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The Hartle-Hawking-Israel state on stationary black hole spacetimes

Introduction

In this paper we consider a free quantized Klein-Gordon field in a spacetime (M, g) containing a stationary bifurcate Killing horizon. The problem we are interested in originates from the works by Hartle and Hawking [HH] and Israel [I].

Hartle and Hawking considered a free Klein-Gordon field in the Schwarzschild spacetime, and used formal path integral arguments to construct a distinguished Feynman propagator, which essentially amounts to constructing a distinguished state. This Feynman propagator is obtained by Wick rotation arguments, from a corresponding inverse for an elliptic operator. They showed that the state obtained from this formal procedure is a thermal state in the exterior region (or right wedge) at Hawking temperature T H = κ(2π) -1 , where κ is the surface gravity of the horizon. Israel discussed the extension of this state to the left wedge of the Kruskal extension of the Schwarzschild spacetime. We refer the reader to [START_REF] Wald | Quantum field theory in curved spacetime and black hole thermodynamics University of[END_REF]Chap. 5] for a more detailed discussion.

The first rigorous construction of this so-called Hartle-Hawking-Israel (HHI) state in the double wedge region of the Kruskal spacetime is due to Kay [K3]. This construction was valid for any temperature, the resulting state being an example of a double KMS state.

Later on Kay and Wald [KW] and Kay [K4] made a systematic study of states for linear scalar quantum fields in a globally hyperbolic spacetime with a bifurcate Killing horizon. They gave a rigorous definition of the Hadamard condition and emphasized its importance in this context.

They constructed subalgebras A, resp. A L/R of the free field algebra which are in some sense attached to the horizon resp. to its left/right portions, and showed that all states which are both invariant under the Killing isometries and Hadamard near the horizon have the same restriction to these subalgebras. This restriction must moreover be a KMS state (with respect to the Killing vector field generating the horizon) at the Hawking temperature on the right algebra A R .

They also showed non-existence results in suitable globally hyperbolic regions of the maximally extended Schwarzschild-de Sitter and Kerr spacetimes, (which both contain bifurcate Killing horizons), by proving that there does not exist any invariant state (not necessarily KMS) which is of Hadamard form near the horizon. (In the case of the Kerr spacetime the result needs a physically reasonable, but still unproved hypothesis of existence of some superradiant solutions of the wave equation.)

The first global construction of the HHI state is due to Sanders [S1], who considered spacetimes with a static bifurcate Killing horizon, i.e. such that the Killing vector field V is static in the exterior region. Sanders proved in [S1] the existence of the HHI state and showed that it is a pure Hadamard state. The proof in [S1] relied on the Wick rotation in the Killing time coordinates, which was also the basis for the heuristic arguments in [HH] and which we will also use in this paper.

In [G] we gave another proof of the Hadamard property of the HHI state in the situation considered in [S1], by combining the Wick rotation with a tool which is familiar in elliptic boundary value problems, namely the Calderón projector, see 1.2.2, which was also used in [START_REF] Gérard | Analytic Hadamard states, Calderón projectors and Wick rotation near analytic Cauchy surfaces[END_REF] to construct analytic Hadamard states on general analytic spacetimes. The use of Calderón projectors allows to construct the HHI state directly on a Cauchy surface Σ and avoids needing to consider its behavior near the Killing horizon.

In the present paper we consider the more general stationary case, and give a construction of the HHI state for spacetimes with a stationary bifurcate Killing horizon. At the end of Subsect. 1.1 we will comment on the relationships between the situations considered in [KW] or [S1] and the one considered in this paper.

1.1. Results. We now present in greater detail the main result of this paper.

1.1.1. Bifurcate Killing horizons. Let (M, g) be a globally hyperbolic spacetime with a complete Killing vector field V . We use the 'mostly +' convention for the metric signature.

(M, g) admits a bifurcate Killing horizon see [B, KW], if the bifurcation surface B = {x ∈ M : V (x) = 0} is an orientable submanifold of codimension 2, and if there exists a smooth space-like Cauchy surface Σ containing B. We will always assume that B is compact and connected.

M splits then into four globally hyperbolic regions, the right/left wedges M + , M -and the future/past cones F, P, each invariant under the flow of V .

The bifurcate Killing horizon is then H = ∂(F ∪P). An important object related with the bifurcate Killing horizon is its surface gravity κ, which is a scalar, constant over all of H.

One also assumes the existence of a wedge reflection R : M → M which is an isometry of (M -∪ U ∪ M + , g), where U is a neighborhood of B in M , such that R • R = Id, R = Id on B, R reverses the time orientation and R * V = V . In concrete situations, the left wedge M -is actually constructed by reflection of the right wedge M + , so the existence of a wedge reflection does not seem to be such a strong hypothesis.

The bifurcate Killing horizon H is stationary resp. static if there exists a Cauchy surface satisfying the above requirements such that, in addition, V is time-like on Σ \ B, resp. orthogonal to Σ \ B. For technical reasons, we require V to be uniformly time-like near infinity on Σ, see Subsect. 2.4. This condition is imposed only far away from the bifurcation surface B and will hold for example if (M, g) is asymptotically flat near spatial infinity.

We consider on (M, g) a free quantum Klein-Gordon field associated to the Klein-Gordon equation -2 g φ(x) + m(x)φ(x) = 0, where m ∈ C ∞ (M, R) is invariant under V and R. We assume that m(x) ≥ m 2 0 > 0 i.e. the Klein-Gordon field is massive.

1.1.2. The double β-KMS state. Since (M + , g, V ) is a stationary spacetime, there exists (see [S2]) for any β > 0 a thermal state ω β at temperature β -1 with respect to the group of Killing isometries of (M + , g) generated by V .

The wedge reflection R : M + ∼ -→ M -allows to extend ω β to the double β-KMS state ω D on M + ∪ M -. This extension exists for any β > 0 and is a pure state in M + ∪ M -. 1.1.3. Main result. We prove in this paper the following theorem.

Theorem 1.1. Let (M, g, V ) be a globally hyperbolic spacetime with a stationary bifurcate Killing horizon and a wedge reflection. Let P = -2 g + V be a Klein-Gordon operator invariant under the Killing vector field V and the wedge reflection R. Assume moreover that the Cauchy surface Σ containing B can be chosen so that conditions (H1)-(H4) in Subsects. 2.1, 2.3, 2.4 are satisfied.

Then there exists a state ω HHI for P in (M, g) called the Hartle-Hawking-Israel state such that:

(1) ω HHI is a pure Hadamard state in M , (2) the restriction of ω HHI to M + ∪M -is the double β-KMS state ω D at Hawking temperature T H = κ(2π) -1 where κ is the surface gravity of the horizon, (3) ω HHI is the unique extension of ω D such that its spacetime covariances Λ ± map C ∞ c (M ) into C ∞ (M ) continuously. In particular it is the unique Hadamard extension of ω D .

Thm. 1.1 will be proved in Sects. 9 and 10.

1.1.4. Some comments. Let us now comment on the hypotheses (H1)-(H4) that we impose in this paper. Conditions (H1i) and H2i) are the standard conditions needed to setup the problem, namely existence of a bifurcate Killing horizon with a wedge reflection, and invariance of the Klein-Gordon operator under the Killing field and wedge reflection.

Condition (H1ii) requires that the bifurcation surface B is compact and connected.

The fact that B is compact allows to introduce Gaussian normal coordinates to B in the Cauchy surface Σ and to construct the smooth extension (M eucl ext , g eucl ext ) of the Wick rotated manifold (S β × Σ + , g eucl ), (for β equal to the inverse Hawking temperature), where g eucl is the complex metric obtained from g by Wick rotation in the Killing time coordinate.

This assumption excludes of course the Minkowski spacetime, when the Killing vector field X is a boost generator, for which the above results are very well-known.

The fact that B is connected implies that the surface gravity is constant on B. This excludes for example the extended Schwarzschild-de Sitter spacetime, see [KW], where the bifurcation surface has two connected components. It is quite likely that the results of this paper can be extended if B is compact with several connected components, with the same surface gravity.

Finally let us recall that for the extended Kerr spacetime, the Killing vector field becomes space-like at space-like infinity. The horizon is not stationary and hence the Kerr spacetime is also outside the scope of this paper. Note that it has been shown in [START_REF] Kay | Theorems on the uniqueness and thermal properties of stationary, nonsingular, quasifree states on spacetimes with a bifurcate Killing horizon[END_REF]Sect. 6.2] that if the Killing field is not everywhere time-like then there exists no associated KMS state in the exterior region, hence in particular no HHI state.

Condition ( H2ii) requires that the Klein-Gordon field is massive. Note that in [S1], the weaker condition m(x) > 0 was assumed.

Conditions (H3 H4) concern the behavior of the metric g and of the Killing vector field V near infinity on Σ. (H4), i.e. completeness of (Σ, h), where h is the Riemannian metric induced by g on Σ is needed to prove the purity of the HHI state.

1.2. Main ideas of the construction. We now outline the construction of the HHI state ω HHI . We look for ω HHI as an extension to M of the double β-KMS state ω D on M -∪ M + , where β -1 = κ(2π) -1 is the Hawking temperature. The first step consists in understanding in sufficient detail the β-KMS state in M + .

Writing the metric g in M + using the Killing time coordinate associated to V and Σ, M + is identified with R × Σ + , where Σ + = M + ∩ Σ and the metric g becomes

(1.1) g = -N 2 (y)dt 2 + h ij (y)(dy i + w i (y)dt)(dy j + w j (y)dt),
where N is the lapse function, w the shift vector field, h the induced metric on Σ.

The Killing field V is simply ∂ ∂t . The fact that V is time-like in M + is equivalent to the inequality N 2 (y) > w i (y)•h ij (y)w j (y) for y ∈ Σ + .
The Klein-Gordon operator P associated to g can be written as:

(1.2)

P = (∂ t + w * )N -2 (∂ t -w) + h 0 ,
where w = w i • ∂ y i , (considered as a first order differential operator), and h 0 = ∇ * h -1 ∇ + m is an elliptic operator on Σ.

1.2.1. The Wick rotation. The Wick rotation consists in replacing t by is and produces the complex metric

(1.3) g eucl = N 2 (y)ds 2 + h ij (y)(dy i + iw i (y)ds)(dy j + iw j (y)ds).

In the static case considered in [S1, G] w vanishes and g eucl is Riemannian. The fact that g eucl is now a complex metric causes several new difficulties. Performing the same transformation on P yields the Wick rotated operator

K = -(∂ s + iw * )N -2 (∂ s + iw) + h 0 .
There are several different linear operators that can be associated to the formal expression K. The first one consists in working on L 2 (R×Σ + ), using the sesquilinear form

Q ∞ (u, u) = N -1 ∂ s u 2 + (u|hu) -i(N -1 ∂ s u|N -1 wu) -i(N -1 wu|N -1 ∂ s u), where h = h 0 -w * N -2 w, with DomQ ∞ = C ∞ c (R × Σ + ). Another possibility is to work on L 2 (S β × Σ + ) where S β = [-β 2 , β 2 [ is the circle of length β. The sesquilinear form Q β has the same expression as Q ∞ but the domain is now DomQ β = C ∞ c (S β × Σ +
), which corresponds to imposing β-periodic boundary conditions on K.

Since we have assumed that V is uniformly time-like near infinity, see Subsect. 2.4, one can show that the sesquilinear forms Q ∞ , Q β are closeable and sectorial and hence generate injective linear operators K ∞ , K β . Their inverses K -1 ∞ , K -1 β are then well defined between abstract Sobolev spaces, using the Lax-Milgram theorem. 

+ = Ω, Ω -= R n \ Ω cl . If u ∈ D (Ω ± ) is an extendible distribution in Ω ± such that P u = 0 in Ω ± then its traces γ ± u = u ∂Ω ±ν •du ∂Ω
, where ν is a vector field transverse to ∂Ω, are well defined in D (∂Ω; C 2 ).

The spaces Z ± = {γ ± u : u ∈ D (Ω ± ), P u = 0 in Ω ± } are two complementary spaces in D (Ω; C 2 ) and the associated projections c ± are called Calderón projectors for P and ∂Ω. Assuming P to be invertible, they can be easily expressed in terms of P -1 , see eg . Def. 9.4 below.

The expressions giving c ± still make sense if ∂Ω is not compact, for example as operators c ± : E (∂Ω; C 2 ) → D (∂Ω; C 2 ) but they are not projections on E (∂Ω; C 2 ) since they do not preserve this space. Nevertheless we will still call c ± Calderón projectors.

We will use Calderón projectors denoted by c ± β , β ∈]0, +∞] for the open sets

Ω ∞ =]0, +∞[×Σ + , Ω β =]0, β
2 [×Σ + and elliptic operators K ∞ , K β , ν being the exterior unit normal for g eucl to ∂Ω β , β ∈]0, +∞]. Note that ν is a complex vector field, but its imaginary part is tangent to ∂Ω β . The expression of c ± β in terms of the inverse K -1 β is given in Subsect. 8.7.

1.2.3. Vacuum and double β-KMS states. If β = ∞, the boundary ∂Ω ∞ equals Σ + , and one can try to construct a state in M + by defining its covariances on Σ + as

λ ± ∞ = ±q • c ± ∞ ,
where q = 0 1 1 0 is the charge defining the symplectic structure on the space

C ∞ c (Σ + ; C 2 )
of Cauchy data on Σ + . It turns out that λ ± ∞ are actually the covariances of the vacuum state ω vac in M + .

Of course the study of the vacuum state ω vac , corresponding to β = ∞, is not necessary for the construction of the HHI state, but gives a nice introduction to the more complicated case β < ∞.

If β < ∞, the boundary ∂Ω β has two components, both isomorphic to Σ + . The state ω D obtained similarly from the Calderón projectors c ± β is now the double β-KMS state ω D in M -∪M + , modulo the identification of Σ + with Σ -by the wedge reflection.

The proof of these facts takes up a large part of the paper. First of all we reduce ourselves to the situation N (y) = 1 by considering P = N P N and Kβ = N K β N , the last identity taking a rather transparent form if we use the framework of sesquilinear forms, see Subsect. 8.6. The covariances of ω vac , ω D for the Klein-Gordon operator P can similarly be deduced from those of the analogous states ωvac , ωD for P .

The operator P can be written as (∂ t + w * )(∂ t -w) + h0 , and the computations of ωvac , ωD can be done by reducing the Klein-Gordon equation P φ = 0 to a first order system ∂ t f -iHf = 0, see Sects. 6, 7. This system is an example of a stable symplectic dynamics, which is studied in Sects. 4, 5.

1.2.4. The surface gravity and the extended Euclidean metric. All the constructions up to now are valid for any value of the inverse temperature β. If β = (2π)κ -1 , i.e. if β -1 equals the Hawking temperature κ(2π) -1 , where κ is the surface gravity of the horizon, one can show that (S β × Σ + , g eucl ) has a unique extension (M eucl ext , g eucl ext ), which corresponds exactly to passing from polar to cartesian coordinates in the plane. HHI are the covariances of a quasi-free state ω HHI defined on the whole of M . One uses that the restriction of λ ± HHI to C ∞ c (Σ\B) are precisely the covariances of the double β-KMS state ω D , and some continuity properties of Calderón projectors and density results in Sobolev spaces, see Subsect. 9.2.

One can also prove that the HHI state ω HHI is a Hadamard state, by an argument already used in [G] in the static case, relying on the fact that the covariances of any Hadamard state on Σ are matrices of pseudodifferential operators.

The proof of the purity of ω HHI is more complicated and relies on arguments from [START_REF] Gérard | Analytic Hadamard states, Calderón projectors and Wick rotation near analytic Cauchy surfaces[END_REF].

1.3. Notations. We now collect some notation.

We

set λ = (1 + λ 2 ) 1 2 for λ ∈ R. We write A B if A is relatively compact in B. If X, Y are sets and f : X → Y we write f : X ∼ -→ Y if f is bijective. If X, Y are equiped with topologies, we write f : X → Y if the map is continuous, and f : X ∼ -→ Y if it is a homeomorphism.
1.3.1. Duals and antiduals. Let X be a real vector space. Its dual will be denoted by X # . Let Y be a complex vector space. We denote by Y R its real form, i.e. Y as a vector space over R. We denote by Y # its dual, i.e. the space of C-linear forms on Y and by Y * its anti-dual, i.e. the space of C-antilinear forms on Y.

We denote by Y the conjugate vector space to Y, i.e. Y = Y R as a R-vector space, equiped with the complex structure -i, if i ∈ L(Y R ) is the complex structure of Y. The (anti-linear) identity map Id : Y → Y will be denoted by y → y, i.e. y equals y but considered as an element of Y.

If Y is a Hilbert space, then Y inherits also a Hilbert space structure by

(y 1 |y 2 ) Y • • = (y 1 |y 2 ) Y .
By definition we have Y * = Y # . Note that we have a C-linear identification

Y # ∼ Y # defined as follows: if y ∈ Y and w ∈ Y # then w•y • • = w•y This identifies w ∈ Y # with an element of Y # . Similarly we have a C-linear identification Y * ∼ Y * .
1.3.2. Linear operators. If X i , i = 1, 2 are real or complex vector spaces and a ∈ L(X 1 , X 2 ) we denote by a # ∈ L(X # 2 , X # 1 ) its transpose. If Y i , i = 1, 2 are complex vector spaces we denote by a * ∈ L(Y * 2 , Y * 1 ) its adjoint, and by a ∈ L(Y 1 , Y 2 ) its conjugate, defined by a y 1 = ay 1 . With the above identifications we have a * = a # = a # . 1.3.3. Bilinear and sesquilinear forms. If X is a real or complex vector space, a bilinear form on X is given by a ∈ L(X , X # ), its action on a couple (x 1 , x 2 ) is denoted by x 1 •ax 2 . We denote by L s/a (X , X # ) the symmetric/antisymmetric forms on X . a is non-degenerate if Ker a = {0}. An antisymmetric, non-degenerate form σ is called a symplectic form on X .

Similarly if Y is a complex vector space, a sesquilinear form on Y is given by a ∈ L(Y, Y * ), its action on a couple (y 1 , y 2 ) is denoted by y 1 •ay 2 , the last notation being a reminder that Y * = Y # . We denote by L h/a (Y, Y * ) the Hermitian/anti-Hermitian forms on Y. Non-degenerate forms are defined as in the real case. An anti-Hermitian, non-degenerate form σ is called a (complex) symplectic form on Y.

If a ∈ L(Y, Y * ) then a ∈ L(Y, Y * ) and with the above identifications we have y 1 •ay 2 = y 1 •ay 2 for y 1 , y 2 ∈ Y.

1.3.4. Linear operators on Hilbert spaces. The domain of a closed, densely defined operator a on a Hilbert space H will be denoted by Doma, equipped with the graph norm, its spectrum by σ(a) and its resolvent set by res(a). We will similarly denote by DomQ the domain of a sesquilinear form Q. If Q is closeable we denote by Q cl its closure. 1.3.5. Scale of Hilbert spaces associated to a selfadjoint operator. If a is selfadjoint on H, we write a > 0 if a ≥ 0 and Ker a = {0}. If a > 0 and s ∈ R we denote by a s H the completion of Doma -s for the norm a -s u H . Equipped with the scalar product (u|v) s = (a -s u|a -s v) H , it is a Hilbert space. The spaces a s H and a -s H form a dual pair for the duality pairing u|v = (a -s u|a s v) H .

We define similarly the spaces a s H for any selfadjoint operator a on H. We have a -s H = Dom|a| s for s > 0. We have a -s H ⊂ H ⊂ a s H for s ≥ 0 and

a s H = |a| s H if 0 ∈ σ(a).
The notation a s H or a s H is very convenient but somewhat ambiguous because usually aH denotes the image of H under the linear operator a. Let us explain how to reconcile these two meanings.

Let H c be the space of u ∈ H such that u = 1l I (a)u, for some compact I ⊂ R\{0}. We equip H c with its natural topology by saying that u n → u in H c if there exists I ⊂ R\{0} compact such that u n = 1l I (a)u n for all n and u n → u in H. We denote by H loc the topological anti-dual of H c . Then |a| s and a s preserve H c and H loc , and a s H, resp. |a| s H are the images in H loc of H under a s , resp. |a| s . It follows that these spaces are subspaces (equipped with finer topologies) of H loc , in particular they are pairwise compatible and one can consider their intersections inside H loc . It is easy to verify, using the spectral decomposition of a that for example

(1.4) H ∩ a s H = Doma -s , s ∈ R if we equip H ∩ a s H with the norm • + • s . 1.3.6. Operator inequalities. If a 1 , a 2 are selfadjoint on H with a 1 , a 2 > 0 we write a 1 a 2 if Doma 1 2 1 ⊃ Doma 1 2
2 and a 1 ≤ ca 2 on Doma 1 2

2 for some c > 0. We write a 1 ∼ a 2 if a 1 a 2 and a 2 a 1 .

If a 1 ∼ a 2 the Kato-Heinz theorem implies that a -1 2 ∼ a -1 1 and that a s 1 H = a s 2 H as Banach spaces for s ∈ [-1 2 , 1 2 ]. Similarly if q 1 , q 2 are two positive quadratic forms with q i (u, u) = 0 ⇒ u = 0, we write q 1 q 2 if Domq 1 ⊃ Domq 2 and q 1 ≤ cq 2 on Domq 2 and we write q 1 ∼ q 2 if q 1 q 2 and q 2 q 1 . 1.3.7. Differential operators on manifolds. If X is a smooth manifold and a, b are differential operators on X the composition a•b is denoted by ab. If a is a differential operator on X and u ∈ C ∞ (X), then au denotes the composition of a with the operator of multiplication by u, while (au) ∈ C ∞ (X) denotes the image of u under a.

1.3.8. Spaces of distributions. Let X be a smooth manifold. Fixing a smooth density we identify distributions and distributional densities on X. If Ω ⊂ X is an open set with smooth boundary and F (X) ⊂ D (X) is a vector space, we denote by F (Ω) ⊂ D (Ω) the space of restrictions of elements of F (X) to Ω.

We denote by δ a ∈ D (R) the Dirac distribution at a ∈ R.

Spacetimes with a stationary bifurcate Killing horizon

In this section we recall the definition of spacetimes with bifurcate Killing horizons, see [B, KW]. We express various natural objects, like the lapse function, shift vector field and induced Riemannian metric in Gaussian coordinates near the bifurcation surface.

We then consider the Wick rotated metric g eucl , obtained by the Wick rotation t → is in the Killing time t, and show that if s belongs to the circle S (2π)κ -1 of length (2π)κ -1 , for κ the surface gravity of the horizon, g eucl has a smooth extension up to the bifurcation surface B. This fundamental fact, already known for static horizons, see [START_REF] Sanders | On the construction of Hartle-Hawking-Israel states across a static bifurcate Killing horizon[END_REF]Sect. 2.2] lies at the basis of the construction of the HHI state in later sections.

2.1. Bifurcate Killing horizons. Definition 2.1. A spacetime with a bifurcate Killing horizon is a triple (M, g, V ) such that :

(1) (M, g) is a globally hyperbolic spacetime, (2) V is a smooth, complete Killing vector field on (M, g), (3) B • • = {x ∈ M : V (x) = 0} is an orientable submanifold of codimension 2, called the bifurcation surface, (4) there exists a smooth, space-like Cauchy hypersurface Σ with B ⊂ Σ.

If n is the future directed unit normal vector field to Σ, one defines the lapse function N ∈ C ∞ (Σ) and shift vector field w, which is a smooth vector field tangent to Σ, by

V = N n + w on Σ, ie N • • = -V •gn, w • • = V -N n on Σ.
Let us denote by y the elements of Σ. The Cauchy surface Σ is then decomposed as

Σ = Σ -∪ B ∪ Σ + , Σ ± • • = {y ∈ Σ : ±N (y) > 0}, ie V is future/past directed over Σ ± .
The spacetime M splits as

M = M + ∪ M -∪ F ∪ P,
where the future cone

F • • = I + (B), the past cone P • • = I -(B), the right/left wedges M ± • • = D(Σ ±
), are all globally hyperbolic when equipped with g. The future cone F may be a black hole. The bifurcate Killing horizon is then

H • • = ∂F ∪ ∂P.
The Killing vector field V is tangent to H. In Figure 1 below the vector field V is represented by arrows.

Σ M + M - F P H H H H B Figure 1.
The following definition is due to Sanders [S1].

Definition 2.2. A triple (M, g, V ) as in Def. 2.1 is called a spacetime with a stationary, resp. static bifurcate Killing horizon if one can find a Cauchy hypersurface Σ as in Def. 2.1 such that in addition V is time-like on Σ \ B, resp. g-orthogonal to Σ \ B.

2.2.

Wedge reflection. Additionally one assumes the existence of a wedge reflection, see [START_REF] Sanders | On the construction of Hartle-Hawking-Israel states across a static bifurcate Killing horizon[END_REF]Def. 2.6].

Definition 2.3. A wedge reflection R for a spacetime (M, g, V ) with a stationary Killing horizon is a diffeomorphism R : (1) r is an isometry of (Σ, h) with r • r = Id, (2) r = Id on B, (3) r * N = -N , r * w = w. By (3) above we have r : Σ ± ∼ -→ Σ ∓ . Henceforth, Σ will denote a Cauchy surface with all these properties.

M -∪ U ∪ M + ∼ -→ M -∪ U ∪ M + , where U is a neighborhood of B in M such that: (1) R is an isometry of (M -∪ U ∪ M + , g) which reverses the time orientation, (2) R • R = Id, R = Id on B, (3) R * V = V . 2.
Let us summarize the assumptions we will make on the spacetime (M, g, V ):

(H1i) (M, g, V ) is a spacetime with a stationary bifurcate Killing horizon, admitting a wedge reflection R, (H1ii) the bifurcation surface B is compact and connected.

2.3. Klein-Gordon operators. We fix a real function m ∈ C ∞ (M ). We will assume the following: [S1] we assume that m is stationary w.r.t. the Killing vector field V and invariant under the wedge reflection, but we consider only massive Klein-Gordon fields, where in [S1] the weaker condition m(x) > 0 as allowed.

(H2i) V a ∇ a m(x) = 0, m • R(x) = m(x), x ∈ M + ∪ M -∪ U, (H2ii) m(x) ≥ m 2 0 > 0, x ∈ M, ie as in
The Klein-Gordon operator is (2.1) P = -2 g + m.

2.4. Conditions near infinity on Σ. It will be necessary, in order to control various energy spaces in Sect. 8, to impose conditions on the Killing vector field V near infinity on Σ.

∃ U neighborhood of B in Σ such that:

(H3i) V + δw is time-like on Σ \ U for some δ > 0, (H3ii) N -2 w i •(∇ h i N ), N -1 ∇ h i w i are bounded on Σ \ U,
where we recall that h is the restriction of g to Σ.

(H3i) has a clear geometrical meaning since it means that V is uniformly timelike near infinity on Σ. (H3ii) depends only on the asymptotic behavior of g on Σ near infinity, so it is easy to check in practice.

Finally in order to prove the purity of the HHI state constructed in Sect. 9, we will need the following condition (H4) (Σ, h) is complete.

2.5. The surface gravity. The surface gravity is defined by: [START_REF] Kay | Theorems on the uniqueness and thermal properties of stationary, nonsingular, quasifree states on spacetimes with a bifurcate Killing horizon[END_REF]Sect. 2], that κ is constant on B and actually on the whole horizon H.

κ 2 = - 1 2 (∇ (g)b V a ∇ (g) b V a ) |B , κ > 0. It is a fundamental fact, see
For ω ∈ B let n ω ∈ T ω Σ be the unit normal to B for h pointing towards Σ + . We introduce Gaussian normal coordinates to B in (Σ, h) by:

χ : ] -δ, δ[×B → Σ (u, ω) → exp h ω (un ω ) which is a smooth diffeomorphism from ] -δ, δ[×B to a relatively compact neigh- borhood U of B in Σ.
In the next proposition we express h, N , w and the wedge reflection r in the local coordinates (u, ω) on U . We recall that the elements of Σ are denoted by y.

Proposition 2.4. On U one has:

(2.2) r(u, ω) = (-u, ω),

and

(2.3)

h ij (y)dy i dy j = du 2 + k αβ (u, ω)dω α dω β , w i (y)∂ y i = w 0 (u, ω)∂ u + w α (u, ω)∂ ω α , N (y) = N (u, ω), m(y) = m(u, ω),
where k αβ (u, ω)dω α dω β is a smooth, u-dependent Riemannian metric on B with:

(2.4)

N (u, ω) = u(κ + u 2 d(u 2 , ω)), w 0 (u, ω) = u 3 b(u 2 , ω), w α (u, ω) = u 2 c α (u 2 , ω), k αβ (u, ω) = d αβ (u 2 , ω), m(u, ω) = n(u 2 , ω)
for smooth maps b, d, n, c α , d αβ defined on [-, ] × B for some > 0 with n(0, ω) ≥ c > 0 for some c > 0.

The proof of Prop. 2.4 is given in Appendix A.1.

2.6. The metric in M + . Let us denote by Φ t the flow of the Killing vector field V . We identify R × Σ + with M + by χ : R × Σ + (t, y) → Φ t (y) ∈ M + .

We have χ * V = ∂ ∂t and

χ * g = -N 2 (y)dt 2 + (dy i + w i (y)dt)h ij (y)(dy j + w j (y)dt) = -v 2 (y)dt 2 + w i (y)dy i dt + w j (y)dtdy j + h ij (y)dy i dy j , for v 2 (y) = (N 2 (y) -w i (y)h ij (y)w j (y)). Note that the fact that V is time-like in M + is equivalent to (2.5) N 2 (y) > w i (y)h ij (y)w j (y), y ∈ Σ + .
The unit normal vector field to the foliation

Σ t = {t} × Σ is (2.6) n = N -1 ( ∂ ∂t -w), Denoting χ * g on R × Σ + simply by g, we have |g| = N 2 |h| and (2.7) g -1 = -N -2 ∂ 2 t + N -2 (w i ∂ y i ∂ t + w j ∂ t ∂ y j ) + (h ij -N -2 w i w j )∂ y i ∂ y j .
Since the potential m is invariant under the Killing vector field, we have m = m(y).

2.7.

The Wick rotated metric.

2.7.1. Complex metrics. If X is a smooth manifold, we denote by T p q (X) the space of smooth, real (p, q) tensors on X and by CT p q (X) its complexification. An element k = k ab (x)dx a dx b of CT 0 2 (X) which is symmetric and non-degenerate will be called a complex metric on X.

The Wick rotated metric. We denote by S

β = [-β 2 , β 2 
[ with endpoints identified the circle of length β and

M eucl • • = S β × Σ + ,
with variables (s, y). Replacing t by is we obtain the complex metric on M eucl :

(2.8)

g eucl = N 2 (y)ds 2 + (dy j + iw j (y)ds)h jk (y)(dy k + iw k (y)ds)
= v 2 (y)ds 2 + iw j (y)dy j ds + iw j (y)dsdy j + h jk (y)dy j dy k .

We embed Σ \ B into M eucl = S β × Σ + by the map

ψ : y → (0, y) for y ∈ Σ + , ( β 2 , r(y)) for y ∈ Σ -,
where r : Σ → Σ is the weak wedge reflection.

2.8. The smooth extension.

Proposition 2.5. Assume that β = (2π)κ -1 . Then there exists a smooth manifold M eucl ext equipped with a smooth complex metric g eucl ext and (1) a smooth embedding

ψ : Σ → M eucl ext , (2) a smooth isometric embedding χ : (M eucl , g eucl ) → (M eucl ext \ B ext , g eucl ext )
, where

B ext = ψ(B), (3) an open set Ω ext such that ∂Ω ext = ψ(Σ) and χ :]0, β 2 [×Σ + ∼ -→ Ω ext \ B ext , (4) a smooth function m ext : M eucl ext → R with m ext ≥ m 2 0 > 0, such that: ψ Σ\B = χ • ψ, χ * m ext = m M eucl . Σ + Σ - B Ω ext S β Σ + ∼r(Σ -) Σ + S β × Σ + 0 β 2 R 2 × B χ Figure 2. The embedding χ
The proof of Prop. 2.5 is given in Appendix A.2.

Free Klein-Gordon fields

In this section we briefly recall some well-known background material on free quantum Klein-Gordon fields on globally hyperbolic spacetimes. We follow the presentation in [GW1, Sect. 2] based on charged fields. There is no loss of generality to restrict oneself to charged fields and gauge invariant states, see eg the discussion in [GW1, Sect. 2].

3.1. CCR * -algebras.

3.1.1. Polynomial CCR * -algebra. Let Y a complex vector space and q ∈ L h (Y, Y * ) a Hermitian form on Y, possibly degenerate. Setting X = Y R , σ = Imq, (X , σ) is a pre-symplectic space.
The CCR * -algebra CCR(Y, q) is the complex * -algebra generated by symbols 1l, ψ(y), ψ * (y), y ∈ Y and the relations

ψ(y 1 + λy 2 ) = ψ(y 1 ) + λψ(y 2 ), ψ * (y 1 + λy 2 ) = ψ(y 1 ) + λψ * (y 2 ), y 1 , y 2 ∈ Y, λ ∈ C, [ψ(y 1 ), ψ(y 2 )] = [ψ * (y 1 ), ψ * (y 2 )] = 0, [ψ(y 1 ), ψ * (y 2 )] = y 1 • qy 2 1l, y 1 , y 2 ∈ Y, ψ(y) * = ψ * (y), y ∈ Y.
3.1.2. Weyl * -algebra. The Weyl * -algebra Weyl(Y, q) is the * -algebra generated by the elements 1l, W (x), x ∈ Y R , with relations

W (0) = 1l, W (x) * = W (-x), W (x 1 )W (x 2 ) = e -i 2 x1•σx2 W (x 1 + x 2 ), x, x 1 , x 2 ∈ Y R ,
where we recall that σ = Imq.

3.1.3. Weyl C * -algebra. Setting A = sup ω∈F ω(A * A) 1 2 , A ∈ Weyl(Y, q),
where F is the set of states on Weyl(Y, q) one can show that • is a C * -norm, see eg [MSTV] and we denote by Weyl C * (Y, q) the completion of Weyl(Y, q) for this norm.

3.1.4. Quasi-free states.

Definition 3.1. A state ω on CCR(Y, q) is (gauge invariant) quasi-free if ω( p i=1 ψ(y i ) q j=1 ψ * (y j )) = 0 if p = q, σ∈Sp p i=1 ω(ψ(y i )ψ * (y σ(i) )) if p = q. The (complex) covariances λ ± ∈ L h (Y, Y * ) of ω are defined as: ω(ψ(y 1 )ψ * (y 2 )) = • • y 1 •λ + y 2 , ω(ψ * (y 2 )ψ(y 1 )) = • • y 1 •λ -y 2 , y 1 , y 2 ∈ Y.
The following result is well-known, see eg [START_REF] Derezinski | Mathematics of Quantization and Quantum Fields[END_REF]Sect. 17.1].

Proposition 3.2. Two Hermitian forms λ ± ∈ L h (Y, Y * ) are the covariances of a quasi-free state ω on CCR(Y, q) iff

(3.1) λ ± ≥ 0, λ + -λ -= q.
If we set

(3.2) η = 1 2 Re (λ + + λ -),
then we have

η ≥ 0, |x 1 •x 2 | ≤ 2(x 1 •ηx 1 ) 1 2 (x 2 •x 2 ) 1 2 , x 1 , x 2 ∈ Y R .
It follows that ω induces a quasi-free state on Weyl(Y, q), or equivalently on

Weyl C * (Y, q) defined by ω(W (x)) = e -1 2 x•ηx , x ∈ Y R .
3.1.5. Pure quasi-free states.

Definition 3.3. A quasi-free state ω on CCR(Y, q) is said pure if the induced state on Weyl C * (Y, q) is pure.
In the sequel we consider a quasi-free state ω on CCR(Y, q) with covariances λ ± . We will assume that Ker(λ

+ + λ -) = {0}. By Prop. 3.2 this is true if q is non degenerate. Let Y cl be the completion of Y for the norm y ω = (y •λ + y + y •λ -y) 1 2
. Since λ ± ≥ 0 and q = λ + -λ -, q, λ ± uniquely extend as bounded Hermitian forms q cl , λ ±cl on Y cl . Note that q cl may be degenerate, even is q is not.

Proposition 3.4. The state ω on CCR(Y, q) is pure iff there exist projections

c ± ∈ L(Y cl ) such that (3.3) c + + c -= 1l, λ ±cl = ±q cl • c ± .
Remark 3.5. If ω is pure on CCR(Y, q) then q cl is non degenerate. In fact since λ ±cl and q cl are Hermitian we obtain

λ ±cl = ±c ± * q cl hence Kerq cl ⊂ Ker(λ +cl + λ -cl ) = {0}. Proof of Prop. 3.4. Assume first that Y is complete for • ω ie Y cl = Y.
This means that Y R is complete for the euclidean scalar product η in (3.2). In that situation we know from [START_REF] Derezinski | Mathematics of Quantization and Quantum Fields[END_REF]Thm. 17.13] that ω is pure iff (2η, σ) is Kähler, ie if there exists an anti-involution j on Y R with j # σj = σ and 2η = σj. This is equivalent to the existence of projections c ± satisfying

(3.4) c + + c -= 1l, c + * qc -= 0, λ ± = ±q • c ± , as requested, see [GW1, Prop. 2.7].
Let us now consider the general case. We recall from [START_REF] Bratteli | Operator Algebras and Quantum Statistical Mechanics[END_REF]Thm. 2.3.19] that a state ω on a C * -algebra A is pure iff its GNS representation (H, π) is irreducible, i.e. iff H does not contain non-trivial closed subspaces invariant under π(A).

We set

A = Weyl C * (Y, q), A cl = Weyl C * (Y cl , q cl
) ω cl the quasi-free state on A cl with covariances λ ±cl and let (H (cl) , π (cl) , Ω (cl) ) be the GNS triple for (A (cl) , ω (cl) ).

Using that Y is dense in Y cl for • ω , we first obtain that H = H cl , Ω = Ω cl and π cl | A = π.
We also easily obtain that π(A) is strongly dense in From this fact we see that a closed subspace K ⊂ H = H cl is invariant under π(A) iff it is invariant under π cl (A cl ), hence ω is pure iff its extension ω cl to A cl is pure. We are hence reduced to the already treated case when Y = Y cl . 2

π cl (A cl ). In fact, if A = N 1 α i π cl (W (y i )) ∈ π cl (A cl ) and y i,n ∈ Y with y i,n → y i for • ω , we obtain that A n = N 1 α i π(W (y i,n ))
Let us now state another criterion for purity. Prop. 3.6 below is due to Kay and Wald [KW] in the real case (see [START_REF] Gérard | Analytic Hadamard states, Calderón projectors and Wick rotation near analytic Cauchy surfaces[END_REF]Prop. 2.1] for the complex case).

Proposition 3.6. The state ω with covariances Λ ± is pure iff:

(3.5) y 1 •(λ + + λ -)y 1 = sup y2∈Y,y2 =0 |y 1 •qy 2 | 2 y 2 •(λ + + λ -)y 2
, ∀y 1 ∈ Y.

Proof. From [KW] we know that ω is a pure state iff

x 1 •ηx 1 = 1 4 sup x2∈Y R ,x2 =0 |x 1 •Im qx 2 | 2 x 2 •ηx 2 .
Using that η = 1 2 Re (λ + + λ -) and that q is sesquilinear, this is equivalent to (3.5). 2 3.2. Free Klein-Gordon fields. Let P = -2 g + m, m ∈ C ∞ (M, R) be a Klein-Gordon operator on a globally hyperbolic spacetime (M, g). Let G ret/adv be the retarded/advanced inverses of P and G • • = G ret -G adv . We apply the above framework to

Y = C ∞ c (M ) P C ∞ c (M ) , [u]•q[v] = i(u|Gv) M ,
where (u|v) M = ´M uvdV ol g . Denoting by Sol sc (P ) the space of smooth spacecompact solutions of P φ = 0, it is well known that

[G] : C ∞ c (M ) P C ∞ c (M ) , i(•|G•) M [u] → Gu ∈ (Sol sc (P ), q)
is unitary for

(3.6) φ 1 •qφ 2 • • = i ˆΣ(∇ µ φ 1 φ 2 -φ 1 ∇ µ φ 2 )n µ dσ Σ ,
where Σ is any spacelike Cauchy hypersurface, n µ is the future directed unit normal vector field to Σ and dσ Σ the induced surface density. Setting

: C ∞ sc (M ) φ → φ Σ i -1 n µ ∂ µ φ Σ = f ∈ C ∞ c (Σ; C 2 ) the map C ∞ c (M ) P C ∞ c (M ) , i(•|G•) M [u] → Gu ∈ (C ∞ c (Σ; C 2 ), q)
is unitary for

(3.7) f •qf • • = ˆΣ(f 1 f 0 + f 0 f 1 )dσ Σ , f = f 0 f 1 .
In the sequel the * -algebra CCR(Y, q) where (Y, q) is any of the above equivalent non degenerate Hermitian spaces will be denoted by CCR(P ).

3.3.

Quasi-free states. One restricts attention to quasi-free states on CCR(P ) whose covariances are given by distributions on M × M , i.e. such that there exists

Λ ± ∈ D (M × M ) with (3.8) ω(ψ([u 1 ])ψ * ([u 2 ])) = (u 1 |Λ + u 2 ) M , ω(ψ * ([u 2 ])ψ([u 1 ])) = (u 1 |Λ -u 2 ) M , u 1 , u 2 ∈ C ∞ c (M ).
In the sequel the distributions Λ ± ∈ D (M × M ) will be called the spacetime covariances of the state ω.

In (3.8) we identify distributions on M with distributional densities using the density dV ol g and use the notation

(u|ϕ) M , u ∈ C ∞ c (M ), ϕ ∈ D (M )
for the duality bracket. We have then (3.9)

P (x, ∂ x )Λ ± (x, x ) = P (x , ∂ x )Λ ± (x, x ) = 0, Λ + (x, x ) -Λ -(x, x ) = iG(x, x ). 3.4. Cauchy surface covariances. Using (C ∞ c (Σ; C 2 ), q) instead of ( C ∞ c (M ) P C ∞ c (M ) , i(•|G•) M )
one can associate to a quasi-free state its Cauchy surface covariances λ ± defined by:

(3.10)

λ ± • • = ( * Σ q) * Λ ± ( * Σ q).
Using the canonical scalar product

(f |f ) Σ • • = ´Σ(f 1 f 1 + f 0 f 0 )dσ Σ we identify λ ± with operators, still denoted by λ ± : C ∞ c (Σ; C 2 ) → D (Σ; C 2 ).
Conversely we obtain Λ ± from λ ± by:

Λ ± = ( G) * λ ± ( G).
3.5. Hadamard states. A quasi-free state is called a Hadamard state, (see [R] for the neutral case and [START_REF] Gérard | Construction of Hadamard states by pseudo-differential calculus[END_REF] for the complex case) if

(3.11) WF(Λ ± ) ⊂ N ± × N ± ,
where WF(Λ) denotes the 'primed' wavefront set of Λ, i.e. S • • = {((x, ξ), (x , -ξ )) : ((x, ξ), (x , ξ )) ∈ S} for S ⊂ T * M × T * M , and N ± are the two connected components (positive/negative energy shell) of the characteristic manifold:

(3.12)

N • • = {(x, ξ) ∈ T * M \o : ξ µ g µν (x)ξ ν = 0}.
We recall that T * X \o denotes the cotangent bundle of X with the zero section removed.

Large classes of Hadamard states were constructed in terms of their Cauchy surface covariances in [START_REF] Gérard | Construction of Hadamard states by pseudo-differential calculus[END_REF][START_REF] Gérard | Hadamard states for the Klein-Gordon equation on Lorentzian manifolds of bounded geometry[END_REF] using pseudodifferential calculus on Σ, see below for a short summary.

3.6. Pseudodifferential operators. We briefly recall the notion of (classical) pseudodifferential operators on a manifold, referring to [START_REF] Shubin | Pseudodifferential Operators and Spectral Theory[END_REF]Sect. 4.3] for details.

For m ∈ R we denote by Ψ m (R d ) the space of classical pseudodifferential operators on R d , associated with poly-homogeneous symbols of order m, see eg [START_REF] Shubin | Pseudodifferential Operators and Spectral Theory[END_REF]Sect. 3.7].

Let X be a smooth, d-dimensional manifold. Let U ⊂ X be a precompact chart open set and ψ :

U → Ũ a chart diffeomorphism, where Ũ ⊂ R d is precompact, open. We denote by ψ * : C ∞ c ( Ũ ) → C ∞ c (U ) the map ψ * u(x) • • = u • ψ(x). Definition 3.7. A linear continuous map A : C ∞ c (X) → C ∞ (X) belongs to Ψ m (X) if the following condition holds: (C) Let U ⊂ X be precompact open, ψ : U → Ũ a chart diffeomorphism, χ 1 , χ 2 ∈ C ∞ c (U ) and χi = χ i • ψ -1 . Then there exists à ∈ Ψ m (R d ) such that (3.13) (ψ * ) -1 χ 1 Aχ 2 ψ * = χ1 à χ2 .
Elements of Ψ m (X) are called (classical) pseudodifferential operators of order m on X.

The subspace of Ψ m (X) of pseudodifferential operators with properly supported kernels is denoted by Ψ m c (X).

Note that if Ψ ∞ (c) (X) • • = m∈R Ψ m (c) (X), then Ψ ∞ c (X) is an algebra, but Ψ ∞ (X)
is not, since without the proper support condition, pseudodifferential operators cannot in general be composed.

To A ∈ Ψ m (X) one can associate its principal symbol

σ pr (A) ∈ C ∞ (T * X \o), which is homogeneous of degree m in the fiber variable ξ in T * X \o. A is called elliptic in Ψ m (X) at (x 0 , ξ 0 ) ∈ T * X \o if σ pr (A)(x 0 , ξ 0 ) = 0. If A ∈ Ψ m (X) there exists (many) A c ∈ Ψ m c (X) such that A -A c has a smooth kernel.
3.7. The Cauchy surface covariances of Hadamard states. We now state a result which follows directly from a construction of Hadamard states in [START_REF] Gérard | Construction of Hadamard states by pseudo-differential calculus[END_REF]Subsect. 8.2].

Theorem 3.8. Let ω be any Hadamard state for the free Klein-Gordon field on (M, g) and Σ a smooth space-like Cauchy surface. Then its Cauchy surface covariances λ ± are 2 × 2 matrices with entries in Ψ ∞ (Σ).

We refer the reader to [START_REF] Gérard | On the Hartle-Hawking-Israel states for spacetimes with static bifurcate Killing horizons[END_REF]Thm. 3.2] for the proof.

Green operators and Calderón projectors

In this section we collect some formulas expressing the Green operators, i.e. inverses for abstract operators of the form ∂ s + b, where s belongs either to R or to the circle S β . We also compute various Calderón projectors. The formulas in this section will be used later in Sect. 6 to express Calderón projectors for second order elliptic operators obtained from abstract Klein-Gordon operators by Wick rotation. 4.1. Green operators and Calderón projectors. Let b be a selfadjoint operator on a Hilbert space h with Ker b = {0}. We recall that

S β = [-β 2 , β 2 [ is the circle of length β. For 0 < β ≤ ∞ we set (4.1) h β = L 2 (S β ) ⊗ h, for β < ∞, h ∞ = L 2 (R) ⊗ h.
The operator ∂ s is anti-selfadjoint on h β with its natural domain. Denoting still by b the extension of b to h β we see that

B β = ∂ s + b with domain Dom∂ s ∩ Domb is normal.
To better understand the operator B β and its inverse B -1 β one can of course use the spectral decomposition of b, or the Fourier transform in s (on R or S β ), or both together.

4.1.1. Green operators. If 0 ∈ σ(b) then 0 ∈ σ(B β ) but we can still make sense out of B -1 β as B -1 β : h β → (-∂ 2 s + b 2 ) -1 2 h β , or B -1 β : (-∂ 2 s + b 2 ) 1 2 h β → h β . Note that u = B -1 β v, v ∈ h β ⇔ u ∈ |b| -1 h β , ∂ s u ∈ h β , (∂ s + b)u = v ∈ h β ⇔ u ∈ |b| -1 h β , (∂ s + b)u = v ∈ h β .
Let us set:

(4.2) G ∞ (s) • • = e -sb (1l R + (s)1l R + (b) -1l R -(s)1l R -(b)) .
Note that

(4.3) ˆR |G ∞ (s)|ds = |b| -1 ,
where |G ∞ (s)| ∈ B(h) is defined by functional calculus. A straightforward computation shows then that:

(4.4) B -1 ∞ f (s) = ˆR G ∞ (s -s )f (s )ds , f ∈ L 2 (R; h) = h ∞ .
The identity (4.3) and the well-known fact that ), where denotes the convolution, show that

L 1 (R) L 2 (R) ⊂ L 2 (R
B -1 ∞ : h ∞ = L 2 (R; h) → L 2 (R; |b| -1 h) = |b| -1 h ∞ . Similarly for β < ∞ let us define G β (s) as follows: we set G β (s) • • = e -sb 1l R + (s)(1 -e -βb ) -1 -1l R -(s)(1 -e βb ) -1 , s ∈ [- β 2 , β 2 ], (note that G β ( β 2 ) = G β (-β 2 
)) and extend it to s ∈ R by β-periodicity. In particular we have:

(4.5) G β (s) = e -sb 1l R + (s)(1 -e -βb ) -1 -1l R -(s)(1 -e βb ) -1 , s ∈ [-β, β].
we have

(4.6) ˆR |G β (s)|ds = |b| -1 , and (4.7) B -1 β f (s) = ˆSβ G β (s -s )f (s )ds , f ∈ L 2 (S β ; h) = h β .
Again from (4.6) we obtain that

B -1 β : h β = L 2 (S β ; h) → L 2 (S β ; |b| -1 h) = |b| -1 h β . The r.h.s. of (4.4), resp. (4.7) extends to f ∈ E (R; h), resp. f ∈ D (S β ; h) and give unique extensions of B -1 ∞ , resp. B -1 β with (4.8) B -1 ∞ : E (R; h) → D (R; |b| -1 h) continuously, B -1 β : D (S β ; h) → D (S β ; |b| -1 h) continuously. 4.1.2. Calderón projectors for B ∞ .
Let us first motivate the definition of Calderón projectors in Prop. 4.1 below. We set

I ± ∞ = ±]0, +∞[. For F ∈ C 0 (I ± ∞ ; h) we set Γ ± ∞ F = F (0 ± ) = lim s→0 ± F (s). Assume that (∂ s + b)F = 0 in D (I ± ∞ ; h). Denoting by i ± ∞ F the extension of F by 0 in R \ I ± ∞ we have (∂ s + b)i ± ∞ F = ±δ 0 (s) ⊗ Γ ± ∞ F in D (R; h). This implies formally that i ± ∞ F = ±B -1 ∞ (δ 0 (s) ⊗ f ) for f = Γ ± ∞ F and hence: f = ±Γ ± ∞ • B -1 ∞ (δ 0 (s) ⊗ f ) if f = Γ ± ∞ F for F solving (∂ s + b)F = 0 in I ± ∞ . Note that B -1 ∞ (δ 0 (s) ⊗ f ) for f ∈ h is well defined by the discussion at the end of 4.1.1. Proposition 4.1. (1) B -1 ∞ (δ 0 (s) ⊗ f ) belongs to C 0 (I ± ∞ ; h) for f ∈ h. It follows that (4.9) C ± ∞ f = ±Γ ± ∞ • B -1 ∞ (δ 0 (s) ⊗ f ), f ∈ h are well defined. (2) One has (4.10) C ± ∞ = 1l R ± (b), It follows that C ± ∞ ∈ B(h) are bounded complementary projections on h, called Calderón projectors. Proof. Let χ n (s) = nχ(ns) for χ ∈ C ∞ c (R) with ´χ(s)ds = 1. Clearly χ n (s)⊗f → δ 0 (s) ⊗ f in E (R; h) and hence B -1 ∞ (δ 0 (s) ⊗ f ) = lim n→∞ B -1 ∞ (χ n (s) ⊗ f ) in D (R; |b| -1 h).
For s > 0, we have

B -1 ∞ (χ n ⊗ f )(s) = ˆe-(s-s )b 1l R + (s -s )1l R + (b)χ n (s ) ⊗ f ds for n large enough. Letting n → ∞ we obtain that B -1 ∞ (δ 0 ⊗ f )(s) = e -sb 1l R + (b)f in s > 0, hence B -1 ∞ (δ 0 ⊗ f ) ∈ C 0 (I + ∞ ; h) and Γ + ∞ • B -1 ∞ (δ 0 (s) ⊗ f ) = 1l R + (b)f . We use the same argument for C - ∞ . 2 4.1.3. Calderón projectors for B β . For β < ∞ we set I ± β = ±]0, β 2 [. The boundary ∂I ±
β has two connected components {s = 0} and {s = β/2}, which complicates a little the computation of the Calderón projectors. Moreover the kernel G β of B -1 β has a infrared singularity at b = 0, coming from the factors (1 -e ∓βb ) -1 in (4.5).

As before we start with the heuristic motivation for the definition of Calderón projectors in Prop. 4.2 below. For F ∈ C 0 (I ± β ; h) we set:

(4.11)

Γ + β F • • = F (0 + ) ⊕ F ( β 2 - ) = • • Γ (0)+ β F ⊕ Γ ( β 2 )+ β F, Γ - β F • • = F (0 -) ⊕ F (-β 2 + ) = • • Γ (0)- β F ⊕ Γ ( β 2 )- β F. Assume that (∂ s + b)F = 0 in D (I ± β ; h). Then denoting by i ± β F the extension of F by 0 in S β \ I ± β , we have (∂ s + b)i ± β F = ±(δ 0 (s) ⊗ Γ (0)± β F -δ β 2 (s) ⊗ Γ ( β 2 )± β F ) in D (S β ; h), which formally implies that i ± β F = B -1 β (δ 0 (s) ⊗ f (0) -δ β 2 (s) ⊗ f ( β 2 ) ) for f = f (0) ⊕ f ( β 2 ) = Γ ± β F
. Again the r.h.s. above is well defined by the discussion at the end of 4.1.1.

Proposition 4.2. (1) B -1 β (δ 0 (s) ⊗ f (0) -δ β 2 (s) ⊗ f ( β 2 ) ) belongs to C 0 (I ± β ; (1 + |b| -1 )h) for f = f (0) ⊕ f ( β 2 ) ∈ h ⊕ h. It follows that (4.12) C ± β f • • = ±Γ ± β • B -1 β (δ 0 (s) ⊗ f (0) -δ β 2 (s) ⊗ f ( β 2 ) ), f = f (0) ⊕ f ( β 2 ) ∈ h ⊕ h
are well defined and belong to B(h ⊕ h, (1 + |b| -1 )h ⊕ (1 + |b| -1 )h).

(2) One has:

(4.13)

C + β = (1 -e -βb ) -1 (1 -e βb ) -1 e β 2 b (1 -e -βb ) -1 e -β 2 b (1 -e βb ) -1 , C - β = (1 -e βb ) -1 -e β 2 b (1 -e βb ) -1 -e -β 2 b (1 -e -βb ) -1
(1 -e -βb ) -1 .

(3) On 1l I (b)h ⊕ 1l I (b)h for any interval I R * one has:

C ± β C ± β = C ± β , C + β + C - β = 1l, It follows that C ± β are complementary projections on 1l I (b)h ⊕ 1l I (b)h called Calderón projectors.
Proof. The proof of ( 1) is analogous to the proof of (1) in Prop. 4.1. The fact that h is replaced by (1 + |b| -1 )h comes from the extra 'infrared singularity' of (1 -e ∓βb ) -1 , since (1 -e -βλ ) -1 behaves like λ -1 near λ = 0.

(2) is a routine computation using (4.5). We check (3) using the identity (1a) -1 + (1 -a -1 ) -1 = 1 for a = e -βb . 2

Vacua and KMS states for stable symplectic dynamics

In this section we recall well-known formulas for the covariances of the vacuum and KMS states associated to a symplectic flow on a symplectic space. The symplectic flow has to be stable, i.e. generated by a positive classical energy. In concrete situations the symplectic flow is generated by a time-like Killing vector field. We also recall the definition of the double KMS state, due to Kay [K1, K2], which is related to the Araki-Woods representation of a KMS state.

The new result of this section is that the covariances of the vacuum and double KMS states can be expressed by the Calderón projectors introduced in Sect. 4. Note that only the double KMS states will be important for the construction of the HHI state later on. Nevertheless the case of vacuum state is simpler and we include it for pedagogical reasons.

5.1. Weakly stable symplectic dynamics. We describe now a framework for symplectic dynamics, which can be found in [START_REF] Derezinski | Mathematics of Quantization and Quantum Fields[END_REF]Sect. 18.2.1], called there a weakly stable symplectic dynamics.

Let (Y, q) be a non-degenerate Hermitian space and E ∈ L h (Y, Y * ) with E > 0, the function Y y → y•Ey being the classical energy. The energy space Y en is the completion of Y for the scalar product (y 1 |y 2 ) en = y 1 •Ey 2 and is a complex Hilbert space.

Let r t = e itb be a strongly continuous unitary group on Y en with selfadjoint generator b. We assume that r t : Y → Y, Y ⊂ Domb. From Nelson's invariant domain theorem it follows that b is essentially selfadjoint on Y. We assume also that (5.1)

Kerb = {0}.
If one applies this abstract framework to Klein-Gordon equations on stationary spacetimes, the stronger condition 0 ∈ σ(b) correspond to the massive case.

5.1.1. Dynamical Hilbert space. It is convenient, in connection with the quantization of the symplectic flow {r t } t∈R , to introduce the dynamical Hilbert space

Y dyn • • = |b| 1 2 Y en ,
see [START_REF] Derezinski | Mathematics of Quantization and Quantum Fields[END_REF]Subsect. 18.2.1], equipped with the scalar product

(y 1 |y 2 ) dyn = (|b| -1 2 y 1 ||b| -1 2 y 2 ) en .
The 2 : Y dyn → Y en is unitary. Therefore we will often denote both generators by the same letter b, when there is no risk of confusion.

We will assume that

(5.2) Y ⊂ Y dyn , i.e. Y ⊂ Dom|b| -1 2 ,
where we consider b as acting on Y en , and that:

(5.3)

y 1 •qy 2 = (y 1 |b -1 y 2 ) en = (y 1 |sgn(b)y 2 ) dyn , y 1 , y 2 ∈ Y. Note that if b : Y → Y this implies that y 1 •Ey 2 = y 1 •qby 2 , y 1 , y 2 ∈ Y,
which means that {r s } s∈R can be seen as the symplectic evolution group associated to the classical energy y•Ey and the symplectic form σ = i -1 q.

For Klein-Gordon equations on stationary spacetimes, conditions (5.2), (5.3) will be checked in Lemma 8.3.

We can equip Y dyn with the bounded Hermitian form

(5.4)

y 1 •q dyn y 2 • • = (y 1 |sgn(b)y 2 ) dyn ,
which is non-degenerate by (5.1), and we have q = q dyn on Y. Note that one cannot extend q as a bounded Hermitian form on Y en , unless 0 ∈ σ(b).

Vacuum state.

We now recall the definition of the vacuum state ω vac associated to the dynamics {r t } t∈R .

Definition 5.1. The vacuum state ω vac is the quasi-free state on CCR(Y dyn , q dyn ) defined by the covariances:

(5.5)

y 1 •λ ± vac y 2 = (y 1 |1l R ± (b)y 2 ) dyn . Remark 5.2.
Since Y ⊂ Y dyn and q dyn = q on Y, we see that ω vac is also a quasifree state on CCR(Y, q). By Prop. 3.4 ω vac is a pure state on CCR(Y dyn , q dyn ). However this does not imply that it is a pure state on CCR(Y, q). From (5.4) we obtain that if c ± vac are defined as in Prop. 3.4 by (5.8)

λ ± vac = • • ±q dyn • c ± vac , one has: (5.6) c ± vac = 1l
Y th • • = Y dyn ∩ |b| 1 2 Y dyn = Dom|b| -1 2 , see (1.4).
Definition 5.3. The β-KMS state ω β is the quasi-free state on CCR(Y th , q dyn ) defined by the covariances:

(5.9)

y 1 •λ + β y 2 = y 1 •q dyn (1 -e -βb ) -1 y 2 , y 1 •λ - β y 2 = y 1 •q dyn (e βb -1) -1 y 2 .
Again if 0 ∈ σ(b), then using that (1 -e λ ) -1 behaves like λ -1 near λ = 0, we see that λ ± β are defined only on Y th .

Remark 5.4. In order for λ ± β to define a state on CCR(Y, q) we need the stronger infrared condition

(5.10) Y ⊂ Y th .
Again for Klein-Gordon equations on stationary spacetimes (5.10) will be checked in Lemma 8.3. 5.4. Double β-KMS states. The double β-KMS state see [K1, K2] can easily be related to the Araki-Woods representation of ω β , see eg [START_REF] Derezinski | Mathematics of Quantization and Quantum Fields[END_REF]Subsect. 17.1.5], that we first briefly recall. 5.4.1. Araki-Woods representation. Let us denote by Z the space Y dyn as a real vector space, equipped with the complex structure

j • • = i • sgn(b)
and the scalar product: which is a selfadjoint operator on Z. We have Domρ

(z 1 |z 2 ) Z • • = (y 1+ |y 2+ ) dyn + (y 2-|y 1-) dyn , for y ± • • = 1l R ± (
1 2 = Z ∩ |b| 1 2
Z, which also equals Y th as real vector spaces.

We also introduce the Hilbert space Z ⊕Z and the bosonic Fock space Γ s (Z ⊕Z), see eg [START_REF] Derezinski | Mathematics of Quantization and Quantum Fields[END_REF]Subsect. 3.3.1]. For (z 1 , z 2 ) ∈ Z ⊕ Z we denote by a ( * ) (z 1 , z 2 ) the Fock creation/annihilation operators acting on Γ s (Z ⊕ Z).

The left/right Araki-Woods creation/annihilation operators are defined forz ∈ Domρ 1 2 by: (5.12)

a * l (z) = a * ((1 + ρ) 1 2 z, 0) + a(0, ρ 1 2 z), a l (z) = a((1 + ρ) 1 2 z, 0) + a * (0, ρ 1 2 z), a * r (z) = a(ρ 1 2 z, 0) + a * (0, (1 + ρ) 1 2 z), a r (z) = a * (ρ 1 2 z, 0) + a(0, (1 + ρ) 1 2 z).
One has:

[a l (z 1 ), a * l (z 2 )] = (z 1 |z 2 ) Z 1l, [a r (z 1 ), a * r (z 2 )] = (z 1 |z 2 ) Z 1l, z 1 , z 2 ∈ Domρ 1 2 ,
all other commutators being equal to 0. Setting z ± = y ± for y ∈ Y dyn we set (5.13)

ψ * l (y) • • = a * l (z + ) + a l (z -), ψ l (y) • • = a l (z + ) + a * l (z -) ψ * r (y) • • = a * r (z -) + a r (z + ), ψ r (y) • • = a r (z -) + a * r (z + ), y ∈ Y th .
An easy computation show that (5.14) [ψ l (y 1 ), ψ * l (y 2 )] = y 1 •q dyn y 2 , [ψ r (y 1 ), ψ * r (y 2 )] = -y 1 •q dyn y 2 , all other commutators being equal to 0. Moreover Y th y → ψ * l/r (y) is C-linear. This means that Y th y → ψ ( * ) l/r (y) induces two commuting representations of CCR(Y th , ±q dyn ).

From (5.13) we obtain that:

(Ω|ψ l (y 1 )ψ l * (y 2 )Ω) Γs(Z⊕Z) = y 1 •λ + β y 2 , (Ω|ψ * l (y 2 )ψ l (y 1 )Ω) Γs(Z⊕Z) = y 1 •λ - β y 2 , , (Ω|ψ l (y 2 )ψ l (y 1 )Ω) Γs(Z⊕Z) = (Ω|ψ * l (y 2 )ψ * l (y 1 )Ω) Γs(Z⊕Z) = 0,
where Ω is the vacuum vector in

Γ s (Z ⊕ Z). If π AW,l is the representation of CCR(Y dyn ∩|b| 1 2 Y dyn , q dyn ) defined by π AW,l (ψ ( * ) (y)) = ψ ( * ) l (y), then (π AW,l , Γ s (Z⊕ Z), Ω) is the GNS representation associated to the β-KMS state ω β .
5.4.2. The double β-KMS state. To define the double β-KMS state associated to ω β we set

(X , Q) • • = (Y th ⊕ Y th , q dyn ⊕ -q dyn ).
Recalling that σ = i -1 q dyn , this corresponds to adding to the real symplectic space (Y th,R , Re σ) its anti-symplectic copy (Y th,R , -Re σ). From (5.14) we see that X x → Ψ Definition 5.5. The double β-KMS state ω d is the quasi-free state on CCR(X , Q) defined by

ω d (Ψ ( * ) (x 1 )Ψ ( * ) (x 2 )) • • = (Ω|Ψ ( * ) AW (x 1 )Ψ ( * ) AW (x 2 )Ω) Γs(Z⊕Z) , x 1 , x 2 ∈ X . Proposition 5.6. ω d is a pure, gauge invariant quasi-free state on CCR(X , Q). If λ ± d are the covariances of ω d we have x 1 •λ ± d x 2 = ±x 1 •QC ± β x 2 , x 1 , x 2 ∈ X . where C ±
β are the Calderón projectors for B β defined in Prop. 4.2. Remark 5.7. Let us denote (Y th , q dyn ) by (Y 1 , q 1 ) and let (Y 2 , q 2 ) be another Hermitian space with I : (Y 2 , q 2 ) → (Y 1 , -q 1 ) unitary. Then ω d induces a quasi-free state on CCR(Y 1 ⊕ Y 2 , q 1 ⊕ q 2 ). Its covariances are

1l 0 0 I * λ ± d 1l 0 0 I = ± q 1 0 0 q 2 1l 0 0 I -1 C ± β 1l 0 0 I . Remark 5.8. If Y ⊂ Y th then ω d is also a (non necessarily pure) state on CCR(Y ⊕ Y, q ⊕ -q).
Proof of Prop. 5.6. We obtain from (5.13), (5.12):

(5.16)

Ψ * AW (x)Ω = a * l (z + )Ω + a l (z -)Ω + a * r (z -)Ω + a r (z + )Ω = ((ρ + 1) 1 2 z + + ρ 1 2 z + , ρ 1 2 z -+ (ρ + 1) 1 2 z -), Ψ AW (x)Ω = a l (z + )Ω + a * l (z -)Ω + a r (z -)Ω + a * r (z + )Ω = ((ρ + 1) 1 2 z -+ ρ 1 2 z -, ρ 1 2 z + + (ρ + 1) 1 2 z + ),
as elements of Z ⊕ Z. From (5.16) we immediately obtain that

ω d (Ψ AW (x 1 )Ψ AW (x 2 )) = ω d (Ψ * AW (x 1 )Ψ * AW (x 2
)) = 0, ie ω d is gauge invariant for the complex structure i ⊕ i of X . We have next

ω d (Ψ AW (x 1 )Ψ * AW (x 2 )) = (Ψ * AW (x 1 )Ω|Ψ * AW (x 2 )Ω) Z⊕Z = (ρ + 1) 1 2 y 1+ + ρ 1 2 y 1+ |(ρ + 1) 1 2 y 2+ + ρ 1 2 y 2+ Y + ρ 1 2 y 1-+ (ρ + 1) 1 2 y 1-|ρ 1 2 y 2-+ (ρ + 1) 1 2 y 2-Y If λ + d = • • Q • C + d
, where Q = q ⊕ -q, we obtain from (5.4) that:

C + d = (ρ + 1)1l + -ρ1l - -ρ 1 2 (ρ + 1) 1 2 1l + + ρ 1 2 (ρ + 1) 1 2 1l - ρ 1 2 (ρ + 1) 1 2 1l + -ρ 1 2 (ρ + 1) 1 2 1l - -ρ1l + + (ρ + 1)1l - , for 1l ± = 1l R ± (b)
. We compute:

(1 + ρ)1l + -ρ1l - = (1 -e -βb ) -1 1l + -e βb (1 -e βb ) -1 1l -= (1 -e -βb ) -1 ; -ρ 1 2 (1 + ρ) 1 2 1l + + ρ 1 2 (1 + ρ) 1 2 1l - = -e -βb/2 (1 -e -βb ) -1 + e βb/2 (1 -e βb ) -1 = e βb/2 (1 -e βb ) -1 ; ρ 1 2 (1 + ρ) 1 2 1l + -ρ 1 2 (1 + ρ) 1 2 1l - = -e βb/2 (1 -e βb ) -1 = e -βb/2 (1 -e -βb ) -1 ; -ρ1l + + (1 + ρ)1l - = -e -βb (1 -e -βb ) -1 1l + + (1 -e βb ) -1 1l -= (1 -e βb ) -1 . Therefore C + d = C + β . Since C + d + C - d = 1l, we have also C - d = C - β .
To see that ω d is pure, we have to check that the representation of the Weyl algebra CCR Weyl (X , Q) associated to Ψ ( * ) AW (x), x ∈ X is irreducible. This follows from the definition (5.15) of Ψ ( * ) AW and statements ( 5), ( 7) in [START_REF] Derezinski | Mathematics of Quantization and Quantum Fields[END_REF]Thm. 17.24]. 2

Abstract Klein-Gordon equations

In this section we collect some results about abstract Klein-Gordon equations of the form (6.1)

(∂ t + w * )(∂ t -w) φ + h0 φ = 0,
where φ : R → H, H is some Hilbert space and h0 , w are linear operators on H. Such Klein-Gordon equations arise from stationary metrics on a spacetime M = R × S, with Killing vector field equal to ∂ ∂t , when w represent the shift vector field and the lapse function is equal to 1. The case of general stationary Klein-Gordon operators will be considered later in Sect. 8.

We will also consider the Wick rotated operator Kβ obtained by setting t = is, where s belongs either to R or to S β . Using sesquilinear form techniques we give a rigorous meaning to its inverse K-1 β and relate it to the Green operators in Sect. 4.

6.1. Hypotheses. We will assume the following hypotheses: (6.2) i) h0 is selfadjoint on H and h0 > 0,

ii) Dom w = Dom h 1 2 0 , Dom h 1 2 0 ⊂ Dom w * and wh -1 2 0 , w * h -1 2 0 ∈ B( H),
iii) if h • • = h0 -w * w, considered as a quadratic form on Dom h 1 2 0 , then h ∼ h0 . We can rewrite (6.1) as (6.3) ∂ 2 t φ -2i k∂ t φ + h φ = 0, where k = (2i) -1 ( w -w * ), which was considered in [START_REF] Georgescu | Resolvent and propagation estimates for Klein-Gordon equations with non-positive energy[END_REF] in a more general situation.

6.2. Quadratic pencils. One associates to (6.3) the quadratic pencil

p(z) = z(2 k -z) + h = (iz + w * )(iz -w) + h0 ∈ B( h0 -1 2 H, h0 1 2 H), z ∈ C,
obtained by replacing ∂ t by iz and denotes by ρ( h, k) the set of z ∈ C such that p(z) : h0

-1 2 H ∼ -→ h0 -1
2 H. Note that by applying the Fourier transform in t, the equation

(∂ t + w * )(∂ t -w)u + h0 u = v, is formally equivalent to p(λ)û(λ) = v(λ), λ ∈ R.
The inverse p(z) -1 for z ∈ ρ( h, k) appears in the expression (6.16) of the resolvent (z -H) -1 , where H is defined in (6.5).

Proposition 6.1.

(1) The operator p(z) on H with domain h

-1 H is closed with p * (z) = p(z); (2) p(z) : h -1 H ∼ -→ H iff p(z) : h -1 2 H ∼ -→ h 1 2 H; (3) p(iλ) : h -1 H ∼ -→ H for λ ∈ R * and sup λ∈R * ( h0 + λ 2 ) 1 2 p(iλ) -1 ( h0 + λ 2 ) 1 2 B( H) < ∞.
Proof. Statements (1) and ( 2) are shown in [START_REF] Georgescu | Boundary values of resolvents of selfadjoint operators in Krein spaces[END_REF]Lemma 8.1], using that k is symmetric on h0

-1 2 H = h -1 2 H and k h -1 2 ∈ B( H).
Let us now prove (3). Since Re p(iλ) = h + λ 2 we have

λ 2 u 2 ≤ Re (u|p(iλ)u), u ∈ h -1 H, hence Kerp(iλ) = {0} for λ ∈ R * . Since p(iλ) * = p(-iλ) we have also Kerp(iλ) * = {0} hence p(iλ) : h -1 H ∼ -→ H using that p(iλ) : h -1 H → H is closed. We have then ( h + λ 2 ) -1 2 p(iλ)( h + λ 2 ) -1 2 = 1l -iA(λ), A λ • • = i( h + λ 2 ) -1 2 (λ w -w * λ)( h + λ 2 ) -1 2 .
From hypotheses (6.2), we obtain that A λ ∈ B( H) and

A λ = A * λ . Therefore (1l -iA λ ) -1
B( H) ≤ 1 and since

( h + λ 2 ) 1 2 p(iλ) -1 ( h + λ 2 ) 1 2
we have sup

λ∈R * ( h + λ 2 ) 1 2 p(iλ) -1 ( h + λ 2 ) 1 2 B( H) ≤ 1.
This proves (3) using that h ∼ h0 . 2 6.3. First order system. Setting (6.4) t) , (6.1) is formally rewritten as (6.5)

f (t) = ˜ t φ • • = φ(t) i -1 (∂ t -w) φ(t) = f0 (t) f1 (
∂ t f = i H f , H = -i w 1l h0 i w * .
The conserved energy is

(6.6) f • Ẽ f = f1 -i w f0 2 + ( f0 | h f0 ),
which is positive definite by (6.2). The Hilbert space associated to Ẽ will be denoted by Ẽ. It equals h-1 2 0 H⊕ H as a topological vector space. We set also Ẽ * • • = H⊕ h 1 2 0 H. We recall from 1.4 that (6.7)

H ∩ h± 1 2 0 H = Dom h∓ 1 2 0 hence Ẽ ∩ Ẽ * = Dom h 1 2 0 ⊕ Dom h-1 2 0 .
The following proposition will be proved in Subsect. 6.5. Proposition 6.2. The operator H = -i w 1l h0 i w * is bounded from Ẽ to Ẽ * . It induces on Ẽ the operator H defined by

Dom H = { f ∈ Ẽ : H f ∈ Ẽ ∩ Ẽ * }.
H is a densely defined selfadjoint operator on Ẽ with res( H) = ρ( h, k).

Note that ( Ẽ, Ẽ * ) form a non degenerate dual pair for the charge (6.8)

f • q f = ( f1 | f 0 ) H + ( f0 | f 1 ) H, f ∈ Ẽ, f ∈ Ẽ * , and one has f • Ẽ f = f • q H f , f ∈ Ẽ.
6.4. The Wick rotated operator. Setting formally t = is we obtain the formal expression (6.9)

K = -(∂ s + i w * )(∂ s -i w) + h0 .
To give a meaning to (6.9), we will use sesquilinear forms techniques. Let us set as in Sect. 4.1 for 0 < β ≤ ∞:

(6.10)

Hβ = L 2 (S β ) ⊗ H, for β < ∞, H∞ = L 2 (R) ⊗ H.
We consider the sesquilinear form associated to K:

Qβ (u, u) = ∂ s u 2 Hβ + (u| hu) Hβ -i(∂ s u| wu) Hβ -i( wu|∂ s u) Hβ , with domain Dom Qβ = -∂ 2 s + h0 -1
2 Hβ , where ∂ s is equipped with its natural domain on Hβ . From hypotheses (6.2) we obtain that

Re Qβ (u, u) ∼ ∂ s u 2 Hβ + (u| h0 u) Hβ , |Im Qβ (u, u)| ≤ CRe Qβ (u, u),
hence Qβ is a closed sectorial form.

If we apply the Lax-Milgram theorem as stated in [START_REF] Grubb | Distributions and Operators[END_REF]Lemma 12.15] to the Hilbert space (-∂ 2 s + h0 ) -1 2 Hβ and note that its topological anti-dual is canonically identified with (-∂ 2 s + h0 )

1 2 Hβ , we obtain that Qβ induces a boundedly invertible operator (6.11)

Kβ : (-∂ 2 s + h0 ) -1 2 Hβ ∼ -→ (-∂ 2 s + h0 ) 1 2 Hβ .
We can apply the results of Subsect. 4.1 setting h = Ẽ, b = H, see (4.1) for the notation used, and obtain an operator (6.12)

∂ s + H : Ẽβ ∼ -→ (-∂ 2 s + H2 ) 1 2 Ẽβ .
The relation between K-1 β and ∂ s + H is given by the following proposition. Below we denote by π i the maps π i f = fi for f = f0 f1 , so that

π * 1 u = 0 u , π * 0 u = u 0 . Proposition 6.3. One has (6.13) i) π * 1 : (-∂ 2 s + h0 ) 1 2 Hβ → (∂ 2 s + Ĥ2 ) 1 2 Ẽβ continuously, ii) π 0 (∂ s + H) -1 π * 1 : (-∂ 2 s + h0 ) 1 2 Hβ → (-∂ 2 s + h0 ) -1 2 Hβ continuously, iii) K-1 β = π 0 (∂ s + H) -1 π * 1 in L((-∂ 2 s + h0 ) 1 2 Hβ , (-∂ 2 s + h0 ) -1 2 Hβ ).
6.5. Proofs of Props. 6.2 and 6.3.

6.5.1. Preparations. We will prove Props. 6.2, 6.3 using results in [START_REF] Georgescu | Resolvent and propagation estimates for Klein-Gordon equations with non-positive energy[END_REF]. There the form (6.3) of the Klein-Gordon equation is used and instead of (6.4) one sets:

(6.14) g • • = φ i -1 ∂ t φ , (6.
3) is formally rewritten as

∂ t g = i Ĥg, Ĥ = 0 1l h 2 k .
The conserved energy is g

• Êg = g 1 2 + (g 0 | hg 0 ).
The Hilbert space Ê naturally associated to Ê equals again h-

1 2 0 H ⊕ H.
If f is given by (6.4) and g by (6.14) one has f = U g for U = 1l 0 i w 1l , and (6.15)

U : Ê ∼ -→ Ẽ, (U g|U g) Ẽ = (g|g) Ê .
Formally one has H = U ĤU -1 , and since U : Ê → Ẽ is unitary, Prop. 6.2 follows if we prove the analogous result for Ĥ. One sets then

Ê * • • = H ⊕ h 1 2 0 H,
which forms again a dual pair with Ê for

g• qg = (g 1 + i wg 0 |g 0 ) H + (g 0 |g 1 + i wg 0 ), g ∈ Ê, g ∈ Ê * .
We have of course q = U * qU .

6.5.2. Proof of Prop. 6.2. The matrix Ĥ induces a bounded operator Ĥ : Ê → Ê * . One denotes by Ĥ the linear operator induced by Ĥ on Ê. Its domain is

Dom Ĥ = {g ∈ Ê : Ĥg ∈ Ê ∩ Ê * },
and as in (6.7) we have [START_REF] Georgescu | Resolvent and propagation estimates for Klein-Gordon equations with non-positive energy[END_REF]Prop. 5.8,Thm. 5.9], and the fact that there exists z = 0 in ρ( h, k), that Ĥ with the domain above is a densely defined selfadjoint operator on Ê with res( Ĥ) = ρ( h, k). Setting

Ê ∩ Ê * = Dom h 1 2 0 ⊕ Dom h-1 2 0 . It follows then from
H • • = U ĤU -1
completes the proof of Prop. 6.2. 6.5.3. Proof of Prop. 6.3. We have seen that H = U ĤU -1 and U : Ê ∼ -→ Ẽ is unitary. Moreover π 0 U -1 = π 0 and U π * 1 = π * 1 , so it suffices to prove the proposition with H, Ẽ replaced by Ĥ, Ê.

One can express the resolvent ( Ĥ -z) -1 using p(z) as follows: if z ∈ ρ( h, k) then:

(6.16) ( Ĥ -z) -1 = p(z) -1 z -2 k 1l h z ∈ B( Ê, Ê).
Note that (6.16) is different from the formula found in [GGH1, Prop. 5.8], because weaker assumptions on h, k were used there. In our case using that k| h0

| -1 2 ∈ B( H) one deduces from [GGH1, Lemma 2.2] that p(z) : H + | h0 | 1 2 H → h0 -1 2 H = H ∩ | h0 | -1 2 H, z ∈ ρ( h, k).
Using this fact it is straightforward to show that the rhs in (6.16) maps Ê into itself.

In general we have 0 ∈ ρ( h, k) hence 0 ∈ σ( Ĥ) but Ĥ-1 is well defined as (6.17)

Ĥ-1 = -2 h-1k h-1 1l 0 ∈ B( Ê, | h| -1 H ⊕ H)
which corresponds to (6.16) for z = 0.

We have Ker Ĥ = {0} since Ĥg = 0 implies g 1 = 0, hg 0 = 0 and h is injective. Therefore we can apply the results of Subsect. 4.1 to construct (∂ s + Ĥ) -1 for b = Ĥ, h = Ê. As before we introduce the Hilbert spaces Hβ and Êβ for β ∈]0, ∞].

Let us now prove the proposition. We denote by F the Fourier transform in s on R or S β and set v(λ) = Fv(λ), where λ ∈ R or S β is the associated Fourier variable. Let

M • • = F • (∂ s + Ĥ) -1 π * 1 (-∂ 2 s + h0 ) 1 2 • F -1 = ˆ⊕ M (λ)dλ.
From (6.17), (6.16) we obtain that

M (λ) = p(iλ) -1 (λ 2 + h0 ) 1 2 1l iλ1l , λ = 0, M (0) = h-1h 1 2 0 0 .
From (3) in Prop. 6.1 we obtain that

sup λ∈R M (λ) B( H, Ê) < ∞,
which proves statement i) and also statement ii) of the proposition.

Next if v ∈ (-∂ 2 s + h0 ) 1 2 Hβ and g = (∂ s + Ĥ) -1 π * 1 v we have g ∈ Êβ and ∂ s g 0 + g 1 = 0, Kg 0 = v, hence ∂ s g 0 ∈ Hβ , h 1 2 0 g 0 ∈ Hβ and Kg 0 = v, which shows that g 0 ∈ (-∂ 2 s + h0 ) -1 2 Hβ and g 0 = K-1 β v.
This completes the proof of statement iii). 2

Vacua and KMS states for abstract Klein-Gordon equations

In this section we consider vacuum and KMS states for abstract, time-independent Klein-Gordon equations, which can be reduced to the framework of Sect. 5. We will show that the covariances of the vacuum and double β-KMS states can be expressed by the Calderón projectors defined in Sect. 5. 7.1. Vacua and KMS states. Let us consider an abstract Klein-Gordon equation

(∂ t + w * )(∂ t -w) φ + h0 φ = 0,
as in Sect. 6, where φ : R → H and H is a Hilbert space. We denote by

P = (∂ t + w * )(∂ t -w) + h0
the corresponding Klein-Gordon operator. In the sequel we use the notation introduced in Subsect. 5.1. The assumptions corresponding to those in Subsect. 5.1 are as follows:

We assume that there exists a dense subspace D ⊂ H and set

(7.1) Ỹ • • = D ⊕ D, f • q f • • = ( f1 | f0 ) + ( f0 | f1 ), f = f0 f1 ∈ Ỹ.
We fix linear operators h0 , w, w * on H with domain D such that:

(7.2) w, w * , h0 : D → D, ( w * u|v) = (u| wv), u, v ∈ D, (u| h0 u) > 0 for u ∈ D, u = 0, wu 2 ≤ (1 -δ)(u| h0 u), w * u 2 ≤ c(u| h0 u), u ∈ D for c > 0, 0 < δ < 1.
Setting q0 (u, u) = (u| h0 u) with Domq 0 = D, it follows that q0 is closeable and we still denote by h0 the operator associated to qcl 0 , i.e. the Friedrichs extension of h0 on D. We assume that Ker h0 = {0} and deduce then from (7.2) that hypotheses (6.2) are satisfied by h0 , w, w * . By construction D is dense in h-1 2 0 H. We set then

(7.3) f • Ẽ f = ( f | f ) Ẽ = f1 -i w f0 2 + ( f0 | h f0 ), f ∈ Ỹ,
and by the density of D in

h-1 2 0
H we obtain that Ỹen = Ẽ. We set also

b = H = -i w 1l h0 i w * ,
where H is defined as a selfadjoint operator on Ẽ by Prop. 6.2.

7.1.1. Infrared condition. To be able to apply the results of Sect. 5 we need to check the hypotheses (5.2), ( 5.3) and (5.10), which are used to ensure that the vacuum and KMS states are well defined as quasi-free states on CCR( Ỹ, q), see Remarks 5.2 and 5.4. This is done in Prop. 7.1 below. For Klein-Gordon equations on stationary spacetimes, the assumption (7.4) will be checked in Lemma 8. 

(7.4) D ⊂ Dom h-1 2 0 . Then Ỹ = D ⊕ D satisfies: (1) Ỹ ⊂ Dom H-1 , hence Ỹ ⊂ Ỹth ⊂ Ỹdyn , (2) f • Ẽb -1 f = f • qf for f ∈ Ỹ (3) Ỹ ⊂ Dom H.
It follows from Prop. 7.1 that hypotheses (5.2), ( 5.3) and (5.10) in Sect. 5 are satisfied. Proof. To check (1) it suffices to show that

(7.5) ( H-1 f | H-1 f ) Ẽ < ∞, f ∈ Ỹ, since Ỹ ⊂ Ẽ.
Let us now check (7.5). We recall that in Subsect. 6.3 we considered also H as a bounded operator from Ẽ to Ẽ * , where Ẽ * = H ⊕ h 1 2 0 H, (see Prop. 6.2, where H with the above meaning was denoted by H). The equation Hg = f for g ∈ Ẽ,

f ∈ Ẽ * is equivalent to (7.6)    ( h0 -w * w)g 0 = f 1 -i w * f 0 ∈ h 1 2 0 H, g 1 -i wg 0 = f 0 ∈ H, The operator h = h0 -w * w ∈ B( h-1 2 0 H, h 1 2 0 H
) is boundedly invertible, since from (7.2) the quadratic forms associated to h and h0 are equivalent. Therefore (7.6) is equivalent to

(7.7)    g 0 = h-1 (f 1 -i w * f 0 ) ∈ h-1 2 0 H, g 1 = g 0 + i wh-1 (f 1 -i w * f 0 ) ∈ H.
It follows that H : Ẽ → Ẽ * is boundedly invertible. Now by hypothesis (7.4), we have D ⊂ h 1 2 0 H, hence Ỹ ⊂ Ẽ * . Therefore H-1 : Ỹ → Ẽ, which proves (7.5) and completes the proof of (1). ( 2) follows then by using (7.7) and (7. In all this subsection we will assume that (7.4) holds ie that Ỹ ⊂ Dom h-1 2 0 . 7.2.1. Calderón projectors for K∞ . We follow the notation in 4.1.2, in particular

I ± ∞ = ±]0, +∞[. We fix χ ∈ C ∞ c (R) with ´χ(s)ds = 1 and set χ n = nχ(n -1 s) for n ∈ N. γ * ∞,n g • • = χ n (s) ⊗ g1 + χ n (s) ⊗ (g 0 -i w * g1 ), for g ∈ D ⊕ D so that γ * ∞,n g → γ * ∞ g in E (R; H), when n → +∞, for: γ * ∞ g • • = δ 0 (s) ⊗ g1 + δ 0 (s) ⊗ (g 0 -i w * g1 ). If ũ ∈ C 1 (I ± ∞ ; H) ∩ C 0 (I ± ∞ ; h-1 2 0 H) satisfies K ũ = 0 in I ± ∞ we set γ± ∞ ũ = ũ(0 ± ) -(∂ s -i w)ũ(0 ± ) ,
and S = 2i w * -1l 1l 0 .

Proposition 7.2. Assume that f ∈ D ⊕ D. Then:

(1) the limit

lim n→+∞ K-1 ∞ γ * ∞,n S f = • • K-1 ∞ γ * ∞ S f exists in D (I ± ∞ ; h-1 2 0
H) and is independent on the choice of the cutoff function χ.

(2) We have

K-1 ∞ γ * ∞ S f ∈ C 1 (I ± ∞ ; h-1 2 0 H), (3) ∓γ ± ∞ K-1 ∞ γ * ∞ S f = C ± ∞ f , where C ± ∞ are the Calderón projectors for B ∞ = ∂ s + b, with b = H, h = Ẽ, defined in Prop. 4.1. Definition 7.3. The operators c± ∞ • • = ∓γ ± ∞ K-1 ∞ γ * ∞ ∈ L( D ⊕ D; Ẽ) are called the Calderón projectors for K∞ .
Proof of Prop. 7.2. We prove only the

+ case. Note first that if χ ∈ C ∞ c (R) and u ∈ Dom h-1 2 0 then χ(s) ⊗ u ∈ (-∂ 2 s + h0 ) 1 2 H ∞ .
In fact after Fourier transform in s, this amounts to prove that

ˆR | χ(λ)| 2 (u|(λ 2 + h0 ) -1 u) Hdλ < ∞,
which follows from the fact that

(u| h-1 0 u) H < ∞. If f ∈ Dom D ⊕ D, then f0 , f1 - i w * f0 ∈ D ⊂ Dom h-1 2 0 hence Sγ * ∞,n f = χ n (s) ⊗ f0 + χ n (s) ⊗ ( f1 -i w * f0 ) belongs to (-∂ 2 s + h0 )
1 2 H ∞ . Therefore we can apply Prop. 6.3 and we have

(7.8) K-1 ∞ γ * ∞,n S f = π 0 B -1 ∞ π * 1 γ * ∞,n S f ,
where B ∞ = (∂ s + H), acting on Ẽ∞ . Arguing as in the proof of Prop. 4.1, we have for g ∈ Ẽ:

lim n→∞ B -1 ∞ (χ n ⊗ g)(s) = 1l R + ( H)e -s H g, lim n→∞ B -1 ∞ (χ n ⊗ g)(s) = -H1l R + ( H)e -s H g in D (I + ∞ ; Ẽ). An easy computation show then that lim n→+∞ -(B -1 ∞ γ * ∞,n S f )(s) = 1l R + ( H)e -s H f = • • F (s) in D (I + ∞ ; Ẽ) which using (7.8) proves (1). Next since f ∈ D ⊕ D ⊂ Dom H, we have F ∈ C 1 (I + ∞ ; Ẽ), which implies that π 0 F (s) ∈ C 1 (I + ∞ ; h-1 2 0 H)
which proves (2). Finally we check that γ+ ∞ π 0 F (s) = Γ + ∞ f , which using the definition of C + ∞ in Prop. 4.1 proves (3). 2 From Subsect. 5.2 we obtain the following result, expressing the covariances of the vacuum state ωvac for P in terms of the Calderón projectors c± ∞ for the Wick rotated operator K∞ .

We recall that from Prop. 7.1 we know that the vacuum state ω vac is well defined on CCR( Ỹ, q). Proposition 7.4. The covariances of the vacuum state ω vac , considered as a quasifree state on CCR( Ỹ, q) are equal to:

λ± vac = ±q • c± ∞ . 7.2.2.
Calderón projectors for Kβ . We follows now the construction and notation in 4.1.3, in particular I ± β = ±]0, β 2 [. For χ n as in 7.2.1, we set:

γ(0) * β,n g = χ n (s) ⊗ g1 + χ n (s) ⊗ (g 0 -i w * g1 ), γ( β 2 ) * β,n g = -χ n (s -β 2 ) ⊗ g1 + χ n (s -β 2 ) ⊗ (g 0 + i w * g1 ), for g ∈ D ⊕ D, so that γ( ) * β,n g → γ( ) * β g in E (R; H) when n → +∞, = 0, β 2 for: γ(0) * β g = δ 0 (s) ⊗ g1 + δ 0 (s) ⊗ (g 0 -i w * g1 ), γ( β 2 ) * β g = -δ β 2 (s) ⊗ g1 + δ β 2 (s) ⊗ (g 0 + i w * g1 ). We set also γ * β,(n) (g (0) ⊕ g( β 2 ) ) • • = γ(0) * β,(n) g(0) + γ( β 2 ) * β,(n) g( β 2 ) . If ũ ∈ C 1 (I ± β ; H) ∩ C 0 (I ± β ; h-1 2 0 H) satisfies K ũ = 0 in I ± β we set γ± β ũ = γ(0)± β ũ ⊕ γ( β 2 )± β ũ, for γ(0)± β ũ = ũ(0 ± ) -(∂ s -i w)ũ(0 ± ) , γ( β 2 )± β ũ = ũ(∓ β 2 ) (∂ s -i w)ũ(∓ β 2 )
.

Note the change of sign in the second component of γ( β 2 )± ũ, which corresponds to choosing the exterior normal derivative to I + β . We set also:

(7.9) S(0) = 2i w * -1l 1l 0 , S( β 2 ) = -2i w * -1l 1l 0 . Proposition 7.5. Assume that f = f (0) ⊕ f ( β 2 ) with f (0/ β 2 ) ∈ D ⊕ D. Then: (1) the limit lim n→+∞ K-1 β γ * β,n ( S(0) f (0) ⊕ S( β 2 ) f ( β 2 ) ) = • • K-1 β γ * β ( S(0) f (0) ⊕ S( β 2 ) f ( β 2 ) ) exists in D (I ± β ; h-1 2 0
H) and is independent on the choice of the cutoff function χ.

(2) We have

K-1 β γ * β ( S(0) f (0) ⊕ S( β 2 ) f ( β 2 ) ) ∈ C 1 (I ± β ; h-1 2 0 H).
(3)

∓γ ± β K-1 β γ * β ( S(0) f (0) ⊕ S( β 2 ) f ( β 2 ) ) = (1l ⊕ T ) • C ± β • (1l ⊕ T ) -1 f , where C ± β are the Calderón projectors for B β = ∂ s + b, with b = H, h = Ẽ, defined in Prop. 4.2.
Again this leads to the following definition.

Definition 7.6. The operators

c± β • • = ∓γ ± β K-1 β γ * β ( S(0) π (0) ⊕ S( β 2 ) π ( β 2 ) ) ∈ L(( D ⊕ D) 2 ; Ẽ ⊕ Ẽ),
where π (0/ β 2 ) g = g(0/ β 2 ) are called Calderón projectors for Kβ .

Proof of Prop. 7.5. We prove only the + case. Let f ∈ D ⊕ D. Then:

γ(0) * β,n S(0) f = χ n (s) ⊗ f0 + χ n (s) ⊗ (i w * f0 -f1 ), γ( β 2 ) * β,n S( β 2 ) f = -χ n (s -β 2 ) ⊗ f0 -χ n (s -β 2 ) ⊗ ( f1 + i w * f0 ),
and as in the proof of Prop. 7.2 we see that

γ(0) * β,n S(0) f and γ( β 2 ) * β,n S( β 2 ) f belong to (-∂ 2 s + h0 ) 1 2
Hβ . Therefore we can apply Prop. 6.3 and obtain (7.10)

K-1 β γ(0/ β 2 ) * β,n S(0/ β 2 ) f = π 0 B -1 β π * 1 γ(0/ β 2 ) * β,n S(0/ β 2 ) f , where B β = (∂ s + H), acting on Ẽβ . If u ∈ D then π * 1 u ∈ Dom H ∩ Dom H-1 by Prop. 7.1.
Therefore as in the proof of Prop. 4.1 we obtain for g = π * 1 u and u ∈ D:

lim n→∞ B -1 β (χ n ⊗ g)(s) = e -s H (1l -e -β H ) -1 g, lim n→∞ B -1 β (χ n ⊗ g)(s) = -He -s H (1l -e -β H ) -1 g, lim n→∞ B -1 β (χ n (• -β 2 ) ⊗ g)(s) = -e -(s-β 2 ) H (1l -e β H ) -1 g, lim n→∞ B -1 β (χ n (• -β 2 ) ⊗ g)(s) = He -(s-β 2 ) H (1l -e β H ) -1 g, in D (I + β ; Ẽ).
An easy computation shows that for f ∈ D ⊕ D we have:

lim n→+∞ -(B -1 β π * 1 γ(0) * β,n S(0) f )(s) = e -s H (1 -e -β H ) -1 f = • • F (0) (s), lim n→+∞ -(B -1 β π * 1 γ( β 2 ) * β,n S( β 2 ) f )(s) = e -(s-β 2 ) H (1 -e βH ) -1 T f = • • F ( β 2 ) (s)
, in D (I + β ; Ẽ), which using (7.10) proves (1).

Next since D⊕ D ⊂ Dom H-1 , we have (1-e ±β H ) -1 f ∈ Ẽ, and since H preserves D ⊕ D, we have also

H(1 -e ±β H ) -1 f ∈ Ẽ. Therefore F (0) , F ( β 2 ) ∈ C 1 (I + β ; Ẽ) which shows that π 0 F (0/ β 2 ) (s) ∈ C 1 (I + β ; h-1 2 0 H)
and proves (2). Finally we check that for

F (s) ∈ C 1 (I + β ; Ẽ) with (∂ s + H)F (s) = 0 in I + β we have: γ(0)+ β π 0 F = Γ (0)+ β F, γ( β 2 )+ β π 0 F = T Γ ( β 2 )+ β F, which proves (3). 2
As in Prop. 7.4 we can using Subsect. 5.4 express the covariances of the double β-KMS state ωd for P in terms of the Calderón projectors c± β for the Wick rotated operator Kβ .

We recall that from Prop. 7.1 we know that the double β-KMS state ωd is well defined on CCR( Ỹ ⊕ Ỹ, q ⊕ -q). Proposition 7.7. The covariances of the double β-KMS state for P , considered as a state on CCR( Ỹ ⊕ Ỹ, q ⊕ -q) are equal to

λ± d = ± Q • (1l ⊕ T ) -1 c± β (1l ⊕ T ), for Q = q ⊕ -q.

Klein-Gordon equations on stationary spacetimes

In this section we consider Klein-Gordon equations on stationary spacetimes. If the lapse function N associated to the Killing vector field w is equal to 1, one can directly reduce oneself to the situation of Sect. 7. In general one has to replace the Klein-Gordon operator P by P = N P N , which has the same purpose as a conformal transformation.

As an application we consider the Klein-Gordon operator P in M + and express the covariances of the double β-KMS state in M -∪ M + using the Calderón projectors for the elliptic operator K β obtained from P by Wick rotation in the Killing time coordinate t.

8.1. Klein-Gordon equations on stationary spacetimes.

8.1.1. Stationary metrics. Let (S, h) be a Riemannian manifold, N ∈ C ∞ (S), N > 0 and w i a vector field on S. Let us denote by y the elements of S. We define the Lorentzian metric g on M = R × S:

g = -N 2 (y)dt 2 + h ij (y)(dy i + w i (y)dt)(dy j + w j (y)dt).
We assume that {0} × S is a Cauchy surface for (M, g). Such spacetimes are called standard stationary spacetimes in the terminology of [S2].

The vector field ∂ ∂t is Killing for g and is time-like iff

(8.1) N 2 (y) > w i (y)h ij (y)w j (y), y ∈ S.
We will need later to impose the following stronger condition:

Definition 8.1. The Killing vector field ∂ ∂t is uniformly time-like if there exists 0 < δ < 1 such that:

(1 -δ)N 2 (y) ≥ w i (y)h ij (y)w j (y), x ∈ S.
We have:

(8.2) |g| = N 2 |h|, n = N -1 ( ∂ ∂t -w),
where n is the future directed unit normal to the foliation S t = {t} × S.

8.1.2. Stationary Klein-Gordon operators. We consider a stationary Klein-Gordon operator on (M, g):

(8.3) P = -2 g + m(y), m ∈ C ∞ (S; R).
We will always assume that (8.4) m(y) ≥ m 2 0 , m 0 > 0, ie that the Klein-Gordon equation is massive. Setting (8.5)

h 0 • • = ∇ * h -1 ∇ + m, w • • = w i •∂ y i , we have (8.6) P = (∂ t + w * )N -2 (∂ t -w) + h 0 ,
where in (8.5), (8.6) the adjoints are computed with respect to the scalar product We will also need the Hilbert space H = L 2 (S, N |h| 1 2 dy) associated to the scalar product

(u|v) M = ˆM uvN |h| 1 2 dtdy.
(u|v) H = ˆS uvN |h| 1 2 dy, so that L 2 (M ) = L 2 (R, dt; H).
8.1.4. An operator inequality. The inequality in Lemma 8.2 below is understood as an operator inequality on H. Lemma 8.2. Assume that ∂ ∂t is uniformly time-like. Then

(1 -δ)h 0 ≥ w * N -2 w on C ∞ c (S). Proof.
Let X be a real vector space, k ∈ L s (X , X # ) strictly positive and c ∈ X . Then for γ = kc ∈ X # and ξ ∈ CX # we have

(ξ -ξ|c γ)•k -1 (ξ -ξ|c γ) = ξ •k -1 ξ -2Re ( ξ|c γ •k -1 ξ) + | ξ|c | 2 γ •k -1 γ = ξ •k -1 ξ -(2 -c•kc)| ξ|c | 2 , hence k -1 -|c c| ≥ (1 -c•kc)|c c|. Replacing k by (1 -δ) -1 k shows that if (1 -δ) ≥ c•kc we have (8.7) (1 -δ)k -1 ≥ |c c|. For u ∈ C ∞ c (S) we write (u|((1 -δ)h 0 -w * N -2 w)u) H ≥ ´S ∂ y i u((1 -δ)h ij (y) -w i (y)N -2 w j (y))∂ y j u(y)N |h| 1 2 dy.
Applying (8.7) under the integral sign for k = h ij (y), c = N -1 (y)w i (y) we obtain the lemma. 2 8.2. Selfadjoint operators. In the rest of this section we will assume that ∂ ∂t is uniformly time-like.

Let q 0 (u, u) = (u|h 0 u) H with Domq 0 = C ∞ c (S). The form q 0 is closeable and we denote still denote by h 0 the selfadjoint operator on H associated to q cl 0 , i.e. the Friedrichs extension of h 0 on C ∞ c (S). We have:

h 0 : h -1 2 0 H ∼ -→ h 1 2 0 H. Note that h -1 2 0 H ⊂ H since h 0 ≥ m 2 0 . We set also (8.8) q0 (u, u) = q 0 (N u, N u) H, Domq 0 = C ∞ c (S)
, and denote by h0 the selfadjoint operator on H associated to qcl 0 , which formally equals N h 0 N . From (8.8) we obtain that (8.9)

N : h-1 2 0 H ∼ -→ h -1 2 0 H, N : h 1 2 0 H ∼ -→ h 1 2
0 H, and we have:

(8.10) h0 = N h 0 N as an identity in B( h-1 2 0 H, h 1 2 0 H). We also set (8.11) w = N -1 wN = N -1 w i •∂ y i N, w * = N w * N -1 = -|h| -1 2 ∂ y i •w i |h| 1 2 , with domain C ∞ c (S). Let us introduce the assumption (8.12) N -2 w i •(∇ h i N ), N -1 ∇ h
i w i are bounded on S. Lemma 8.3. Assume (8.12). Then h0 , w, w * satisfy the conditions (7.2) and (7.4) for D = C ∞ c (S). Proof. We have seen in Lemma 8.2 that w * N -2 w ≤ (1 -δ)h 0 on C ∞ c (S), which implies w * w ≤ (1 -δ) h0 on C ∞ c (S). Let (y 1 , . . . , y d ) be local coordinates on S. We have Condition (8.12) implies that w * = -w +r, where r ∈ C ∞ (S) and rN -1 is bounded on H. The inequality w w * ≤ C h0 follows from w * w ≤ (1 -δ) h0 and m 2 0 N 2 ≤ h0 . Applying the Kato-Heinz theorem to this last inequality we obtain that h-1

w = w i •∂ y i + N -1 w i •(∂ y i N ), w * = -w i •∂ y i -|h| -1 2 (∂ y i w i |h| 1 2 ) = -w i •∂ y i -∇ h i w i .
0 ≤ m -2 0 N -2 , i.e. DomN -1 ⊂ Dom h-1 2 0 . Since N > 0, C ∞ c (S) ⊂ DomN -1
, which proves (7.4).2 8.3. Associated first order system. We set:

(8.13) t φ = φ(t) i -1 N -1 (∂ t -w)φ(t) = f = f 0 f 1 ,
and rewrite P φ = 0 as:

(8.14) N -1 ∂ t f = iHf, H = -iN -1 w 1l h 0 iw * N -1 , f ∈ C ∞ c (S; C 2 ).
The conserved energy is

(8.15) f •Ef = f 1 -iN -1 wf 0 2 H + (f 0 |hf 0 ) H, h = h 0 -w * N -2 w, and the conserved charge is f •qf = (f 1 |f 0 ) H + (f 0 |f 1 ) H .
The energy space E associated to E equals h

-1 2 0
H ⊕ H as topological vector spaces. 8.4. Reduction. We now introduce the Klein-Gordon operator

P = N P N = (∂ t + w * )(∂ t -w) + h0 ,
which is of the form considered in Sects. 6, 7. The operators ˜ t , H, the energy Ẽ and charge q are defined as in Subsect. 6.3:

˜ t φ = φ(t) i -1 (∂ t -w) φ(t) , H = -i w 1l h0 i w * , f • Ẽ f = f1 -i w f0 2 H + ( f0 | h f0 ) H, f • q f = ( f1 | f0 ) H + ( f0 | f1 ) H, f ∈ C ∞ c (S; C 2 ). Setting (8.16) Z = • • N 0 0 1l , Z • • = 1l 0 0 N -1 , we have: (8.17) t N = Z ˜ t , N -1 ∂ t -iH = Z (∂ t -i H)Z -1 , (8.18) Z * EZ = Ẽ, Z * qZ = q on C ∞ c (S; C 2 ).
We saw that the energy space Ẽ associated to Ẽ equals h-1 2 0 H ⊕ H, and from (8.9) we obtain that:

(8.19) Z : Ẽ ∼ -→ E.
8.5. Vacuum and KMS states. In Subsect. 7.1 we defined vacuum and β-KMS states for P . We obtain the corresponding vacuum and β-KMS states for P by conjugation by the map Z.

In Def. 8.4 below, ω vac and ω β are states on CCR(C ∞ c (S; C 2 ), q), while ω d is a state on CCR(C ∞ c (S; C 2 ) ⊕ C ∞ c (S; C 2 ) 2 , q ⊕ -q). Definition 8.4. We define the vacuum state ω vac , the β-KMS state ω β and the double β-KMS state ω d , by their covariances:

λ ± vac = (Z -1 ) * λ± vac Z -1 , λ ± β = (Z -1 ) * λ± β Z -1 , λ ± d = (Z -1 ⊕ Z -1 ) * λ± d (Z -1 ⊕ Z -1
), where the covariances λ± vac , λ± β and λ± d are defined in Defs. 5.1, 5.3 and Prop. 5.6 for b = H. 8.6. The Wick rotated operator. 8.6.1. The Wick rotated metric. Let us denote by g eucl the complex metric on R×S obtained from g by the substitution t = is. We have: With the terminology in Def. 9.1 this means that the complex metric g eucl is uniformly sectorial.

g eucl = N 2 (y)ds 2 + h ij (y)(dy i + iw i (y)ds)(dy j + iw j (y)ds),
If Ω =]0, +∞[×S, the outer unit normal vector field to Ω for g eucl , see 9.1.2, is

(8.22) ν = -N -1 ( ∂ ∂s -iw), while if Ω =]0, β 2 [×S it equals (8.23) ν (0/ β 2 ) = ∓N -1 ( ∂ ∂s -iw) on {0/ β 2 } × S.
The real vectors Imν, Im ν (0/ β 2 ) are tangent to S, i.e. condition (9.4) below is satisfied. 8.6.2. The Wick rotated operator. We consider now the Wick rotated operator K obtained from P by the substitution t = is. We have:

(8.24) K = -∆ g eucl + m(y) = -(∂ s + iw * )N -2 (∂ s -iw) + h 0 ,
acting on the Hilbert spaces Hβ for 0 < β ≤ ∞ defined in (6.10). We refer the reader to 9.1.1 for the Laplacian ∆ g eucl associated to g eucl . We recall that

Hβ = L 2 (S β × S, N (y)|h| 1 2 (y)dyds), for 0 < β < ∞, H∞ = L 2 (R × S, N (y)|h| 1 2 (y)dyds).
It follows from Lemma 8.2 that if h = h 0 -w * N -2 w we have:

h ∼ h 0 , w * N -2 w h, on C ∞ c (R × S)
, where we use the scalar product of Hβ in the operator inequalities. We have: (8.25)

(u|Ku) Hβ = N -1 ∂ s u 2 Hβ + (u|hu) Hβ -i(N -1 ∂ s u|N -1 wu) Hβ -i(N -1 wu|N -1 ∂ s u) Hβ , for u ∈ C ∞ c (R × S) if β = ∞ and u ∈ C ∞ c (S β × S) if β < ∞. The sesquilinear form associated to the realization K β of K is Q β (u, u) = N -1 ∂ s u 2 Hβ + (u|hu) Hβ -i(N -1 ∂ s u|N -1 wu) Hβ -i(N -1 wu|N -1 ∂ s u) Hβ , with domain DomQ β = K 0 -1 2 Hβ and K 0 = -N -2 ∂ 2
s +h 0 with its natural domain on Hβ . From (8.9) we obtain that

N -1 : DomQ β ∼ -→ Dom Qβ , Q β (N u, N u) = Qβ (u, u),
where Qβ is defined in Subsect. 6.4. It follows that Q β is a closed sectorial form and we denote as before by K β :

K β : K -1 2 0 Hβ ∼ -→ K 1 2
0 Hβ the induced boundedly invertible operator. We have

(8.26) i) N : K-1 2 0 Hβ ∼ -→ K -1 2 0 Hβ , N : K 1 2 0 Hβ ∼ -→ K 1 2 0 Hβ ii) Kβ = N K β N, as elements of B( K-1 2 0
Hβ , K 1 2 0 Hβ ), where Kβ is the operator defined in Subsect. 6.4. 8.7. Calderón projectors. We now define the Calderón projectors for K β and relate them to those for Kβ defined in Subsect. 7.2. We use the notation I ± β , i ± β , γβ , γ± β introduced in Subsect. 7.2. We recall that χ n ∈ C ∞ c (R) is a sequence of cutoff functions converging to δ 0 . 8.7.1. Calderón projectors for K ∞ . We set

γ * ∞ g • • = δ 0 (s) ⊗ g 1 + δ 0 (s) ⊗ (N -1 g 0 -iw * N -2 g 1 ) g ∈ C ∞ c (S; C 2 ), and 
S • • = 2iN w * N -2 -1l 1l 0 , so that (8.27) N -1 γ * ∞ SZ -1 = γ * ∞ S. If N -1 u ∈ C 1 (I ± ∞ ; H) ∩ C 0 (I ± ∞ ; h-1 2 0
H) and Ku = 0 in I ± ∞ we set: From Prop. 7.2 and (8.19),(8.26) ii), (8.27) and (8.28), we see that the operators

γ ± ∞ u = u(0 ± ) -N -1 (∂ s -iw)u(0 ± ) , so that (8.28) γ ± ∞ N = Z γ± ∞ .
(8.29) ∓γ ± ∞ K -1 ∞ γ * ∞ S = ∓Z • (γ ± ∞ K-1 ∞ γ * ∞ S)
• Z -1 are well defined as linear operators from C ∞ c (S; C 2 ) to E. This leads to the following definition.

Definition 8.5. The Calderón projectors c ± ∞ for K ∞ are:

c ± ∞ • • = ∓γ ± ∞ K -1 ∞ γ * ∞ S ∈ L(C ∞ c (S;
C 2 ); E). Proposition 8.6. The covariances of the vacuum state ω vac are equal to:

λ ± vac = ±q • c ± ∞ .
Proof. This follows from the identities:

i) λ± vac = Z * λ ± vac Z, q = Z * qZ, ii) λ± vac = ±qc ± ∞ , c ± ∞ = Zc ± ∞ Z -1 .
The identities in i) are obvious, the first identity in ii) is shown in Prop. 7.4, the second follows from (8.29). 2 8.7.2. Calderón projectors for K β . We set

γ (0) * β g = δ 0 (s) ⊗ N -2 g 1 + δ 0 (s) ⊗ (N -1 g 0 -iw * N -2 g 1 ), γ ( β 2 ) * β g = -δ β 2 (s) ⊗ N -2 g 1 + δ β 2 (s) ⊗ (N -1 g 0 + iw * N -2 g 1 ), g ∈ C ∞ c (S; C 2 ) S (0) • • = 2iN w * N -2 -1l 1l 0 , S ( β 2 ) • • = -2iN w * N -2 -1l 1l 0 . γ * β (g (0) ⊕ g ( β 2 ) ) • • = γ (0) * β g (0) + γ ( β 2 ) * β g ( β 2
) . As before we have:

(8.30) N -1 γ(0/ β 2 ) * β S(0/ β 2 ) Z -1 = γ (0/ β 2 * ) β S (0/ β 2 ) . If N -1 u ∈ C 0 (I ± β ; h-1 H) and ∂ s N -1 u ∈ C 0 (I ± β ; h-1 2 0 H) with Ku = 0 in I + β , we set γ ± β u = γ (0)± β u ⊕ γ ( β 2 )± β u, for γ (0)± β u = u(0 ± ) -N -1 (∂ s -iw)u(0 ± ) , γ ( β 2 )± β u = u(∓ β 2 ) N -1 (∂ s -iw)u(∓ β 2 )
, and we have: Prop. 7.5 and (8.19),(8.26) ii), (8.30) and (8.31), we see that the operators (8.32)

(8.31) γ ± β N = (Z ⊕ Z)γ ± β . Again from
±γ ± β K -1 β γ * β (γ (0) * β S (0) π (0) + γ ( β 2 ) * β S ( β 2 ) π ( β 2 ) ) = ±(Z ⊕ Z) • (γ ± β K-1 β γ(0) * β S(0) π (0) + γ( β 2 ) * β S( β 2 ) π ( β 2 ) ) • (Z ⊕ Z) -1
are well defined as linear operators from

C ∞ c (S; C 2 ) ⊕ C ∞ c (S; C 2 ) to E ⊕ E.
Again this leads to the following definition.

Definition 8.7. The Calderón projectors c ± β for K β are:

c ± β • • = ∓γ ± β K -1 β (γ (0) * β S (0) π (0) + γ ( β 2 ) * β S ( β 2 ) π ( β 2 ) ),
where π (0/ β 2 ) g = g (0/ β 2 ) .

Using now Prop. 7.7, the same argument as in 8.7.1 gives the following proposition.

Proposition 8.8. The covariances of the double β-KMS state ω d are equal to:

λ ± d = ±Q • (1l ⊕ T ) -1 c ± β (1l ⊕ T ), Q = q ⊕ q,
where T = 1l 0 0 -1l .

8.8. The double β-KMS state in M + ∪ M -. We now apply the computations of the previous subsections to S = Σ + . In fact if φ t is the flow of the Killing vector field V , the map χ : R × Σ + (t, y) → φ t (y) ∈ M + is a diffeomorphism such that χ * g is as in Subsect. 8.1.

We first claim that ∂ ∂t is uniformly time-like and (8.12) holds on Σ + . Proposition 8.9. Assume that hypothesis (H3) holds. Then ∂ ∂t is uniformly timelike and (8.12) holds on Σ + .

Proof. By (H3) ∂

∂t is uniformly time-like and (8.12) holds on Σ + \ U , where U is any small neighborhood of B in Σ + , by hypotheses (H). To check the conditions on U , we use Prop. 2.4. Recalling that (u, ω) are Gaussian normal coordinates to B in (Σ, h), we obtain

w•hw ∈ O(u 4 ), w•(∇N ) ∈ O(u 3 ), (∇•w) ∈ O(u 2 ), w•∇(|h| 1 2 ) ∈ O(u 2 ), from which our claim follows, since N (y) = κu + O(u 3 ). 2 8.8.1. The double β-KMS state in M + ∪M -. Let us now define the double β-KMS state in M + ∪ M -.
The wedge reflection R is an isometric involution from (M -, g) to (M + , g). It induces on Σ the weak wedge reflection r, which equals the identity on B and maps Σ -bijectively on Σ + .

R reverses the time orientation, hence induces a unitary involution:

R : ( C ∞ c (M -) P C ∞ c (M -) , iG) ∈ [u] → [u • R] ∈ ( C ∞ c (M + ) P C ∞ c (M + ) , -iG).
In a more familiar language, R is anti-symplectic. Since

Σ ± • G : C ∞ c (M ± ) P C ∞ c (M ± ) , i(•|G•) ∼ -→ (C ∞ c (Σ ± ; C 2 ), q)
is unitary, R induces the unitary involution

R Σ : (C ∞ c (Σ -; C 2 ), q) ∼ -→ (C ∞ c (Σ + ; C 2 ), -q).
The following expression for R Σ follows from the fact that R reverses the time orientation.

Lemma 8.10. One has

R Σ f = T r * f,
where T = 1l 0 0 -1l and r * f (y) = f (r(y)).

We have defined in Subsect. 8.5 the double β-KMS state ω d through its Cauchy surface covariances λ ± d . The associated Hermitian space is -q). (M + ∪ M -, g) is a (disconnected) globally hyperbolic spacetime with Cauchy surface Σ + ∪ Σ -and we denote a Cauchy data on Σ + ∪ Σ -as

(C ∞ c (Σ + ; C 2 ), q) ⊕ (C ∞ c (Σ + ; C 2 ),
f = f + ⊕ f -, f ± ∈ C ∞ c (Σ ± ; C 2 ).
Using Remark 5.7, we obtain from ω d a pure, quasi-free state ω D in M + ∪ M -as follows:

Definition 8.11. The double β-KMS state ω D in M + ∪ M -is defined by the Cauchy surface covariances:

f •λ ± D f • • = (1l ⊕ R Σ )f •λ ± d (1l ⊕ R Σ )f, f = f + ⊕ f -∈ C ∞ c (Σ + ∪ Σ -; C 2
). From Prop. 8.8 and Lemma 8.10 we obtain the following expresssion for λ ± D . Proposition 8.12. One has:

λ ± D = ±Q • (1l ⊕ r * ) -1 c ± β (1l ⊕ r * )
, where c ± β are the Calderón projectors for K β defined in Def. 8.7 and Q = q ⊕ q.

The HHI state

In this section we construct the HHI state ω HHI in M and prove that it is a pure Hadamard state, extending the double β-KMS state ω D in M -∪ M + for β = (2π)κ -1 . We use the expression of ω D by Calderón projectors for the Wick rotated operator K β , see Subsect. 8.8.

Since K β is a Laplace operator for the complex metric g eucl on M eucl = S β × Σ + , one can if β = (2π)κ -1 extend it to a Laplace operator K ext on the smooth extension (M eucl ext , g eucl ext ). The boundary of the open set Ω ext extending Ω β =]0, β 2 [×Σ + is diffeomorphic to the full Cauchy surface Σ, and we can use the Calderón projectors for K ext , Ω ext to define a pair of covariances λ ± HHI . The fact that they define a state is actually quite easy, using some standard continuity properties of the Calderón projectors and density results in Sobolev spaces. The proof of the Hadamard property of ω HHI relies also on an easy argument using pseudodifferential calculus, taken from [G]. 9.1. Laplacians for complex metrics. We recall that complex metrics on a manifold X are defined in 2.7.1. Definition 9.1. A complex metric k on a manifold X is called uniformly sectorial if (1) there exists C > 0 such that

(9.1) |Im (v a k ab (x)v b )| ≤ CRe (v a k ab (x)v b ), ∀ x ∈ X, v ∈ CT x X; (2) |k(x)| = det(k ab (x)) > 0 ∀x ∈ X.
Note that if k is uniformly sectorial, then and(9.2) follows from (9.1). 9.1.1. Laplacians for complex metrics. If k is a complex metric on X, one defines the Christoffel symbols:

(9.2) |Im (ξ a k ab (x)ξ b )| ≤ CRe (ξ a k ab (x)ξ b ) ∀ x ∈ X, ξ ∈ CT * x X, i.e. k -1 is also uniformly sectorial. In fact if ξ = kv we have ξ•k -1 ξ = kv•v = v•kv
Γ c ab • • = 1 2 k cd (∂ a k cd + ∂ b k ad -∂ d k ab ),
the covariant derivative:

∇ (k) a T b = ∂ a T b + Γ b ac T c , and the Laplacian associated to k, acting on C ∞ c (X): ∆ k • • = ∇ (k) a k ab ∇ (k) b
as for real metrics. For m ∈ C ∞ (X, R), we set:

K • • = -∆ k + m,
and equip C ∞ c (X) with the scalar product:

(u|v) X • • = ˆX uv|k| 1 2 dx.
We have

(9.3) ∇ (k) a T a = |k| -1 2 ∂ a (|k| 1 2 T a ), see Subsect. A.3 and hence K = -|k| -1 2 ∂ a k ab |k| 1 2 ∂ a + m. The formal adjoint of K for the scalar product (•|•) X equals K * = -|k| -1 2 ∂ a k ba |k| 1 2 ∂ b + m = -∆ k * + m. Proposition 9.2. Assume that k is uniformly sectorial and that m 2 0 ≤ m(x) for m 0 > 0. Let Q(u, u) = (u|Ku) X = ´X (∂ a uk ab ∂ b u + muu)|k| 1 2 dx, Q * (u, u) = (u|K * u) X = ´X (∂ a uk ba ∂ b u + muu)|k| 1 2 dx, with DomQ = DomQ * = C ∞ c (X). Then: (1) Q, Q * are closeable with DomQ cl = DomQ * cl = H 1 k (X), equal to the comple- tion of C ∞ c (X) for the norm u 2 1 = ˆX (∂ a uRe k ab ∂ b u + muu)|k| 1 2 dx.
(2) Q cl , Q * cl are sectorial and induce isomorphisms:

K cl , K * cl : H 1 k (X) ∼ -→ H 1 k (X) * , with K cl = K, K * cl = K * on C ∞ c (X).
(3) Let us denote also by K cl , K * cl the associated linear operators on L 2 (X, |k| 1 2 dx) with domains

DomK cl = H 1 k (X) ∩ (K cl ) -1 L 2 (X, |k| 1 2 dx), DomK * cl = H 1 k (X) ∩ (K * cl ) -1 L 2 (X, |k| 1 2 dx). Then 0 ∈ σ(K cl ), 0 ∈ σ(K * cl ) and (K * cl ) -1 = ((K cl ) -1 ) * .
Proof. Using (9.2) under the integral sign defining Q or Q * , we obtain |ImQ * (u, u)| ≤ CRe Q(u, u) and that Q, Q * are closeable. The domain of their closures equals H 1 k (X) by definition and their closures are sectorial. By the Lax-Milgram theorem we obtain isomorphisms K cl , K * cl , which completes the proof of (1) and (2). The first properties of the linear operators K cl , K * cl acting on L 2 (X, |k| 1 2 dx) are immediate. From [START_REF] Kato | Perturbation Theory for Linear Operators[END_REF]Thm. VI.2.5] we have

K * cl = (K cl ) * hence (K * cl ) -1 = ((K cl ) -1 ) * . 2 9.1.2. Outer unit normal.
Let Ω ⊂ X be an open set with a smooth boundary ∂Ω. We set

Ω + • • = Ω, Ω -• • = X\Ω cl .
We can define the outer unit normal vector field to ∂Ω, denoted by n ∈ CT X by the following conditions: R) with df = 0 on {f = 0}, we have:

i) n(x)•k(x)v = 0, ∀v ∈ T x ∂Ω, ii) n(x)•k(x)n(x) = 1, iii) Re n(x) is outwards pointing. If Ω is locally equal to {f > 0} for f ∈ C ∞ (X,
n a = -k ab ∇ b f (∇ a f k ab ∇ b f ) 1 2
, where in the denominator we take the usual determination of z 1 2 . We also assume the following condition:

(9.4) Im n(x) ∈ T x ∂Ω, x ∈ ∂Ω, which is equivalent to ∇ a f k ab ∇ b f ∈ R on ∂Ω, if Ω = {f > 0}. The volume form dVol k = |k| 1 2 dx 1 ∧ • • • ∧ dx n associated to k is real, as is the associated density dµ k = |dVol k | = |k| 1 2 dx.
It is easy to see from (9.4) that the induced density dσ h = |dVol h | associated to the induced metric h on ∂Ω is also real valued. 9.1.3. Gauss-Green formula. One obtains by the same arguments as in the real case the Gauss-Green formula:

(9.5) ˆΩ ∇ (k) a w a dµ k = ˆ∂Ω w a n a dσ h ,
for w a smooth vector field on X.

Lemma 9.3. We have:

(9.6) ˆΩ(vKu -K * vu)dµ k = ˆ∂Ω (n a ∇ (k) a vu -vn a ∇ (k) a u)dσ h , u ∈ C ∞ c (Ω), v ∈ C ∞ (Ω). Proof. For X a = vk ab ∇ (k) b u we obtain ∇ (k) a X a = ∇ (k) a vk ab ∇ (k) b u -vKu, hence by (9.5): (9.7) ˆΩ vKudµ k = ˆΩ(∇ (k) a vk ab ∇ (k) b u + mvu)dµ k - ˆ∂Ω vn a ∇ (k) a udσ h .
The same identity replacing k by k gives:

ˆΩ uK * vdµ k = ˆΩ(∇ (k) a uk ab ∇ (k) b v + muv)dµ k - ˆ∂Ω un a ∇ (k) a vdσ h ,
which by taking complex conjugates gives:

(9.8) ˆΩ uK * vdµ k = ˆΩ(∇ (k) a uk ab ∇ (k) b v + muv)dµ k - ˆ∂Ω un a ∇ (k) a vdσ h , since ∇ (k) a u = ∇ (k) a u = ∇ (k)
a u. Subtracting (9.8) from (9.7) gives (9.6). 2 9.1.4. Trace operators. For u ∈ C ∞ (X) we set:

γu • • = u ∂Ω ∂ n u ∂Ω ∈ C ∞ (∂Ω; C 2 ).
The formal adjoint γ * of γ is given by: (9.9)

γ * f = (dµ k ) -1 f 0 d∂Ω + (dµ k ) -1 (n µ ∂ µ ) * f 1 d∂Ω,
where if g ∈ C ∞ (∂Ω), gd∂Ω is the distributional density defined as

u|gd∂Ω = ˆ∂Ω ugdσ h , u ∈ C ∞ c (X), and 
u|(n µ ∂ µ ) * gd∂Ω = n µ ∂ µ u|gd∂Ω . Similarly for u ∈ C ∞ (Ω ± ) we set: γ ± u • • = u ∂Ω ∂ n u ∂Ω ,
where the trace is taken from Ω ± .

In the rest of this subsection, we assume that k is uniformly sectorial and that (9.4) holds. 9.1.5. Calderón projectors.

Definition 9.4. The Calderón projectors c ± associated to (K, Ω) are defined as Note that the operator S is well defined on C ∞ c (∂Ω; C 2 ), since Imn is tangent to ∂Ω.

c ± = ∓γ ± • (K cl ) -1 • γ * • S,
It is not a priori clear that c ± are well defined, since even for f ∈ C ∞ c (∂Ω; C 2 ), γ * Sf does not belong to H 1 k (X) * . To show that c ± make sense, one can apply the following proposition. We denote by H s c (∂Ω) resp. H s loc (∂Ω) for s ∈ R, the compactly supported, resp. local Sobolev spaces on ∂Ω and set:

(9.10) H s c/loc (∂Ω) = H s-1 2 c/loc (∂Ω) ⊕ H s-1-1 2 c/loc (∂Ω), s ∈ R. Proposition 9.5. (1) c ± : H s c (∂Ω) → H s loc (∂Ω) continuously for any s ∈ R, (2) c ± are 2 × 2 matrices with entries in Ψ ∞ (∂Ω).
Proof. The differential operator K is elliptic, since its principal symbol equals ξ • k -1 (x)ξ. K admits hence a properly supported parametrix Q ∈ Ψ -2 c (X). We claim that (K cl ) -1 -Q is a smoothing operator, i.e. has a smooth distributional kernel. In fact by the usual argument of commuting derivatives with K, we first obtain that (K cl ) -1 : H s c (∂Ω) → H s+2 loc (∂Ω) is continuous for all s ≥ -1. Next since KQ = 1l + R -∞ , where R is smoothing and properly supported, we have ∂Ω). This implies that (K cl ) -1 extends as a continuous map from H s c (∂Ω) to H s+2 loc (∂Ω) for all s ∈ R and that (K cl ) -1 -Q is smoothing.

K cl ((K cl ) -1 -Q)u = Ru, u ∈ C ∞ c (∂Ω), hence (K cl ) -1 = Q + (K cl ) -1 R -∞ on C ∞ c ( 
It suffices hence to prove the proposition with (K cl ) -1 replaced by Q in the definition of c ± . Note that Q is properly supported, and the support of its distributional kernel can be assumed to lie in an arbitrary small neighborhood of the diagonal in X × X.

We claim that to prove the proposition, we can reduce ourselves to the case when X and ∂Ω are compact, which is the situation considered in [START_REF] Grubb | Distributions and Operators[END_REF]Sect. 11.1]. Let us now explain this reduction.

Let (U i ) i∈N be an open cover of a neighborhood of ∂Ω in X and χ i : 

U i → B n-1 (0, 1)×]-1, 1[, an associated chart diffeomorphism with χ i (U i ∩∂Ω) = B n-1 (0, 1)× {0}, where n = dimX and B d (0, 1) is the open unit ball in R d . If V i = U i ∩ ∂Ω and ψ i = χ i|Ui∩∂Ω , then (V i , ψ i ) i∈N is an atlas of ∂Ω. Refining if necessary the cover (U i ) i∈N , we can assume that if V i ∩ V j = ∅, then there exists an chart open set U ⊂ X with U i , U j U and a chart diffeomorphism χ : U → B n-1 (0, 1)×] -1, 1[ with χ(U ∩ ∂Ω) = B n-1 (0, 1) × {0}. Let 1 = i∈N ϕ i with ϕ i ∈ C ∞ c (V i ) a
: H s c (∂Ω) → H s loc (∂Ω) for all i, j ∈ N. If V i ∩ V j = ∅ then ϕ i c ± ϕ j is smoothing, since the kernel of Q is smooth outside of the diagonal. If V i ∩ V j = ∅,
= B n-1 (0, 1)×]-1, 1[, ∂Ω = B n-1 (0, 1) × {0} and V i , V j B n-1 (0, 1).
We can then embed B n-1 (0, 1)×] -1, 1[ in a compact manifold X, ∂Ω in a smooth, compact submanifold ∂Ω of X, and extend Q as a properly supported pseudodifferential operator Q ∈ Ψ -2 c ( X) such that ϕ i (Q -Q)ϕ j is a smoothing operator. Therefore we can replace X, ∂Ω, Q by X, ∂Ω, Q as claimed.

A neighborhood V of ∂Ω in X is then diffeomorphic to ] -δ, δ[×∂Ω, and one can use coordinates (s, y) on ] -δ, δ[×∂Ω. In [START_REF] Grubb | Distributions and Operators[END_REF]Sect. 11.1] the trace operator is defined as γu = u(0, y) i -1 ∂ s u(0, y) .

Clearly we have γ = L • γ, where L = 1l 0 r 1l and r is a first order differential operator on ∂Ω. This implies that L : H s c/loc (∂Ω)

∼ -→ H s c/loc (∂Ω). The Calderón projectors C± in [START_REF] Grubb | Distributions and Operators[END_REF]Sect. 11.1] are equal to L -1 • c ± • L, and [START_REF] Grubb | Distributions and Operators[END_REF]Prop. 11.7] implies that C± : H s c (∂Ω) → H s loc (∂Ω) for all s ∈ R, which implies (1). Property (2) is a standard fact, see [START_REF] Grubb | Distributions and Operators[END_REF]Sect. 11.1]. 2 9.2. Construction of the HHI state. 9.2.1. The Laplacian on M eucl ext . We now apply the above framework to (X, k) = (M eucl ext , g eucl ext ), the smooth extension of (M eucl , g eucl ) constructed in Prop. 2.5, for β = (2π)κ -1 . We assume that hypothesis (H3) in Subsect. 2.4 holds. By Prop. 8.9 the Wick rotated metric g eucl satisfies the conditions in 8.6.1, i.e. is uniformly sectorial. By continuity the same is true of its extension g eucl ext . We denote by K ext = ∆ g eucl ext + m ext , the associated Laplacian. We choose the open set Ω ext ⊂ M eucl ext , whose boundary ∂Ω ext is diffeomorphic to Σ, see Prop. 2.5. We saw in 8.6.1 that if ν is the unit outer normal to ]0, β 2 [×Σ + , then Im ν is tangent to ∂(]0, β 2 [×Σ + ). Again by continuity, the same is true of the unit outer normal to Ω ext , i.e. condition (9.4) is satisfied. Therefore we can apply the results of Subsect. 9.1 to K ext and Ω ext .

We note that the map (1l ⊕ r * ) in Prop. 8.12 corresponds to the embedding of C ∞ c (Σ + ∪ Σ -; C 2 ) into C ∞ c (Σ \ B) obtained from ψ : Σ → M eucl ext in Prop. 2.5. The exterior normal to Ω ext is a smooth extension of the image under χ of the exterior normal to ]0, πκ -1 [×Σ + defined in (8.23). Therefore using also Prop. 9.6 we obtain that (9.12) (1l ⊕ r * ) -1 c ± (2π/κ) (1l ⊕ r * ) = c ± ext , on C ∞ c (Σ + ∪ Σ -; C 2 ). This implies (9.11). Claim 2. We claim that (9.13) λ ± HHI , q are continuous sesquilinear forms on H 1 c (Σ), where the spaces H Using that H s c (Σ) and H -s loc (Σ) form a dual pair, we see that H s c (Σ) and H-s loc (Σ) form a dual pair. Moreover q : H s loc (Σ) → Hs-2 loc (Σ) continuously, and by Prop. 9.5 (1) the same is true of λ ± HHI = ±q • c ± ext . For s = 1 we have s -2 = -s, which proves (9.13).

Proof of ( 1) and (2). Since ω D is a state we deduce from (9.11) that (9.14) λ + HHI -λ - HHI = q, λ ± HHI ≥ 0 on C ∞ c (Σ \ B; C 2 ). It is a well-known fact that since B ⊂ Σ is of codimension 1, C ∞ c (Σ \ B) is dense in H Proof of (3). By Thm. 3.8 there exists a reference Hadamard state ω ref for P in M whose Cauchy surface covariances on Σ, denoted by λ ± ref are 2 × 2 matrices with entries in Ψ ∞ (Σ). By Prop. 9.5 the same is true for λ ± HHI . The restriction of ω HHI to M + is a Hadamard state for P , since it is a (2π)κ -1 -KMS state for a time-like, complete Killing vector field. The restriction of ω HHI to M -is also a Hadamard state for P .

In fact by Prop. 8.12, its Cauchy surface covariances on Σ -are the images of those of ω D on Σ + by the weak wedge reflection r. Since r * h = h, r * N = -N and r * w = w, see 2.2.1, the expression (8.6) of P in R × Σ -shows that the restriction of ω D to M -is also a Hadamard state.

This implies that the restriction of ω HHI to M + ∪ M -is a Hadamard state. 

|(v|[K, χ]u) Ω | ≤ C dχ ∞ v H 1 k (Ω) u H 1 k (Ω)
, where dχ ∞ = sup Σ (dχ•h -1 dχ) 1 2 .

Proof. Let U a neighbhorhood of {0} × B such that χ = 1 on U . We have K = (-∂ s + iw * )N -2 (∂ s -iw) on supp ∇χ ⊂ X \ U , see (8.24), and (10.2)

u 2 H 1 k (X) ∼ ˆSβ×Σ + (|N -1 ∂ s u| 2 + ∇uh -1 ∇u + muu)N |h| 1 2 dsdy, u ∈ C ∞ c (X \ U ). Therefore (10.3) [K, χ] = 2iN -1 w•dχN -1 ∂ s + ∇ * •h -1 dχ -dχ•h -1 ∇.
We have |w•dχ| ≤ (w•hw)

1 2 (dχ•h -1 dχ) 1 2 , hence N -1 |w•dχ| ≤ (N -2 w•hw) 1 2 (dχ•h -1 dχ) 1 2 ≤ (dχ•h -1 dχ) 1 2 ≤ dχ ∞ ,
since w•hw ≤ N 2 by (2.5). Combining (10.2) and ( 10.3) we obtain the lemma. 2 Proposition 10.3. Let f ∈ C ∞ c (Σ) 2 . Then:

(10.4) i) χ n c + f -c + χ n c + f → 0, ii) χ n c + χ n c + f -c + χ n c + χ n c + f → 0, in D (Σ) 2 when n → ∞.
Proof. Let us note that the identity (9.5) is of course still valid if u ∈ C ∞ c (Ω) and v ∈ C ∞ (Ω). It is also valid if u ∈ C ∞ c (Ω) and v ∈ H 2 loc (Ω), since all the terms in the identity are still well defined.

For f ∈ C ∞ c (Σ) 2 we set

V + f • • = -r Ω (K cl ) -1 γ * Sf,
where r Ω is the operator of restriction to Ω and we recall that S is defined in Def. 9.4. Let w ∈ C ∞ c (Ω) and v = (K * cl ) -1 e Ω w = (K cl ) -1 * e Ω w, where e Ω is the operator of extension by 0 in X \ Ω.

We know that v ∈ H 1 k (X) by Prop. 9.2, and v ∈ H 2 loc (X) using that e Ω w ∈ L 2 loc (X) and elliptic regularity. For u ∈ C ∞ c (Ω + ) we obtain from (9.6): (10.5)

(v|Ku) Ω -(K * v|u) Ω = (γ + v|Sγ + u) Σ = (γv|Sγ + u) Σ ,
where in the last equality we use that γ ± v = γv. In fact γv is well defined as an element of H From (10.5), (10.6) we obtain:

(10.7) (w|u -V + γ + u) Ω = (v|Ku) Ω , u, w ∈ C ∞ c (Ω). We now fix f ∈ C ∞ c (Σ) 2 and u = V + f . By the same argument as in [GW2, Lemma A.1] we know that u ∈ H 1 k (Ω) ∩ C ∞ (Ω). We now apply (10.7) replacing u by u n = χ n u, which belongs to C ∞ c (Ω).

Since Ku = 0 in Ω, we have Kχ n u = [K, χ n ]u and by Lemma 10.2 we obtain:

(10.8)

|(v|[K, χ n ]u) Ω | ≤ Cn -1 v H 1 k (Ω) u H 1 k (Ω)
. Using (10.7) this yields: (10.9) |(w|χ n u -

V + γ + χ n u) Ω | ≤ Cn -1 v H 1 k (Ω) u H 1 k (Ω) ≤ Cn -1 e Ω w H 1 k (X) * u H 1 k (Ω)
, since by Prop. 9.2 K * cl : H 1 k (X)

∼

-→ H 1 k (X) * . We recall that the space H 1 k (Ω) is the space of restrictions to Ω of elements in

H 1 k (X). Now for g ∈ C ∞ c (X) we have |(e Ω w|g) Ω | = (w|r Ω g) Ω ≤ C w H 1 k (Ω) * r Ω g H 1 k (Ω) ≤ C w H 1 k (Ω) * g H 1 k (X)
, which implies that (10.10)

e Ω w H 1 k (X) * ≤ C w H 1 k (Ω) * . Therefore we deduce from (10.9) by duality that if

r 1,n • • = χ n u -V + γ + χ n u, we have (10.11) r 1,n H 1 k (Ω) ≤ Cn -1 u H 1 k (Ω)
. Hence, (10.12) r 1,n → 0 in H 1 k (Ω) as n → ∞. We now apply (10.7) once again replacing u by v n = χ n V + γ + χ n u. Note that V + γ + χ n u ∈ C ∞ (Ω), so v n ∈ C ∞ c (Ω). We obtain since KV + γ + χ n u = 0 in Ω: (w|v n -V + γ + v n ) Ω = (v|[K, χ n ]V + γ + χ n u) Ω , hence by (10.8) and (10.10)

|(w|v n -V + γ + v n ) Ω | ≤ Cn -1 w H 1 k (Ω) * V + γ + χ n u H 1 k (Ω) ≤ Cn -1 χ n u H 1 k (Ω)
, where we use (10.11) in the last inequality. Since

χ n u H 1 k (Ω) ≤ C( χ ∞ + dχ ∞ ) u H 1 k (Ω) ≤ c u H 1 k (Ω)
, we obtain finally that if r 2,n • • = χ n V + 0 γ + χ n u -V + 0 γ + χ n V + 0 γ + χ n u we have: (10.13) r 2,n → 0 in H 1 k (Ω) as n → ∞. We note then that if V X and V + = V ∩ Ω, we have Kχ n u = 0 in V + for n 1, hence Kr 1,n = Kr 2,n = 0 in V + for n 1. We can introduce local coordinates on Σ near y 0 ∈ Σ, and map V to a neighborhood Ṽ of (0, 0) in R 1+d for d = dim Σ. Denoting by H m, (R 1+d ) the space of u ∈ S (R 1+d ) such that D x m D y u ∈ L 2 (R 1+d ), and then using the coordinates we define the spaces H 1+k,-k loc (X) and H 1+k,-k loc (Ω) (the definition depends on the choice of coordinates, but this is not important here). Then one deduces, using that Kr i,n = 0 in V + that r i,n → 0 also in H 1+k,-k loc (Ω) for any k ∈ N, see eg [START_REF] Grubb | Distributions and Operators[END_REF]page 311].

We can then safely apply the boundary value operator γ + and deduce from (10.12), (10.13) that: γ + r i,n → 0 in D (Σ; C 2 ).

  is bounded in norm by N 1 |α i | and converges strongly to A on the dense subspace π(A)Ω, hence on H cl .

  group {r t } t∈R extends obviously as a unitary group on Y dyn . If we denote the generator of r t on Y en/dyn by b en/dyn then b en = b and b dyn = |b| 1 2 b en |b| -1 2 since |b| -1

  b)y and z = y (considered as an element of Z). Z is a Hilbert space equal to Y dyn+ ⊕ Y dyn-for Y dyn± = 1l R ± (b)Y dyn . Note that since [b, j] = 0, b induces a selfadjoint operator on Z, still denoted by b. We set (5.11) ρ • • = (e β|b| -1) -1 ,

  AW (x) • • = ψ ( * ) l (y) + ψ ( * )r (y ), x = (y, y ) ∈ X induces a representation of CCR(X , Q).

  3. In Subsect. 5.1 we introduced the dynamical and thermal Hilbert spaces Ỹdyn , Ỹth which in the present situation equal | H| 1 2 Ẽ and | H| 1 2 Ẽ ∩ | H| Ẽ respectively. Proposition 7.1. Assume that

  3).It remains to prove (3). We have Ỹ ⊂ Ẽ and since D ⊂ Dom h-Since H : Ỹ → Ỹ this implies (3), by the definition of Dom H in Prop. 6.2. 2We can then apply Subsects. 5.2, 5.3, 5.4 and define the vacuum state ωvac , the β-KMS state ωβ and the double β-KMS state ωd associated to the symplectic dynamics r t = e it H . 7.2. The Calderón projectors. In Subsect. 6.4 we defined the Wick rotated operatorsKβ = -(∂ s + i w * )(∂ s -i w) + h0and the Hilbert spaces Hβ for 0 < β ≤ ∞ defined in (6.10). We now define Calderón projectors for Kβ , which are similar to the Calderón projectors for the operators B β = ∂ s + H, acting on the Hilbert spaces Ẽβ , defined in 4.1.2 and 4.1.3.

  8.1.3. Hilbert spaces. We denote by L 2 (M ) the Hilbert space associated to the scalar product (•|•) M and by H = L 2 (S, |h| 1 2 dy) the Hilbert space associated to the scalar product (u|v) H = ˆS uv|h| 1 2 dy.

  -like we obtain that there exists C > 0 such that (8.20) |Im(η•g eucl (y)η)| ≤ CRe(η•g eucl (y)η), y ∈ S, η ∈ CT (s,y) (R × S), Moreover we have (8.21) |g eucl |(y) is real valued, positive, and |g eucl | 1 2 (y) = N (y)|h| 1 2 (y).

  n a ∇ a and b * is the formal adjoint of b in L 2 (∂Ω, dσ h ).

  we use the open set U and diffeomorphism χ introduced above to reduce ourselves to the situation when X

  s c/loc (Σ) are defined in (9.10). Let us denote by h ext the metric induced by g eucl ext on Σ and use the scalar product of L 2 (Σ, |h ext | 1 2 dy)⊗C 2 to identify sesquilinear forms with operators, so that q = (Σ), s ∈ R.

  - HHI = q, λ ± HHI ≥ 0 on C ∞ c (Σ; C 2 ), which proves (1). Statement (2) follows from (9.11).

  The same is true of the restriction of the reference Hadamard state ω ref to M + ∪ M -. Denoting by Λ ± HHI/ref the spacetime covariances of ω HHI/ref , this implies thatΛ ± HHI -Λ ± ref ∈ C ∞ ((M + ∪M -) 2), since the spacetime covariances of two Hadamard states differ by smooth kernels. Passing to Cauchy surface covariances on Σ + ∪ Σ -, this implies using (3.10) that if χ ∈ C ∞ c (Σ \ B), then χ • (λ ± HHI -λ ± ref )• χ is a smoothing operator on Σ. We claim that this implies that λ ± HHI -λ ± ref is smoothing, which will imply that ω HHI is a Hadamard state. Lemma 10.2. Let χ ∈ C ∞ c (X) with χ = 1 near {0} × B and χ(x) = χ(y) outside a neighborhood of {0} × B. Then

  u) Σ = (v|γ * Sγ + u) X = ((K cl ) -1 * e Ω w|γ * Sγ + u) X = (e Ω w|(K cl ) -1 γ * Sγ + u) X = -(w|V + γ + u) Ω .

  1.2.2. Calderón projectors. Let Ω ⊂ R n an open set with smooth compact boundary and P = P (x, ∂ x ) a second order elliptic operator on R n . Let us set Ω

  1.2.5. The Hartle-Hawking-Israel state. The open set ]0, β 2 [×Σ + extends as an open set Ω ext with boundary isomorphic to the full Cauchy surface Σ. The Wick rotated operator K β extends as an elliptic operator K ext acting on M eucl ext , and one can consider the Calderón projectors c ± ext associated to K ext and Ω ext . One defines the covariances on Σ

	λ ± HHI = ±q • c ± ext ,
	and one can rather easily show that λ ±

R |Σ is called a weak wedge reflection. If the Riemannian metric h is the restriction of g to Σ, one has:

  

	2.1. Weak wedge reflection. It is known, see [S1, Prop. 2.7] that if R is a wedge
	reflection, one can find a Cauchy surface Σ as in Def. 2.1 such that R : Σ	∼ -→ Σ.
	The map r • • =	

  subordinate partition of unity of ∂Ω. From the topologies H s c (∂Ω) and H s loc (∂Ω), we see that the continuity of a map A : H s c (∂Ω) → H s loc (∂Ω) is equivalent to the continuity of ϕ i Aϕ j

We need one more result, which states that K ext is the unique extension of K (2π)κ -1 to L 2 (M eucl ext ). Proposition 9.6. Let U :

where χ : M eucl ∼ -→ M eucl ext \ B ext is the diffeomorphism constructed in Prop. 2.5. Then U extends as a unitary operator

Proof. U clearly extends as a unitary operator. Let us check the second statement.

As a differential operator, K (2π)κ -1 equals -∆ g eucl + m. As an unbounded operator, K (2π)κ -1 is defined in 8.6.2 using the sesquilinear form Q (2π)κ -1 , while K ext is defined with the sesquilinear form Q ext for k = g eucl ext and m = m ext , see Prop. 9.2.

), see eg [A,Thm. 3.23]. 2 9.2.2. The HHI state. Let us denote by c ± ext the Calderón projectors for (K ext , Ω ext ), defined as in Def. 9.4. The following theorem is a slightly more precise version of Thm. 1.1.

Theorem 9.7. Assume conditions (H1), (H2), (H3). Then:

(1) λ ± HHI = ±q • c ± ext are the Cauchy surface covariances of a quasi-free state ω HHI for P in M , called the HHI state.

(2) The restriction of ω HHI to M + ∪ M -is the double β-KMS state ω D for β = (2π)κ -1 . (3) ω HHI is a Hadamard state in M . (4) Let ω be a quasi-free state for P in M whose restriction to M + ∪ M -equals ω D and such that its space-time covariances map C ∞ c (M ) into C ∞ (M ) continuously. Then ω = ω HHI .

(5) Assume moreover that (H4) holds. Then ω HHI is a pure state.

Note that it follows from (4) above that ω HHI is the unique Hadamard state in M whose restriction to

In the proof of Thm. 9.7 we show that Y cl is also the completion of C ∞ c (Σ; C 2 ) for λ + D + λ - D = λ + HHI + λ - HHI . Applying then Prop. 3.4 we obtain that ω HHI is also a pure state on CCR(C ∞ c (Σ; C 2 ), q). However it seems difficult to prove directly that ω D is pure on CCR(C ∞ c (Σ \ B; C 2 ), q), because of the infrared problem caused by the fact that the lapse function N vanishes at B. Therefore we will prove directly that ω HHI is a pure state on CCR(C ∞ c (Σ; C 2 ), q), using arguments from [START_REF] Gérard | Analytic Hadamard states, Calderón projectors and Wick rotation near analytic Cauchy surfaces[END_REF]. Proof of Thm. 9.7. We start by checking some useful claims. Claim 1. We claim that (9.11)

In fact let a be one of the entries of λ ± HHI -λ ± ref , which is a scalar pseudodifferential operator belonging to Ψ m (Σ) for some m ∈ R. We know that χ • a • χ is smoothing for any χ ∈ C ∞ c (Σ\B). Then its principal symbol σ pr (a) vanishes on T * (Σ\B) hence on T * Σ by continuity, so a ∈ Ψ m-1 (Σ). Iterating this argument we obtain that a is smoothing, which completes the proof of (3).

Proof of (4). The proof of ( 4) is identical to [START_REF] Gérard | On the Hartle-Hawking-Israel states for spacetimes with static bifurcate Killing horizons[END_REF]Prop. 7.4].

Proof of (5). The proof of (5) will be given in Sect. 10. 2

Purity of the Hartle-Hawking-Israel state

To prove that ω HHI is a pure state, we will follow the method in [START_REF] Gérard | Analytic Hadamard states, Calderón projectors and Wick rotation near analytic Cauchy surfaces[END_REF], by using the criterion for purity recalled in Prop. 3.6. We start by some preparations. 10.1. Preparations. In all this section the manifold M ext eucl will be denoted by X, the complex metric g eucl ext by k, the elliptic operator K eucl by K, the open set Ω ext defined in Prop. 2.5 by Ω, and the Calderón projectors c ± ext by c ± , in accordance with the notation used in Subsect. 9.1. We recall that

and will set (10.1)

From the construction of the manifold M ext eucl in Subsect. A.2, we see that there exist U X and V ⊂ Σ which are compact neigbhorhoods of {0} × B, such that X \U equals S β ×(Σ + \V ). Recall also that the coordinates on S β ×Σ + are denoted by (s, y).

Lemma 10.1. Assume hypothesis (H4). Then there exists a family

where we set

Proof. If Σ is compact it suffices to take χ n = 1. If Σ is not compact, then (Σ, h) is complete by hypothesis (H4). It follows that if we fix a point y 0 ∈ Σ, (for example y 0 ∈ B), the geodesic balls B h (y 0 , n) are compact and n∈N B h (y 0 , n) = Σ. By [AFLR, Thm. 1], there exists r ∈ C ∞ (Σ) such that:

where we recall that outside U , X = S β × Σ + with coordinates (s, y). It is easy to check that χ n has the required properties. 2 Since c + f = γ + V + f = γ + u this yields:

when n → ∞, which completes the proof. 2 10.2. Purity of the Hartle-Hawking-Israel state. We will follow the arguments in [START_REF] Gérard | Analytic Hadamard states, Calderón projectors and Wick rotation near analytic Cauchy surfaces[END_REF]Subsect. 4.4].

By Prop. 3.6 it suffices to find, for each

We take

Let us now compute the limit of the denominator in (10.14). We have f n = χ n (2c + -1)f = (2χ n c + -1)f for n 1 and using that qc + is Hermitian by Thm. 9.7, we obtain that

We apply Prop. 10.3 ii) and i) (if necessary replacing χ n by χ 2 n ) and obtain that

when n → ∞. Using (10.15) this completes the proof of (10.14). 2 Appendix A A.1. Proof of Prop. 2.4. Since r is an isometry of (Σ, h), r |B = Id and r : Σ + → Σ -we obtain (2.2). The first identity in (2.3) follows from the fact that (u, ω) are normal Gaussian coordinates to B for h, the other are tautologies.

We obtain from (2.2) and 2.2.1 that N , w 0 are odd in u, w α , k αβ are even in u with w α (0, ω) = 0. The function m is even in u by invariance under r. We now use Killing's equation

noting that since V = 0 on B we have

If we work in Gaussian normal coordinates to Σ for g, so that

and y = (u, ω), we obtain from (A.1), (A.2) that:

Summarizing we have:

for smooth functions a, b, c α ,

To complete the proof of the proposition it remains to show that κ = a(0, ω).

To do this we reexpress the surface gravity κ. By [S1, Lemma 2.5] we have:

which using (A.3) gives κ = a(0, ω). 2

A.2. Proof of Prop. 2.5. We recall that we defined the coordinates

we have:

. By Prop. 2.4 we obtain:

the open disk of center 0 and radius δ in R 2 . If β = (2π)κ -1 , then (u, κs) ∈]0, δ[×S 2π are polar coordinates on B 2 (0, δ) \ {0}. The expression (2.8) for g eucl and the estimates above show that g eucl extends as a smooth complex metric on B 2 (0, δ) × B.

We then construct M eucl ext by gluing

The complex metric g eucl defined on S β × Σ + extends to a smooth complex metric g eucl ext on M eucl ext . By Prop. 2.4 we have m = n(X 2 + Y 2 , ω), hence m extends as a smooth function on M eucl ext . Let us now embed Σ isometrically into M eucl ext . In the coordinates (u, ω) on Σ near B the embedding ψ becomes (u, ω) → (0, u, ω) for 0 < u < δ, ( β 2 , -u, ω) for -δ < u < 0, which smoothly extends to u = 0, the image of Σ under this extension being locally equal to {Y = 0}.

The open set Ω ext is obtained by gluing {Y > 0} with ]0, β 2 [×Σ + using the map (A.4). This completes the proof. A.3. Proof of (9.3). A mechanical computation gives:

Since

we get that ∂ i |k| = |k|Tr(k -1 ∂ i k). Next we compute:

which shows that I = II. 2