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The Hartle-Hawking-Israel state on stationary black hole
spacetimes

Christian Gérard

Abstract. We consider a free quantized Klein-Gordon field in a spacetime
(M,g) containing a stationary black hole, more precisely a spacetime with a
stationary bifurcate Killing horizon in the sense of Kay and Wald. We prove
the existence of the Hartle-Hawking-Israel ground state, which is a pure state
on the whole spacetime whose restriction to the exterior of the black hole is a
thermal state at Hawking temperature TH.

We show that the HHI state is a Hadamard state and is the unique Hadamard
extension of the above thermal state to the whole spacetime. We construct
the HHI state by Wick rotation in Killing time coordinates, using the notion
of the Calderón projector for elliptic boundary value problems.

1. Introduction

In this paper we consider a free quantized Klein-Gordon field in a spacetime
(M,g) containing a stationary black hole. It was conjectured by Hartle and Hawk-
ing [HH] and Israel [I] that a free Klein-Gordon quantum field admits a ground state
ωHHI, called the Hartle-Hawking-Israel state, whose restriction to the exterior re-
gion of the black hole is a thermal state at the Hawking temperature TH = κ(2π)−1,
where κ is the surface gravity of the black hole.

The physical motivation was that the stationary black hole spacetime (M,g)
describes the final state of the collapse of a massive object, and that the quantum
Klein-Gordon field will eventually settle down to the ground state ωHHI. The fact
that ωHHI is a thermal state at Hawking temperature in the exterior of the black
hole is then viewed as a justification of the Hawking radiation.

The first construction of the HHI state in the double wedge region of the Kruskal
spacetime is due to Kay [K3]. This construction was valid for any temperature, the
resulting state being an example of a double KMS state.

Later on Kay and Wald [KW] adressed the question of the extendability of the
HHI state from the double wedge region to the black hole interior. In particular
they introduced the definition of spacetimes with a bifurcate Killing horizon and
gave a first rigorous definition of the notion of Hadamard states.

They proved that some subalgebra of the free field algebra admits at most one
quasi-free state which is both invariant under the Killing isometries and Hadamard
near the blackhole horizon. If such a state exists, Kay and Wald proved moreover
that it is a thermal state at the Hawking temperature in the exterior region.

The first global construction of the HHI state in the whole spacetime is due to
Sanders [S1], who considered spacetimes with a static bifurcate Killing horizon, ie
such that the Killing vector field V is static in the exterior region. Sanders proved
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in [S1] the existence of the HHI state and showed that it is a pure Hadamard state.
The proof in [S1] relied on the Wick rotation in the Killing time coordinates, which
was also the basis for the heuristic arguments in [HH, I] and which we will also use
in this paper.

In [G] we gave another proof of the Hadamard property of the HHI state in the
situation considered in [S1], by combining the Wick rotation with a tool which is
familiar in elliptic boundary value problems, namely the Calderón projectors, see
1.2.2. The use of Calderón projectors allows to construct the HHI state directly on
a Cauchy surface Σ and avoids to consider its behavior near the Killing horizon. In
collaboration with Michal Wrochna, we have recently used Calderón projectors in
[GW2] to construct analytic Hadamard states on general analytic spacetimes.

In the present paper we consider the more general stationary case, and give a
construction of the HHI state for spacetimes with a stationary bifurcate Killing
horizon.

1.1. Results. We now present more in details the result of this paper.

1.1.1. Bifurcate Killing horizons. Let (M,g) a globally hyperbolic spacetime with
a complete Killing vector field V . (M,g) admits a bifurcate Killing horizon [KW], if
the bifurcation surface B = {x ∈M : V (x) = 0} is a compact, connected, orientable
submanifold of codimension 2 and if there exists a Cauchy surface Σ containing B.
M splits then into four globally hyperbolic regions, the right/left wedgesM+,M−
and the future/past cones F , P, each invariant under the flow of V .

The Killing horizon is then H = ∂(F ∪ P). An important object related with
the Killing horizon is its surface gravity κ, which is a scalar, constant over all of H.

One also assumes the existence of a wedge reflection R : M → M which is an
isometry of (M− ∪ U ∪M+,g), where U is a neighborhood of B in M , such that
R ◦ R = Id, R = Id on B, R reverses the time orientation and R∗V = V . In
concrete situations, the left wedgeM− is actually constructed by reflection of the
right wedgeM+, so the existence of a wedge reflection does not seem to be such a
strong hypothesis.

The bifurcate Killing horizonH is stationary resp. static if V is time-like on Σ\B,
resp. orthogonal to Σ\B. For technical reasons, we require V to be uniformly time-
like near infinity on Σ, see Subsect. 2.4. This condition is imposed only far away
from the bifurcation surface B and will hold for example if (M,g) is asymptotically
flat near spatial infinity.

We consider on (M, g) a free quantum Klein-Gordon field associated to the Klein-
Gordon equation

−2gφ(x) +m(x)φ(x) = 0,

where m ∈ C∞(M,R) is invariant under V and R. We assume that m(x) ≥ m2
0 > 0

ie the Klein-Gordon field is massive.

1.1.2. The double β-KMS state. Since (M+,g, V ) is a stationary spacetime, there
exists (see [S2]) for any β > 0 a thermal state ωβ at temperature β−1 with respect
to the group of Killing isometries of (M+,g) generated by V .

The wedge reflection R :M+ ∼−→M− allows to extend ωβ to the double β-KMS
state ωD onM+ ∪M−. This extension exists for any β > 0 and is a pure state in
M+ ∪M−.

We prove in this paper the following theorem.

Theorem 1.1. Let (M,g, V ) be a globally hyperbolic spacetime with a stationary
bifurcate Killing horizon and a wedge reflection. Let P = −2g +V a Klein-Gordon
operator invariant under the Killing vector field V and the wedge reflection R.
Assume moreover that conditions (H) in Subsect. 2.4 are satisfied.
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Then there exists a state ωHHI for P in (M,g) called the Hartle-Hawking-Israel
state such that:
(1) ωHHI is a pure Hadamard state in M ,
(2) the restriction of ωHHI toM+∪M− is the double β-KMS state ωD at Hawking

temperature TH = κ(2π)−1 where κ is the surface gravity of the horizon,
(3) ωHHI is the unique extension of ωD such that its spacetime covariances Λ± map

C∞0 (M) into C∞(M) continuously. In particular it is the unique Hadamard
extension of ωD.

Thm. 1.1 will be proved in Sect. 9.

1.2. Main ideas of the construction. We now outline the construction of the
HHI state ωHHI. We look for ωHHI as an extension toM of the double β-KMS state
ωD on M− ∪M+, where β−1 = κ(2π)−1 is the Hawking temperature. The first
step consists in understanding in sufficient details the β-KMS state inM+.

Writing the metric g in M+ using the Killing time coordinate associated to V
and Σ,M+ is identified with R× Σ+ and the metric g becomes

(1.1) g = −N2(y)dt2 + hij(y)(dyi + wi(y)dt)(dyj + wj(y)dt),

where N is the lapse function, w the shift vector field, h the induced metric on Σ.
The Killing field V is simply ∂

∂t . The fact that V is time-like inM+ is equivalent
to the inequality N2(y) > wi(y)·hij(y)wj(y) for y ∈ Σ+.

The Klein-Gordon operator P associated to g can be written as:

(1.2) P = P = (∂t + w∗)N−2(∂t − w) + h0,

where w = wi ·pyi and h0 = ∇∗h−1∇+m is an elliptic operator on Σ.

1.2.1. The Wick rotation. The Wick rotation consists in replacing t by is and pro-
duces the complex metric

(1.3) geucl = N2(y)ds2 + hij(y)(dyi + iwi(y)ds)(dyj + iwj(y)ds).

In the static case considered in [S1, G] w vanishes and geucl is Riemannian. The
fact that geucl is now a complex metric causes several new difficulties. Performing
the same transformation on P yields the Wick rotated operator

K = −(∂s + iw∗)N−2(∂s + iw) + h0.

There are several different linear operators that can be associated to the formal
expressionK. The first one consists in working on L2(R×Σ+), using the sesquilinear
form

Q∞(u, u) = ‖N−1∂su‖2 + (u|hu)− i(N−1∂su|N−1wu)− i(N−1wu|N−1∂su),

where h = h0 − w∗N−2w, with DomQ∞ = C∞0 (R × Σ). Another possibility is to
work on L2(Sβ×Σ+) where Sβ = [−β2 ,

β
2 [ is the circle of length β. The sesquilinear

form Qβ has the same expression as Q∞ but the domain is now DomQβ = C∞0 (Sβ×
Σ), which corresponds to imposing β−periodic boundary conditions on K.

Since we have assumed that V is uniformly time-like near infinity, see Subsect.
2.4, one can show that the sesquilinear forms Q∞, Qβ are closeable and sectorial
and hence generate injective linear operatorsK∞, Kβ . Their inversesK−1

∞ , K−1
β are

then well defined between abstract Sobolev spaces, using the Lax-Milgram theorem.
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1.2.2. Calderón projectors. Let Ω∞ =]0,+∞[×Σ+, Ωβ =]0, β2 [×Σ+ and ν the ex-
terior unit normal for geucl to ∂Ωβ , β ∈ [0,+∞]. Note that ν is a complex vector
field, but its imaginary part is tangent to ∂Ωβ .

For u ∈ C∞(Ωβ) such that Kβu = 0 in Ωβ , the trace γβu of u on ∂Ωβ defined as

γβu =

(
u�∂Ωβ

∂νu�∂Ωβ

)
is not arbitrary, because Kβ is an elliptic operator. Instead γβu belongs to the
range of a projector c+β , called the Calderón projector associated to Ωβ . The same
construction with Ωβ replaced by its complement produces the complementary
Calderon projector c−β , with c

+
β + c−β = 1l.

The projectors c±β can be explicitely expressed in terms of the inverse K−1
β , see

Subsect. 8.7.

1.2.3. Vacuum and double β-KMS states. If β =∞, the boundary ∂Ω∞ equals Σ+,
and one can try to construct a state inM+ by defining its covariances on Σ+ as

λ±∞ = ±q ◦ c±∞,

where q =

(
0 1
1 0

)
is the charge defining the symplectic structure on the space

C∞0 (Σ+;C2) of Cauchy data on Σ+. It turns out that λ±∞ are actually the covari-
ances of the vacuum state ωvac inM+.

Of course the study of the vacuum state ωvac, corresponding to β = ∞, is not
necessary for the construction of the HHI state, but gives a nice introduction to the
more complicated case β <∞.

If β <∞, the boundary ∂Ωβ has two components, both isomorphic to Σ+. The
state ωD obtained similarly from the Calderón projectors c±β is now the double β-
KMS state ωD inM−∪M+, modulo the identification of Σ+ with Σ− by the wedge
reflection.

The proof of these facts takes up a large part of the paper. First of all we
reduce ourselves to the situation N(y) = 1 by considering P̃ = NPN and K̃β =
NKβN , the last identity taking a rather transparent form if we use the framework
of sesquilinear forms, see Subsect. 8.6. The covariances of ωvac, ωD for the Klein-
Gordon operator P can similarly be deduced from those of the analogous states
ω̃vac, ω̃D for P̃ .

The operator P̃ can be written as (∂t + w̃∗)(∂t− w̃) + h̃0, and the computations
of ω̃vac, ω̃D can be done by reducing the Klein-Gordon equation P̃ φ̃ = 0 to a first
order system ∂tf − iHf = 0, see Sects. 6, 7. This system is an example of a stable
symplectic dynamics, which is studied in Sects. 4, 5.

1.2.4. The surface gravity and the extended Euclidean metric. All the constructions
up to now are valid for any value of the inverse temperature β. The metrics g and
geucl are degenerate at the bifurcation surface B = ∂Σ+.

If β = (2π)κ−1, ie if β−1 equals the Hawking temperature κ(2π)−1, where κ
is the surface gravity of the horizon, one can show that (Sβ × Σ+,geucl) has a
unique extension (M eucl

ext ,g
eucl
ext ), which corresponds exactly to passing from polar to

cartesian coordinates in the plane.

1.2.5. The Hartle-Hawking-Israel state. The open set ]0, β2 [×Σ+ extends as an open
set Ωext with boundary isomorphic to the full Cauchy surface Σ. The Wick rotated
operator Kβ extends as an elliptic operator Kext acting on M eucl

ext , and one can
consider the Calderón projectors c±ext associated to Kext and Ωext.
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One defines the covariances on Σ

λ±HHI = ±q ◦ c±ext,

and one can rather easily show that λ±HHI are the covariances of a pure quasi-free
state ωHHI defined on the whole of M . One uses that the restriction of λ±HHI to
C∞0 (Σ \ B) are precisely the covariances of the double β-KMS state ωD, and some
continuity properties of Calderón projectors and density results in Sobolev spaces,
see Subsect. 9.2.

One can also prove that the HHI state ωHHI is a Hadamard state, by an argument
already used in [G] in the static case, relying on the fact that the covariances of
any Hadamard state on Σ are matrices of pseudodifferential operators.

1.3. Notations. We now collect some notation.
We set 〈λ〉 = (1 + λ2)

1
2 for λ ∈ R.

We write A b B if A is relatively compact in B.
If X,Y are sets and f : X → Y we write f : X

∼−→ Y if f is bijective. If X,Y
are equipped with topologies, we write f : X → Y if the map is continuous, and
f : X

∼−→ Y if it is a homeomorphism.

1.3.1. Duals and antiduals. Let X be a real vector space. Its dual will be denoted
by X#. Let Y be a complex vector space. We denote by YR its real form, ie Y as a
vector space over R. We denote by Y# its dual, ie the space of C−linear forms on
Y and by Y∗ its anti-dual, ie the space of C−antilinear forms on Y.

We denote by Y the conjugate vector space to Y, ie Y = YR as a R−vector space,
equiped with the complex structure −i, if i ∈ L(YR) is the complex structure of
Y. The identity map Id : Y → Y will be denoted by y 7→ y, ie y equals y but
considered as an element of Y.

If Y is a Hilbert space, then Y inherits also a Hilbert space structure by

(y1|y2)Y ··= (y1|y2)Y .

By definition we have Y∗ = Y#

. Note that we have a C−linear identification
Y# ∼ Y#

defined as follows: if y ∈ Y and w ∈ Y# then

w·y ··= w·y

This identifies w ∈ Y# with an element of Y#

. Similarly we have a C−linear
identification Y∗ ∼ Y∗.

1.3.2. Linear operators. If Xi, i = 1, 2 are real or complex vector spaces and a ∈
L(X1, X2) we denote by a# ∈ L(X#

2 ,X
#

1 ) its transpose. If Yi, i = 1, 2 are complex
vector spaces we denote by a∗ ∈ L(Y∗2 ,Y∗1 ) its adjoint, and by a ∈ L(Y1,Y2) its
conjugate, defined by ay1 = ay1. With the above identifications we have a∗ = a# =
a#.

1.3.3. Bilinear and sesquilinear forms. If X is a real or complex vector space, a
bilinear form on X is given by a ∈ L(X ,X#), its action on a couple (x1, x2) is
denoted by x1·ax2. We denote by Ls/a(X ,X#) the symmetric/antisymmetric forms
on X . a is non-degenerate if Kera = {0}. An antisymmetric, non-degenerate form
σ is called a symplectic form on X .

Similarly if Y is a complex vector space, a sesquilinear form on Y is given by a ∈
L(Y,Y∗), its action on a couple (y1, y2) is denoted by y1·ay2, the last notation being
a reminder that Y∗ = Y#

. We denote by Lh/a(Y,Y∗) the Hermitian/antiHermitian
forms on Y. Non-degenerate forms are defined as in the real case. An antiHermitian,
non-degenerate form σ is called a (complex) symplectic form on Y.
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If a ∈ L(Y,Y∗) then a ∈ L(Y,Y∗) and with the above identifications we have
(y1|ay2) = (y1|ay2) for y1, y2 ∈ Y.

1.3.4. Linear operators on Hilbert spaces. The domain of a closed, densely defined
operator a on a Hilbert space H will be denoted by Doma, equipped with the graph
norm, its spectrum by σ(a) and its resolvent set by res(a). We will similarly denote
by DomQ the domain of a sesquilinear form Q. If Q is closeable we denote by Qcl

its closure.
If a is selfadjoint on H, we write a > 0 if a ≥ 0 and Kera = {0}. If a > 0

and s ∈ R we denote by asH the completion of Doma−s for the norm ‖a−su‖H.
Equipped with the scalar product (u|v)s = (a−su|a−sv)H, it is a Hilbert space. The
spaces asH and a−sH form a dual pair for the duality pairing 〈u|v〉 = (a−su|asv)H.

We define similarly the spaces 〈a〉sH for any selfadjoint operator on H. We have
〈a〉−sH = Dom|a|s for s > 0. We have 〈a〉−sH ⊂: cH ⊂ 〈a〉sH for s ≥ 0 and
〈a〉s : cH = asH if 0 6∈ σ(a).

If a1, a2 are selfadjoint onH with a1, a2 > 0 we write a1 . a2 if Doma
1
2
1 ⊃ Doma

1
2
2

and a1 ≤ ca2 on Doma
1
2
2 for some c > 0. We write a1 ∼ a2 if a1 . a2 and a2 . a1.

If a1 ∼ a2 the Kato-Heinz theorem implies that a−1
2 ∼ a−1

1 and that as1H = as2H
as Banach spaces for s ∈ [− 1

2 ,
1
2 ].

1.3.5. Quadratic forms. Similarly if q1, q2 are two positive quadratic forms with
qi(u, u) = 0⇒ u = 0, we write q1 . q2 if Domq1 ⊃ Domq2 and q1 ≤ cq2 on Domq2

and we write q1 ∼ q2 if q1 . q2 and q2 . q1.

1.3.6. Differential operators on manifolds. If X is a smooth manifold and a, b are
differential operators onX the composition a◦b is denoted by ab. If a is a differential
operator on X and u ∈ C∞(X), then au denotes the composition of a with the
operator of multiplication by u, while (au) ∈ C∞(X) denotes the image of u under
a.

1.3.7. Spaces of distributions. Let X a smooth manifold. Fixing a smooth density
we identify distributions and distributional densities on X. If Ω ⊂ X is an open
set with smooth boundary and F (X) ⊂ D′(X) is a vector space, we denote by
F (Ω) ⊂ D′(Ω) the space of restrictions of elements of F (X) to Ω.

Any u ∈ D′(Ω) has a unique extension eu ∈ D′(X) with suppeu ⊂ Ω.
We denote by δa ∈ D′(R) the Dirac distribution at a ∈ R.

2. Spacetimes with a stationary bifurcate Killing horizon

In this section we recall the definition of spacetimes with stationary Killing
horizons, following [KW, S1]. We express various natural objects, like the lapse
function, shift vector field and induced Riemannian metric in Gaussian coordinates
near the bifurcation surface.

We then consider the Wick rotated metric geucl, obtained by the Wick rotation
t → is in the Killing time t, and show that if s belongs to the circle S(2π)κ−1

of length (2π)κ−1, for κ the surface gravity of the horizon, geucl has a smooth
extension up the the bifurcation surface B. This fundamental fact, already known
for static horizons, see [S1, Sect. 2.2] lies at the basis of the construction of the
HHI state in later sections.

2.1. Bifurcate Killing horizons.

Definition 2.1. A spacetime with a bifurcate Killing horizon is a triple (M,g, V )
such that :
(1) (M,g) is a globally hyperbolic spacetime,
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(2) V is a smooth, complete Killing vector field on (M,g),
(3) B ··= {x ∈ M : V (x) = 0} is a compact, connected, orientable submanifold of

codimension 2, called the bifurcation surface,
(4) there exists a smooth, space-like Cauchy hypersurface Σ with B ⊂ Σ.

If n is the future directed normal vector field to Σ, one defines the lapse function
N ∈ C∞(Σ) and shift vector field w, which is a smooth vector field tangent to Σ,
by

V = Nn+ w on Σ,

ie
N ··= −V ·gn, w ··= V −Nn on Σ.

Let us denote by y the elements of Σ. The Cauchy surface Σ is then decomposed
as

Σ = Σ− ∪ B ∪ Σ+, Σ± ··= {y ∈ Σ : ±N(y) > 0},
ie V is future/past directed over Σ±.

The spacetime M splits as

M =M+ ∪M− ∪ F ∪ P,

where the future cone F ··= I+(B), the past cone P ··= I−(B), the right/left wedges
M± ··= D(Σ±), are all globally hyperbolic when equipped with g.

The future cone F may be a black hole. The bifurcate Killing horizon is then

H ··= ∂F ∪ ∂P.

The Killing vector field V is tangent to H. In Figure 1 below the vector field V is
represented by arrows.

Σ

M+
M−

F

P

HH

HH

B

Figure 1.

Definition 2.2. A triple (M,g, V ) as in Def. 2.1 is called a spacetime with a
stationary, resp. static bifurcate Killing horizon if V is time-like on Σ \ B, resp.
g-orthogonal to Σ \ B.

2.2. Wedge reflection. Additionally one assumes the existence of a wedge reflec-
tion, see [S1, Def. 2.6].

Definition 2.3. A wedge reflection R for a spacetime (M, g, V ) with a stationary
Killing horizon is a diffeomorphism R :M− ∪ U ∪M+ ∼−→M− ∪ U ∪M+, where
U is a neighborhood of B in M such that:
(1) R is an isometry of (M− ∪ U ∪M+,g) which reverses the time orientation,
(2) R ◦R = Id, R = Id on B,
(3) R∗V = V .

7



2.2.1. Weak wedge reflection. It is known, see [S1, Prop. 2.7] that if R is a wedge
reflection, one can find a Cauchy surface Σ as in Def. 2.1 such that R : Σ

∼−→ Σ.
The map r ··= R|Σ is called a weak wedge reflection. If the Riemannian metric h is
the restriction of g to Σ, one has:
(1) r is an isometry of (Σ,h) with r ◦ r = Id,
(2) r = Id on B,
(3) r∗N = −N , r∗w = w.
By (3) above we have r : Σ±

∼−→ Σ∓.

2.3. Klein-Gordon operators. We fix a real function m ∈ C∞(M). As in [S1]
we assume that m is stationary w.r.t. the Killing vector field V and invariant under
the wedge reflection, ie:

(2.1) V a∇am(x) = 0, m ◦R(x) = m(x), x ∈M+ ∪M− ∪ U.

We also assume that

(2.2) m(x) ≥ m2
0 > 0, x ∈M,

ie we consider only massive Klein-Gordon fields. The Klein-Gordon operator is

(2.3) P = −2g +m.

2.4. Conditions near infinity on Σ. It will be necessary, in order to control
various energy spaces in Sect. 8, to impose conditions on the Killing vector field V
near infinity on Σ.

∃ U neighborhood of B in Σ such that:

(H1) V + δw is time-like on Σ \ U for some δ > 0,

(H2) N−2wi ·(∇h
i N), N−1∇h

i w
i are bounded on Σ \ U.

(H1) means that V is uniformly time-like near infinity on Σ. Conditions (H) are
clearly satisfied if (M,g) is for example asymptotic to the Kerr spacetime, near
spatial infinity.

2.5. The surface gravity. The surface gravity is defined by:

κ2 = −1

2
(∇b(g)V a∇(g)

b Va)|B, κ > 0.

It is a fundamental fact, see [KW, Sect. 2], that κ is constant on B and actually
on the whole horizon H.

For ω ∈ B let nω ∈ TωΣ the unit normal to B for h pointing towards Σ+. We
introduce Gaussian normal coordinates to B in (Σ,h) by:

χ :
]− δ, δ[×B → Σ

(u, ω) 7→ exph
ω(un)

which is a smooth diffeomorphism from ] − δ, δ[×B to a relatively compact neigh-
borhood U of B in Σ. In the next proposition we express h, N , w and the wedge
reflection r in the local coordinates (u, ω) on U . We recall that the elements of Σ
are denoted by y.

Proposition 2.4. On U one has:

(2.4) r(u, ω) = (−u, ω),
8



and

(2.5)

hij(y)dyidyj = du2 + kαβ(u, ω)dωαdωβ ,

wi(y)∂yi = w0(u, ω)∂u + wα(u, ω)∂ωα ,

N(y) = N(u, ω),

m(y) = m(u, ω),

where kαβ(u, ω)dωαdωβ is a smooth, u−dependent Riemannian metric on B with:

(2.6)

N(u, ω) = u(κ+ u2d(u2, ω)),

w0(u, ω) = u3b(u2, ω), wα(u, ω) = u2cα(u2, ω),

kαβ(u, ω) = dαβ(u2, ω),

m(u, ω) = n(u2, ω)

for smooth functions b, d, n, cα,dαβ :]− ε, ε[×B → R with

n(0, ω) ≥ c > 0, c−11l ≤ [dαβ(0, ω)] ≤ c1l, for some c > 0.

The proof of Prop. 2.4 is given in Appendix A.1.

2.6. The metric in M+. Let us denote by Φt the flow of the Kiling vector field
V . We identify R× Σ+ withM+ by

χ : R× Σ+ 3 (t, y) 7→ Φt(y) ∈M+.

We have χ∗V =
∂

∂t
and

χ∗g = −N2(y)dt2 + (dyi + wi(y)dt)hij(y)(dyj + wj(y)dt)

= −v2(y)dt2 + wi(y)dyidt+ wj(y)dtdyj + hij(y)dyidyj ,

for v2(y) = (N2(y)−wi(y)hij(y)wj(y)). Note that The fact that V is time-like in
M+ is equivalent to

(2.7) N2(y) > wi(y)hij(y)wj(y), y ∈ Σ+.

The unit normal vector field to the foliation Σt = {t} × Σ is

(2.8) n = N−1(
∂

∂t
− w),

Denoting χ∗g on R× Σ+ simply by g, we have |g| = N2|h| and

(2.9) g−1 = −N−2∂2
t +N−2(wi∂yi∂t + wj∂t∂yj ) + (hij −N−2wiwj)∂yi∂yj .

Since the potential m is invariant under the Killing vector field, we have m =
m(y).

2.7. The Wick rotated metric.

2.7.1. Complex metrics. If X is a smooth manifold, we denote by Tpq(X) the space
of smooth, real (p, q) tensors on X and by CTpq(X) its complexification. An element
k = kab(x)dxadxb of CT0

2(X) which is symmetric and non-degenerate will be called
a complex metric on X.

9



2.7.2. The Wick rotated metric. We denote by Sβ = [−β2 ,
β
2 [ with endpoints iden-

tified the circle of length β and

M eucl ··= Sβ × Σ+,

with variables (s, y). Replacing t by is we obtain the complex metric on M eucl:

(2.10)
geucl = N2(y)ds2 + (dyj + iwj(y)ds)hjk(y)(dyk + iwk(y)ds)

= v2(y)ds2 + iwj(y)dyjds+ iwj(y)dsdyj + hjk(y)dyjdyk.

We embed Σ \ B into M eucl = Sβ × Σ+ by the map

ψ̂ : y 7→ (0, y) for y ∈ Σ+,

(β2 , r(y)) for y ∈ Σ−,

where r : Σ→ Σ is the weak wedge reflection.

2.8. The smooth extension.

Proposition 2.5. Assume that β = (2π)κ−1. Then there exists a smooth manifold
M eucl

ext equipped with a smooth complex metric geucl
ext and

(1) a smooth embedding ψ : Σ→M eucl
ext ,

(2) a smooth isometric embedding χ : (M eucl,geucl)→ (M eucl
ext \ Bext,g

eucl
ext ), where

Bext = ψ(B),
(3) an open set Ωext such that ∂Ωext = ψ(Σ) and χ :]0, β2 [×Σ+ ∼−→ Ωext \ Bext,
(4) a smooth function mext : M eucl

ext → R with mext ≥ m2
0 > 0,

such that:
ψ�Σ\B= χ ◦ ψ̂, χ∗mext = m�Meucl .

Σ+Σ− B

Ωext

Sβ

Σ+∼r(Σ−)

Σ+

Sβ × Σ+0

β
2

R2 × B

χ

Figure 2. The embedding χ

The proof of Prop. 2.5 is given in Appendix A.2.

3. Free Klein-Gordon fields

In this section we briefly recall some well-known background material on free
quantum Klein-Gordon fields on globally hyperbolic spacetimes. We follow the
presentation in [GW1, Sect. 2] based on charged fields.

3.1. Charged CCR algebra.
10



3.1.1. Charged bosonic fields. Let Y a complex vector space and q ∈ Lh(Y,Y∗) a
non degenerate Hermitian form on Y.

The CCR ∗−algebra CCR(Y, q) is the complex ∗-algebra generated by symbols
1l, ψ(y), ψ∗(y), y ∈ Y and the relations:

ψ(y1 + λy2) = ψ(y1) + λψ(y2), y1, y2 ∈ Y, λ ∈ C,

ψ∗(y1 + λy2) = ψ∗(y1) + λψ∗(y2), y1, y2 ∈ Y, λ ∈ C,

[ψ(y1), ψ(y2] = [ψ∗(y1), ψ∗(y2)] = 0, [ψ(y1), ψ∗(y2)] = y1 ·qy21l, y1, y2 ∈ Y,

ψ(y)∗ = ψ∗(y), y ∈ Y.

A state ω on CCR(Y, q) is (gauge invariant) quasi-free if

ω(

p∏
i=1

ψ(yi)

q∏
i=1

ψ∗(yj)) =

{
0 if p 6= q,∑
σ∈Sp

∏p
i=1 ω(ψ(yi)ψ

∗(yσ(i))) if p = q.

There is no loss of generality to restrict oneself to charged fields and gauge invariant
states, see eg the discussion in [GW1, Sect. 2]. It is convenient to associate to ω
its (complex) covariances λ± ∈ Lh(Y,Y∗) defined by:

ω(ψ(y1)ψ∗(y2)) =·· y1 ·λ+y2,

ω(ψ∗(y2)ψ(y1)) =·· y1 ·λ−y2,
y1, y2 ∈ Y.

The following results are well-known, see eg [DG, Sect. 17.1] or [GW1, Sect. 2] for
Prop. 3.1 and [GOW, Prop. 7.1] for Prop. 3.2.

Proposition 3.1. Two Hermitian forms λ± ∈ Lh(Y,Y∗) are the covariances of a
quasi-free state ω on CCR(Y, q) iff

(3.1) λ± ≥ 0, λ+ − λ− = q.

Proposition 3.2. Let Yω be the completion of Y for the Hilbertian scalar product
λ+ + λ−. Then the state ω on CCR(Y, q) is pure iff there exist linear operators
c± ∈ L(Yω) such that

c+ + c− = 1l, (c±)2 = c±,

(ie c± is a pair of complementary projections) and λ± = ±q ◦ c±.

3.2. Free Klein-Gordon fields. Let P = −2g +m(x), m ∈ C∞(M,R) a Klein-
Gordon operator on a globally hyperbolic spacetime (M,g) (we use the convention
(1, n − 1) for the Lorentzian signature). Let Gret/adv be the retarded/advanced
inverses of P and G ··= Gret −Gadv. We apply the above framework to

Y =
C∞0 (M)

PC∞0 (M)
, [u]·q[u] = i(u|Gu)M ,

where (u|v)M =
´
M
uvdV olg. Denoting by Solsc(P ) the space of smooth space-

compact solutions of Pφ = 0, it is well known that

[G] : (
C∞0 (M)

PC∞0 (M)
, i(·|G·)M ) 3 [u] 7→ Gu ∈ (Solsc(P ), q)

is unitary for

(3.2) φ1 ·qφ2 ··= i

ˆ
Σ

(∇µφ1φ2 − φ1∇µφ2)nµdσ,

where Σ is any spacelike Cauchy hypersurface, nµ is the future directed unit normal
vector field to Σ and dσ the induced surface density. Setting

% : C∞sc (M) 3 φ 7→
(

φ�Σ
i−1nµ∂µφ�Σ

)
= f ∈ C∞0 (Σ;C2)

11



the map

(
C∞0 (M)

PC∞0 (M)
, i(·|G·)M ) 3 [u] 7→ %Gu ∈ (C∞0 (Σ;C2), q)

is unitary for

(3.3) f ·qf ··=
ˆ

Σ

f1f0 + f0f1dσΣ, f =

(
f0

f1

)
.

In the sequel the ∗-algebra CCR(Y, q) where (Y, q) is any of the above equivalent
Hermitian spaces will be denoted by CCR(P ).

3.3. Quasi-free states. One restricts attention to quasi-free states on CCR(P )
whose covariances are given by distributions on M ×M , ie such that there exists
Λ± ∈ D′(M ×M) with

(3.4)
ω(ψ([u1])ψ∗([u2])) = (u1|Λ+u2)M ,

ω(ψ∗([u2])ψ([u1])) = (u1|Λ−u2)M ,
u1, u2 ∈ C∞0 (M).

In the sequel the distributions Λ± ∈ D′(M × M) will be called the spacetime
covariances of the state ω.

In (3.4) we identify distributions on M with distributional densities using the
density dV olg and use the notation (u|ϕ)M , u ∈ C∞0 (M), ϕ ∈ D′(M) for the duality
bracket. We have then

(3.5)
P (x, ∂x)Λ±(x, x′) = P (x′, ∂x′)Λ

±(x, x′) = 0,

Λ+(x, x′)− Λ−(x, x′) = iG(x, x′).

3.4. Cauchy surface covariances. Using (C∞0 (Σ;C2), q) instead of (
C∞0 (M)
PC∞0 (M) , i(·|G·)M )

one can associate to a quasi-free state its Cauchy surface covariances λ± defined
by:

(3.6) Λ± =·· (%G)∗λ±(%G).

Using the canonical scalar product (f |f)Σ ··=
´

Σ
f1f1 + f0f0dσΣ we identify λ±

with operators, still denoted by λ± : C∞0 (Σ;C2)→ D′(Σ;C2).

3.5. Hadamard states. A quasi-free state is called a Hadamard state, (see [R] for
the neutral case and [GW1] for the complex case) if

(3.7) WF(Λ±)′ ⊂ N± ×N±,

where WF(Λ)′ denotes the ’primed’ wavefront set of Λ, ie S′ ··= {((x, ξ), (x′,−ξ′)) :
((x, ξ), (x′, ξ′)) ∈ S} for S ⊂ T ∗M × T ∗M , and N± are the two connected compo-
nents (positive/negative energy shell) of the characteristic manifold:

(3.8) N ··= {(x, ξ) ∈ T ∗M \o : ξµg
µν(x)ξν = 0}.

We recall that T ∗X \o denotes the cotangent bundle of X with the zero section
removed.

Large classes of Hadamard states were constructed in terms of their Cauchy
surface covariances in [GW1, GOW] using pseudodifferential calculus on Σ, see
below for a short summary.
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3.6. Pseudodifferential operators. We briefly recall the notion of (classical)
pseudodifferential operators on a manifold, referring to [Sh, Sect. 4.3] for details.

For m ∈ R we denote by Ψm(Rd) the space of classical pseudodifferential opera-
tors on Rd, associated with poly-homogeneous symbols of order m, see eg [Sh, Sect.
3.7].

Let X be a smooth, d−dimensional manifold. Let U ⊂ X a precompact chart
open set and ψ : U → Ũ a chart diffeomorphism, where Ũ ⊂ Rd is precompact,
open. We denote by ψ∗ : C∞0 (Ũ)→ C∞0 (U) the map ψ∗u(x) ··= u ◦ ψ(x).

Definition 3.3. A linear continuous map A : C∞0 (X)→ C∞(X) belongs to Ψm(X)
if the following condition holds:

(C) Let U ⊂ X be precompact open, ψ : U → Ũ a chart diffeomorphism, χ1, χ2 ∈
C∞0 (U) and χ̃i = χi ◦ ψ−1. Then there exists Ã ∈ Ψm(Rd) such that

(3.9) (ψ∗)−1χ1Aχ2ψ
∗ = χ̃1Ãχ̃2.

Elements of Ψm(X) are called (classical) pseudodifferential operators of order m
on X.

The subspace of Ψm(X) of pseudodifferential operators with properly supported
kernels is denoted by Ψm

c (X).

Note that if Ψ∞(c)(X) ··=
⋃
m∈R Ψm

(c)(X), then Ψ∞c (X) is an algebra, but Ψ∞(X)

is not, since without the proper support condition, pseudodifferential operators
cannot in general be composed.

To A ∈ Ψm(X) one can associate its principal symbol σpr(A) ∈ C∞(T ∗X \o),
which is homogeneous of degree m in the fiber variable ξ in T ∗M , in {|ξ| ≥ 1}. A
is called elliptic in Ψm(X) at (x0, ξ0) ∈ T ∗X \o if σpr(A)(x0, ξ0) 6= 0.

If A ∈ Ψm(X) there exists (many) Ac ∈ Ψm
c (X) such that A−Ac has a smooth

kernel.

3.7. The Cauchy surface covariances of Hadamard states. We now state
a result which follows directly from a construction of Hadamard states in [GW1,
Subsect. 8.2].

Theorem 3.4. Let ω be any Hadamard state for the free Klein-Gordon field on
(M,g) and Σ a smooth space-like Cauchy surface. Then its Cauchy surface covari-
ances λ± are 2× 2 matrices with entries in Ψ∞(Σ).

We refer the reader to [G, Thm. 3.2] for the proof.

4. Green operators and Calderón projectors

In this section we collect some formulas expressing the Green operators, ie in-
verses for abstract operators of the form ∂s + b, where s belongs either to R or to
the circle Sβ . We also compute various Calderón projectors. The formulas in this
section will be used later in Sect. 6 to express Calderón projectors for second order
elliptic operators obtained from abstract Klein-Gordon operators by Wick rotation.

4.1. Green operators and Calderón projectors. Let b a selfadjoint operator
on a Hilbert space h with Kerb = {0}. We recall that Sβ = [−β2 ,

β
2 [ is the circle of

length β. For 0 < β ≤ ∞ we set

(4.10) hβ = L2(Sβ)⊗ h, for β <∞, h∞ = L2(R)⊗ h.

The operator ∂s is anti-selfadjoint on hβ with its natural domain. Denoting still by
b the extension of b to hβ we see that Bβ = ∂s + b with domain Dom∂s ∩ Domb is
normal.
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4.1.1. Green operators. If 0 ∈ σ(b) then 0 ∈ σ(Bβ) but we can still make sense out
of B−1

β as

B−1
β : (−∂2

s + b2)
1
2 hβ → hβ .

A straightforward computation shows that:

(4.11) B−1
∞ f(s) =

ˆ
R
G∞(s− s′)f(s′)ds′, f ∈ C0

0 (R; h),

for

(4.12) G∞(s) ··= e−sb (1lR+(s)1lR+(b)− 1lR−(s)1lR−(b)) .

Similarly for β <∞, we have

(4.13) B−1
β f(s) =

ˆ
Sβ
Gβ(s− s′)f(s′)ds′, f ∈ C0(Sβ ; h),

for Gβ(s) defined as follows: we set

Gβ(s) ··= e−sb
(
1lR+(s)(1− e−βb)−1 − 1lR−(s)(1− eβb)−1

)
, s ∈ [−β

2
,
β

2
],

(note thatGβ(β2 ) = Gβ(−β2 )) and extend it to s ∈ R by β−periodicity. In particular
we have:

(4.14) Gβ(s) = e−sb
(
1lR+(s)(1− e−βb)−1 − 1lR−(s)(1− eβb)−1

)
, s ∈ [−β, β].

4.1.2. Calderón projectors for B∞. We set I± = ±]0,+∞[. In the sequel we use
the notation recalled in 1.3.7. If F ∈ C0(I±; h) satisfies (∂s + b)F = 0 in I± we set

Γ±∞F = F (0±) = lim
s→0±

F (s).

Denoting by i±∞F the extension of F by 0 in R \ I± we have

(∂s + b)i±∞F = ±δ0(s)⊗ Γ±∞F,

hence i±∞F = ±B−1
∞ δ0(s)⊗ f for f = Γ±∞F . This implies formally that

f = ±Γ±∞ ◦B−1
∞ (δ0(s)⊗ f)

if f = Γ±∞F for F solving (∂s + b)F = 0 in I±∞. This motivates the following
definition:

Definition 4.1. The Calderón projectors C±∞ ∈ B(h) are:

(4.15) C±∞f = ±Γ±∞ ◦B−1
∞ (δ0(s)⊗ f), f ∈ h.

Proposition 4.2. We have:

(4.16) C±∞ = 1lR±(b).

It follows that C±∞ are bounded projections on h with C+
∞ + C−∞ = 1l.

Proof. We approximate δ0(·) by a sequence nχ(n·) where χ ∈ C∞0 (R) with´
χ(s)ds = 1 and see from (4.12) that C±∞ are well defined and (4.16) follows

directly from (4.12). 2
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4.1.3. Calderón projectors for Bβ. For β < ∞ we set I±β = ±]0, β2 [. If F ∈
C0(I±β ; h) satisfies (∂s + b)F = 0 in I±β we set:

(4.17)
Γ+
β F ··= F (0+)⊕ F (β2

−
) =·· Γ(0)+

β F ⊕ Γ
( β2 )+

β F,

Γ−β F ··= F (0−)⊕ F (β2
+

) =·· Γ(0)−
β F ⊕ Γ

( β2 )−
β F.

Denoting by i±β F the extension of F by 0 in Sβ \ I±β , we have

(∂s + b)i±β F = ±(δ0(s)⊗ Γ
(0)±
β F − δ β

2
(s)⊗ Γ

( β2 )±
β F ),

which as before leads to the following definition:

Definition 4.3. The Calderón projectors C±β ∈ B(h⊕ h) are:

(4.18) C±β f ··= ±Γ±β ◦B
−1
β (δ0(s)⊗ f (0) − δ β

2
(s)⊗ f ( β2 )), f = f (0) ⊕ f ( β2 ) ∈ h⊕ h.

Proposition 4.4. We have:

(4.19)
C+
β =

(
(1− e−βb)−1 (1− eβb)−1e

β
2 b

(1− e−βb)−1e−
β
2 b (1− eβb)−1

)
,

C−β =

(
(1− eβb)−1 −e

β
2 b(1− eβb)−1

−e−
β
2 b(1− e−βb)−1 (1− e−βb)−1

)
.

On 1lI(b)h⊕ 1lI(b)h for any I b R∗ one has:

C±β C
±
β = C±β , C

+
β + C−β = 1l.

Note that if 0 ∈ σ(b) then C±β are unbounded on h⊕ h.
Proof. The proof of (4.19) is a routine computation, using (4.14). The second
statement is checked using the identity (1 − a)−1 + (1 − a−1)−1 = 1 for a = e−βb.
2

5. Vacua and KMS states for stable symplectic dynamics

In this section we recall well-known formulas for the covariances of the vacuum
and KMS states associated to a symplectic flow on a symplectic space. The sym-
plectic flow has to be stable, ie generated by a positive classical energy. In concrete
situations the symplectic flow is generated by a time-like Killing vector field. We
also recall the definition of the double KMS state, due to Kay [K1, K2], which is
related to the Araki-Woods representation of a KMS state.

The new result of this section is that the covariances of the vacuum and double
KMS states can be expressed by the Calderón projectors introduced in Sect. 4.
Note that only the double KMS states will be important for the construction of the
HHI state later on. Nevertheless the case of vacuum state is simpler and we include
it for pedagogical reasons.

5.1. Weakly stable symplectic dynamics. We describe now a framework for
symplectic dynamics, which can be found in [DG, Sect. 18.2.1], called there a
weakly stable symplectic dynamics.

Let (Y, q) a Hermitian space and E ∈ Lh(Y,Y∗) with E > 0, the function
Y 3 y 7→ y ·Ey being the classical energy. The energy space Yen is the completion
of Y for the scalar product (y1|y2)en = y1 ·Ey2and is a complex Hilbert space.

Let rt = eitb be a strongly continuous unitary group on Yen with selfadjoint
generator b. We assume that rt : Y → Y, Y ⊂ Domb, Kerb = {0} and:

(5.1) y1 ·Ey2 = y1 ·qby2, y1, y2 ∈ Y.
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The meaning of (5.1) is that {rt}t∈R is the symplectic evolution group associated
to the classical energy y ·Ey and the symplectic form σ = i−1q.

5.1.1. Dynamical Hilbert space. It is convenient, in connection with the quantiza-
tion of the symplectic flow {rt}t∈R, to introduce the dynamical Hilbert space

Ydyn ··= |b|
1
2Yen,

see [DG, Subsect. 18.2.1], equipped with the scalar product (y1|y2)dyn = (y1||b|−1y2)en.
The group {rt}t∈R extends obviously as a unitary group on Ydyn. If we denote the
generator of rt on Yen/dyn by ben/dyn then ben = b and bdyn = |b| 12 ben|b|−

1
2 since

|b|− 1
2 : Ydyn → Yen is unitary. Therefore we will denote both generators by the

same letter b.
Moreover from (5.1) we obtain that:

(5.2) y1 ·qy2 = (y1|sgn(b)y2)Ydyn

so q is a bounded sesquilinear form on Ydyn, but in general not on Yen, unless
0 6∈ σ(b).

5.2. Vacuum state. We now recall the definition of the vacuum state ωvac asso-
ciated to the dynamics {rt}t∈R.

Definition 5.1. The vacuum state ωvac is defined by the covariances:

(5.3) y1 ·λ±vacy2 = (y1|1lR±(b)y2)dyn.

From (5.2) we obtain that:

(5.4) c±vac
··= ±λ±vac ◦ q−1 = 1lR±(b).

It follows from Def. 4.1 that:

(5.5) c+vac = C±∞,

where the Calderón projectors C±∞ are defined in Def. 4.1, for h = Ydyn.

5.3. KMS state. Let us now define the β−KMS state ωβ associated to the dy-
namics {rt}t∈R.

Definition 5.2. The β-KMS state ωβ is defined by the covariances:

(5.6)
y1 ·λ+

β y2 = y1 ·q(1− e−βb)−1y2,

y1 ·λ−β y2 = y1 ·q(eβb − 1)−1y2.

5.4. Double β−KMS states. The double β−KMS state see [K1, K2] can easily
be related to the Araki-Woods representation of ωβ , see eg [DG, Subsect. 17.1.5],
that we first briefly recall. In the sequel Ydyn will be simply denoted by Y.

5.4.1. Araki-Woods representation. Let us denote by Z the space YR equipped with
the complex structure

j ··= i ◦ sgn(b)

and the scalar product:

(z1|z2)Z ··= (y1+|y2+)Y + (y2−|y1−)Y ,

for y± ··= 1lR±(b)y and z = y (considered as an element of Z). Z is a Hilbert
space equal to Y+ ⊕ Y− for Y± = 1lR±(b)Y. Note that since [b, j] = 0, b induces a
selfadjoint operator on Z, still denoted by b. We set

(5.7) ρ ··= (eβ|b| − 1)−1,

which is a selfadjoint operator on Z.
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We also introduce the Hilbert space Z⊕Z and the bosonic Fock space Γs(Z⊕Z),
see eg [DG, Subsect. 3.3.1]. For (z1, z2) ∈ Z⊕Z we denote by a(∗)(z1, z2) the Fock
creation/annihilation operators acting on Γs(Z ⊕ Z).

The left/right Araki-Woods creation/annihilation operators are defined by:

(5.8)

a∗l (z) = a∗((1 + ρ)
1
2 z, 0) + a(0, ρ

1
2 z),

al(z) = a((1 + ρ)
1
2 z, 0) + a∗(0, ρ

1
2 z),

a∗r (z) = a(ρ
1
2 z, 0) + a∗(0, (1 + ρ)

1
2 z),

ar(z) = a∗(ρ
1
2 z, 0) + a(0, (1 + ρ)

1
2 z).

One has:

[al(z1), a∗l (z2)] = (z1|z2)Z1l, [ar(z1), a∗r (z2)] = (z1|z2)Z1l,

all other commutators being equal to 0. Setting z± = y± for y ∈ Y we set

(5.9)
ψ∗l (y) ··= a∗l (z+) + al(z−), ψl(y) ··= al(z+) + a∗l (z−)

ψ∗r (y) ··= a∗r (z−) + ar(z+), ψr(y) ··= ar(z−) + a∗r (z+),
y ∈ Y.

An easy computation show that

(5.10) [ψl(y1), ψ∗l (y2)] = y1 ·qy2, [ψr(y1), ψ∗r (y2)] = −y1 ·qy2,

all other commutators being equal to 0. Moreover Y 3 y 7→ ψ∗l/r(y) is C-linear.
This means that Y 3 y 7→ ψ

(∗)
l/r (y) induces two commuting representations of

CCR(Y,±q).
From (5.9) we obtain that:

(Ω|ψl(y1)ψ∗l (y2)Ω)Γs(Z⊕Z) = y1 ·λ+
β y2,

(Ω|ψ∗l (y2)ψl(y1)Ω)Γs(Z⊕Z) = y1 ·λ−β y2, ,

(Ω|ψl(y2)ψl(y1)Ω)Γs(Z⊕Z) = (Ω|ψ∗l (y2)ψ∗l (y1)Ω)Γs(Z⊕Z) = 0,

where Ω is the vacuum vector in Γs(Z ⊕ Z). If πAW,l is the representation of
CCR(Y, q) defined by πAW,l(ψ

(∗))(y) = ψ
(∗)
l (y), then (πAW,l,Γs(Z ⊕ Z),Ω) is the

GNS representation associated to the β−KMS state ωβ .

5.4.2. The double β−KMS state. To define the double β−KMS state associated to
ωβ we set

(X , Q) ··= (Y ⊕ Y, q ⊕−q).
Recalling that σ = i−1q, this corresponds to add to the real symplectic space
(YR,Reσ) its anti-symplectic copy (YR,−Reσ). From (5.10) we see that X 3 x 7→
Ψ

(∗)
AW(x) for

(5.11) Ψ
(∗)
AW(x) ··= ψ

(∗)
l (y) + ψ(∗)

r (y′), x = (y, y′) ∈ X
induces a representation of CCR(X , Q).

Definition 5.3. The double β−KMS state ωd is the quasi-free state on CCR(X , Q)
defined by

ωd(Ψ(∗)(x1)Ψ(∗)(x2)) ··= (Ω|Ψ(∗)
AW(x1)ψ

(∗)
AW(x2)Ω)Γs(Z⊕Z), x1, x2 ∈ X .

Proposition 5.4. ωd is a pure, gauge invariant quasi-free state on CCR(X , Q). If
λ±d are the covariances of ωd we have

x1 ·λ±d x2 = ±x1 ·QC±β x2, x1, x2 ∈ X .

where C±β is the Calderón projectors for Bβ defined in Def. 4.3.
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Remark 5.5. Let us denote (Y, q) by (Y1, q1) and let (Y2, q2) another Hermitian
space with I : (Y2, q2) → (Y1,−q1) unitary. Then ωd induces a quasi-free state on
CCR(X1 ⊕X2, q1 ⊕ q2). Its covariances are(

1l 0
0 I∗

)
λ±d

(
1l 0
0 I

)
= ±

(
q1 0
0 q2

)(
1l 0
0 I−1

)
C±β

(
1l 0
0 I

)
.

Proof of Prop. 5.4. We obtain from (5.9), (5.8):

(5.12)

Ψ∗AW(x)Ω = a∗l (z+)Ω + al(z−)Ω + a∗r (z′−)Ω + ar(z
′
+)Ω

= ((ρ+ 1)
1
2 z+ + ρ

1
2 z′+, ρ

1
2 z− + (ρ+ 1)

1
2 z′−),

ΨAW(x)Ω = al(z+)Ω + a∗l (z−)Ω + ar(z
′
−)Ω + a∗r (z′+)Ω

= ((ρ+ 1)
1
2 z− + ρ

1
2 z′−, ρ

1
2 z+ + (ρ+ 1)

1
2 z′+),

as elements of Z ⊕ Z. From (5.12) we immediately obtain that

ωd(ΨAW(x1)ΨAW(x2)) = ωd(Ψ
∗
AW(x1)Ψ∗AW(x2)) = 0,

ie ωd is gauge invariant for the complex structure i⊕ i of X . We have next

ωd(ΨAW(x1)Ψ∗AW(x2)) = (Ψ∗AW(x1)Ω|Ψ∗AW(x2)Ω)Z⊕Z

=
(

(ρ+ 1)
1
2 y1+ + ρ

1
2 y′1+|(ρ+ 1)

1
2 y2+ + ρ

1
2 y′2+

)
Y

+
(
ρ

1
2 y1− + (ρ+ 1)

1
2 y′1−|ρ

1
2 y2− + (ρ+ 1)

1
2 y′2−

)
Y

If λ+
d =·· Q ◦ C+

d , where Q = q ⊕−q, we obtain from (5.2) that:

C+
d =

(
(ρ+ 1)1l+ − ρ1l− −ρ 1

2 (ρ+ 1)
1
2 1l+ + ρ

1
2 (ρ+ 1)

1
2 1l−

ρ
1
2 (ρ+ 1)

1
2 1l+ − ρ

1
2 (ρ+ 1)

1
2 1l− −ρ1l+ + (ρ+ 1)1l−

)
,

for 1l± = 1lR±(b). We compute:

(1 + ρ)1l+ − ρ1l−

= (1− e−βb)−11l+ − eβb(1− eβb)−11l− = (1− e−βb)−1;

−ρ 1
2 (1 + ρ)

1
2 1l+ + ρ

1
2 (1 + ρ)

1
2 1l−

= −e−βb/2(1− e−βb)−1 + eβb/2(1− eβb)−1 = eβb/2(1− eβb)−1;

ρ
1
2 (1 + ρ)

1
2 1l+ − ρ

1
2 (1 + ρ)

1
2 1l−

= −eβb/2(1− eβb)−1 = e−βb/2(1− e−βb)−1;

−ρ1l+ + (1 + ρ)1l−

= −e−βb(1− e−βb)−11l+ + (1− eβb)−11l− = (1− eβb)−1.

Therefore C+
d = C+

β . Since C
+
d + C−d = 1l, we have also C−d = C−β .

To see that ωd is pure, we have to check that the representation of the Weyl
algebra CCRWeyl(X , Q) associated to Ψ

(∗)
AW(x), x ∈ X is irreducible. This follows

from the definition (5.11) of Ψ
(∗)
AW and statements (5), (7) in [DG, Thm. 17.24]. 2

6. Abstract Klein-Gordon equations

In this section we collect some results about abstract Klein-Gordon equations of
the form

(6.1) (∂t + w̃∗)(∂t − w̃)φ̃+ h̃0φ̃ = 0,

where φ̃ : R→ H̃, H̃ is some Hilbert space and h̃0, w̃ are linear operators on H̃. Such
Klein-Gordon equations arise from stationary metrics on a spacetime M = R× S,
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with Killing vector field equal to ∂
∂t , when w̃ represent the shift vector field and the

lapse function is equal to 1. The case of general stationary Klein-Gordon operators
will be considered later in Sect. 8.

We will also consider the Wick rotated operator K̃β obtained by setting t = is,
where s belongs either to R or to Sβ . Using sesquilinear form techniques we give a
rigorous meaning to its inverse K̃−1

β and relate it to the Green operators in Sect.
4.

6.1. Hypotheses. We will assume the following hypotheses:

(6.2)

i) h̃0 is selfadjoint on H̃ and h̃0 > 0,

ii) w̃|h̃0|−
1
2 , w̃∗|h̃0|−

1
2 ∈ B(H̃),

iii) if h̃ ··= h̃0 − w̃∗w̃ then h̃ ∼ h̃0.

We can rewrite (6.1) as

(6.3) ∂2
t φ̃− 2ik̃∂tφ̃+ h̃φ̃ = 0,

where k̃ = (2i)−1(w̃ − w̃∗), which was considered in [GGH] in a more general
situation.

6.2. Quadratic pencils. One associates to (6.3) the quadratic pencil

p(z) = z(2k̃ − z) + h̃ = (iz + w̃∗)(iz − w̃) + h̃0 ∈ B(〈h̃0〉−
1
2 H̃, 〈h̃0〉

1
2 H̃), z ∈ C,

obtained by replacing ∂t by iz, and denotes by ρ(h̃, k̃) the set of z ∈ C such that
p(z) : 〈h̃0〉−

1
2 H̃ ∼−→ 〈h̃0〉−

1
2 H̃. Since h̃ > 0 it follows from [GGH, Prop. 2.3] that

{z : |Imz| ≥ |Rez|+ c0} ⊂ ρ(h̃, k̃) for some c0 > 0.

6.3. First order system. Setting

(6.4) f̃(t) = %̃tφ̃ ··=
(

φ̃(t)

i−1(∂t − w̃)φ̃(t)

)
=

(
f̃0(t)

f̃1(t)

)
,

(6.1) is formally rewritten as

(6.5) ∂tf̃ = iH̃f̃ , H̃ =

(
−iw̃ 1l

h̃0 iw̃∗

)
.

The conserved energy is

(6.6) f̃ ·Ẽf̃ = ‖f̃1 − iw̃f̃0‖2 + (f̃0|h̃f̃0),

which is positive definite by (6.2). The Hilbert space associated to Ẽ will be denoted
by Ẽ . It equals h̃−

1
2

0 H̃⊕H̃ as a topological vector space. We set also Ẽ∗ ··= H̃⊕h̃
1
2
0 H̃.

The following proposition will be proved in Subsect. 6.5.

Proposition 6.1. The operator H̃ =

(
−iw̃ 1l

h̃0 iw̃∗

)
is bounded from Ẽ to Ẽ∗. It

induces on Ẽ the operator H̃ defined by

DomH̃ = {f̃ ∈ Ẽ : H̃f̃ ∈ Ẽ ∩ Ẽ∗}.

H̃ is a densely defined selfadjoint operator on Ẽ with res(H̃) = ρ(h̃, k̃).

Note that (Ẽ , Ẽ∗) form a non degenerate dual pair for the charge

(6.7) f̃ ·q̃f̃ ′ = (f̃1|f̃ ′0)H̃ + (f̃0|f̃ ′1)H̃, f̃ ∈ Ẽ , f̃
′ ∈ Ẽ∗,

and one has
f̃ ·Ẽf̃ = f̃ ·q̃H̃f̃ , f̃ ∈ Ẽ .
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6.4. The Wick rotated operator. Setting formally t = is we obtain the formal
expression

(6.8) K̃ = −(∂s + iw̃∗)(∂s − iw̃) + h̃0.

To give a meaning to (6.8), we will use sesquilinear forms techniques. Let us set as
in Sect. 4.1 for 0 < β ≤ ∞:

(6.9) H̃β = L2(Sβ)⊗ H̃, for β <∞, H̃∞ = L2(R)⊗ H̃.

We consider the sesquilinear form associated to K̃:

Q̃β(u, u) = ‖∂su‖2H̃β + (u|h̃u)H̃β − i(∂su|w̃u)H̃β − i(w̃u|∂su)H̃β ,

with domain DomQ̃β = 〈−∂2
s + h̃0〉−

1
2 H̃β , where ∂s is equipped with its natural

domain on H̃β . From hypotheses (6.2) we obtain that

ReQ̃β(u, u) ∼ ‖∂su‖2H̃β + (u|h̃0u)H̃β , |ImQ̃β(u, u)| ≤ CReQ̃β(u, u),

hence Q̃β is a closed sectorial form. By Lax-Milgram theorem Q̃β induces a bound-
edly invertible operator

(6.10) K̃β : (−∂2
s + h̃0)−

1
2 H̃β

∼−→ (−∂2
s + h̃0)

1
2 H̃β .

We can apply the results of Subsect. 4.1 setting h = Ẽ , b = H̃, see (4.10) for the
notation used, and obtain an operator

∂s + H̃ : Ẽβ
∼−→ (−∂2

s + H̃2)
1
2 Ẽβ .

The relation between K̃−1
β and ∂s + H̃ is given by the following proposition. Below

we denote by πi the maps πif̃ = f̃i for f̃ =

(
f̃0

f̃1

)
.

Proposition 6.2. One has

(6.11) K̃−1
β = π0(∂s + H̃)−1π∗1 .

6.5. Proofs of Props. 6.1 and 6.2.

6.5.1. Preparations. We will prove Props. 6.1, 6.2 using results in [GGH]. There
the form (6.3) of the Klein-Gordon equation is used and instead of (6.4) one sets:

(6.12) g ··=
(

φ̃

i−1∂tφ̃

)
,

(6.3) is formally rewritten as

∂tg = iĤg, Ĥ =

(
0 1l

h̃ 2k̃

)
.

The conserved energy is
g ·Êg = ‖g1‖2 + (g0|h̃g0).

The Hilbert space Ê naturally associated to Ê equals again h̃−
1
2

0 H̃ ⊕ H̃.
If f̃ is given by (6.4) and g by (6.12) one has

f̃ = Ug for U =

(
1l 0
iw̃ 1l

)
,

and

(6.13) U : Ê ∼−→ Ẽ , (Ug|Ug)Ẽ = (g|g)Ê .

Formally one has H̃ = UĤU−1, and since U : Ê → Ẽ is unitary, Prop. 6.1 follows
if we prove the analogous result for Ĥ. One sets then

Ê∗ ··= H̃ ⊕ h̃
1
2
0 H̃,
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which forms again a dual pair with Ê for

g ·q̂g′ = (g1 + iw̃g0|g′0)H̃ + (g0|g′1 + iw̃g′0), g ∈ Ê , , g′ ∈ Ê∗.

We have of course q̂ = U∗qU .

6.5.2. Proof of Prop. 6.1. The matrix Ĥ induces a bounded operator Ĥ : Ê → Ê∗.
One denotes by Ĥ the linear operator induced by Ĥ on Ê . Its domain is

DomĤ = {g ∈ Ê : Ĥg ∈ Ê ∩ Ê∗}.

Note that although in general Ê is not included in Ê∗, the intersection Ê ∩ Ê∗ is
well defined. In fact the intersections H̃ ∩ h̃−

1
2

0 H̃ and H̃ ∩ h̃
1
2
0 H̃ are well defined, as

follows easily from the spectral theorem. In concrete applications, where h̃0, w̃ are
differential operators on some manifold N , one can also consider these intersections
inside D′(N).

It follows then from [GGH, Prop. 5.8, Thm. 5.9], and the fact that there exists
z 6= 0 in ρ(h̃, k̃), that Ĥ with the domain above is a densely defined selfadjoint
operator on Ê with res(Ĥ) = ρ(h̃, k̃). Setting

H̃ ··= UĤU−1

completes the proof of Prop. 6.1.

6.5.3. Proof of Prop. 6.2. One can express the resolvent (Ĥ − z)−1 using p(z) as
follows: if z ∈ ρ(h̃, k̃) then:

(6.14) (Ĥ − z)−1 = p(z)−1

(
z − 2k̃ 1l

h̃ z

)
∈ B(Ê , Ê).

Note that (6.14) is different from the formula found in [GGH, Prop. 5.8], because
weaker assumptions on h̃, k̃ were used there. In our case using that k̃|h̃0|−

1
2 ∈ B(H̃)

one deduces from [GGH, Lemma 2.2] that

p(z) : H̃+ |h̃0|
1
2 H̃ → 〈h̃0〉−

1
2 H̃ ⊂ H̃ ∩ |h̃0|−

1
2 H̃, z ∈ ρ(h̃, k̃).

Using this fact it is straightforward to show that the rhs in (6.14) maps Ê into itself.
In general we have 0 6∈ ρ(h̃, k̃) hence 0 ∈ σ(Ĥ) but Ĥ−1 is well defined as

(6.15) Ĥ−1 =

(
−2h̃−1k̃ h̃−1

1l 0

)
∈ B(Ê , |h̃|−1H̃ ⊕ H̃)

which corresponds to (6.14) for z = 0.
We have KerĤ = {0} since Ĥg = 0 implies g1 = 0, h̃g0 = 0 and h̃ is injective.

Therefore we can apply the results of Subsect. 4.1 to construct (∂s + Ĥ)−1 for
b = Ĥ, h = Ê . As before we introduce the Hilbert spaces H̃β and Êβ for β ∈]0,∞].

Using Fourier transform in s either on R for β =∞ or on Sβ for β <∞ we can
express (∂s + Ĥ)−1 using (6.14), replacing z by −∂s. We claim that for K̃β defined
in Subsect. 6.4 we have

(6.16) K̃−1
β = π0(∂s + Ĥ)−1π∗1 ,

which will prove Prop. 6.2 since π0U
−1 = π0 and Uπ∗1 = π∗1 .

Let us prove (6.16). We have:

(−∂2
s + h̃0)

1
2 H̃β = |∂s|H̃β + h̃

1
2
0 H̃β ,

(∂2
s + Ĥ2)

1
2 Ẽβ = |∂s|Ẽβ + |Ĥ|Ẽβ .
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If v = ∂su ∈ |∂s|H̃β then π∗1v = ∂sπ
∗
1u ∈ ∂sẼβ . Similarly if v = h̃

1
2
0 u ∈ |h̃0|

1
2 H̃β

then π∗1v = Ĥ

(
h̃−1h̃

1
2
0 u

0

)
∈ Ĥ Ẽβ . In conclusion we have shown that

π∗1(−∂2
s + h̃0)

1
2 H̃β → (∂2

s + Ĥ2)
1
2 Ẽβ continuously.

Next if g ∈ Êβ and (∂s + Ĥ)g =

(
0
v

)
for v ∈ (−∂2

s + h̃0)
1
2 H̃β we have

∂sg0 + g1 = 0, K̃g0 = v,

hence ∂sg0 ∈ H̃β , h̃
1
2
0 g0 ∈ H̃β and K̃g0 = v, which shows that π0(∂s + Ĥ)−1π∗1v =

K̃−1
β v. This completes the proof of (6.16). 2

7. Vacua and KMS states for abstract Klein-Gordon equations

In this section we consider vacuum and KMS states for abstract, time-independent
Klein-Gordon equations, which can be reduced to the framework of Sect. 5. We
will show that the covariances of the vacuum and double β-KMS states can be
expressed by the Calderón projectors defined in Sect. 5.

7.1. Vacua and KMS states. Let us consider an abstract Klein-Gordon equation

(∂t + w̃∗)(∂t − w̃)φ̃+ h̃0φ̃ = 0,

as in Sect. 6, where φ̃ : R→ H̃ and H̃ is a Hilbert space. We denote by

P̃ = (∂t + w̃∗)(∂t − w̃) + h̃0

the corresponding Klein-Gordon operator. In the sequel we use the notation intro-
duced in Subsect. 5.1.

The assumptions corresponding to those in Subsect. 5.1 are as follows:
We assume that there exists a dense subspace D̃ ⊂ H̃ and set

(7.1) Ỹ ··= D̃ ⊕ D̃, f̃ ·q̃f̃ ··= (f̃1|f̃0) + (f̃0|f̃1), f̃ =

(
f̃0

f̃1

)
∈ Ỹ.

We fix linear operators h̃0, w̃, w̃
∗ on H̃ with domain D̃ such that:

(7.2)
(u|h̃0u) ≥ 0, (w̃∗u|v) = (u|w̃v), u, v ∈ D̃,

‖w̃u‖2 ≤ (1− δ)(u|h̃0u), ‖w̃∗u‖2 ≤ c(u|h̃0u), u ∈ D̃ for c > 0, 0 < δ < 1.

Setting q̃0(u, u) = (u|h̃0u) with Domq̃0 = D̃, it follows that q̃0 is closeable and we
still denote by h̃0 the operator associated to q̃cl

0 , ie the Friedrichs extension of h̃0

on D. We assume that Kerh̃0 = {0} and deduce then from (7.2) that hypotheses
(6.2) are satisfied by h̃0, w̃, w̃

∗. By construction D̃ is dense in h̃−
1
2

0 H̃.
We set then

(7.3) f̃ ·Ẽf̃ = (f̃ |f̃)Ẽ = ‖f̃1 − iw̃f̃0‖2 + (f̃0|h̃f̃0), f̃ ∈ Ỹ,

and by the density of D̃ in h̃−
1
2

0 H̃ we obtain that Ỹen = Ẽ . Setting then

b = H̃ =

(
−iw̃ 1l

h̃0 iw̃∗

)
,

where H̃ is defined as a selfadjoint operator on Ẽ by Prop. 6.1, we see that the
identity (5.1) follows from (7.1), (7.3).

We can then apply Subsects. 5.2, 5.3, 5.4 and define the vacuum state ω̃vac,
the β-KMS state ω̃β and the double β-KMS state ω̃d associated to the symplectic
dynamics rt = eitH̃ .
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7.2. The Calderón projectors. In Subsect. 6.4 we defined the Wick rotated
operators

K̃β = −(∂s + iw̃∗)(∂s − iw̃) + h̃0

and the Hilbert spaces H̃β for 0 < β ≤ ∞ defined in (6.9). We now define Calderón
projectors for K̃β , which are similar to the Calderón projectors for the operators
Bβ = ∂s + H̃, acting on the Hilbert spaces Ẽβ , defined in 4.1.2 and 4.1.3.

7.2.1. Calderón projectors for K̃∞. We follow the construction and notation in
4.1.2, in particular I±∞ = ±]0,+∞[, and i±∞ is the extension by 0 in R \ I±∞. If
ũ ∈ C0(R; H̃) we denote by γ̃∞ũ the trace of ũ at s = 0:

γ̃∞ũ =

(
u(0)

−(∂s − iw̃)ũ(0)

)
,

whose formal adjoint γ̃∗∞ is given by:

γ̃∗∞g̃ = δ′0(s)⊗ g̃1 + δ0(s)⊗ (g̃0 − iw̃∗g̃1).

If ũ ∈ C0(I±∞; H̃) satisfies K̃ũ = 0 in I±∞ we set

γ̃±∞ũ =

(
ũ(0±)

−(∂s − iw̃)ũ(0±)

)
=

(
g̃0

g̃1

)
.

We have formally

K̃∞i
±
∞ũ(s) = ±(−δ′0(s)⊗ g̃0 + δ0(s)⊗ (g̃1 − iw̃∗g̃0))

= ∓γ̃∗∞S̃g̃,
for

S̃ =

(
2iw̃∗ −1l

1l 0

)
.

It follows that i±∞ũ = ∓K̃−1
∞ γ̃∗∞S̃g̃ for g̃ = γ̃±∞ũ. This implies formally that

g̃ = ∓γ̃±∞K̃−1
∞ γ̃∗∞S̃g̃

if g̃ = γ̃±∞ũ for ũ solving K̃ũ = 0 in I±∞. This leads to the following definition.

Definition 7.1. The Calderón projectors c̃±∞ are

(7.4) c̃±∞ = ∓γ̃±∞K̃−1
∞ γ̃∗∞S̃.

Proposition 7.2. We have:
c̃±∞ = C±∞,

where C±∞ are the Calderón projectors for B∞ = ∂s + b, with b = H̃, h = Ẽ, defined
in Def. 4.1.

Proof. We prove only the + case. Let F ∈ C0(I+
∞; Ẽ) with (∂s + H̃)F (s) = 0 in

I+
∞. If ũ(s) = F0(s) we have K̃ũ(s) = 0 and F1(s) = −(∂s − iw̃)ũ(s) in I+

∞ which
implies that Γ+

∞F = γ̃+
∞ũ. We have (∂s + H̃)i+∞F (s) = δ0(s) ⊗ g̃ for g̃ = Γ+

∞F
which implies that

K̃i+∞F0(s) = −δ′0(s)⊗ g̃0 + δ0(s)⊗ (g̃1 − iw̃∗g̃0).

This implies using the relation between K̃−1
∞ and (∂s + H̃)−1 in Prop. 6.2 that:

C+
∞g̃ = Γ+

∞(∂s + H̃)−1(δ0 ⊗ g̃)

= γ̃+
∞K̃

−1(−δ′0(s)⊗ g̃0 + δ0(s)⊗ (g̃1 − iw̃∗g̃0)) = c̃+∞g̃. 2

From Subsect. 5.2 we obtain the following result, expressing the covariances of
the vacuum state ω̃vac for P in terms of the Calderón projectors c̃±∞ for the Wick
rotated operator K̃∞.
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Proposition 7.3. The covariances of the vacuum state ωvac are equal to:

λ̃±vac = ±q̃ ◦ c̃±∞.

7.2.2. Calderón projectors for K̃β. We follows now the construction and notation
in 4.1.3, in particular I±β = ±]0, β2 [ and i±β is the extension by 0 in Sβ \ I±β . If
ũ ∈ C0(Sβ ; H̃) we denote by γ̃β ũ the vector obtained from its traces at s = 0 and
s = β

2 :

γ̃β ũ = γ̃
(0)
β ũ⊕ γ̃( β2 )

β ũ,

for

γ̃
(0)
β ũ =

(
ũ(0)

−(∂s − iw̃)ũ(0)

)
, γ̃

( β2 )

β ũ =

(
ũ(β2 )

(∂s − iw̃)ũ(β2 )

)
.

Note the change of sign in the second component of γ̃( β2 )ũ, which corresponds to
choosing the exterior normal derivative to I+

β . We have

γ̃∗β = γ̃
(0)∗
β + γ̃

( β2 )∗
β ,

for
γ̃

(0)∗
β f (0) = δ′0(s)⊗ f (0)

1 + δ0(s)⊗ (f
(0)
0 − iw̃∗f

(0)
1 ),

γ̃
( β2 )∗
β f ( β2 ) = −δ′β

2

(s)⊗ f ( β2 )
1 + δ β

2
(s)⊗ (f

( β2 )
0 + iw̃∗f

( β2 )
1 ).

If ũ ∈ C0(I±β ; H̃) satisfies K̃ũ = 0 in I±β we set:

γ̃±β ũ = γ̃
(0)±
β ũ⊕ γ̃( β2 )±

β ũ,

for

γ̃
(0)±
β ũ =

(
ũ(0±)

−(∂s − iw̃)ũ(0±)

)
, γ̃

( β2 )±
β ũ =

(
ũ(∓β2 )

(∂s − iw̃)ũ(∓β2 )

)
.

The same computation as before shows that if

γ̃
(s)
β ũ = g̃(s) =

(
g̃

(s)
0

g̃
(s)
1

)
, for s = 0,

β

2
,

one has:

(7.5)

K̃i±β ũ = ±
(
−δ′0(s)⊗ g̃(0)

0 + δ0(s)⊗ (g̃
(0)
1 − iw̃∗g̃

(0)
0 )
)

±
(
δ′β

2

(s)⊗ g̃( β2 )
0 + δ β

2
(s)⊗ (g̃

( β2 )
1 + iw̃∗g̃

( β2 )
0 )

)
= ∓

(
γ̃

(0)∗
β S̃(0)g̃(0) + γ̃

( β2 )∗
β S̃( β2 )g̃( β2 )

)
,

for

(7.6) S̃(0) =

(
2iw̃∗ −1l

1l 0

)
, S̃( β2 ) =

(
−2iw̃∗ −1l

1l 0

)
.

Again this leads to the following definition.

Definition 7.4. The Calderón projectors c̃±β are

c̃±β = ∓γ̃±β K̃
−1
β γ̃∗β(S̃(0)π(0) + S̃( β2 )π( β2 )),

where π(0/ β2 )g̃ = g̃(0/ β2 ).
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Proposition 7.5. On has

c̃+β = (1l⊕ T ) ◦ C+
β ◦ (1l⊕ T )−1, on Ẽ ⊕ Ẽ ,

where C±β are the Calderón projectors for Bβ = ∂s + b, with b = H̃, h = Ẽ, defined

in Def. 4.3, and T =

(
1l 0
0 −1l

)
.

Proof. We prove only the + case. Let F ∈ C0(I+
β ; Ẽ) with (∂s + H̃)F (s) = 0 in

I+
β . If ũ(s) = F0(s) we have K̃ũ(s) = 0 and F1(s) = −(∂s − iw̃)ũ(s) in I+

β . This
implies that

γ̃
(0)+
β ũ = Γ

(0)+
β F, γ̃

( β2 )+

β ũ =

(
1l 0
0 −1l

)
Γ

( β2 )+

β F,

where Γ
(0)+
β ,Γ

( β2 )+

β are defined in (4.17). Setting

g̃ = γ̃+
β ũ, f = Γ+

β F,

we can rewrite this identity as

(7.7) g̃ = (1l⊕ T )f, for T =

(
1l 0
0 −1l

)
.

Next we have
(∂s + H̃)i+β F = δ0(s)⊗ f (0) − δ β

2
(s)⊗ f ( β2 )

where f = f (0) ⊕ f ( β2 ), which implies that:

K̃i+β ũ = (−δ′0(s)⊗ f (0)
0 + δ0(s)⊗ (f

(0)
1 − iw̃∗f

(0)
0 ))

+(δ′β
2

(s)⊗ f ( β2 )
0 + δ β

2
(s)⊗ (−f ( β2 )

1 + iw̃∗f
( β2 )
0 )).

If we compare this with the first line in (7.5) and use also the relation between K̃−1
β

and (∂s + H̃)−1 in Prop. 6.2 we obtain that c̃+β = (1l ⊕ T ) ◦ C+
β ◦ (1l ⊕ T )−1 as

claimed. 2

As in Prop. 7.3 we can using Subsect. 5.4 express the covariances of the double
β-KMS state ω̃d for P̃ in terms of the Calderón projectors c̃±β for the Wick rotated
operator K̃β .

Proposition 7.6. The covariances of the double β-KMS state for P̃ are equal to

λ̃±d = ±Q̃ ◦ (1l⊕ T )−1c̃±β (1l⊕ T ), for Q̃ = q̃ ⊕−q̃.

8. Klein-Gordon equations on stationary spacetimes

In this section we consider Klein-Gordon equations on stationary spacetimes. If
the lapse function N associated to the Killing vector field w is equal to 1, one can
directly reduce oneself to the situation of Sect. 7. In general one has to replace
the Klein-Gordon operator P by P̃ = NPN , which has the same purpose as a
conformal transformation.

As an application we consider the Klein-Gordon operator P inM+ and express
the covariances of the double β-KMS state inM− ∪M+ using the Calderón pro-
jectors for the elliptic operator Kβ obtained from P by Wick rotation in the Killing
time coordinate t.

8.1. Klein-Gordon equations on stationary spacetimes.
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8.1.1. Stationary metrics. Let (S,h) a Riemannian manifold, N ∈ C∞(S), N > 0
and wi a vector field on S. Let us denote by y the elements of S. We define the
Lorentzian metric g on M = R× S:

g = −N2(y)dt2 + hij(y)(dyi + wi(y)dt)(dyj + wj(y)dt).

We assume that {0}×S is a Cauchy surface for (M,g). Such spacetimes are called
standard stationary spacetimes in the terminology of [S2].

The vector field
∂

∂t
is Killing for g and is time-like iff

(8.1) N2(y) > wi(y)hij(y)wj(y), y ∈ S.

We will need later to impose the following stronger condition:

Definition 8.1. The Killing vector field
∂

∂t
is uniformly time-like if there exists

0 < δ < 1 such that:

(1− δ)N2(y) ≥ wi(y)hij(y)wj(y), x ∈ S.

We have:

(8.2) |g| = N2|h|, n = N−1(
∂

∂t
− w),

where n is the future directed unit normal to the foliation St = {t} × S.

8.1.2. Stationary Klein-Gordon operators. We consider a stationary Klein-Gordon
operator on (M,g):

(8.3) P = −2g +m(y), m ∈ C∞(S;R).

We will always assume that

(8.4) m(y) ≥ m2
0, m0 > 0,

ie that the Klein-Gordon equation is massive. Setting

(8.5) h0 ··= ∇∗h−1∇+m, w ··= wi ·∂yi ,

we have

(8.6) P = (∂t + w∗)N−2(∂t − w) + h0,

where in (8.5), (8.6) the adjoints are computed with respect to the scalar product

(u|v)M =

ˆ
M

uvN |h| 12 dtdy.

8.1.3. Hilbert spaces. We denote by L2(M) the Hilbert space associated to the
scalar product (·|·)M and by H = L2(S, |h| 12 dy) the Hilbert space associated to the
scalar product

(u|v)H =

ˆ
S

uv|h| 12 dy.

We will also need the Hilbert space H̃ = L2(S,N |h| 12 dy) associated to the scalar
product

(u|v)H̃ =

ˆ
S

uvN |h| 12 dy,

so that L2(M) = L2(R, dt; H̃).
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8.1.4. An operator inequality. The inequality in Lemma 8.2 below is understood as
an operator inequality on H̃.

Lemma 8.2. Assume that
∂

∂t
is uniformly time-like. Then

(1− δ)h0 ≥ w∗N−2w on C∞0 (S).

Proof. Let X a real vector space, k ∈ Ls(X ,X#) strictly positive and c ∈ X .
Then for γ = kc ∈ X# and ξ ∈ CX# we have

(ξ − 〈ξ|c〉γ)·k−1(ξ − 〈ξ|c〉γ)

= ξ ·k−1ξ − 2Re(〈ξ|c〉γ ·k−1ξ) + |〈ξ|c〉|2γ ·k−1γ

= ξ ·k−1ξ − (2− c·kc)|〈ξ|c〉|2,
hence

k−1 − |c〉〈c| ≥ (1− c·kc〉|c〉〈c|.
Replacing k by (1− δ)−1k shows that if (1− δ) ≥ c·kc we have

(8.7) (1− δ)k−1 ≥ |c〉〈c|.
For u ∈ C∞0 (S) we write

(u|((1− δ)h0 − w∗N−2w)u)H̃

=
´
S
∂yiu((1− δ)hij(y)−wi(y)N−2wj(y))∂yju(y)N |h| 12 dy.

Applying (8.7) under the integral sign for k = hij(y), c = N−1(y)wi(y) we obtain
the lemma. 2

8.2. Selfadjoint operators. In the rest of this section we will assume that ∂
∂t is

uniformly time-like.
Let q0(u, u) = (u|h0u)H̃ with Domq0 = C∞0 (S). The form q0 is closeable and

we denote still denote by h0 the selfadjoint operator on H̃ associated to qcl
0 , ie the

Friedrichs extension of h0 on C∞0 (S). We have:

h0 : h
− 1

2
0 H̃

∼−→ h
1
2
0 H̃.

Note that h−
1
2

0 H̃ ⊂ H̃ since h0 ≥ m2
0. We set also

(8.8) q̃0(u, u) = q0(Nu,Nu)H̃, Domq̃0 = C∞0 (S),

and denote by h̃0 the selfadjoint operator on H̃ associated to q̃0, which formally
equals Nh0N . From (8.8) we obtain that

(8.9) N : h̃
− 1

2
0 H̃

∼−→ h
− 1

2
0 H̃, N : h

1
2
0 H̃

∼−→ h̃
1
2
0 H̃,

and we have:

(8.10) h̃0 = Nh0N as an identity in B(h̃
− 1

2
0 H̃, h̃

1
2
0 H̃).

We also set

(8.11)
w̃ = N−1wN = N−1wi ·∂yiN,

w̃∗ = Nw∗N−1 = −|h|− 1
2 ∂yi ·wi|h| 12 ,

with domain C∞0 (S).
Let us introduce the assumption

(8.12) N−2wi ·(∇h
i N), N−1∇h

i w
i are bounded on S.

Lemma 8.3. Assume (8.12). Then h̃0, w̃, w̃
∗ satisfy the conditions (7.2) for D̃ =

C∞0 (S).
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Proof. We have seen in Lemma 8.2 that w∗N−2w ≤ (1 − δ)h0 on C∞0 (S), which
implies w̃∗w̃ ≤ (1− δ)h̃0 on C∞0 (S). Let (y1, . . . , yd) be local coordinates on S. We
have

w̃ = wi ·∂yi +N−1wi ·(∂yiN),

w̃∗ = −wi ·∂yi − |h|−
1
2 (∂yiw

i|h| 12 ) = −wi ·∂yi −∇h
i w

i.

Condition (8.12) implies that w̃∗ = −w̃+ r, where r ∈ C∞(S, rN−1 is bounded on
H̃. The inequality w̃w̃∗ ≤ Ch̃0 follows from w̃∗w̃ ≤ (1− δ)h̃0 and m2

0N
2 ≤ h̃0. 2

8.3. Associated first order system. We set:

(8.13) %tφ =

(
φ(t)

i−1N−1(∂t − w)φ(t)

)
= f =

(
f0

f1

)
,

and rewrite Pφ = 0 as:

(8.14) N−1∂tf = iHf,H =

(
−iN−1w 1l

h0 iw∗N−1

)
, f ∈ C∞0 (S;C2).

The conserved energy is

(8.15) f ·Ef = ‖f1 − iN−1wf0‖2H̃ + (f0|hf0)H̃, h = h0 − w∗N−2w,

and the conserved charge is

f ·qf = (f1|f0)H + (f0|f1)H.

The energy space E associated to E equals h
1
2
0 H̃ ⊕ H̃ as topological vector spaces.

8.4. Reduction. We now introduce the Klein-Gordon operator

P̃ = NPN = (∂t + w̃∗)(∂t − w̃) + h̃0,

which is of the form considered in Sects. 6, 7. The operators %̃t, H̃, the energy Ẽ
and charge q̃ are defined as in Subsect. 6.3:

%̃tφ̃ =

(
φ̃(t)

i−1(∂t − w̃)φ̃(t)

)
, H̃ =

(
−iw̃ 1l

h̃0 iw̃∗

)
,

f̃ ·Ẽf̃ = ‖f̃1 − iw̃f̃0‖2H̃ + (f̃0|h̃f̃0)H̃,

f̃ ·q̃f̃ = (f̃1|f̃0)H̃ + (f̃0|f̃1)H̃, f̃ ∈ C∞0 (S;C2).

Setting

(8.16) Z =··
(
N 0
0 1l

)
, Z ′ ··=

(
1l 0
0 N−1

)
,

we have:

(8.17) %tN = Z%̃t, N
−1∂t − iH = Z ′(∂t − iH̃)Z−1,

(8.18) Z∗EZ = Ẽ, Z∗qZ = q̃ on C∞0 (S;C2).

We saw that the energy space Ẽ associated to Ẽ equals h̃−
1
2

0 H̃ ⊕ H̃, and from (8.9)
we obtain that:

Z : Ẽ ∼−→ E .
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8.5. Vacuum and KMS states. In Subsect. 7.1 we defined vacuum and β−KMS
states for P̃ . We obtain the corresponding vacuum and β−KMS states for P by
conjugation by the map Z.

Definition 8.4. We define the vacuum state ωvac, the β-KMS state ωβ and the
double β-KMS state ωd by their covariances:

λ±vac = (Z−1)∗λ̃±vacZ
−1, λ±β = (Z−1)∗λ̃±β Z

−1,

λ±d = (Z−1 ⊕ Z−1)∗λ̃±d (Z−1 ⊕ Z−1),

where the covariances λ̃±vac, λ̃
±
β and λ̃±d are defined in Defs. 5.1, 5.2 and Prop. 5.4

for b = H̃.

8.6. The Wick rotated operator.

8.6.1. The Wick rotated metric. Let us denote by k the complex metric on R × S
obtained from g by the substitution t = is. We have:

k = N2(y)ds2 + hij(y)(dyi + iwi(y)ds)(dyj + iwj(y)ds),

Using that
∂

∂t
is uniformly time-like we obtain that there exists C > 0 such that

(8.19) |η ·Imk(y)η| ≤ Cη ·Reη(y)η, y ∈ S, η ∈ CTyS,

Moreover we have

(8.20) |k|(y) is real valued and |k| 12 (y) = N(y)|h| 12 (y).

With the terminology in Def. 9.1 this means that the complex metric k is uniformly
sectorial.

If Ω =]0,+∞[×S, the outer unit normal vector field to Ω for k, see 9.1.2, is

(8.21) ν = −N−1(
∂

∂s
− iw),

while if Ω =]0, β2 [×S it equals

(8.22) ν(0/ β2 ) = ∓N−1(
∂

∂s
− iw) on {0/β

2
} × S.

The real vectors Imν, Imν(0/ β2 ) are tangent to S, ie condition (9.5) below is satisfied.

8.6.2. The Wick rotated operator. We consider now the Wick rotated operator K
obtained from P by the substitution t = is. We have:

(8.23) K = −∆k +m(y) = −(∂s + iw∗)N−2(∂s − iw) + h0,

acting on the Hilbert spaces H̃β for 0 < β ≤ ∞ defined in (6.9). We refer the reader
to 9.1.1 fo the Laplacian ∆k associated to k. We recall that

H̃β = L2(Sβ × S,N(y)|h| 12 (y)dyds), for 0 < β <∞,

H̃∞ = L2(R× S,N(y)|h| 12 (y)dyds).

It follows from Lemma 8.2 that if h = h0 − w∗N−2w we have:

h ∼ h0, w
∗N−2w . h, on C∞0 (R× S),

where we use the scalar product of H̃β in the operator inequalities. We have:
(8.24)
(u|Ku)H̃β = ‖N−1∂su‖2H̃β + (u|hu)H̃β

−i(N−1∂su|N−1wu)H̃β − i(N−1wu|N−1∂su)H̃β , u ∈ C
∞
0 (R× S).
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The sesquilinear form associated to the realization Kβ of K is

Qβ(u, u) = ‖N−1∂su‖2H̃β + (u|hu)H̃β

−i(N−1∂su|N−1wu)H̃β − i(N−1wu|N−1∂su)H̃β ,

with domain DomQβ = 〈K0〉−
1
2 H̃β andK0 = −N−2∂2

s+h0 with its natural domain
on H̃β . From (8.9) we obtain that

N−1 : DomQβ
∼−→ DomQ̃β , Qβ(Nu,Nu) = Q̃β(u, u),

where Q̃β is defined in Subsect. 6.4. It follows that Qβ is a closed sectorial form
and we denote as before by Kβ :

Kβ : K
− 1

2
0 H̃β

∼−→ K
1
2
0 H̃β

the induced operator. We have

N : K̃
− 1

2
0 H̃β

∼−→ K
− 1

2
0 H̃β , N : K

1
2
0 H̃β → K̃

1
2
0 H̃β

K̃β = NKβN, as elements of B(K̃
− 1

2
0 H̃β , K̃

1
2
0 H̃β),

where K̃β is the operator defined in Subsect. 6.4.

8.7. Calderón projectors. We now define the Calderón projectors for Kβ and
relate them to those for K̃β defined in Subsect. 7.2. We use the notation I±β , i

±
β ,

γ̃β , γ̃±β introduced in Subsect. 7.2.

8.7.1. Calderón projectors for K∞. If u ∈ C0(R; H̃) the trace γ∞u of u on s = 0 is

γ∞u =

(
u(0)

−N−1(∂s − iw)u(0)

)
=

(
u(0)
νu(0)

)
,

see (8.21), and we have
γ∞N = Zγ̃∞,

where Z is defined in (8.16). We denote by γ∗∞ the formal adjoint of γ∞ from
L2(R× S;N |h| 12 dsdy) = H̃∞ to L2(S, |h| 12 dy;C2) = H⊗ C2. We have:

(8.25) γ∗∞g = δ′0(s)⊗N−2g1 + δ0(s)⊗ (N−1g0 − iw∗N−2g1).

If u(s) ∈ C0(I±∞; H̃) satisfies Ku = 0 in I±∞ we set

γ±∞u =

(
u(0±)

−N−1(∂s − iw)u(0±)

)
,

so that
γ±∞N = Zγ̃±∞.

Setting g = γ∞u and u = Nũ, g̃ = γ̃±∞ũ = Z−1g, we obtain from 7.2.1 that

g̃ = ∓γ̃±∞K̃−1
∞ γ̃∗∞S̃g̃,

hence using γ±∞N = Zγ±∞ and K̃∞ = NK∞N :

g = ∓γ±∞K−1
∞ N−1γ̃∗∞S̃Z

−1g,

where S̃ =

(
2iw̃∗ −1l

1l 0

)
. A tedious computation shows that

N−1N−1γ̃∗∞S̃Z
−1 = γ∗∞S, S ··=

(
2iNw∗N−2 −1l

1l 0

)
.

Note that the imaginary part of ν equals N−1w and its adjoint on L2(S, |h| 12 dy)
equals Nw∗N−2 (recall that w∗ is the adjoint of w for the scalar product of
L2(S,N |h| 12 dy)).
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This leads to the following definition.

Definition 8.5. The Calderón projectors c±∞ for K∞ are:

c±∞ ··= ±γ±∞K−1
∞ γ∗∞S.

Proposition 8.6. The covariances of the vacuum state ωvac are equal to:

λ±vac = ±q ◦ c±∞.

Proof. This follows from the identities:
i) λ̃±vac = Z∗λ±vacZ, q̃ = Z∗qZ,

ii) λ̃±vac = ±q̃c̃±∞, c±∞ = Zc̃±∞Z
−1.

The identities in i) are obvious, the first identity in ii) is shown in Prop. 7.3, the
second follows from the computations before Def. 8.5. 2

8.7.2. Calderón projectors for Kβ. If u ∈ C0(Sβ ; H̃) we denote by γβu the vector
obtained from its traces at s = 0 and s = β

2 :

γβu = γ
(0)
β u⊕ γ( β2 )

β u,

for

γ
(0)
β u =

(
u(0)

−N−1(∂s − iw)u(0)

)
=

(
u(0)

ν(0)u(0)

)
γ

( β2 )

β u =

(
u(β2 )

(N−1(∂s − iw)u(β2 )

)
=

(
u(β2 )

ν( β2 )u(β2 )

)
,

see (8.22), and we have:
γβN = (Z ⊕ Z)γ̃β ,

where Z is defined in (8.16). Again we denote by γ∗β the formal adjoint of γβ from
L2(R× S;N |h| 12 dsdy) = H̃∞ to L2(S, |h| 12 dy;C2)⊕ L2(S, |h| 12 dy;C2). We have:

γ∗β = γ
(0)∗
β + γ

( β2 )∗
β ,

for
γ

(0)∗
β g(0) = δ′0(s)⊗N−2g

(0)
1 + δ0(s)⊗ (N−1g

(0)
0 − iw∗N−2g

(0)
1 ),

γ
( β2 )∗
β g(0) = −δ′β

2

(s)⊗N−2g
( β2 )
1 + δ β

2
(s)⊗ (N−1g

( β2 )
0 + iw∗N−2g

( β2 )
1 ).

If u ∈ C0(I±β ; H̃) satisfies Ku = 0 in I±β we set:

γ±β u = γ
(0)±
β u⊕ γ( β2 )±

β 〈u〉,
for

γ
(0)±
β u =

(
u(0±)

−N−1(∂s − iw)u(0±)

)
, γ

( β2 )±
β u =

(
u(∓β2 )

N−1(∂s − iw)u(∓β2 )

)
.

Setting g = γ±β u and u = Nũ, g̃ = γ̃±β ũ = (Z ⊕ Z)−1g, we obtain that

g̃ = ∓γ̃±β K̃
−1
β (γ̃

(0)∗
β S̃(0)g̃(0) + γ̃

( β2 )∗
β S̃( β2 )g̃( β2 )),

where S̃(0), S̃( β2 ) are defined in (7.6). The same computation as in 8.7.1 gives that

g = ∓γ±β K
−1
β (γ

(0)∗
β S(0)g(0) + γ

( β2 )∗
β S( β2 )g( β2 )),

for
S(0) ··=

(
2iNw∗N−2 −1l

1l 0

)
, S( β2 ) ··=

(
−2iNw∗N−2 −1l

1l 0

)
.

Again this leads to the following definition.
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Definition 8.7. The Calderón projectors c±β for Kβ are:

c±β ··= ∓γ
±
β K

−1
β (γ

(0)∗
β S(0)π(0) + γ

( β2 )∗
β S( β2 )π( β2 )),

where π(0/ β2 )g = g(0/ β2 ).

Using now Prop. 7.6, the same argument as in 8.7.1 gives the following propo-
sition.

Proposition 8.8. The covariances of the double β-KMS state ωd are equal to:

λ±d = ±Q ◦ (1l⊕ T )−1c±β (1l⊕ T ), Q = q ⊕ q,

where T =

(
1l 0
0 −1l

)
.

8.8. The double β-KMS state in M+ ∪M−. We now apply the computations
of the previous subsections to S = Σ+. In fact if φt is the flow of the Killing vector
field V , the map

χ : R× Σ+ 3 (t, y) 7→ φt(y) ∈M+

is a diffeormorphism such that χ∗g is as in Subsect. 8.1.
We first claim that ∂

∂t is uniformly time-like and (8.12) holds on Σ+.

Proposition 8.9. Assume that hypothesis (H) holds. Then ∂
∂t is uniformly time-

like and (8.12) holds on Σ+.

Proof. We first check that ∂
∂t is uniformly time-like and that (8.12) holds on

Σ+ \ U , where U is any small neighborhood of B in Σ+, by hypotheses (H). To
check the conditions on U , we use Prop. 2.4. Recalling that (u, ω) are Gaussian
normal coordinates to B in (Σ,h), we obtain

w·hw ∈ O(u4), w·(∇N) ∈ O(u3), (∇·w) ∈ O(u2), w·∇(|h| 12 ) ∈ O(u2),

from which our claim follows, since N(y) = κu+O(u3). 2

8.8.1. The double β-KMS state inM+∪M−. Let us now define the double β-KMS
state inM+ ∪M−.

The wedge reflection R is an isometric involution from (M−,g) to (M+,g). It
induces on Σ the weak wedge reflection r, which equals the identity on B and maps
Σ− bijectively on Σ+.
R reverses the time orientation, hence induces a unitary involution:

R : (
C∞0 (M−)

PC∞0 (M−)
, iG) ∈ [u] 7→ [u ◦R] ∈ (

C∞0 (M+)

PC∞0 (M+)
,−iG).

In a more familiar language, R is anti-symplectic. Since

%Σ± ◦G : (
C∞0 (M±)

PC∞0 (M±)

∼−→ (C∞0 (Σ±), q)

is unitary, R induces the unitary involution

RΣ : (C∞0 (Σ−), q)
∼−→ (C∞0 (Σ+),−q).

The following expression for RΣ follows from the fact that R reverses the time
orientation.

Lemma 8.10. One has
RΣf = Tr∗f,

where T =

(
1l 0
0 −1l

)
and r∗f(y) = f(r(y)).
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We have defined in Subsect. 8.5 the double β-KMS state ωd through its Cauchy
surface covariances λ±d . The associated Hermitian space is

C∞0 (Σ+;C2), q)⊕ C∞0 (Σ+;C2),−q).

(M+ ∪M−,g) is a (disconnected) globally hyperbolic spacetime with Cauchy
surface Σ+ ∪ Σ− and we denote a Cauchy data on Σ+ ∪ Σ− as

f = f+ ⊕ f−, f± ∈ C∞0 (Σ±;C2).

Using Remark 5.5, we obtain from ωd a pure, quasi-free state ωD inM+ ∪M− as
follows:

Definition 8.11. The double β-KMS state ωD in M+ ∪ M− is defined by the
Cauchy surface covariances:

f ·λ±Df ··= (1l⊕RΣ)f ·λ±d (1l⊕RΣ)f, f = f+ ⊕ f− ∈ C∞0 (Σ+ ∪ Σ−;C2).

From Prop. 8.8 and Lemma 8.10 we obtain the following expresssion for λ±D.

Proposition 8.12. One has:

λ±D = ±Q ◦ (1l⊕ r∗)−1c±β (1l⊕ r∗),

where c±β are the Calderón projectors for Kβ defined in Def. 8.7 and Q = q ⊕ q.

9. The HHI state

In this section we construct the HHI state ωHHI in M and prove that it is a
pure Hadamard state, extending the double β-KMS state ωD in M− ∪ M+ for
β = (2π)κ−1. We use the expression of ωD by Calderón projectors for the Wick
rotated operator Kβ , see Subsect. 8.8.

Since Kβ is a Laplace operator for the complex metric geucl onM eucl = Sβ×Σ+,
one can if β = (2π)κ−1 extend it to a Laplace operatorKext on the smooth extension
(M eucl

ext ,g
eucl
ext ).

The boundary of the open set Ωext extending Ωβ =]0, β2 [×Σ+ is diffeomorphic to
the full Cauchy surface Σ, and we can use the Calderón projectors for Kext,Ωext to
define a pair of covariances λ±HHI. The fact that they define a pure state is actually
quite easy, using some standard continuity properties of the Calderón projectors
and density results in Sobolev spaces. The proof of the Hadamard property of ωHHI

relies also on an easy argument using pseudodifferential calculus, taken from [G].

9.1. Laplacians for complex metrics. We recall that complex metrics on a man-
ifold X are defined in 2.7.1.

Definition 9.1. A complex metric k on a manifold X is called uniformly sectorial
if
(1) there exists C > 0 such that

(9.1) |Im(vakab(x)vb)| ≤ CRe(vakab(x)vb), ∀x ∈ X, v ∈ CTxX;

(2) |k(x)| = det(kab(x)) > 0 ∀x ∈ X.

Note that if k is uniformly sectorial, then

(9.2) |Im(ξak
ab(x)ξb)| ≤ CRe(ξak

ab(x)ξb) ∀x ∈ X, ξ ∈ CT ∗xX,

ie k−1 is also uniformly sectorial. In fact if ξ = kv we have ξ ·k−1ξ = kv ·v = v · kv
and (9.2) follows from (9.1).
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9.1.1. Laplacians for complex metrics. If k is a complex metric on X, one defines
the Christoffel symbols:

Γcab ··=
1

2
kcd(∂akcd + ∂bkad − ∂dkab),

the covariant derivative:
∇(k)
a T b = ∂aT

b + ΓbacT
c,

and the Laplacian associated to k, acting on C∞0 (X):

∆k ··= ∇(k)
a kab∇(k)

b

as for real metrics.
For m ∈ C∞(X,R), we set:

K ··= −∆k +m,

and equip C∞0 (X) with the scalar product:

(u|v) ··=
ˆ
X

uv|k| 12 dx.

Proposition 9.2. Assume that k is uniformly sectorial and that m2
0 ≤ m(x) for

m0 > 0. Let
Q(u, u) = (u|Ku),DomQ = C∞0 (X).

Then Q is closeable, the domain DomQcl of its closure Qcl is the space H1
k(X) equal

to the completion of C∞0 (X) for the norm

‖u‖21 =

ˆ
X

(∂auRekab∂bu+m(x)uu)|k| 12 dx.

Moreover Qcl is sectorial and induces an isomorphism:

Kcl : H1
k(X)

∼−→ H1
k(X)∗,

with Kcl = K on C∞0 (X).

Proof. We have

(9.3) ∇(k)
a T a = |k|− 1

2 ∂a(|k| 12T a),

which is proved in Subsect. A.3. Therefore K = −|k|− 1
2 ∂ak

ab|k| 12 ∂a +m and

(9.4) Q(u, u) = (u|Ku) =

ˆ
X

(∂auk
ab∂bu+m(x)uu)|k| 12 dx.

Using (9.2) under the integral sign, we obtain |ImQ(u, u)| ≤ CReQ(u, u) and that
Q is closeable. The domain of its closure Qcl equals H1

k(X). The statement about
Kcl follows from the Lax-Milgram theorem. 2

9.1.2. Outer unit normal. Let Ω ⊂ X with a smooth boundary ∂Ω denoted by Σ
in the sequel. We set

Ω+ ··= Ω, Ω− ··= X\Ωcl.

We can define the outer unit normal vector field to Σ, denoted by n ∈ CTX by the
following conditions:

i) n(x) · k(x)v = 0, ∀v ∈ TxΣ,

ii) n(x) · k(x)n(x) = 1,

iii) Ren(x) is outwards pointing.

If Ω is locally equal to {f > 0} for f ∈ C∞(X,R) with df 6= 0 on {f = 0}, we have:

na =
−kab∇bf

(∇afkab∇bf)
1
2

,
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where in the denominator we take the usual determination of z
1
2 .

We also assume the following condition:

(9.5) Imn(x) ∈ TxΣ, x ∈ Σ,

which is equivalent to ∇afkab∇bf ∈ R on Σ, if Ω = {f > 0}.
The volume form dVolk = |k| 12 dx1 ∧ · · · ∧ dxn associated to k is real, as is the

associated density dµk = |dVolk| = |k| 12 dx. It is easy to see from (9.5) that the
induced density dσh = |dVolh| associated to the induced metric h on Σ is also real
valued.

9.1.3. Trace operators. For u ∈ C∞(X) we set:

γu ··=
(
u�Σ
∂nu�Σ

)
∈ C∞(Σ;C2).

We denote by γ∗ the formal adjoint of

γ : L2(X, dµk)→ L2(Σ, dσh)⊗ C2.

We have
γ∗f = (dµk)−1f0dΣ + (dµk)−1(nµ∂µ)∗f1dΣ,

where if g ∈ C∞(Σ), gdΣ is the distributional density defined as

〈u|gdΣ〉 =

ˆ
Σ

ugdσh, u ∈ C∞0 (X),

and
〈u|(nµ∂µ)∗gdΣ〉 = 〈nµ∂µu|gdΣ〉.

Similarly for u ∈ C∞(Ω±) we set:

γ±u ··=
(
u�Σ
∂nu�Σ

)
,

where the trace is taken from Ω±.
In the rest of this subsection, we assume that k is uniformly sectorial and that

(9.5) holds.

9.1.4. Calderón projectors.

Definition 9.3. The Calderón projectors c± associated to (K,Ω) are defined as

c± = ∓γ± ◦K−1 ◦ γ∗ ◦ S,
where

S =

(
2ib∗ −1l
1l 0

)
,

b = Imna∇a and b∗ is the adjoint of b in L2(Σ, dσh).

Note that the operator S is well defined on C∞0 (Σ;C2), since Imn is tangent to
Σ.

It is not a priori clear that c± are well defined, since even for f ∈ C∞0 (Σ;C2),
γ∗Sf does not belong to H1

k(X)∗.
To show that c± make sense, one can apply the following proposition. We denote

by Hs
c (Σ) resp. Hs

loc(Σ) for s ∈ R, the compactly supported, resp. local Sobolev
spaces on Σ and set:

(9.6)
Hsc/loc(Σ) = H

s− 1
2

c/loc(Σ)⊕Hs−1− 1
2

c/loc (Σ),

H̃sc/loc(Σ) = H
s+ 1

2

c/loc(Σ)⊕Hs+1+ 1
2

c/loc (Σ), s ∈ R.

Proposition 9.4. (1) c± : Hsc(Σ)→ Hsloc(Σ) continuously for any s ∈ R,
(2) c± are 2× 2 matrices with entries in Ψ∞(Σ).
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Proof. The differential operator K is elliptic, since its principal symbol equals
ξ ·k−1(x)ξ. K admits hence a properly supported parametrix Q ∈ Ψ−2

c (X), and
K−1 −Q is a smoothing operator, ie has a smooth distributional kernel.

It suffices hence to check the proposition withK−1 replaced byQ in the definition
of c±. From the topology of Hsc/loc(Σ), we see that we can assume that Σ is
compact, and since Q is properly supported, that X is compact, which is the
situation considered in [Gr, Sect. 11.1].

A neighborhood V of Σ in X is then diffeomorphic to ] − δ, δ[×Σ, and one can
use coordinates (s, y) on ]−δ, δ[×Σ. In [Gr, Sect. 11.1] the trace operator is defined
as

γ̃u =

(
u(0, y)

i−1∂su(0, y)

)
.

Clearly we have γ = L ◦ γ̃, where L =

(
1l 0
r 1l

)
and r is a first order differential

operator on Σ. This implies that L : Hsc/loc(Σ)
∼−→ Hsc/loc(Σ). The Calderón

projectors C̃± in [Gr, Sect. 11.1] are equal to L−1 ◦ c± ◦ L, and [Gr, Prop. 11.7]
implies that C̃± : Hsc(Σ)→ Hsloc(Σ) for all s ∈ R, which implies (1).

Property (2) is a standard fact, see [Gr, Sect. 11.1]. 2

9.2. Construction of the HHI state.

9.2.1. The Laplacian on M eucl
ext . We now apply the above framework to (X,k)=

(M eucl
ext ,g

eucl
ext ), the smooth extension of (M eucl,geucl) constructed in Prop. 2.5, for

β = (2π)κ−1. We assume that hypothesis (H) in Subsect. 2.4 holds. By Prop.
8.9 the Wick rotated metric geucl satisfies the conditions in 8.6.1, ie is uniformly
sectorial. By continuity the same is true of its extension geucl

ext . We denote by

Kext = ∆geucl
ext

+mext,

the associated Laplacian. We choose the open set Ωext ⊂ M eucl
ext , whose boundary

∂Ωext is diffeomorphic to Σ, see Prop. 2.5. We saw in 8.6.1 that if ν is the unit outer
normal to ]0, β2 [×Σ+, then Imν is tangent to ∂(]0, β2 [×Σ+). Again by continuity,
the same is true of the unit outer normal to Ωext, ie condition (9.5) is satisfied.
Therefore we can apply the results of Subsect. 9.1 to Kext and Ωext.

We need one more result, which states that Kext is the unique extension of
K(2π)κ−1 to L2(M eucl

ext ).

Proposition 9.5. Let U : C∞0 (M eucl)→ C∞0 (M eucl
ext \ Bext) defined by:

Uu = u ◦ χ−1.

Then U extends as a unitary operator

U : L2(M eucl, N(y)|h| 12 (y)dyds)→ L2(M eucl
ext , |geucl

ext |
1
2 dx),

with Kext = UK(2π)κ−1U∗.

Proof. U clearly extends as a unitary operator. Let us check the second statement.
As a differential operator, K(2π)κ−1 equals −∆geucl +m. As an unbounded oper-

ator, K(2π)κ−1 is defined in 8.6.2 using the sesquilinear form Q(2π)κ−1 , while Kext is
defined with the sesquilinear form Qext for k = geucl

ext and m = mext, see Prop. 9.2.
Q(2π)κ−1 is the closure of its restriction to C∞0 (M eucl), while Qext is the closure

of its restriction to C∞0 (M eucl
ext ).

Taking into account the isometry χ : M eucl ∼−→ M eucl
ext \ Bext, it suffices to check

that C∞0 (M eucl
ext \ Bext) is a form core for Qext, ie that this space is dense in the

space H1
k(X) for (X,k) = (M eucl

ext ,g
eucl
ext ), see Prop. 9.2.
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Using the coordinates (X,Y, ω) near Bext ∼ {0} × B, this follows from the fact
that C∞0 (R2\{0}) is dense in H1(R2), see eg [A, Thm. 3.23]. 2

9.2.2. The HHI state. Let us denote by c±ext the Calderón projectors for (Kext,Ωext),
defined as in Def. 9.3.

The following theorem is a slightly more precise version of Thm. 1.1.

Theorem 9.6. (1) λ±HHI = ±q◦c±ext are the Cauchy surface covariances of a pure
quasi-free state ωHHI for P in M , called the HHI state.

(2) The restriction of ωHHI to M+ ∪ M− is the double β−KMS state ωD for
β = (2π)κ−1.

(3) ωHHI is a Hadamard state in M .
(4) Let ω a quasi-free state for P in M whose restriction to M+ ∪ M− equals

ωD and such that its space-time covariances map C∞0 (M) into C∞(M). Then
ω = ωHHI.

Note that it follows from (4) above that ωHHI is the unique Hadamard state in
M whose restriction toM+ ∪M− equals ωD.
Proof. We first prove (2). We note that the map (1l⊕r∗) in Prop. 8.12 corresponds
to the embedding of C∞0 (Σ+∪Σ−;C2) into C∞0 (Σ\B) obtained from ψ : Σ→M eucl

ext

in Prop. 2.5. The exterior normal to Ωext is the image under χ of the exterior
normal to ]0, πκ−1[×Σ+ for defined in (8.22). Therefore using also Prop. 9.5 we
obtain that

(9.7) (1l⊕ r∗)−1c±(2π/κ)(1l⊕ r
∗) = c±ext,

on C∞0 (Σ+ ∪ Σ−). This implies (2).
Let us now prove (1). Let us denote by hext the metric induced by geucl

ext on Σ

and use the scalar product of L2(Σ, |hext|
1
2 dy) ⊗ C2 to identify sesquilinear forms

with operators, so that q =

(
0 1
1 0

)
.

We recall that the spaces Hsloc(Σ), H̃sloc(Σ) are defined in (9.6). We note that
q : Hsloc(Σ) → H̃s−2

loc (Σ), and that Hsc(Σ), H̃sloc(Σ) form a dual pair for the above
scalar product. It follows then from Prop. 9.4 that λ±, q are continuous sesquilinear
forms for the topology of H1

c(Σ) = H
1
2
c (Σ)⊕H−

1
2

c (Σ). Now it is a well-known fact
that since B ⊂ Σ is of codimension 1, C∞0 (Σ \ B) is dense in H±

1
2

c (Σ).
By (2) and the fact that ωD is a state, we obtain that

λ±HHI ≥ 0, λ+
HHI − λ

−
HHI = q,

on C∞0 (Σ \ B;C2). By the continuity and density result shown above, this extends
to C∞0 (Σ;C2), which proves that λ±HHI are the Cauchy surface covariances of a state
ωHHI.

Let us now prove that ωHHI is pure. Let us set for simplicity of notation Y =

C∞0 (Σ;C2), Y0 = C∞0 (Σ \ B;C2) and denote by Ycpl, Ycpl
0 the completion of Y, Y0

for the norm ‖f‖2ω = f ·(λ+
HHI + λ−HHI)f . The density and continuity result above

shows that Ycpl = Ycpl
0 . The purity of ωHHI follows then from the purity of ωD and

Prop. 3.2.
Let us now prove (3). By Thm. 3.4 there exists a reference Hadamard state ωref

for P in M whose Cauchy surface covariances on Σ λ±ref are 2 × 2 matrices with
entries in Ψ∞(Σ). By Prop. 9.4 the same is true for λ±HHI.

The restriction of ωHHI toM+ is a Hadamard state for P , since it is a (2π)κ−1-
KMS state for a time-like, complete Killing vector field. The restriction of ωHHI to
M− is also a Hadamard state for P .
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In fact by Prop. 8.12, its Cauchy surface covariances on Σ− are the images of
those of ωD on Σ+ by the weak wedge reflection r. Since r∗h = h, r∗N = −N and
r∗w = w, see 2.2.1, the expression (8.6) of P in R× Σ− shows that the restriction
of ωD toM− is also a Hadamard state.

This implies that the restriction of ωHHI toM+∪M− is a Hadamard state. The
same is true of the restriction of the reference Hadamard state ωref toM+ ∪M−.
Passing to Cauchy surface covariances on Σ+∪Σ−, this implies that if χ ∈ C∞0 (Σ±),
then

χ ◦ (λ±HHI − λ
±
ref) ◦ χ is a smoothing operator on Σ.

We claim that this implies that λ±HHI − λ
±
ref is smoothing, which will imply that

ωHHI is a Hadamard state.
If fact let a be one of the entries of λ±HHI−λ

±
ref , which is a scalar pseudodifferential

operator belonging to Ψm(Σ) for some m ∈ R. We know that χ◦a◦χ is smoothing
for any χ ∈ C∞0 (Σ\B). Then its principal symbol σpr(a) vanishes on T ∗(Σ\B)
hence on T ∗Σ by continuity, so a ∈ Ψm−1(Σ). Iterating this argument we obtain
that a is smoothing, which completes the proof of (3).

The proof of (4) is identical to [G, Prop. 7.4]. 2

Appendix A

A.1. Proof of Prop. 2.4. Since r is an isometry of (Σ,h), r|B = Id and r : Σ+ →
Σ− we obtain (2.4). The first identity in (2.5) follows from the fact that (u, ω) are
normal Gaussian coordinates to B for h, the other are tautologies.

We obtain from (2.4) and 2.2.1 that v, w0 are odd in u, wα, kαβ are even in u
with wα(0, ω) = 0. The function m is even in u by invariance under r. We now use
Killing’s equation

(A.1) ∇aVb +∇bVa = 0,

noting that since V = 0 on B we have

(A.2) ∇aVb = ∂aVb on B.

If we work in Gaussian normal coordinates to Σ for g, so that

g = −dt2 + hij(t, y)dyidyj , V = −N(t, y)∂t + w0(t, y)∂u + wα(t, y)∂ωα

and y = (u, ω), we obtain from (A.1), (A.2) that:

∂uV0(0, ω) = 0⇒ ∂uw
0(0, ω) = 0.

Summarizing we have:

(A.3)

N(u, ω) = ua(u2, ω),

w0(u, ω) = u3b(u2, ω), wα(u, ω) = u2cα(u2, ω),

kαβ(u, ω) = dαβ(u2, ω), m(u, ω) = n(u2, ω),

for smooth functions a, b, cα,dαβ :]− ε, ε[×B → R with

n(0, ω) ≥ c > 0, c−11l ≤ [dαβ(0, ω)] ≤ c1l, for some c > 0.

To complete the proof of the proposition it remains to show that κ = a(0, ω).
To do this we reexpress the surface gravity κ. By [S1, Lemma 2.5] we have:

κ2 = (hij∂iN∂jN)|B −
1

2
(hijhkl∇(h)

i wl∇(h)
j wk)|B,

which using (A.3) gives κ = a(0, ω). 2
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A.2. Proof of Prop. 2.5. We recall that we defined the coordinates (u, ω) ∈
] − δ, δ[×B on a small neighborhood U of B in Σ. U ∩ Σ+ is diffeomorphic to
]0, δ[×B using the coordinates (u, ω). If

X = u cos(κs), Y = u sin(κs),

we have:
du = u−1(XdX + Y dY ), ds = κ−1u−2(XdY − Y dX).

By Prop. 2.4 we obtain:

kαβ(u, ω)dωαdωβ = dαβ(X2 + Y 2, ω)dωαdωβ ,

iwα(u, ω)dωαds = iκ−1bα(X2 + Y 2, ω)(XdY − Y dX)dωα,

iw0(u, ω)duds = iκ−1b0(X2 + Y 2, ω)(XdY − Y dX)(XdX + Y dY ),

v2(u, ω)ds2 + du2

= u2κ2(1 + u2d(u2, ω))κ−2u−4(XdY − Y dX)2 + u−2(XdX + Y dY )2

= dX2 + dY 2 + d(X2 + Y 2, ω)(XdY − Y dX)2.

Let us denote by B2(0, δ) = {(X,Y ) ∈ R2 : X2 +Y 2 ≤ δ2} the open disk of center 0
and radius δ in R2. If β = (2π)κ−1, then (u, κs) ∈]0, δ[×S2π are polar coordinates
on B2(0, δ)\{0}. The expression (2.10) for geucl and the estimates above show that
geucl extends as a smooth complex metric on B2(0, δ)⊗ B.

We then construct M eucl
ext by gluing B2(0, δ) × B with M eucl = Sβ × Σ+ over

{(X,Y ) ∈ R2 : 1
2δ

2 < X2 + Y 2 < δ2} × B using the map:

(A.4) Sβ×]0, δ[×B → B2(0, δ)× B
(s, u, ω) 7→ (u cos(κs), u sin(κs), ω).

The complex metric geucl defined on Sβ ×Σ+ extends to a smooth complex metric
geucl

ext on M eucl
ext . By Prop. 2.4 we have m = n(X2 + Y 2, ω), hence m extends as a

smooth function on M eucl
ext .

Let us now embed Σ isometrically into M eucl
ext . In the coordinates (u, ω) on Σ

near B the embedding ψ̂ becomes

(u, ω) 7→
{

(0, u, ω) for 0 < u < δ,

(β2 ,−u, ω) for − δ < u < 0,

which smoothly extends to u = 0, the image of Σ under this extension being locally
equal to {Y = 0}.

The open set Ωext is obtained by gluing {Y > 0} with ]0, β2 [×Σ+ using the map
(A.4). This completes the proof.

A.3. Proof of (9.3). A mechanical computation gives:∑
i∇iT i =

∑
i ∂iT

i + 1
2

∑
i,k,l k

il(∂ikkl + ∂kkil − ∂lkik)T k

=
∑
i ∂iT

i + 1
2

∑
i,k,l k

il∂kkilT
k =·· I,

using that kli = kil, kkl = klk. Next∑
i

|k|− 1
2 ∂i(|k|

1
2T i) =

∑
i

∂iT
i +

1

2

∑
i

|k|−1∂i|k|T i =·· II.

Since
detA(t)−1 d

dt
detA(t) = Tr(A(t)−1 d

dt
A(t)),

we get that ∂i|k| = |k|Tr(k−1∂ik). Next we compute:

(k−1∂ik)jk =
∑
l

kjl∂iklk, Tr(k−1∂ik) =
∑
k,l

kkl∂iklk,

39



which shows that I = II. 2
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