))Ge is a-harmonic. Moreover, by the sublinear growth of

the corrector (1.15), the L2 bound on the gradient of the function Ge (2.16) and a version of the
Poincaré inequality on the percolation cluster (see for instance the proof of Proposition 2.17), one
can show that the function χp − χe

p − (a − ae) (x, y) (p ⋅ (x − y) + χe
p(x) − χe

p(y))Ge has a sublinear
growth. This implies, by [7, Theorem 2] that this function is constant. In particular, this shows

∇χp −∇χe
p = (a − ae) (x, y) (p ⋅ (x − y) + χe

p(x) − χe
p(y))∇Ge.

But, if ae(e) = ã(e) ≠ 0, we have the estimate, by (3.23),

∣χe
p(x) − χe

p(y)∣ ≤ ∣∇χe
p∣ (x) ≤ C (1 +X e(x)) d2

If ae(e) = ã(e) = 0, then there exists a path going from x to y which lays in ◻Pe(x) and its neighbors
(its neighbors because we may not have ◻Pe(x) = ◻Pe(y) or we may have x, y ∈ C∞ ∖ C∗ (◻Pe(x))).
Combining this remark with Lemma 3.5, we obtain

∣χe
p(x) − χe

p(y)∣ ≤ C ∫
C e
∞∩B(x,C size(◻P(x))) ∣∇χe

p∣ (z)dz
≤ C size (◻P(x))d ∥∇χe

p∥L2(C e
∞∩B(x,C size(◻P(x)))) .

With (1.14), the Caccioppoli inequality applied to the function u(z) = p ⋅ z + χe
p(z) and a similar

computation to the one we ran to get (3.23), we obtain

∥∇χe
p∥L2(C e

∞∩B(x,C size(◻P(x)))) ≤ C (1 +X e(x)) d2 .
Combining the two previous displays yields

∣χe
p(x) − χe

p(y)∣ ≤ C size (◻P(x))d (1 +X e(x)) d2 .
Thus

(3.26) ∣(ΦR ∗ (∇ [χp − χe
p]ηP)) (x′)∣2

≤ C ∣p∣2 ∣(ΦR ∗ (∇ [Ge]ηP)) (x′)∣2 size (◻P(x))2d (1 +X e(x))d .
The next step in the proof consists in getting rid of the coarsening in the right-hand side. To do
so, we prove that there exist a constant C ∶= C(d) < ∞ and a (random) vector field γR ∶ Ed → R

satisfying, for each e′ = (x, y) ∈ Ed,

∣γR(e′)∣ ≤ C size(◻P(x))2dζR (x − x′)
such that for each function u ∶ C∞ → R satisfying ⟨∇u,∇u⟩

C∞
,

(3.27) (ΦR ∗∇ [u]ηP) (x′) = ⟨γR,∇u⟩C∞ .
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We first compute

(ΦR ∗∇ [u]ηP) (x′) = ∫
Rd

ΦR (t − x′)∇ [u]ηP (t)dx
= ∫

Rd
ΦR (t − x′)∫

B 1
2

[u]P (t − s)∇η(s)dsdt
= ∫

Rd
ΦR (t − x′)∫

B 1
2

([u]P (t − s) − [u]P (t))∇η(s)dsdt.
But [u]P (t) and [u]P (t − s) are only different if t and t − s belong to two different cubes of the
partititon P, in that case, we have

[u]P (t − s) − [u]P (t) = u(z(◻P(t − s))) − u(z(◻P(t))).
Recallthat there exists a path between z(◻P(t)) and z(◻P(t − s)) which lies entirely in ◻P(t) ∪◻P(t − s), which will be denoted pt,t−s ⊆ Ed. Summing over the edges along this path, we find that

u(z(◻P(t))) − u(z(◻P(t − s))) = ∑
e′∈pt,t−s

∇u(e′) = ∑
e′∈Ed

∇u(e′)1{e′∈pt,t−s}.
If t and t − s belongs to the same cube of the partititon P, we keep the same notation with the
convention pt,t−s = ∅. Consequently, we have for each (t, s) ∈ Rd ×B 1

2

,

[u]P (t − s) − [u]P (t) = ∑
e′∈Ed

∇u(e′)1{e′∈pt,t−s}.
With this formula, we can rewrite

(ΦR ∗∇ [u]ηP) (x′) = ∫
Rd
∫
B 1

2

ΦR (t − x′) ([u]P (t − s) − [u]P (t))∇η(s)dsdt
= ∫

Rd
∫
B 1

2

ΦR (t − x′) ∑
e′∈Ed

∇u(e′)1{e′∈pt,t−s}∇η(s)dsdt
= ∑

e′∈Ed

∇u(e′)∫
Rd
∫
B 1

2

ΦR (t − x′)1{e′∈pt,t−s}∇η(s)dsdt
= ⟨γR,∇u⟩C∞

with for each e′ ∈ Ed

γR(e′) = ∫
Rd
∫
B 1

2

ΦR (t − x′)1{e′∈pt,t−s}∇η(s)dsdt.
But, for each (t, s) ∈ Rd × B 1

2

such that ◻P(t − s) ≠ ◻P(t), the path between z(◻P(t − s)) and

z(◻P(t)) lies entirely in ◻P(t − s) ∪◻P(t). In particular e′ = (x, y) ∈ pt,t−s only if t ∈ ∂◻P(x) +B 1

2

,

this shows

γR(e′) = ∫
∂◻P(x)+B 1

2

∫
B 1

2

ΦR (t − x′)1{e′∈pt,t−s}∇η(s)dsdt
and thus, we have the estimate,

∣γR(e′)∣ ≤ C ∫
∂◻P(x)+B 1

2

∫
B 1

2

ΦR (t − x′) dsdt
≤ ∫

∂◻P(x)+B 1
2

ΦR (t − x′) dt.
As in (3.20),one has for each x ∈ Rd,

exp(−∣r∣2) ≤ ζ(x).
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The function ζ satisfies the inequality, for each triadic cube ◻ ∈ T ,
sup

∂◻+B 1
2

ζR ≤ C size (◻) d+12 inf◻ ζR.

As a consequence of the two previous displays, we can rewrite the previous estimate

∣γR(e′)∣ ≤ ∫
∂◻P(x)+B 1

2

ΦR (t − x′) dt(3.28)

≤ C size(◻P(x))d−1 sup
∂◻+B 1

2

ζR(⋅ − x′)
≤ C size(◻P(x))2d size (◻)d+1 inf◻ ζR(⋅ − x′)
≤ C size(◻P(x))2dζR(x − x′),

which is the desired estimate. This completes the proof of (3.27).
Applying this property with u = ∇Ge, the inequality (3.26) becomes

∣(ΦR ∗ (∇ [χp − χe
p]ηP)) (x′)∣2 ≤ C ∣p∣2 ∣⟨γR,∇Ge⟩

C∞
∣2 size (◻P(x))2d (1 +X e(x))d .

Applying Proposition 2.16, we denote by wγR ∶ C∞ → R the solution of

−∇ ⋅ (a∇wγR) = −∇ ⋅ γR in C∞
so that, for each e′ ∈ Ea

d

∇wγR(e′) = ∑
e∈Ea

d

γR(e)∇Ge (e′) = ∑
e∈Ea

d

γR(e)∇Ge′(e) = ⟨γR,∇Ge′⟩
C∞

.

This implies in particular, in both cases a(e) = 0 and a(e) ≠ 0,
wγR(x) −wγR(y) = ⟨γR,∇Ge⟩

C∞
.

This gives consequently

∣(ΦR ∗ (∇ [χp − χe
p]ηP)) (x′)∣2 ≤ C ∣wγR(x) −wγR(y)∣2 size (◻P(x))2d (1 +X e(x))d .

We now combine cases 1, 2 and 3 to obtain the following estimate, using the new notation, for
each x ∈ Zd, Bxd ∶= {{x, y} ∶ y ∈ Zd, y ∼ x} the set of bonds linking x to another vertex of Zd.

∑
e∈Bd
∣(ΦR ∗ (∇ [χp − χe

p]ηP)) (x′)∣2

≤ C ∑
x,y∈C∞,∣x−y∣1=1

∣wγR(x) −wγR(y)∣2 size (◻P(x))2d ∑
e∈Bx

d

(1 +X e(x))d .
Using that for each x, y ∈ C∞ with ∣x − y∣1 = 1, there exists a path which is contained in C∞, ◻P(x)
and its neighbors (the path is simply (x, y) if a({x, y}) ≠ 0), we obtain

(3.29) ∑
e∈Bd
∣(ΦR ∗ (∇ [χp − χe

p]ηP)) (x′)∣2

≤ C ∫
C∞

∣∇wγR ∣2 (z) size (◻P(z))3d

×
⎛⎜⎝ ∑
x∈Zd,dist(◻P(x),◻P(z))≤1,e∈Bx

d

(1 +X e(x))d⎞⎟⎠ dz.
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To estimate the term on the right-hand side, we first notice

∫
C∞

∣∇wγR ∣2 (z)dz ≤ ⟨∇wγR ,a∇wγR⟩C∞
= ⟨γR,∇wγR⟩C∞
≤ (∫

C∞

γ2R(z)dz)
1

2 (∫
C∞

∣∇wγR ∣2 (z)dz)
1

2

.

This yields by (3.28) and (1.10)

∫
C∞

∣∇wγR ∣2 (z)dz ≤ C ∫
C∞

γ2R(z)dz
≤ C ∫

Zd
γ2R(z)dz

≤ C ∫
Zd
C size(◻P(x))4dζR (x − x′) dx

≤ O′s ( CRd
) .

There remains to estimate the term size (◻P(z))3d∑x∈Zd,dist(◻P(x),◻P(z))≤1,e∈Bx
d
(1 +X e(x))d on

the right-hand side of (3.29). To do so, we need to prove a minimal scale statement and a Meyers
estimate as stated below.

Lemma 3.6 (Minimal scale). There exists a constant C ∶= C(d,p, λ) < ∞, an exponent s ∶=
s(d,p, λ) > 0 and a random variable M1 ≤ O′s(C) such that for each m ∈ N satisfying 3m ≥M1,

(3.30) 3−dm ∑
z∈◻m

size (◻P(z)) 3d(2+ε)ε

⎛⎜⎝ ∑
x∈Zd,dist(◻P(x),◻P(z))≤1, e∈Bx

d

(1 +X e(x))d⎞⎟⎠
2+ε
ε

≤ C

where ε ∶= ε(d,p, λ) is the exponent which appears in Proposition 2.14.

Definition 3.7 (The partition U). We define the following family of “good cubes”

G ∶= {◻ ∈ T ∶ (2.14) and (3.30) hold}
in which a deterministic Meyers estimate and a minimal scale inequality hold. By Lemma 3.6 and
Proposition 2.14, this family satisfies the assumption of Proposition 2.2 (but not the assumption (2.1)
of Proposition 2.1 due to the random variable X which appears (3.30), consequently Proposition 2.1
cannot be applied). We denote by U the partition thus obtained. Moreover, by (iii) of Proposition 2.2,
one has the inequality

size (◻U(x)) ≤ Os(C),
for some exponent s ∶= s(d,p, λ) > 0 and some constant C ∶= C(d,p, λ) <∞.
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We postpone the proof of Lemma 3.6 and complete the proof of Result 2. Using the partition U ,
we have

∫
C∞

∣∇w∣2 (z) size (◻P(z))3d ⎛⎜⎝ ∑
x∈Zd,dist(◻P(x),◻P(z))≤1, e∈Bx

d

(1 +X e(x))d⎞⎟⎠ dz
= ∑
◻∈U ∫◻∩C∞

∣∇w∣2 (z)

× size (◻P(z))3d ⎛⎜⎝ ∑
x∈Zd,dist(◻P(x),◻P(z))≤1, e∈Bx

d

(1 +X e(x))d⎞⎟⎠ dz

≤ ∑
◻∈U
∣◻∣ ( 1

∣◻∣ ∫◻∩C∞ ∣∇w∣
2+ε (z)dz)

2

2+ε

×
⎛⎜⎜⎝

1

∣◻∣ ∑z∈◻ (size (◻P(z)))
3d(2+ε)

ε

⎛⎜⎝ ∑
x∈Zd,dist(◻P(x),◻P(z))≤1, e∈Bx

d

(1 +X e(x))d⎞⎟⎠
2+ε
ε ⎞⎟⎟⎠

ε
2+ε

≤ C ∑◻∈U
⎛⎜⎝∫ 4

3
◻∩C∞ ∣∇w∣

2 (x)dx + ∣◻∣ ⎛⎝
1

∣4
3
◻∣ ∫ 4

3
◻∩C∞ γ

2+ε
R (x)dx⎞⎠

2

2+ε⎞⎟⎠ .

To estimate the term on the right-hand side notice that since 4
3
◻ is included in ⋃◻′∈U ,dist(◻′,◻)≤1◻′

and the cardinality of the set {◻′ ∈ U ∶ dist(◻′,◻) ≤ 1} is bounded by a constant depending only on
the dimension d. This leads to

∑
◻∈U ∫ 4

3
◻∩C∞ ∣∇w∣

2 (x)dx ≤ C ∫
C∞

∣∇w∣2 (x)dx
≤ O′s ( CRd

) .
To estimate the second term on the right-hand side, we use the following inequality: for any finite
sequence of positive numbers (bi)0≤i≤n ∈ Rn+1+ and any t ≥ 1,

n

∑
i=0
bti ≤ (

n

∑
i=0
bi)

t

to obtain

∑
◻∈U
∣◻∣ ⎛⎝

1

∣4
3
◻∣ ∫ 4

3
◻∩C∞ γ

2+ε
R (x)dx⎞⎠

2

2+ε

≤ C ∑
◻∈U
∣◻∣1− 2

2+ε ∫ 4

3
◻∩C∞ γ

2
R(x)dx

≤ C ∑
x∈C∞

γR(x)2 size (◻U(x))d(1− 2

2+ε
)

≤ C ∑
x∈Zd

ζR(x)2 size (◻P(x))4d size (◻U(x))d(1− 2

2+ε
)
.

Using that size (◻U(x)) , size (◻P(x)) ≤ O′s(C) and (1.10) we obtain

∑
◻∈U
∣◻∣ ⎛⎝

1

∣4
3
◻∣ ∫ 4

3
◻∩C∞ γ

2+ε
R (x)dx⎞⎠

2

2+ε

≤ O′s ( C
Rd
)

and the proof of Result 2, and thus of Proposition 3.3, is complete.
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4. Optimal Lq estimates for first order correctors

We now show how to obtain the Lq optimal scaling bounds on the correctors, Theorem 1, from
Proposition 3.3. Theorem 1, is restated below and proved in this section.

Theorem 1 (Optimal Lq estimates for first order correctors). There exist two exponents s ∶=
s(d,p, λ) > 0, k ∶= k(d,p, λ) < ∞ and a constant C(d,p, λ) < ∞ such that for each R ≥ 1, each
q ≥ 1 and each p ∈ Rd,

(4.1) (R−d∫
C∞∩BR

∣χp − (χp)C∞∩BR
∣q)

1

q ≤
⎧⎪⎪⎨⎪⎪⎩
Os (C ∣p∣qk log 1

2 R) if d = 2,

Os (C ∣p∣qk) if d ≥ 3.

Before starting the proof, we mention an important caveat. In this section we need to keep track
of the dependence on the parameter q of the constants. We will thus be careful to track every
dependence in the q variable. This will be useful in the next section to obtain the L∞ bounds on
the corrector. In particular in this section the exponent k may vary from line to line but will always
remain finite and will depend solely on the variables d,p, λ.

Proof of Theorem 1. As in the proof of Proposition 3.3, we assume that ∣p∣ = 1 to simplify the
computations. Additionally, note that by the Jensen inequality, it is enough to prove Theorem 1 in
the case q ≥ 2. We consequently make this assumption for the rest of the proof. The proof of this
theorem is split into two steps.

● In Step 1, we use Proposition 3.3 and the multiscale Poincaré inequality, Proposition 2.19,
to show, for each R ≥ 1,

(⨏
BR

∣[χp]P − ([χp]P)BR
∣q)

1

q ≤
⎧⎪⎪⎨⎪⎪⎩
Os (Cqk log 1

2 R) if d = 2,

Os (Cqk) if d ≥ 3,

with C,k and s depending only on s,p, λ.
● In Step 2, we remove the coarsening, thanks to Proposition 2.9, to eventually obtain

(R−d∫
C∞∩BR

∣χp − (χp)C∞∩BR
∣q)

1

q ≤
⎧⎪⎪⎨⎪⎪⎩
Os (Cqk log 1

2 R) if d = 2,

Os (Cqk) if d ≥ 3.

This is precisely (4.1).

Step 1. Fix some R ≥ 1. The main idea of this step is to apply Proposition 2.19 to the function
u = [χp]ηP . The assumption of Proposition 2.19 is clearly satisfied (it is a consequence of the
construction of [χp]ηP and of the sublinearity property (1.15)). Consequently, we have, for each
R ≥ 1,

∥[χp]ηP − ([χp]ηP)BR
∥
Lq(BR) ≤ C

⎛
⎝∫Rd

e−
∣x∣
2R (∫ 2R

0
r ∣Φr ∗ ∇ [χp]ηP (x)∣2 dr)

q

2

dx
⎞
⎠

1

q

.

To study the term on the right-hand side, we split the interior integral into two terms

(4.2) ∫
2R

0
r ∣Φr ∗∇ [χp]ηP (x)∣2 dr = ∫ 1

0
r ∣Φr ∗ ∇ [χp]ηP (x)∣2 dr + ∫ 2R

1
r ∣Φr ∗∇ [χp]ηP (x)∣2 dr.

But, by Proposition 3.3, we know that for each r ≥ 1 and each x ∈ Rd,

∣Φr ∗ ∇ [χp]ηP (x)∣ ≤ Os (Cr− d
2 ) .

This implies,

∣Φr ∗ ∇ [χp]ηP (x)∣2 ≤ Os (Cr−d) .
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The second term on the right-hand side can be estimated by using Proposition 3.3 and the inequal-
ity (1.10), this yields

∫
2R

1
r ∣Φr ∗∇ [χp]ηP (x)∣2 dr ≤ { Os (C logR) if d = 2,Os (C) if d ≥ 3.

To estimate the first term on the right-hand side of (4.2), we use (3.2) which reads, for each x ∈ Rd

∣∇ [χp]ηP (x)∣ ≤ Os (C) .
By this and (1.10), we obtain

∫
1

0
r ∣Φr ∗ ∇ [χp]ηP (x)∣2 dr ≤ Os (C) .

Combining the previous displays shows

∫
2R

0
r ∣Φr ∗∇ [χp]ηP (x)∣2 dr ≤ { Os (C logR) if d = 2,Os (C) if d ≥ 3.

for some exponent s = s(d,p, λ) > 0 and some constant C ∶= C(d,p, λ) < ∞ depending only on the
parameters d,p and λ. We then obtain

(∫ 2R

0
r ∣Φr ∗∇ [χp]ηP (x)∣2 dr)

q

2 ≤
⎧⎪⎪⎪⎨⎪⎪⎪⎩
O 2s

q
(C q

2 (logR) q2 ) if d = 2,

O 2s
q
(C q

2 ) if d ≥ 3.

We then apply (1.10) and keep track of the constant thanks to (1.11), we obtain

∫
Rd
R−de−

∣x∣
2R (∫ 2R

0
r ∣Φr ∗ ∇ [χp]ηP (x)∣2 dr)

q

2

dx ≤
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
O 2s

q
(( q

s ln(2))
q

s
C

q

2 (logR) q2) if d = 2,

O 2s
q
(( q

s ln(2))
q

s
C

q

2 ) if d ≥ 3.

This eventually yields

⎛
⎝∫Rd

R−de−
∣x∣
2R (∫ 2R

0
r ∣Φr ∗∇ [χp]ηP (x)∣2 dr)

q

2

dx
⎞
⎠

1

q

≤
⎧⎪⎪⎨⎪⎪⎩
Os (q 1

sC (logR) 12 ) if d = 2,

Os (q 1

sC) if d ≥ 3.

For some constant C ∶= C(d,p, λ) <∞ and some exponent s ∶= s(d,p, λ) > 0 depending only on d,p, λ
and not on q. We now set k ∶= 1

s
+ 3

4
. This exponent depends only on the parameters d,p, λ. By

applying Proposition 2.19, we obtain

(4.3) (⨏
BR

∣[χp]ηP − ([χp]ηP)BR
∣q)

1

q ≤
⎧⎪⎪⎨⎪⎪⎩
Os (Cqk log 1

2 R) if d = 2,

Os (Cqk) if d ≥ 3,

for some exponents s ∶= s(d,p, λ) > 0, k ∶= k(d,p, λ) > 0 and a constant C ∶= C(d,p, λ) <∞. The next
goal is to remove the regularization by convolution par η. We first apply (3.2) to obtain

(⨏
BR

∣[χp]P − ([χp]ηP)BR
∣q)

1

q ≤ C (⨏
BR

∣[χp]ηP − ([χp]ηP)BR
∣q)

1

q

.

Note that by the triangle inequality and Jensen inequality, we have

(⨏
BR

∣[χp]P − ([χp]P)BR
∣q)

1

q ≤ 2 inf
a∈R (⨏BR

∣[χp]P − a∣q (x)dx)
1

q

≤ 2(⨏
BR

∣[χp]P − ([χp]ηP)BR
∣q)

1

q

≤ C (⨏
BR

∣[χp]ηP − ([χp]ηP)BR
∣q)

1

q

.
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Combining the previous estimates completes the proof of Step 1.
Step 2. We remove the coarsening, thanks to Proposition 2.9. We split the Lq norm of the

corrector into two terms,

(∫
C∞∩◻m

∣χp − (χp)C∞∩◻m
∣q (x)dx)

1

q ≤ (∫
C∞∩◻m

∣χp − (χp)C∞∩◻m
∣q (x)dx)

1

q

1{3m≥M2d(P)}

+ (∫
C∞∩◻m

∣χp − (χp)C∞∩◻m
∣q (x)dx)

1

q

1{3m≤M2d(P)}.

The reason we use the indicator 1{3m≤M2d(P)} is to be able to apply (2.5) in the computation below.
But first, we estimate the first term on the right-hand side, to do so we can use the L∞ bound (1.14)
(applied with δ = 0 to simplify the computation), this gives:

(⨏
C∞∩◻m

∣χp − (χp)C∞∩◻m
∣q (x)dx)

1

q

1{3m≤M2d(P)} ≤ ∥χp − (χp)C∞∩◻m
∥
L∞(C∞∩◻m) 1{3m≤M2d(P)}

≤ Os(C3m)1{3m≤M2d(P)}.

Since 1{3m≤M2d(P)} ≤ Os (3−m), we obtain, for some possibly smaller exponent s (depending only on
d,p),

(4.4) (⨏
C∞∩◻m

∣χp − (χp)C∞∩◻m
∣q (x)dx)

1

q

1{3m≤M2d(P)} ≤ Os(C).
To estimate the second term in the right-hand side, we compute

(⨏
C∞∩◻m

∣χp − (χp)C∞∩◻m
∣q (x)dx)

1

q

1{3m≥M2d(P)}(4.5)

≤ C1{3m≥M2d(P)} (⨏
C∞∩◻m

∣χp − [χp]P ∣q (x)dx)
1

q

+C1{3m≥M2d(P)} (⨏
C∞∩◻m

∣[χp]P − ([χp]P)C∞∩◻m
∣q (x)dx)

1

q

.

To estimate the first term on the right-hand side, we first use (2.4) and Proposition 2.9, to obtain
for each m ∈ N such that ◻m ∈ P∗

∫
C∞∩◻m

∣χp − [χp]P ∣q (x)dx ≤ ∫
C∗(◻m+1)

∣χp − [χp]P ∣q (x)dx
≤ C ∫

C∗(◻m+1)
size(◻P(x))qd ∣∇χp∣q (x)dx

≤ C ∫
C∞∩◻m+1

size(◻P(x))qd ∣∇χp∣q (x)dx.
By the bound on the gradient of the corrector (3.5) and the property of the partition P (2.3), we
have, for each x ∈ Zd

size(◻P(x))d ∣∇χp∣ (x)1{x∈C∞} ≤ Os(C),
and thus

size(◻P(x))qd ∣∇χp∣q (x)1{x∈C∞} ≤ O s
q
(Cq) .
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Consequently, by (1.10) and using (1.11) to keep track of the dependence of the constants in the q
variable

∫
C∞∩◻m+1

size(◻P(x))qd ∣∇χp∣q (x)dx = ∑
x∈◻m+1

size(◻P(x))qd ∣∇χp∣q (x)1{x∈C∞}

≤ O s
q

⎛
⎝3d(m+1) (

q

s ln(2))
q

s

Cq⎞⎠
≤ O s

q
(3d(m+1)q q

sCq) .
In particular, if 3m is larger thanM2d(P), then the cube ◻m belongs to P∗, the previous computa-
tions consequently show

1{3m≥M2d(P)} ∫
C∞∩◻m

∣χp − [χp]P ∣q (x)dx ≤ O s
q
(3d(m+1)q q

sCq) .
Then by (2.5), we obtain

1{3m≥M2d(P)} (⨏
C∞∩◻m

∣χp − [χp]P ∣q (x)dx)
1

q ≤ Os (q 1

sC) .
To estimate the second term on the right-hand side of (4.5), we compute, by (2.5)

(⨏
C∞∩◻m

∣[χp]P − ([χp]P)C∞∩◻m
∣q (x)dx)

1

q

1{3m≥M2d(P)}

≤ 2 inf
a∈R(⨏C∞∩◻m

∣[χp]P − a∣q (x)dx)
1

q

1{3m≥M2d(P)}

≤ 2(⨏
C∞∩◻m

∣[χp]P − ([χp]P)◻m
∣q (x)dx)

1

q

1{3m≥M2d(P)}

≤ C (⨏◻m

∣[χp]P − ([χp]P)◻m
∣q (x)dx)

1

q

1{3m≥M2d(P)}.

We then apply (4.3) and obtain

(⨏
C∞∩◻m

∣χp − (χp)C∞∩◻m
∣q (x)dx)

1

q

1{3m≥M2d(P)} ≤
⎧⎪⎪⎨⎪⎪⎩
Os (qkCm 1

2 ) if d = 2,

Os (qkC) if d ≥ 3,

for some exponents k ∶= k(d,p, λ), s ∶= s(d,p, λ) > 0 and some constant C ∶= C(d,p, λ) <∞. Combin-
ing this with (4.4), we obtain

(⨏
C∞∩◻m

∣χp − (χp)C∞∩◻m
∣q (x)dx)

1

q ≤
⎧⎪⎪⎨⎪⎪⎩
Os (qkCm 1

2 ) if d = 2,

Os (qkC) if d ≥ 3,

For a general R ≥ 1, let m be the integer such that 3m < R ≤ 3m+1, and compute

(⨏
C∞∩BR

∣χp − (χp)C∞∩BR
∣q (x)dx)

1

q ≤ (⨏
C∞∩BR

∣χp − (χp)C∞∩BR
∣q (x)dx)

1

q

1{3m≥M2d(P)}

+ (⨏
C∞∩BR

∣χp − (χp)C∞∩BR
∣q (x)dx)

1

q

1{3m≤M2d(P)}.

The first term is estimated as in (4.4) and we obtain

(⨏
C∞∩BR

∣χp − (χp)C∞∩BR
∣q (x)dx)

1

q

1{3m≥M2d(P)} ≤ Os(C).
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recall that

(⨏
C∞∩BR

∣χp − (χp)C∞∩BR
∣q (x)dx)

1

q ≤ 2 inf
a∈R(⨏C∞∩BR

∣χp − a∣q (x)dx)
1

q

.

To estimate the second term, we use (2.5) and compute

(⨏
C∞∩BR

∣χp − (χp)C∞∩BR
∣q (x)dx)

1

q

1{3m≤M2d(P)}

≤ 2 inf
a∈R (⨏C∞∩BR

∣χp − a∣q (x)dx)
1

q

1{3m≤M2d(P)}

≤ 2(⨏
C∞∩BR

∣χp − (χp)C∞∩◻m+1
∣q (x)dx)

1

q

1{3m≤M2d(P)}

≤ C (⨏
C∞∩◻m+1

∣χp − (χp)C∞∩◻m+1
∣q (x)dx)

1

q

1{3m≤M2d(P)}.

Combining the few previous displays shows

(⨏
C∞∩BR

∣χp − (χp)C∞∩BR
∣q (x)dx)

1

q ≤
⎧⎪⎪⎨⎪⎪⎩
Os (qkC (logR) 12 ) if d = 2,

Os (qkC) if d ≥ 3,

and completes the proof of Theorem 1. �

5. Optimal L∞ estimates for the first order correctors

In this section, we prove the L∞ bound on the corrector, Theorem 2.

Theorem 2 (Optimal L∞ estimates for first order correctors). There exists an exponent s ∶=
s(d,p, λ) > 0 and a constant C ∶= C(d,p, λ) <∞ such that for each x, y ∈ Zd and each p ∈ Rd,

∣χp(x) − χp(y)∣1{x,y∈C∞} ≤
⎧⎪⎪⎨⎪⎪⎩
Os (C log

1

2 ∣p∣∣x − y∣) if d = 2,

Os (C ∣p∣) if d ≥ 3.

Proof of Theorem 2. First by the stationnarity of the gradient of the corrector, we can assume
without loss of generality that y = 0. Without loss of generality, we can also assume ∣p∣ = 1, as it was
done in the proofs of Proposition 3.3 and of Theorem 1. We thus want to prove, for each x ∈ Zd,

∣χp(x) − χp(0)∣1{0,x∈C∞} ≤
⎧⎪⎪⎨⎪⎪⎩
Os (C log

1

2 ∣x∣) if d = 2,

Os (C) if d ≥ 3.

Before starting the proof, note that, for every q > 0 and every x ∈ R+

exp(x) ≥ xq

qq exp(−q) .
This implies, for each s, q, θ > 0,

(5.1) X ≤ Os(θ) Ô⇒ E[Xq] ≤ 2θq (q
s
)

q

s

exp (q
s
) .

We split the proof into six steps.

● In Step 1, we prove that for each q ≥ 1 and each m ∈ N,

E

⎡⎢⎢⎢⎢⎣
RRRRRRRRRRR[χp]P (0) − 3−2dm ∑

y∈◻m

∑
z∈y+◻m

[χp]P (z)
RRRRRRRRRRR
q⎤⎥⎥⎥⎥⎦
≤ { Cqqqkm

q

2 if d = 2,
Cqqqk if d ≥ 3.
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● In Step 2, we use the result of Step 1 to prove that for each q ≥ 1 and each m ∈ N,

E

⎡⎢⎢⎢⎢⎣
RRRRRRRRRRR[χp]P (x) − 3−2dm ∑

y∈◻m

∑
z∈x+y+◻m

[χp]P (z)
RRRRRRRRRRR
q⎤⎥⎥⎥⎥⎦
≤ { Cqqqkm

q

2 if d = 2,

Cqqqk if d ≥ 3.

Note that this statement is not just a consequence of Step 1 and the stationarity of the
corrector since the partition P is not stationary. One additional argument is needed to
conclude.
● In Step 3, we prove that for each q ≥ 1 and m ∈ N, chosen such that 3m ≤ ∣x∣ < 3m+1,

E

⎡⎢⎢⎢⎢⎣
RRRRRRRRRRR[χp]P (0) − 3−2dm ∑

y∈◻m

∑
z∈x+y+◻m

[χp]P (z)
RRRRRRRRRRR
q⎤⎥⎥⎥⎥⎦
≤ { Cqqqkm

q

2 if d = 2,
Cqqqk if d ≥ 3.

● In Step 4, we combine Steps 2 and 3 to obtain, for each q ≥ 1

(5.2) E [∣[χp]P (x) − [χp]P (0)∣q] ≤ { C
qqqkm

q

2 if d = 2,
Cqqqk if d ≥ 3.

● In Step 5, we prove that there exist an exponent s ∶= s(d,p, λ) > 0 and a constant C ∶=
C(d,p, λ) <∞ such that

(5.3) ∣[χp]P (x) − [χp]P (0)∣ ≤
⎧⎪⎪⎨⎪⎪⎩
Os (C log

1

2 ∣x∣) if d = 2,

Os (C) if d ≥ 3.

● In Step 6, we remove the coarsening and eventually show that

∣χp(x) − χp(0)∣1{0,x∈C∞} ≤
⎧⎪⎪⎨⎪⎪⎩
Os (C log

1

2 ∣x∣) if d = 2,

Os (C) if d ≥ 3.

Step 1. The main tool of this step is the following inequality which was proved in Step 1 of the
proof of Theorem 1, for each m ∈ N, and each q ≥ 1,

(5.4) (⨏◻m

∣[χp]P − ([χp]P)◻m
∣q)

1

q ≤ { Os (Cqk√m) if d = 2,

Os (Cqk) if d ≥ 3.

Note that this implies, by increasing the values of C and k,

(5.5) E [⨏◻m

∣[χp]P − ([χp]P)◻m
∣q] ≤ { Cqqqkm

q

2 if d = 2,
Cqqqk if d ≥ 3.

For some fixed y ∈ Zd, note that by stationarity of the corrector (1.16), for almost every a ∈ Ω, one
has

([χp]P (−y) − ([χp]P)◻m
) (a) = ([χp]Py

(0) − ([χp]Py
)
y+◻m

) (τya),
where we recall the notation Py = y +P(τ−ya). Using the stationarity property (1.4), we obtain, for
each q ≥ 1,

E [∣[χp]Py
(0) − ([χp]Py

)
y+◻m

∣q] = E [∣[χp]P (−y) − ([χp]P)◻m
∣q] .

Since this is true for each y ∈ Zd, we can integrate over y to obtain

⨏◻m

E [∣[χp]Py
(0) − ([χp]Py

)
y+◻m

∣q] dy = ⨏◻m

E [∣[χp]P (−y) − ([χp]P)◻m
∣q] dy.

Thus, by (5.5),

(5.6) E [⨏◻m

∣[χp]Py
(0) − ([χp]Py

)
y+◻m

∣q dy] ≤ { Cqqqkm
q

2 if d = 2,

Cqqqk if d ≥ 3.
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We now remove the translation of the partition and prove, for each z ∈ Zd

(5.7) ∣[χp]Py
(z) − [χp]P (z)∣ ≤ Os(C).

To prove this, note that, by definition of the coarsening (2.8), we have

[χp]Py
(z) − [χp]P (z) = χp (z(◻Py(z))) − χp (z(◻P(z))) ,

and by definition of the two partitions P and Py, there exists a path linking ◻Py(z) to ◻P(z)
which lies in B (z,Cmax (size (◻Py(z)) , size (◻P(z)))). To simplify the notation in the following

computation, we denote R′ = Cmax (size (◻Py(z)) , size (◻P(z))). As a consequence, we have the
estimate

∣[χp]Py
(z) − [χp]P (z)∣ ≤ ∫

C∞∩BR′(z)
∣∇χp∣ (x)dx.

We then use the regularity theory to estimate (this computation is very similar to the one we run
in (3.13))

∫
C∞∩BR′(z)

∣∇χp∣ (y)dy ≤ CR′d +C ∫
C∞∩U

∣p +∇χp∣ (y)dy(5.8)

≤ CR′d +C ∫
C∞∩BR′(z)

∣p +∇χp∣ (y)dy
≤ CR′d +CR′d (⨏

C∞∩BR′(z)
∣p +∇χp∣2 (y)dy)

1

2

≤ CR′d +CR′ d2 max (X (z),R′) d2 lim inf
R→∞ (⨏C∞∩BR(z)

∣p +∇χp∣2 (y)dy)
1

2

≤ CR′d +CR′ d2 max (X (z),R′) d2 .
Now since R′ ≤ Os(C) and X (z) ≤ Os(C), we have

∫
C∞∩B′R(z)

∣∇χp∣ (y)dy ≤ Os(C).
Combining the previous displays completes the proof of (5.7). To remove the parameter y in (5.6),
we compute

E [⨏◻m

∣[χp]P (0) − ([χp]P)y+◻m
∣q dy](5.9)

≤ 2qE [⨏◻m

∣[χp]Py
(0) − ([χp]Py

)
y+◻m

∣q dy]
+ 2qE [⨏◻m

∣[χp]Py
(0) − ([χp]Py

)
y+◻m

− [χp]P (0) − ([χp]P)y+◻m
∣q dy] .

By (5.7) and (1.10), we have, for each y ∈ ◻m,

∣[χp]Py
(0) − ([χp]Py

)
y+◻m

− [χp]P (0) − ([χp]P)y+◻m
∣ ≤ Os(C),

and thus

E [∣[χp]Py
(0) − ([χp]Py

)
y+◻m

− [χp]P (0) − ([χp]P)y+◻m
∣q] ≤ Cqqqk.

Integrating over y ∈ ◻m yields

E [⨏◻m

∣[χp]Py
(0) − ([χp]Py

)
y+◻m

− [χp]P (0) − ([χp]P)y+◻m
∣q dy] ≤ Cqqqk.

By the previous display and (5.6), we have

E [⨏◻m

∣[χp]P (0) − ([χp]P)y+◻m
∣q dy] ≤ { Cqqqkm

q

2 if d = 2,

Cqqqk if d ≥ 3.
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By the Jensen inequality, we obtain

E [∣⨏◻m

[χp]P (0) − ([χp]P)y+◻m
dy∣q] ≤ { Cqqqkm

q

2 if d = 2,

Cqqqk if d ≥ 3.

but notice that

⨏◻m

[χp]P (0) − ([χp]P)y+◻m
dy = [χp]P (0) − 3−2dm ∑

y∈◻m

∑
z∈y+◻m

[χp]P (z).
Combining the two previous displays completes the proof of Step 1.

Step 2. By the stationarity of the corrector (1.16), for almost every a ∈ Ω, every y, z ∈ Zd,

[χp]P (z)(a) = [χp]Py
(z + y)(τya).

Using this property, we have

E

⎡⎢⎢⎢⎢⎣
RRRRRRRRRRR[χp]Px

(x) − 3−2dm ∑
y∈◻m

∑
z∈x+y+◻m

[χp]Px
(z)RRRRRRRRRRR

q⎤⎥⎥⎥⎥⎦
=E

⎡⎢⎢⎢⎢⎣
RRRRRRRRRRR[χp]P (0) − 3−2dm ∑

y∈◻m

∑
z∈y+◻m

[χp]P (z)
RRRRRRRRRRR
q⎤⎥⎥⎥⎥⎦

≤ { Cqqqkm
q

2 if d = 2,

Cqqqk if d ≥ 3.

Doing the same computation as in (5.9), we can replace Px by P in the previous display, this yields

E

⎡⎢⎢⎢⎢⎣
RRRRRRRRRRR[χp]P (x) − 3−2dm ∑

y∈◻m

∑
z∈x+y+◻m

[χp]P (z)
RRRRRRRRRRR
q⎤⎥⎥⎥⎥⎦
≤ { Cqqqkm

q

2 if d = 2,
Cqqqk if d ≥ 3.

This completes the proof of the main estimate of Step 2.

Step 3. This step is similar to Step 1, but the main tool of this step is slightly different and
presented below. For m ∈ N such that 3m ≤ ∣x∣ < 3m+1, and for each q ≥ 1,

(⨏◻m

∣[χp]P − ([χp]P)x+◻m
∣q)

1

q ≤ { Os (Cqk√m) if d = 2,

Os (Cqk) if d ≥ 3.

To prove this result, we note that x +◻m ⊆ ◻m+2. With this in mind, we can compute

(⨏◻m

∣[χp]P − ([χp]P)x+◻m
∣q)

1

q ≤ C (⨏◻m+2

∣[χp]P − ([χp]P)x+◻m
∣q)

1

q

≤ C (⨏◻m+2

∣[χp]P − ([χp]P)◻m+2
∣q)

1

q

+C ∣([χp]P)◻m+2
− ([χp]P)x+◻m

∣ .
We estimate the second term on the right-hand side as follows

∣([χp]P)◻m+2
− ([χp]P)x+◻m

∣ = ∣⨏
x+◻m

[χp]P (x) − ([χp]P)◻m+2
dx∣

≤ ⨏
x+◻m

∣[χp]P (x) − ([χp]P)◻m+2
∣ dx

≤ C ⨏◻m+2

∣[χp]P (x) − ([χp]P)◻m+2
∣ dx

≤ C (⨏◻m+2

∣[χp]P (x) − ([χp]P)◻m+2
∣q dx)

1

q

.

Combining the two previous displays with (5.4) shows

(⨏◻m

∣[χp]P − ([χp]P)x+◻m
∣q)

1

q ≤ { Os (Cqk√m) if d = 2,

Os (Cqk) if d ≥ 3.
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With the same proof as in Step 1, we obtain, for each q ≥ 1

E [∣⨏◻m

[χp]P (0) − ([χp]P)y+x+◻m
dy∣q] ≤ { Cqqqkm

q

2 if d = 2,
Cqqqk if d ≥ 3.

But note that

[χp]P (0) − 3−2dm ∑
y∈◻m

∑
z∈x+y+◻m

[χp]P (z) = ⨏◻m

[χp]P (0) − ([χp]P)y+x+◻m
dy.

Combining the two previous displays completes the proof of Step 3.

Step 4. In this step, we first split the integral,

E [∣[χp]P (x) − [χp]P (0)∣q] ≤ 2qE
⎡⎢⎢⎢⎢⎣
RRRRRRRRRRR[χp]P (0) − 3−2dm ∑

y∈◻m

∑
z∈x+y+◻m

[χp]P (z)
RRRRRRRRRRR
q⎤⎥⎥⎥⎥⎦

+ 2qE
⎡⎢⎢⎢⎢⎣
RRRRRRRRRRR[χp]P (x) − 3−2dm ∑

y∈◻m

∑
z∈x+y+◻m

[χp]P (z)
RRRRRRRRRRR
q⎤⎥⎥⎥⎥⎦
.

Combining the results of Step 2 and Step 3, we have, for m ∈ N chosen such that 3m ≤ ∣x∣ ≤ 3m+1 and
for each q ≥ 1,

E [∣[χp]P (x) − [χp]P (0)∣q] ≤ { C
qqqkm

q

2 if d = 2,
Cqqqk if d ≥ 3.

Since m ≤ log ∣x∣
log 3

, the proof of Step 3 is complete.

Step 5. First we extend the result of Step 4 to the case 0 < q < 1. By the Jensen inequality, we
have, for each 0 < q ≤ 1

E [∣[χp]P (x) − [χp]P (0)∣q] ≤ E [∣[χp]P (x) − [χp]P (0)∣2]
q

2 ≤ { Cqm
q

2 if d = 2,
Cq if d ≥ 3.

We now prove the main result of this step. We first deal with the case d = 2. Select an exponent
s > 0 depending only on d,p, λ such that s < 1

k
, where k is the exponent (depending only on d,p, λ)

which appears in (5.2).
We then compute

E

⎡⎢⎢⎢⎢⎣
exp
⎛
⎝
⎛
⎝
∣[χp]P (x) − [χp]P (0)∣

log
1

2 ∣x∣
⎞
⎠
s⎞
⎠
⎤⎥⎥⎥⎥⎦
=
∞
∑
l=0

1

l !
E

⎡⎢⎢⎢⎢⎣
∣[χp]P (x) − [χp]P (0)∣sl

log
sl
2 ∣x∣

⎤⎥⎥⎥⎥⎦
≤
⌊ 1
s
⌋
∑
l=0

Csl

l !
+
∞
∑

l=⌈ 1
s
⌉
Csl (sl)skl

l !

< ∞,

by the Stirling formula. We now set σ ∶= max
⎛⎜⎝

log 2

log(∑⌊ 1s ⌋l=0
Csl

l!
+∑∞

l=⌈ 1s ⌉
Csl(sl)skl

l!
)
,1
⎞⎟⎠ > 0. Note that σ

depends only on d,p, λ. We have

E

⎡⎢⎢⎢⎢⎣
exp
⎛
⎝σ
⎛
⎝
∣[χp]P (x) − [χp]P (0)∣

log
1

2 ∣x∣
⎞
⎠
s⎞
⎠
⎤⎥⎥⎥⎥⎦
≤ E
⎡⎢⎢⎢⎢⎣
exp
⎛
⎝
⎛
⎝
∣[χp]P (x) − [χp]P (0)∣

log
1

2 ∣x∣
⎞
⎠
s⎞
⎠
⎤⎥⎥⎥⎥⎦
σ

≤
⎛⎜⎝
⌊ 1
s
⌋
∑
l=0

Csl

l !
+
∞
∑

l=⌈ 1
s
⌉
Csl (sl)skl

l !

⎞⎟⎠
σ

≤ 2.
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From this computation, we obtain

∣[χp]P (x) − [χp]P (0)∣ ≤ Os (σ− 1

s log
1

2 ∣x∣) .
Setting C ∶= σ− 1

s , we obtain (5.3). The proof of Step 5 is complete.

Step 6. In this step, we remove the coarsening. To do so, we prove, for each y ∈ Zd

∣χp(y) − [χp]P (y)∣1{y∈C∞} ≤ Os(C).
To prove this note that if y ∈ C∞ then there exists a path linking y to z (◻P(y)) which lies in ◻P(y)
and its neighbors. Consequently we have the estimate

∣χp(y) − [χp]P (y)∣1{y∈C∞} ≤ ∫
C∞∩BC size(◻P (y))

(y) ∣∇χp∣ (x)dx.
Then the same computation as in (5.8) shows

∣χp(y) − [χp]P (y)∣1{y∈C∞} ≤ Os(C).
From this we deduce

∣χp(x) − χp(0)∣1{0,x∈C∞}
≤ ∣χp(0) − [χp]P (0)∣1{0∈C∞} + ∣χp(x) − [χp]P (x)∣1{x∈C∞} + ∣[χp]P (x) − [χp]P (0)∣ .

Combining the result of Step 5 with the previous displays shows

∣χp(x) − χp(0)∣1{0,x∈C∞} ≤
⎧⎪⎪⎨⎪⎪⎩
Os (C log

1

2 ∣x∣) if d = 2,

Os (C) if d ≥ 3.

The proof of Step 6 is complete. �

Appendix A. Proof of the Lq multiscale Poincaré inequality

In this appendix, we prove the Lq multiscale Poincaré inequality.

Proposition 2.19 (Multiscale Poincaré inequality, heat kernel version). For each r > 0, we define

Φr ∶ R
d → R

x ↦ r−d exp (− ∣x∣2
r2
) .

for each q ≥ 2, there exists a constant C ∶= C(d, q) < ∞ such that for each tempered distribution

u ∈W 1,q
loc
(Rd) ∩ S ′(Rd) and each R > 0,

(A.1) ∥u − (u)BR
∥Lq(BR) ≤ C

⎛
⎝∫Rd

R−de−
∣x∣
R (∫ R

0
r ∣Φr ∗∇u(x)∣2 dr)

q

2⎞
⎠

1

q

.

Moreover the dependence on the variable p of the constant C can be estimated as follows, for each
q ≥ 2,

C(d, q) ≤ Aq 1

2

for some constant A ∶= A(d) <∞.

Before starting the proof, we need to state the following proposition from [5, Proposition D.1 and
Remark D.6] and to record a result from the elliptic regularity theory.
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Proposition A.1 (Proposition D.1 and Remark D.6 of [5]). For each q ≥ 2, there exists a constant
C ∶= C(d, q) <∞ such that for every tempered distribution w ∈ S ′(Rd),

∥w∥W −1,q(B1) ≤ C
⎛
⎝∫Rd

e−∣x∣ (∫ 1

0
r ∣Φr ∗∇u(x)∣2 dr)

q

2⎞
⎠

1

q

.

Moreover the constant C satisfies, for each q ≥ 2
C(d, q) ≤ A√q,

for some constant A ∶= A(d) <∞.

The dependence on the q variable of the constant C is not explicit in [5]. It can nevertheless be
recovered by a careful investigation of the proof.

We then record a result from the theory of elliptic regularity, it can be found in [14, Lemma 7.12
and Proposition 9.9].

Proposition A.2 (Lemma 7.12 and Proposition 9.9 of [14]). Let Ω ⊆ Rd be a bounded domain of
R
d. Let f ∈ Lp (Ω), 1 < p <∞, and let w be the Newtonian potential of f , i.e,

w(x) ∶= ∫
Ω
Γ(x − y)f(y)dy,

where Γ is the fundamental solution of the Laplace equation, i.e,

Γ(x) ∶= { 1
2π

log ∣x∣ if d = 2,
1

d(2−d)ωd
∣x∣2−d if d ≥ 3,

where ωd is the volume of the unit sphere in R
d. Then w ∈W 2,p(Ω),∆w = f a.e,

∥∇2w∥
Lp(Ω) ≤ C0 ∥f∥Lp(Ω)

and ∥w∥Lp(Ω) + ∥∇w∥Lp(Ω) ≤ C1 ∥f∥Lp(Ω) ,
for some constants C1 ∶= C1(d,Ω) <∞ and C0 ∶= C0(d, p,Ω) <∞. Moreover, the dependence on p of
the constant C0 can be explicited:

C0(d, p,Ω) ≤ Ap, if p ≥ 2 and C0(d, p,Ω) ≤ A 1

p − 1 if 1 < p ≤ 2,
for some A ∶= A(d,Ω) <∞.

Before starting the proof, we mention that the dependence on the p variable is not explicit in [14,
Proposition 9.9], but can be recovered by keeping track of the constant p in the application of the
Marcinkiewicz interpolation theorem. Also the case of the logarithmic potential is not considered
in [14, Lemma 7.12] (it is useful to obtain the estimate of the Lp norm of w in dimension 2).
Nevertheless their proof is general enough to be applied in this setting.

Proof of Proposition 2.19. Let ψ ∈ C∞c (B 1

4

,R) and 2 ≤ q < ∞. We denote by p the conjugate

exponent of q, i.e, p ∶= q
q−1 ∈ (1,2]. We split the proof into 5 steps.

● In Step 1, we show that there exists a constant C ∶= C(d,ψ) < ∞ such that, for each
u ∈W 1,q (B1) , ∥u −ψ ∗ u∥

W −1,q(B 3
4

) ≤ C ∥∇u∥W −1,q(B1) .
● In Step 2, we prove that there exists a constant C ∶= C(d,ψ) < ∞ such that, for each
u ∈W 1,q (B1) ,

(A.2) ∥u − ψ ∗ u(0)∥
W −1,q(B 3

4

) ≤ C ∥∇u∥W −1,q(B1) .
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● In Step 3, we prove that there exists a constant C ∶= C(d, q,ψ) < ∞ such that, for each
u ∈W 1,q (B1) ,

∥u∥
Lq(B 1

2

) ≤ C ∥∇u∥W −1,q(B1) +C ∥u∥W −1,q(B 3
4

)
and that the constant C satisfies C(d,ψ, q) ≤ Aq for some A ∶= A(d,ψ) <∞.
● In Step 4, we show that there exists a constant C ∶= C(d, q,ψ) < ∞ such that, for each
u ∈W 1,q (B1) ,

∥u − (u)B 1
2

∥
Lq(B 1

2

) ≤ C ∥∇u∥W −1,q(B1)

and that the constant C satisfies C(d,ψ, q) ≤ Aq for some A ∶= A(d,ψ) <∞.

● In Step 5, we show that for each tempered distribution u ∈W 1,q
loc
(Rd)∩S ′(Rd) and each R > 0,

∥u − (u)BR
∥Lq(BR) ≤ C

⎛
⎝∫Rd

R−de−
∣x∣
2R (∫ 2R

0
r ∣Φr ∗∇u(x)∣2 dr)

q

2⎞
⎠

1

q

.

Step 1. We prove that there exists a constant C ∶= C(d) <∞ such that

∥u − u ∗ ψ∥
W −1,q(B 3

4

) ≤ C ∥∇u∥W −1,q(B1) .

Let ψ ∈ C∞c (B 1

4

,R) and define, for n ∈ N,

ψn ∶= 2−dnψ ( ⋅
2n
) .

Since ψn ∗ u → u in Lq (B 3

4

), we can use the triangle inequality to bound

(A.3) ∥u −ψ ∗ u∥
W −1,q(B 3

4

) ≤
∞
∑
n=0
∥ψn+1 ∗ u − ψn ∗ u∥

W −1,q(B 3
4

) .

Since the function ψ1 − ψ0 is compactly supported in B 1

4

and of mean 0, we can apply [5, Lemma

5.7], to show that there exists a function Ψ ∈ C∞c (B 1

4

,R) satisfying
∇ ⋅Ψ = ψ1 −ψ0.

For each n ∈ N, we denote

Ψn ∶= 2−dnΨ( ⋅
2n
) ,

by scaling invariance we also have

2−n∇ ⋅Ψn = ψn+1 − ψn.

For each function g ∈W 1,p
0 (B 3

4

), we have

∫(B 3
4

) (ψn+1 − ψn) ∗ u(x)g(x)dx = ∫
Rd
∫
Rd
(ψn+1 − ψn) (x − y)u(y)g(x)dxdy

= 2−n ∫
Rd
∫
Rd
∇ ⋅Ψn(x − y)u(y)g(x)dxdy

= 2−n ∫
Rd
∫
Rd

Ψn(x − y) ⋅ ∇u(y)g(x)dxdy
= 2−n ∫

Rd
∇u(y) ⋅ (∫

Rd
Ψn(x − y)g(x)dx) dy.
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By construction, the function y → (∫Rd Ψn(x − y)g(x)dx) is supported in B1, we can thus estimate

RRRRRRRRRRRR∫(B 3
4

) (ψn+1 −ψn) ∗ u(x)g(x)dx
RRRRRRRRRRRR
≤ 2−n ∥(∫

Rd
Ψn(x − ⋅)g(x)dx)∥

W
1,p
0
(B1)
∥∇u∥W −1,q(B1) .

Moreover, one can check that there exists a constant C ∶= C(d,ψ) <∞ such that

∥(∫
Rd

Ψn(x − ⋅)g(x)dx)∥
W

1,p
0
(B1)
≤ C ∥g∥

W
1,p
0
(B1) = C ∥g∥W 1,p

0
(B 3

4

) .

Taking the supremum over g ∈W 1,p
0 (B 3

4

) of norm 1 and combining this with (A.3), we obtain

∥u −ψ ∗ u∥
W −1,q(B 3

4

) ≤ C ∥∇u∥W −1,q(B1) ,

for some constant C ∶= C(d) <∞. The proof of Step 1 is complete.

Step 2. We split the norm

(A.4) ∥u − ψ ∗ u(0)∥
W −1,q(B 3

4

) ≤ ∥u −ψ ∗ u∥W −1,q(B 3
4

) + ∥ψ ∗ u − ψ ∗ u(0)∥W −1,q(B 3
4

) .

But note that, for each x ∈ B 3

4

,

(A.5) ∣ψ ∗ u(x) −ψ ∗ u(0)∣ ≤ C ∥∇u∥W −1,q(B1) .
The proof of this estimate is very similar to the previous step, only simpler: by [5, Lemma 5.7], we
represent ψ(⋅ − x) − ψ in the form

∇Ψx = ψ(⋅ − x) − ψ
with Ψx ∈ C

∞
c (B1,R) and then prove (A.5) thanks to an integration by parts. From this we deduce

∥ψ ∗ u − ψ ∗ u(0)∥
W −1,q(B 3

4

) ≤ C ∥∇u∥W −1,q(B1) .

Combining this estimate with (A.4) and the estimate proved in the previous step completes the
proof of Step 2.

Step 3. Let η ∈ C∞c (B1) be a cutoff function satisfying

1B 1
2

≤ η ≤ 1B 3
4

, and ∣∇2η∣ + ∣∇η∣ ≤ C.
For any function f ∈ Lp (B1), we denote by wf the Newtonian potential of f introduced in Proposi-
tion A.2 with Ω = B1. We then compute

∫
B1

η(x)u(x)f(x)dx = ∫
B1

η(x)u(x)∆wf (x)dx
= ∫

B1

∇ (ηu) (x)∇wf (x)dx
= ∫

B1

∇η(x)u(x)∇wf (x) + η(x)∇u(x)∇wf (x)dx
≤ ∥u∥

W −1,q(B 3
4

) ∥∇η∇wf∥
W

1,p
0
(B 3

4

) + ∥∇u∥W −1,q(B 3
4

) ∥η∇wf∥
W

1,p
0
(B 3

4

) .

By the properties of η and by Proposition A.2, we have

∥∇η∇wf∥
W

1,p
0
(B 3

4

) + ∥η∇wf∥
W

1,p
0
(B 3

4

) = ∥∇η∇wf∥W 1,p
0
(B1) + ∥η∇wf∥W 1,p

0
(B1) ≤ C ∥f∥Lp(B1) ,

for some constant C ∶= C(d, p, η) <∞ satisfying

C(d, p, η) ≤ A 1

p − 1 ,
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with A ∶= A(d, η) <∞. Consequently

∥u∥
Lq(B 1

2

) ≤ ∥ηu∥Lq(B1) = sup
f∈Lp(B1),∥f∥Lp(B1)

=1∫B1

η(x)u(x)f(x)dx

≤ C ⎛⎝∥u∥W −1,q(B 3
4

) + ∥∇u∥W −1,q(B 3
4

)
⎞
⎠

≤ C ⎛⎝∥u∥W −1,q(B 3
4

) + ∥∇u∥W −1,q(B1)
⎞
⎠ .

The proof of Step 3 is complete.

Step 4. Applying the main result of the previous step to the function u −ψ ∗ u(0), we have

∥u − ψ ∗ u(0)∥
Lq(B 1

2

) ≤ C
⎛
⎝∥u − ψ ∗ u(0)∥W −1,q(B 3

4

) + ∥∇u∥W −1,q(B1)
⎞
⎠ .

Then by Step 2, we obtain

∥u −ψ ∗ u(0)∥
Lq(B 1

2

) ≤ C ∥∇u∥W −1,q(B1) .

But we have by the Jensen inequality, for each a ∈ R
∥u − (u)B 1

2

∥
Lq(B 1

2

) ≤ ∥u − a∥Lq(B 1
2

) + ∣a − (u)B 1
2

∣
≤ 2 ∥u − a∥

Lq(B 1
2

) .

Thus

∥u − (u)B 1
2

∥
Lq(B 1

2

) ≤ 2 infa∈R ∥u − a∥Lq(B 1
2

) ≤ 2 ∥u − ψ ∗ u(0)∥Lq(B 1
2

) .

Combining the previous displays completes the proof of Step 4.

Step 5. Applying the result of Step 4 and Proposition A.1, we obtain, for each q ≥ 2 and each
u ∈ S ′ (Rd) ∩W 1,q

loc
(Rd),
∥u − (u)B 1

2

∥
Lq(B 1

2

) ≤ C
⎛
⎝∫Rd

e−∣x∣ (∫ 1

0
r ∣Φr ∗ ∇u(x)∣2 dr)

q

2⎞
⎠

1

q

For some constant C ∶= C(d, q) satisfying C(d, q) ≤ Aq 3

2 . Rescaling the previous estimates eventually
shows

∥u − (u)BR
∥Lq(BR) ≤ C

⎛
⎝∫Rd

R−de−
∣x∣
2R (∫ 2R

0
r ∣Φr ∗∇u(x)∣2 dr)

q

2⎞
⎠

1

q

.

and the proof of Proposition 2.19 is complete. �

Appendix B. Proof of Lemma 3.6

In this appendix, we prove Lemma 3.6. We first restate the lemma.

Lemma 3.6 (Minimal scale). There exists a constant C ∶= C(d,p, λ) < ∞, an exponent s ∶=
s(d,p, λ) > 0 and a random variable M1 ≤ O′s(C) such that for each m ∈ N satisfying 3m ≥M1,

3−dm ∑
z∈◻m

size (◻P(z)) 3d(2+ε)ε

⎛⎜⎝ ∑
x∈Zd,dist(◻P(x),◻P(z))≤1, e∈Bx

d

(1 +X e(x))d⎞⎟⎠
2+ε
ε

≤ C
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where ε ∶= ε(d,p, λ) is the exponent which appears in Proposition 2.14.

Proof of Lemma 3.6. First, notice that one can rewrite

3−dm ∑
z∈◻m

size (◻P(z)) 3d(2+ε)ε

⎛⎜⎝ ∑
x∈Zd,dist(◻P(x),◻P(z))≤1, e∈Bx

d

(1 +X e(x))d⎞⎟⎠
2+ε
ε

≤ C3−dm ∑
z∈◻m

size (◻P(z)) 3d(2+ε)+2ε ∑
x∈Zd,dist(◻P(x),◻P(z))≤1, e∈Bx

d

(1 +X e(x))d 2+ε
ε

≤ C3−dm ∑
x∈Zd,dist(◻P(x),◻m)≤1, e∈Bx

d

size (◻P(x)) 3d(2+ε)+2ε (1 +X e(x))d 2+ε
ε

By (iv) of Proposition 2.1 applied with t =
6d(2+ε)+4

ε
, it is clear that for each m ∈ N satisfying

3m ≥Mt(P), we have

(1) supx∈◻m+1
size (◻P(x)) ≤ 3 dm

d+t , this implies in particular

{x ∈ Zd, dist (◻P(x),◻m) ≤ 1} ⊆ ◻m+1.
(2) the following estimate

⎛
⎝3−dm ∑

x∈Zd,dist(◻P(x),◻m)≤1
size (◻P(x)) 6d(2+ε)+4ε

⎞
⎠

1

2

≤ C ⎛⎝3−d(m+1) ∑x∈◻m+1

size (◻P(x)) 6d(2+ε)+4ε
⎞
⎠

1

2

≤ C.
Thus by the Cauchy-Schwarz inequality, it is enough to prove that there exists a random variableM satisfyingM ≤ O′s(C), such that for each m ∈ N satisfying 3m ≥M,

(B.1) 3−dm ∑
x∈◻m, e∈Bx

d

(X e(x)) d(4+2ε)ε ≤ C.

Unfortunately, we cannot prove this exact statement but we will prove a slightly weaker estimate,
Lemma B.1, which is still strong enough to prove Proposition 3.3. Define, for each C > 0, the random
variable

XC ∶= inf {r ∈ [1,∞) ∶ ∀r′,R′ ∈ [r,∞), with r′ ≤ R′, ∀u ∈A(C∞ ∩BR′)
∥∇u∥L2(C∞∩Br′) ≤ C

r′
R′ ∥∇u∥L2(C∞∩BR′)} ,

and we similarly define, for each x ∈ Zd,

XC(x) ∶= XC ○ τx.
Denote by C0 ∶= C0(d,pλ) <∞ the constant appearing in Proposition 2.17. By definition we have

XC0
= X .

Note also that XC is decreasing in C. With this new notation in mind, we have the following lemma.

Lemma B.1. For every t > 0, there exist a constant C(d,p, λ, t) < ∞, an exponent s(d,p, λ, t) > 0
and a random variable Mt satisfying MX

t ≤ O′s(C)
such that for every m ∈ N satisfying

3m ≥MX
t

the following inequaliy holds

3−dm ∑
x∈◻m, e∈Bx

d

∣X e
C2

0

(x)∣t ≤ C.
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Remark B.2. (1) This statement is weaker than (B.1) since, for each x ∈ Zd and e ∈ Bxd ,
X e
C2

0

(x) ≤ X e
C0
(x) = X e(x).

Nevertheless it is enough to prove Result 2, since we only need to replace C0 by C2
0 in every

computation involving the estimates on the random variables χe
p(x) and the result remain

the same, only the value of the constants will be increased.

(2) Applying this result with t =
d(4+2ε)

ε
completes the proof of Lemma 3.6.

�

There remains to prove Lemma B.1 but before starting the proof, we need to introduce a few
ingredients and preliminary results. First define, for R,C ∈ [1,∞), the random variable XR,C by the
formula,

(B.2) XR,C ∶= inf {r ∈ [1,R] ∶ ∀r′,R′ ∈ [r,R], with r′ ≤ R′, ∀u ∈ A(Cmax(BR) ∩BR′)
∥∇u∥L2(Cmax(BR)∩Br′) ≤ C

r′
R′ ∥∇u∥L2(Cmax(BR)∩BR′)} ,

Where Cmax(BR) denotes the largest cluster contained in BR. Similarly we define, for each x ∈ Zd,

XC(x) ∶= XC ○ τx.
Note that this random variable is defined on the enlarged probability space Ω×Ω and is measurable

with respect to F(x +BR) ⊗ {∅,Ω} (it depends on the edges in the ball x +BR of the first variable
and does not depend on the edges of the second variable).

The reason why we were careful to write Cmax(BR) in (B.2) and not C∗(BR) or C∞ ∩BR (these
three clusters are morally equal for large R), is to constrain the random variable XR,C be measurable
with respect to F(BR) ⊗ {∅,Ω}.

The only incentive of this quantity is that the random variable XR,C is local (or is measurable
with respect to F(BR) ⊗ {∅,Ω}) and in particular the random varaibles XR,C(x) and XR,C(y) are
independent as soon as ∣x − y∣ > 2R.

Note also that XR,C is decreasing in the C variable and, for R ≥Mt(P), it is increasing in the R
variable. We thus denote by, for each C ≥ 1

XC ∶= lim
R→∞XR,C = lim sup

R≥1
XR,C ∈ [1,∞].

By Proposition 2.17, we know that there exists a constant C0 ∶= C0(d,p, λ) <∞ such that

(B.3) XC0
= X ≤ O′s(C).

thus, for each R >Mt(P), XR,C0
≤ XC0

≤ O′s(C).
Moreover, for each R ∈ [1,Mt(P)], we have

XR,C0
≤Mt(P) ≤ O′s(C).

Combining the two previous displays yields, for each R ≥ 1,
XR,C0

≤ O′s(C).
We now prove the following inequality, for each R,C > 1,
(B.4) XC2 ≤ XR,C +R1{R≤Mt(P)} +XC1{XC>R}.
We split the proof of this inequality into two cases.

Case 1. If XC > R, then since C ≥ 1 and XC is decreasing in C, the inequality (B.4) follows from
the computation XC2 ≤ XC ≤ XR,C +R1{R≤Mt(P)} +XC1{XC>R}.
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Case 2. If XC ≤ R and R ≤Mt(P), then
XC2 ≤ R1{R≤Mt(P)} ≤ XR,C +R1{R≤Mt(P)} +XC1{XC>R}.

Case 3. If XC ≤ R and R ≥Mt(P) then Cmax(BR) is equal to the maximal connected component
of C∞ ∩BR and we have, for each r,R′ > R with R′ ≥ r

∥∇u∥L2(C∞∩Br) ≤ C r

R′ ∥∇u∥L2(C∞∩BR′) .
Moreover, for each r,R′ ∈ [XR,C ,R] with R′ ≥ r, we have

∥∇u∥L2(C∞∩Br) ≤ C r

R′ ∥∇u∥L2(C∞∩BR′) .
Recall that we picked C under the assumption C ≥ 1 so that C2 ≥ C. Combining the two previous
displays yields for each r,R′ ≥ XR,C with R′ ≥ r,

∥∇u∥L2(C∞∩Br) ≤ C2 r

R′ ∥∇u∥L2(C∞∩BR′)
and thus by definition of XC2 , XC2 ≤ XR,C

and the proof of the inequality (B.4) is complete.
For x ∈ Zd, e = {x, y} ∈ Bd,C,R ∈ [1,∞), denote by X e

R,C(x) the translated and resampled random
variable

X e
R,C(x) ∶= inf {r ∈ [1,R] ∶ such that ∀1 ≤ r′ ≤ R′ ≤ R, u ∈Ae(C e

max(BR(x)) ∩BR′(x))
∥∇u∥L2(C e

max(BR)∩Br′(x)) ≤ C
r′
R′ ∥∇u∥L2(C e

max(BR(x))∩BR′(x))} .
We also define, for each x ∈ Zd

X e
C(x) ∶= lim

R→∞X e
R,C(x) = lim sup

R≥1
X e
R,C(x) ∈ [1,∞].

The secnd ingredient in the proof of Lemma B.1 is the following minimal scale lemma. It is a
slight modification of [7, Lemma 2.3] and will be used at the very end of the proof of Lemma B.1.

Lemma B.3. Fix K ≥ 1, s > 0 and β > 0 and suppose that {Xn}n∈N is a sequence of random
variables satisfying, for every n ∈ N,

Xn ≤K +Os (K3−nβ) .
Then there exists C(s, β,K) < ∞ such that the random scale

M ∶= sup{3n ∈ N ∶ Xn ≥K + 1}
satisfies the estimate

M ≤ Osβ(C).
Proof. This result can be deduced by applying [7, Lemma 2.3] to the sequence of random variables
X ′n =max (Xn −C0,0) . �

We now turn to the proof of Lemma B.1.

Proof of Lemma B.1. Fix t ∈ (0,∞) and m,n ∈ N with m > n. Using (B.4), we have

3−dm ∑
x∈◻m, e∈Bx

d

∣X e
C2

0

(x)∣t(B.5)

≤ C3−dm ∑
x∈◻m, e∈Bx

d

∣X e
3n,C0

(x)∣t +C3−dm ∑
x∈◻m, e∈Bx

d

∣X e
C0
(x)∣t 1{X e

C0
(x)>3n}

+C3−dm ∑
x∈◻m

3tn1{3n≤Mt(P)} ○ τx.
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Since X e
C0
(x) ≤ O′s(C), for every t, t′ > 0, there exists an exponent s′(d,p, λ, t, t′) > 0 and a constant

C ′(d,p, λ, t, t′) <∞ such that

3−dm ∑
x∈◻m, e∈Bx

d

∣X e
C0
(x)∣t 1{X e

C0
(x)>3n} ≤ O′s′(C ′3−nt′)

and

3−dm ∑
x∈◻m, e∈Bx

d

3nt1{3n≥Mt(P)} ○ τx ≤ O′s′(C ′3−nt′).
Combining the previous displays yields

3−dm ∑
x∈◻m, e∈Bx

d

∣X e
C2

0

(x)∣t ≤ C3−dm ∑
x∈◻m, e∈Bx

d

∣X e
3n,C0

(x)∣t +O′s′(C ′3−nt′).
Moreover, notice that by definition of the localized random variable X e

3n,C0
(x), we have for each

x ∈ Zd

∑
e∈Bx

d

∣X e
3n,C0

(x)∣t ≤ 2d × 3nt.
The proof of the lemma is then the same as the proof of Steps 1 and 2 of [7, Proposition 2.1] with

3−dm∑x∈◻m, e∈Bx
d
∣X e

C2
0

(x)∣t dx instead of Λt(z +◻m,S) and 3−dm∑x∈z+◻n, e∈Bx
d
∣X e

3n,C2
0

(x)∣t dx instead

of Λt(z′ +◻n,Sloc(z′)). We rewrite it for completeness.

We denote

Z ∶= 3−dm ∑
x∈◻m, e∈Bx

d

∣X e
3n,C0

(x)∣t = ∣◻n∣∣◻m∣ ∑
z∈3nZd∩◻m

3−dm ∑
x∈z+◻n, e∈Bx

d

∣X e
3n,C0

(x)∣t .
We first prove that there exists a constant C ∶= C(d,p, λ, t) <∞ such that

(B.6) Z ≤ C +O′1 (3nt−d(m−n)) .
To do so, choose an enumeration {zj ∶ 1 ≤ j ≤ 3d(m−n−2)} of the elements of the set 3n+2Zd ∩ ◻m.

Next, for each 1 ≤ j ≤ 3d(m−n−2), we let {zi,j ∶ 1 ≤ i ≤ 32d} be an enumeration of the ele-

ments of the set 3nZd ∩ (zj +◻n+2), such that, for every 1 ≤ j, j′ ≤ 3d(m−n−2) and 1 ≤ i ≤ 32d,

zj − zj′ = zi,j − zi,j′.The point of this is that, for every 1 ≤ i ≤ 32d and 1 ≤ j < j′ ≤
3d(m−n−2), we have dist (zi,j +◻n, z

i,j′ +◻n) ≥ 3n+1 and therefore, 3−dm∑x∈zi,j+◻n, e∈Bx
d
∣X e

3n,C2

0

(x)∣t
and 3−dm∑x∈zi,j′+◻n, e∈Bx

d
∣X e

3n,C2
0

(x)∣t are independent. Now fix h > 0 and compute, using the Hölder

inequality and the independence

logE [exp (h3−ntZ)]
= logE

⎡⎢⎢⎢⎢⎢⎣
32d

∏
i=1

3d(m−n−2)

∏
j=1

exp
⎛⎜⎝h3

−nt−d(m−n)3−dm ∑
x∈zi,j+◻n, e∈Bx

d

∣X e
3n,C2

0

(x)∣t⎞⎟⎠
⎤⎥⎥⎥⎥⎥⎦

≤ 3−2d
32d

∑
i=1

logE

⎡⎢⎢⎢⎢⎢⎣
3d(m−n−2)

∏
j=1

exp
⎛⎜⎝h3

−nt−d(m−n−2)3−dm ∑
x∈zi,j+◻n, e∈Bx

d

∣X e
3n,C2

0

(x)∣t⎞⎟⎠
⎤⎥⎥⎥⎥⎥⎦

≤ 3−2d
32d

∑
i=1

3d(m−n−2)

∑
j=1

logE

⎡⎢⎢⎢⎢⎢⎣
exp
⎛⎜⎝h3

−nt−d(m−n−2)3−dm ∑
x∈zi,j+◻n, e∈Bx

d

∣X e
3n,C2

0

(x)∣t⎞⎟⎠
⎤⎥⎥⎥⎥⎥⎦
.
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This inequality can be rewritten

logE [exp (h3−ntZ)] ≤ 3−2d ∑
z′∈3nZd∩(z+◻m)

logE

⎡⎢⎢⎢⎢⎣
exp
⎛
⎝h3−nt−d(m−n−2)3−dm ∑

x∈z′+◻n, e∈Bx
d

∣X e
3n,C2

0

(x)∣t⎞⎠
⎤⎥⎥⎥⎥⎦
.

Next we use the elementary inequality

∀y ∈ [0,1], exp(y) ≤ 1 + 2y
to get, for every h ∈ [0, (2d)−t3d(m−n−2)],

exp
⎛
⎝h3−nt−d(m−n−2) ∑

x∈z′+◻n, e∈Bx
d

∣X e
3n,C2

0

(x)∣t⎞⎠ ≤ 1 + 2h3−nt−d(m−n−2) ∑
x∈z′+◻n, e∈Bx

d

∣X e
3n,C2

0

(x)∣t .
Taking the expectation of this, applying the previous display and using the elementary inequality

∀y ≥ 0, log(1 + y) ≤ y,
we get

logE [exp (h3−ntZ)] ≤ 3d(m−n) log⎛⎝1 + 2h3−nt−d(m−n−1)E
⎡⎢⎢⎢⎢⎣ ∑
x∈z′+◻n, e∈Bx

d

∣X e
3n,C2

0

(x)∣t
⎤⎥⎥⎥⎥⎦
⎞
⎠

≤ 2h3−nt+dE
⎡⎢⎢⎢⎢⎣ ∑
x∈z′+◻n, e∈Bx

d

∣X e
3n,C2

0

(x)∣t
⎤⎥⎥⎥⎥⎦

≤ Ch3−nt.
Taking h ∶= (2d)−t3d(m−n−2) yields

E [exp ((2d)−t3d(m−n−2)−ntZ)] ≤ exp (C3d(m−n)−nt) .
From this and Chebyshev’s inequality, we obtain a constant C such that

P [Z ≥ C + h] ≤ exp (−hC−13d(m−n)−nt)
This implies (B.6).

Step 2. We complete the proof by applying union bounds. Combining (B.5) and (B.6) yields

∑
x∈◻m, e∈Bx

d

∣X e
3n,C0

(x)∣t ≤ C +O1 (C3nt−d(m−n)) +Os′ (C3−nt′) .
Choosing

n ∶= ⌈ dm

d + t + 1⌉ and t′ = 1
so that the previous line becomes

∑
x∈◻m, e∈Bx

d

∣X e
3n,C0

(x)∣t dx ≤ C +O′1 (C3− d
d+t+1

m) +O′s′ (C3− d
d+t+1

m) .
Thus, by (1.13) and (1.9), we obtain that there exist two exponents s ∶= s(d,p, λ, t) > 0, β ∶=
β(d,p, λ, t) > 0 and a constant C0 ∶= C0(d,p, λ, t) <∞ such that

∑
x∈◻m, e∈Bx

d

∣X e
3n,C0

(x)∣t dx ≤ C0 +O′s (C03
−βm) .

Define

MX
t ∶= sup

⎧⎪⎪⎨⎪⎪⎩3
m ∶ ∑

x∈◻m, e∈Bx
d

∣X e
3n,C0

(x)∣t dx ≥ C0 + 1
⎫⎪⎪⎬⎪⎪⎭

We want to prove MX
t ≤ Osβ (C)
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This is exactly Lemma B.3 with Xn = ∑x∈◻m, e∈Bx
d
∣X e

3n,C0
(x)∣t dx and K = C0.

�
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