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The Hartle-Hawking-Israel state on stationary black hole
spacetimes

Christian GERARD

ABsTrRACT. We consider a free quantized Klein-Gordon field in a spacetime
(M, g) containing a stationary black hole, more precisely a spacetime with a
stationary bifurcate Killing horizon in the sense of Kay and Wald. We prove
the existence of the Hartle-Hawking-Israel ground state, which is a pure state
on the whole spacetime whose restriction to the exterior of the black hole is a
thermal state at Hawking temperature Ty.

We show that the HHI state is a Hadamard state and is the unique Hadamard
extension of the above thermal state to the whole spacetime. We construct
the HHI state by Wick rotation in Killing time coordinates, using the notion
of the Calderén projector for elliptic boundary value problems.

1. INTRODUCTION

In this paper we consider a free quantized Klein-Gordon field in a spacetime
(M, g) containing a stationary black hole. It was conjectured by Hartle and Hawk-
ing [HH] and Israel [I] that a free Klein-Gordon quantum field admits a ground state
wpnr, called the Hartle-Hawking-Israel state, whose restriction to the exterior re-
gion of the black hole is a thermal state at the Hawking temperature Ty = x(27) 1,
where k is the surface gravity of the black hole.

The physical motivation was that the stationary black hole spacetime (M, g)
describes the final state of the collapse of a massive object, and that the quantum
Klein-Gordon field will eventually settle down to the ground state wygr. The fact
that wypyy is a thermal state at Hawking temperature in the exterior of the black
hole is then viewed as a justification of the Hawking radiation.

The first construction of the HHI state in the double wedge region of the Kruskal
spacetime is due to Kay [K3]. This construction was valid for any temperature, the
resulting state being an example of a double KMS state.

Later on Kay and Wald [KW] adressed the question of the extendability of the
HHI state from the double wedge region to the black hole interior. In particular
they introduced the definition of spacetimes with a bifurcate Killing horizon and
gave a first rigorous definition of the notion of Hadamard states.

They proved that some subalgebra of the free field algebra admits at most one
quasi-free state which is both invariant under the Killing isometries and Hadamard
near the blackhole horizon. If such a state exists, Kay and Wald proved moreover
that it is a thermal state at the Hawking temperature in the exterior region.

The first global construction of the HHI state in the whole spacetime is due to
Sanders [S1], who considered spacetimes with a static bifurcate Killing horizon, ie
such that the Killing vector field V is static in the exterior region. Sanders proved
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in [S1] the existence of the HHI state and showed that it is a pure Hadamard state.
The proof in [S1] relied on the Wick rotation in the Killing time coordinates, which
was also the basis for the heuristic arguments in [HH, I] and which we will also use
in this paper.

In [G] we gave another proof of the Hadamard property of the HHI state in the
situation considered in [S1], by combining the Wick rotation with a tool which is
familiar in elliptic boundary value problems, namely the Calderdn projectors, see
1.2.2. The use of Calderén projectors allows to construct the HHI state directly on
a Cauchy surface ¥ and avoids to consider its behavior near the Killing horizon. In
collaboration with Michal Wrochna, we have recently used Calderén projectors in
[GW2] to construct analytic Hadamard states on general analytic spacetimes.

In the present paper we consider the more general stationary case, and give a
construction of the HHI state for spacetimes with a stationary bifurcate Killing
horizon.

1.1. Results. We now present more in details the result of this paper.

1.1.1. Bifurcate Killing horizons. Let (M, g) a globally hyperbolic spacetime with
a complete Killing vector field V. (M, g) admits a bifurcate Killing horizon [KW], if
the bifurcation surface B ={x € M : V(x) = 0} is a compact, connected, orientable
submanifold of codimension 2 and if there exists a Cauchy surface ¥ containing B.
M splits then into four globally hyperbolic regions, the right/left wedges M™, M~
and the future/past cones F, P, each invariant under the flow of V.

The Killing horizon is then H = 9(F UP). An important object related with
the Killing horizon is its surface gravity k, which is a scalar, constant over all of H.

One also assumes the existence of a wedge reflection R : M — M which is an
isometry of (M~ UU UM, g), where U is a neighborhood of B in M, such that
RoR = 1d, R = Id on B, R reverses the time orientation and R*V = V. In
concrete situations, the left wedge M™ is actually constructed by reflection of the
right wedge M™, so the existence of a wedge reflection does not seem to be such a
strong hypothesis.

The bifurcate Killing horizon H is stationary resp. staticif V' is time-like on X\ B,
resp. orthogonal to ¥\ B. For technical reasons, we require V' to be uniformly time-
like near infinity on 3, see Subsect. 2.4. This condition is imposed only far away
from the bifurcation surface B and will hold for example if (M, g) is asymptotically
flat near spatial infinity.

We consider on (M, g) a free quantum Klein-Gordon field associated to the Klein-
Gordon equation

—0,0(x) + m(@)g() = 0,
where m € C°°(M, R) is invariant under V and R. We assume that m(x) > m32 > 0
ie the Klein-Gordon field is massive.

1.1.2. The double 3-KMS state. Since (M™,g,V) is a stationary spacetime, there
exists (see [S2]) for any 8 > 0 a thermal state ws at temperature 3~ with respect
to the group of Killing isometries of (M™,g) generated by V.

The wedge reflection R : M+ =5 M~ allows to extend wg to the double 3-KMS
state wp on M U M™. This extension exists for any 8 > 0 and is a pure state in
MEUM™.

We prove in this paper the following theorem.

Theorem 1.1. Let (M,g,V) be a globally hyperbolic spacetime with a stationary
bifurcate Killing horizon and a wedge reflection. Let P = —0O4,+V a Klein-Gordon
operator invariant under the Killing vector field V' and the wedge reflection R.
Assume moreover that conditions (H) in Subsect. 2.4 are satisfied.
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Then there exists a state wypr for P in (M,g) called the Hartle-Hawking-Israel
state such that:

(1) wymr is a pure Hadamard state in M,

(2) the restriction of wygnr to MYTUM™ is the double 3-KMS state wp at Hawking
temperature Ty = k(27) ™% where k is the surface gravity of the horizon,

(3) wnmnr s the unique extension of wp such that its spacetime covariances AT map
C§° (M) into C*(M) continuously. In particular it is the unique Hadamard
extension of wp.

Thm. 1.1 will be proved in Sect. 9.

1.2. Main ideas of the construction. We now outline the construction of the
HHI state wynr. We look for wpyr as an extension to M of the double S-KMS state
wp on M~ UMT, where 37! = k(27)~! is the Hawking temperature. The first
step consists in understanding in sufficient details the 5-KMS state in M™T.

Writing the metric g in M™ using the Killing time coordinate associated to V'
and ¥, MT is identified with R x X% and the metric g becomes

(L.1) g =—N?(y)dt® + hi;(y)(dy' + w'(y)dt)(dy’ + w (y)dt),

where N is the lapse function, w the shift vector field, h the induced metric on 3.
The Killing field V' is simply %. The fact that V is time-like in M is equivalent
to the inequality N%(y) > w'(y)-h;;(y)wi(y) for y € F.

The Klein-Gordon operator P associated to g can be written as:

(12) P=P= (&g + ’LU*)N_2(81§ — ’LU) + h()7

where w = wi-pyi and hg = V*h™1V 4+ m is an elliptic operator on ¥.

1.2.1. The Wick rotation. The Wick rotation consists in replacing ¢ by is and pro-
duces the complexr metric

(1.3) g = N?(y)ds® + hy; () (dy’ + 1w’ (y)ds)(dy’ + iw? (y)ds).

In the static case considered in [S1, G] w vanishes and g®'“! is Riemannian. The
fact that g is now a complex metric causes several new difficulties. Performing
the same transformation on P yields the Wick rotated operator

K = —(0s + iw*)N~2(9, + iw) + ho.

There are several different linear operators that can be associated to the formal
expression K. The first one consists in working on L?(Rx X T), using the sesquilinear
form

Qoo (u,u) = ||IN"10sul|® + (ulhu) — i(N"0u|N " wu) — i(N~twu| N~1o.u),

where h = hg — w* N 2w, with DomQ., = C{°(R x ¥). Another possibility is to
work on L%(Sp x 1) where S5 = [—g, g[ is the circle of length 8. The sesquilinear
form Qg has the same expression as @« but the domain is now DomQg = C§°(Sg x
32), which corresponds to imposing S—periodic boundary conditions on K.

Since we have assumed that V' is uniformly time-like near infinity, see Subsect.
2.4, one can show that the sesquilinear forms (), g are closeable and sectorial
and hence generate injective linear operators Ko, Kg. Their inverses K !, Kgl are
then well defined between abstract Sobolev spaces, using the Lax-Milgram theorem.
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1.2.2. Calderén projectors. Let Qo =0, +oo[xXT, Q5 =]0, g[><§]+ and v the ex-
terior unit normal for g°'! to 9Qg, B € [0, +oc]. Note that v is a complex vector
field, but its imaginary part is tangent to 9Qg.

For u € C>°(Q3) such that Kgu = 0 in Qp, the trace ygu of u on 9y defined as

_ [ ulaa,
78 (&Mfaﬂﬂ)

is not arbitrary, because Kz is an elliptic operator. Instead gu belongs to the
range of a projector cg, called the Calderon projector associated to Q3. The same
construction with Qg replaced by its complement produces the complementary
Calderon projector s, with cg +cg =1

The projectors cg[ can be explicitely expressed in terms of the inverse K3 !, see
Subsect. 8.7.

1.2.3. Vacuum and double 3-KMS states. If 8 = co, the boundary 9, equals &7,
and one can try to construct a state in M7 by defining its covariances on X1 as

M =4qoct,

where ¢ = is the charge defining the symplectic structure on the space

0

1 0
Cs°(XF; C?) of Cauchy data on X+, Tt turns out that AX are actually the covari-
ances of the vacuum state wyae in M.

Of course the study of the vacuum state wy,c, corresponding to § = oo, is not
necessary for the construction of the HHI state, but gives a nice introduction to the
more complicated case 8 < oo.

If 8 < oo, the boundary 995 has two components, both isomorphic to X*. The
state wp obtained similarly from the Calderén projectors cg: is now the double g-
KMS state wp in M~ UM, modulo the identification of ¥* with ¥~ by the wedge
reflection.

The proof of these facts takes up a large part of the paper. First of all we
reduce ourselves to the situation N(y) = 1 by considering P = NPN and K g =
NK3N, the last identity taking a rather transparent form if we use the framework
of sesquilinear forms, see Subsect. 8.6. The covariances of wyac, wp for the Klein-
Gordon operator P can similarly be deduced from those of the analogous states
(WOyvac, wp for P.

The operator P can be written as (O + w*) (0 —w) + ho, and the computations
of @yac, @p can be done by reducing the Klein-Gordon equation P = 0 to a first
order system O;f —iH f = 0, see Sects. 6, 7. This system is an example of a stable
symplectic dynamics, which is studied in Sects. 4, 5.

1.2.4. The surface gravity and the extended Euclidean metric. All the constructions
up to now are valid for any value of the inverse temperature 5. The metrics g and
g are degenerate at the bifurcation surface B = 0X+.

If 3 = (2r)x~%, ie if B! equals the Hawking temperature k(27)~1, where &
is the surface gravity of the horizon, one can show that (Sg x X+, geu!) has a
unique extension (Mg, g€ucl) which corresponds exactly to passing from polar to

cartesian coordinates in the plane.

1.2.5. The Hartle-Hawking-Israel state. The open set |0, g[xEJr extends as an open
set Qoxy with boundary isomorphic to the full Cauchy surface 3. The Wick rotated
operator Kz extends as an elliptic operator Ky acting on Me! and one can
consider the Calder6n projectors cit associated to Koyt and Qext.
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One defines the covariances on X
+ _ +
Afinr = 140 Co

and one can rather easily show that )\ﬁHI are the covariances of a pure quasi-free
state wyyp defined on the whole of M. One uses that the restriction of )\ﬁHI to
C§°(X\ B) are precisely the covariances of the double 8-KMS state wp, and some
continuity properties of Calderén projectors and density results in Sobolev spaces,
see Subsect. 9.2.

One can also prove that the HHI state wyy is a Hadamard state, by an argument
already used in [G] in the static case, relying on the fact that the covariances of
any Hadamard state on X are matrices of pseudodifferential operators.

1.3. Notations. We now collect some notation.

We set (\) = (14 A?)2 for A € R.

We write A € B if A is relatively compact in B.

If X,Y are sets and f : X — Y we write f : X = Y if f is bijective. If X,Y
are equipped with topologies, we write f : X — Y if the map is continuous, and
f: X 5 Y if it is a homeomorphism.

1.3.1. Duals and antiduals. Let X be a real vector space. Its dual will be denoted
by X#. Let ) be a complex vector space. We denote by Vg its real form, ie ) as a
vector space over R. We denote by V# its dual, ie the space of C—linear forms on
Y and by Y* its anti-dual, ie the space of C—antilinear forms on ).

We denote by Y the conjugate vector space to Y, ie Y = Vg as a R—vector space,
equiped with the complex structure —i, if i € L()Jg) is the complex structure of
Y. The identity map Id : ) — Y will be denoted by y — 7, ie ¥ equals y but
considered as an element of ).

If Y is a Hilbert space, then ) inherits also a Hilbert space structure by

W1 192)y = (y1]y2)y-

By definition we have Y* = y#. Note that we have a C—linear identification
V# ~ f# defined as follows: if y € ) and w € Y# then

WY r=wy
This identifies W € Y# with an element of i#. Similarly we have a C—linear
identification Y* ~ P*.

1.3.2. Linear operators. If X;, i = 1,2 are real or complex vector spaces and a €
L(X1, X5) we denote by a* € L(XJ,X[) its transpose. If };, i = 1,2 are complex
vector spaces we denote by a* € L()5,Y5) its adjoint, and by @ € L(Y1,Ys) its
conjugate, defined by ay, = ay;. With the above identifications we have a* = a# =
a#.

1.3.3. Bilinear and sesquilinear forms. If X is a real or complex vector space, a
bilinear form on X is given by a € L(X,X#), its action on a couple (z1,z2) is
denoted by z1-ax;. We denote by L/, (X, X#) the symmetric/antisymmetric forms
on X. a is non-degenerate if Kera = {0}. An antisymmetric, non-degenerate form
o is called a symplectic form on X.

Similarly if ) is a complex vector space, a sesquilinear form on ) is given by a €
L(Y,Y*), its action on a couple (y,y2) is denoted by F;-aya, the last notation being
a reminder that Y* = f#. We denote by Ly /,(Y,Y*) the Hermitian /antiHermitian
forms on ). Non-degenerate forms are defined as in the real case. An antiHermitian,
non-degenerate form o is called a (complex) symplectic form on Y.
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If a € L(Y,Y*) then @ € L(Y,Y*) and with the above identifications we have
(11ay,) = (y1lays) for yi,y2 € V.

1.3.4. Linear operators on Hilbert spaces. The domain of a closed, densely defined
operator a on a Hilbert space H will be denoted by Doma, equipped with the graph
norm, its spectrum by o(a) and its resolvent set by res(a). We will similarly denote
by Dom(@ the domain of a sesquilinear form Q. If Q is closeable we denote by Q¢!
its closure.

If a is selfadjoint on H, we write a > 0 if ¢ > 0 and Kera = {0}. If a > 0
and s € R we denote by a®H the completion of Doma™* for the norm |la™%ul|%.
Equipped with the scalar product (u|v)s = (a™%ula™5v)y, it is a Hilbert space. The
spaces a*H and a~*H form a dual pair for the duality pairing (u|v) = (a™*ula®v)y.

We define similarly the spaces (a)*H for any selfadjoint operator on H. We have
(a)™*H = Doml|a|® for s > 0. We have {(a) *H C: cH C {(a)*H for s > 0 and
(a)? :cH = a*H if 0 & o(a).

If a1, as are selfadjoint on H with aq,as > 0 we write a; < asg if Doma% D Domaé

and a; < cas on Domaé for some ¢ > 0. We write a; ~ az if a1 < ag and as < a;.
If a; ~ ay the Kato-Heinz theorem implies that a; ' ~ a; ' and that a{H = a3H

as Banach spaces for s € [-3, 3].

1.3.5. Quadratic forms. Similarly if q1,q2 are two positive quadratic forms with

gi(u,u) = 0= u =0, we write ¢1 < ¢o if Domg; D Domgs and ¢; < cga on Domgs

and we write g1 ~ g2 if ¢1 < 2 and ¢2 < @3-

1.3.6. Differential operators on manifolds. If X is a smooth manifold and a,b are
differential operators on X the composition aob is denoted by ab. If a is a differential
operator on X and u € C*°(X), then au denotes the composition of a with the
operator of multiplication by u, while (au) € C*°(X) denotes the image of u under
a.

1.3.7. Spaces of distributions. Let X a smooth manifold. Fixing a smooth density
we identify distributions and distributional densities on X. If 2 C X is an open
set with smooth boundary and F(X) C D'(X) is a vector space, we denote by
F(Q) C D'(Q) the space of restrictions of elements of F(X) to Q.

Any u € D’(f) has a unique extension eu € D'(X) with suppeu C Q.

We denote by 0, € D'(R) the Dirac distribution at a € R.

2. SPACETIMES WITH A STATIONARY BIFURCATE KILLING HORIZON

In this section we recall the definition of spacetimes with stationary Killing
horizons, following [KW, S1]. We express various natural objects, like the lapse
function, shift vector field and induced Riemannian metric in Gaussian coordinates
near the bifurcation surface.

We then consider the Wick rotated metric g®"!, obtained by the Wick rotation
t — is in the Killing time ¢, and show that if s belongs to the circle Siyz).—1
of length (2m)x~!, for & the surface gravity of the horizon, g®"“' has a smooth
extension up the the bifurcation surface B. This fundamental fact, already known
for static horizons, see [S1, Sect. 2.2] lies at the basis of the construction of the
HHI state in later sections.

2.1. Bifurcate Killing horizons.

Definition 2.1. A spacetime with a bifurcate Killing horizon is a triple (M, g, V)
such that :
(1) (M,g) is a globally hyperbolic spacetime,
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(2) V is a smooth, complete Killing vector field on (M,g),

(3) B:={zx € M :V(zx) =0} is a compact, connected, orientable submanifold of
codimension 2, called the bifurcation surface,

(4) there exists a smooth, space-like Cauchy hypersurface ¥ with B C X.

If n is the future directed normal vector field to 3, one defines the lapse function
N € C*(X) and shift vector field w, which is a smooth vector field tangent to X,
by

V=Nn+wonX,
ie
N:=-V.gn, w:=V —Nnon X.
Let us denote by y the elements of ¥. The Cauchy surface ¥ is then decomposed
as
Y=%"UBUXt, ¥F:={yeX:£N(y) >0},

ie V is future/past directed over X7,
The spacetime M splits as

M=MtUM UFUP,
where the future cone F := I't(B), the past cone P := I~ (B), the right/left wedges

M* := D(X%), are all globally hyperbolic when equipped with g.
The future cone F may be a black hole. The bifurcate Killing horizon is then

H = O0F UOP.

The Killing vector field V' is tangent to H. In Figure 1 below the vector field V is
represented by arrows.

FIGURE 1.

Definition 2.2. A triple (M,g,V) as in Def. 2.1 is called a spacetime with a
stationary, resp. static bifurcate Killing horizon if V is time-like on ¥\ B, resp.
g-orthogonal to ¥\ B.

2.2. Wedge reflection. Additionally one assumes the existence of a wedge reflec-
tion, see [S1, Def. 2.6].

Definition 2.3. A wedge reflection R for a spacetime (M, g, V) with a stationary
Killing horizon is a diffeomorphism R : M~ UU UM+ =5 M~ UU UM™, where
U is a neighborhood of B in M such that:

(1) R is an isometry of (M~ UU UM, g) which reverses the time orientation,

(2) RoR=1d, R=1d on B,

(3) R*V =V.



2.2.1. Weak wedge reflection. It is known, see [S1, Prop. 2.7] that if R is a wedge
reflection, one can find a Cauchy surface ¥ as in Def. 2.1 such that R : ¥ = X.
The map r := R|y, is called a weak wedge reflection. If the Riemannian metric h is
the restriction of g to X, one has:

(1) r is an isometry of (X,h) with r or = Id,

(2) r=1Id on B,

(3) N = —N, r*w =w.
By (3) above we have r : ¥* =3 BF,

2.3. Klein-Gordon operators. We fix a real function m € C°(M). As in [S1]
we assume that m is stationary w.r.t. the Killing vector field V' and invariant under
the wedge reflection, ie:

(2.1) VeV.m(x) =0, mo R(x) =m(x), z€ MT UM UU.

We also assume that

(2.2) m(x) >md >0, x € M,

ie we consider only massive Klein-Gordon fields. The Klein-Gordon operator is

(2.3) P=—0Og+m.

2.4. Conditions near infinity on X. It will be necessary, in order to control
various energy spaces in Sect. 8, to impose conditions on the Killing vector field V'
near infinity on .

3 U neighborhood of B in ¥ such that:
(H1) V + dw is time-like on ¥\ U for some ¢ > 0,
(H2) N72w'.(VEN), N~'VBw’ are bounded on ¥\ U.

(H1) means that V is uniformly time-like near infinity on ¥. Conditions (H) are
clearly satisfied if (M, g) is for example asymptotic to the Kerr spacetime, near
spatial infinity.

2.5. The surface gravity. The surface gravity is defined by:

/’1}2:

1
fi(vb@vav,ﬁg)va)‘g, k> 0.
It is a fundamental fact, see [KW, Sect. 2|, that x is constant on B and actually
on the whole horizon H.

For w € B let n, € T,,¥ the unit normal to B for h pointing towards X+. We
introduce Gaussian normal coordinates to B in (3, h) by:

]=6,0[xB—=X
X :
() > exph (un)
which is a smooth diffeomorphism from | — §, §[xB to a relatively compact neigh-

borhood U of B in . In the next proposition we express h, N, w and the wedge
reflection r in the local coordinates (u,w) on U. We recall that the elements of ¥
are denoted by y.

Proposition 2.4. On U one has:

(2.4) r(u,w) = (—u,w),
8



and

hy; (y)dy'dy’ = du? + kap(u, w)dw*dw?,
W (Y)dyi = WO (u,w)dy + W (1, W)y,
N(y) = N(u,w)
m (

(y) = m(u,w),

(2.5)

where ko (u, w)dw*dw? is a smooth, u—dependent Riemannian metric on B with:
N(u,w) = u(k + u?d(u?,w)),
(26) w (u,w) = u3b(u?, w), w(u,w) = u?c*(u?,w),
kop(u,w) = dag(u?,w),
m(u,w) = n(u?,w)
for smooth functions b,d,n,c®,dag 3] — €, €[xB — R with
n(0,w) > ¢ >0, ¢ ' < [dap(0,w)] < cll, for some ¢ > 0.

The proof of Prop. 2.4 is given in Appendix A.1l.

2.6. The metric in M™. Let us denote by ®; the flow of the Kiling vector field
V. We identify R x ¥ with M™ by

X:RxZT 3 (ty) — ®4(y) € MT.

0
We have x*V = En and

x'g= —N2(y)dt* + (dy' + w'(y)dt)h;(y)(dy’ + w (y)dt)
= —0*(y)dt® + w;(y)dy'dt + w;(y)dtdy’ + hy;(y)dy'dy’

for v?(y) = (N?(y) — w'(y)h;;(y)w’ (y)). Note that The fact that V is time-like in
MT is equivalent to

(2.7) N?(y) > w'(y)hy; (y)w’ (y),y € =F.
The unit normal vector field to the foliation 3; = {t} x ¥ is

(2.8) n:Nfl(%—w),

Denoting x*g on R x ¥ simply by g, we have |g| = N?|h| and
(2.9 g '=-N207+ N 3(W'0,i0; + W 9,0,5) + (h"? — N>w'w?)9,:0,;.
Since the potential m is invariant under the Killing vector field, we have m =

m(y).

2.7. The Wick rotated metric.

2.7.1. Complex metrics. If X is a smooth manifold, we denote by T5(X) the space
of smooth, real (p, q) tensors on X and by CT#(X) its complexification. An element
k = k,p(z)dz*dz® of CT9(X) which is symmetric and non-degenerate will be called
a complex metric on X.
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2.7.2. The Wick rotated metric. We denote by Sg = [—g, g[ with endpoints iden-
tified the circle of length 5 and

Meucl — Sﬁ X E+’
with variables (s, y). Replacing ¢ by is we obtain the complex metric on Ml
g™ = N(y)ds® + (dy’ + iw’ (y)ds)h;i(y) (dy* + iw" (y)ds)

(2.10) _ ) .
= v (y)ds® +iw;(y)dy’ds + iw;(y)dsdy’ + hjk(y)dyjdyk.

We embed X\ B into M =S5 x ©F by the map

- (0,y) for y € BT,
VIV (8 ) fory € B

where 7 : ¥ — X is the weak wedge reflection.

2.8. The smooth extension.

Proposition 2.5. Assume that 3 = (27)rx !
ME equipped with a smooth complex metric g

(1) a smooth embedding 1 : ¥ — M,

(2) a smooth isometric embedding Xeft(Meud, gl) — (M Bexs, g50¢1), where
Bext = ¢(B)7

(3) an open set Qext such that Oexy = Y(X) and x :]0, g[xEJr 5 Qext \ Bext s

(4) a smooth function Meyx : MES! — R with mex > m3 > 0,

such that:

. Then there exists a smooth manifold

eucl
ext a’nd

er\B: X © 1/% X*mext = m{MCUcl .

_Qext Z+NT(Z_)
> B >+ S/g
Z+
2 0 +
R* x B S x X

FIGURE 2. The embedding x

The proof of Prop. 2.5 is given in Appendix A.2.

3. FREE KLEIN-GORDON FIELDS

In this section we briefly recall some well-known background material on free
quantum Klein-Gordon fields on globally hyperbolic spacetimes. We follow the
presentation in [GW1, Sect. 2] based on charged fields.

3.1. Charged CCR algebra.
10



3.1.1. Charged bosonic fields. Let ) a complex vector space and ¢ € L,(Y,V*) a
non degenerate Hermitian form on ).

The CCR *—algebra CCR(Y, q) is the complex x-algebra generated by symbols
1, 9¥(y),v*(y),y € Y and the relations:

1p(yl + )\y2) = 1p(yl) +X¢(y2)7 Y1,Y2 € yv >\ S (C7
’l/)*(yl + AyQ) = 7//*(y1) + Aw*(yQ)a Y1,Y2 S y7>\ S (Ca
[V(y1), ¥(ye] = [ (1), ¥ (y2)] = 0, [¥(y1), %" (y2)] = ¥1-qy21, y1,92 €V,

Y =v (), ye .
A state w on CCR(Y, q) is (gauge invariant) quasi-free if

- o w . [ 0ifp#a,
01 00 ) GRS R,

There is no loss of generality to restrict oneself to charged fields and gauge invariant
states, see eg the discussion in [GW1, Sect. 2|. It is convenient to associate to w
its (complex) covariances \* € Ly (), Y*) defined by:

W@ (Y1) (y2)) = T1- ATy,

w(*(y2)¥(y1)) = T1- A" Y2,

The following results are well-known, see eg [DG, Sect. 17.1] or [GW1, Sect. 2] for
Prop. 3.1 and [GOW, Prop. 7.1] for Prop. 3.2.

y1,y2 € V.

Proposition 3.1. Two Hermitian forms \* € Ly, (), Y*) are the covariances of a
quasi-free state w on CCR(Y, q) iff

(3.1) ME>0, M- =4¢.

Proposition 3.2. Let ), be the completion of Y for the Hilbertian scalar product
AT + A7. Then the state w on CCR(Y,q) is pure iff there exist linear operators
ct e L(Y,) such that

ct4+e =1, (¢5)?=ct,
(ie ¢* is a pair of complementary projections) and \* = £q o c¢*t.

3.2. Free Klein-Gordon fields. Let P = —0Og + m(z), m € C>°(M,R) a Klein-
Gordon operator on a globally hyperbolic spacetime (M, g) (we use the convention
(1,n — 1) for the Lorentzian signature). Let Gyet/aav be the retarded/advanced
inverses of P and G := G,et — Gagv- We apply the above framework to

Co(M) — .

where (u|v)ys = [, @vdVolg. Denoting by Sols.(P) the space of smooth space-
compact solutions of P¢ = 0, it is well known that

Y=

6] (%,mm-m) 5 [u] > Gu € (Solw(P), q)
is unitary for
(3.2) &1"@2 = i/E(Vqubz - $1Vu¢2)nud0,

where 3 is any spacelike Cauchy hypersurface, n* is the future directed unit normal
vector field to ¥ and do the induced surface density. Setting
. (e} ¢f2 _ oo . Mm2
picznzon (0, ) = fecrme)

11



the map

(%71(.@.)]\4) > [u] = oGu € (C§°(;C?), q)
is unitary for
(3.3) Foqf = /271f0 + fofidos, f= (?j)

In the sequel the x-algebra CCR(), q) where (), ¢) is any of the above equivalent
Hermitian spaces will be denoted by CCR(P).

3.3. Quasi-free states. One restricts attention to quasi-free states on CCR(P)
whose covariances are given by distributions on M x M, ie such that there exists
AT € D'(M x M) with

w(@p([ua])ep* ([ual)) = (ua|A*uz)ar,
w(@* ([uz)) ¢ ([wa])) = (ua] A" ug)ar,

In the sequel the distributions A* € D'(M x M) will be called the spacetime
covariances of the state w.

In (3.4) we identify distributions on M with distributional densities using the
density dV olg and use the notation (u|@)ar, u € C§°(M), ¢ € D'(M) for the duality
bracket. We have then

P(z,0,)A*(2,2") = P(a, 0 ) AT (z,2') = 0,
A (z,2") — A= (z,2") = iG(z, 2').

(3.4) u, uz € Cg°(M).

(3.5)

3.4. Cauchy surface covariances. Using (C5°(3; C?), ) instead of (m i(-|G)m)

one can associate to a quasi-free state its Cauchy surface covariances /\jE defined
by:

(3.6) AF =: (0G)* X (0@).

Using the canonical scalar product (f|f)s := [ f1f1 + fofodos we identify \E
with operators, still denoted by A\* : C§°(%; C?) — D'(%; C?).

3.5. Hadamard states. A quasi-free state is called a Hadamard state, (see [R] for
the neutral case and [GW1] for the complex case) if

(3.7) WE(AE) ¢ NE x NE,

where WF(A)" denotes the 'primed’ wavefront set of A, ie S’ := {((«, &), («/,=¢")) :
((2,8),(2',€")) € S} for S € T*M x T*M, and N'* are the two connected compo-
nents (positive/negative energy shell) of the characteristic manifold:

(3.8) N = {(x,§) e T*M \o: £,g"" (2)§, = 0}.

We recall that T*X \ o denotes the cotangent bundle of X with the zero section
removed.

Large classes of Hadamard states were constructed in terms of their Cauchy
surface covariances in [GW1, GOW] using pseudodifferential calculus on X, see
below for a short summary.

12



3.6. Pseudodifferential operators. We briefly recall the notion of (classical)
pseudodifferential operators on a manifold, referring to [Sh, Sect. 4.3] for details.

For m € R we denote by U (R%) the space of classical pseudodifferential opera-
tors on R?, associated with poly-homogeneous symbols of order m, see eg [Sh, Sect.
3.7].

Let X be a smooth, d—dimensional manifold. Let U C X a precompact chart
open set and ¢ : U — U a chart diffeomorphism, where U C R? is precompact,
open. We denote by ¢* : C°(U) — C3°(U) the map ¢*u(z) := u o ¢(z).

Definition 3.3. A linear continuous map A : C§°(X) — C°°(X) belongs to V™ (X)
if the following condition holds:

(C) Let U C X be precompact open, v : U — U a chart diffeomorphism, x1, x2 €
C(U) and X; = xi o~". Then there exists A € W (RY) such that

(3.9) (") 1 Axay" = X1AXo.

Elements of ¥™(X) are called (classical) pseudodifferential operators of order m
on X.

The subspace of U™ (X) of pseudodifferential operators with properly supported
kernels is denoted by UT(X).

Note that if U (X) = U, e Y(e)(X), then U2°(X) is an algebra, but ¥*(X)
is not, since without the proper support condition, pseudodifferential operators
cannot in general be composed.

To A € U™ (X) one can associate its principal symbol o, (A) € C(T*X \o),
which is homogeneous of degree m in the fiber variable £ in T*M, in {|¢{| > 1}. A
is called elliptic in ¥™(X) at (z0,&0) € T*X \o if opr(A)(z0, &) # 0.

If A € U™(X) there exists (many) A. € ¥7"(X) such that A — A. has a smooth
kernel.

3.7. The Cauchy surface covariances of Hadamard states. We now state
a result which follows directly from a construction of Hadamard states in [GW1,
Subsect. 8.2].

Theorem 3.4. Let w be any Hadamard state for the free Klein-Gordon field on
(M,g) and ¥ a smooth space-like Cauchy surface. Then its Cauchy surface covari-
ances A\t are 2 x 2 matrices with entries in W (X).

We refer the reader to [G, Thm. 3.2] for the proof.

4. GREEN OPERATORS AND CALDERON PROJECTORS

In this section we collect some formulas expressing the Green operators, ie in-
verses for abstract operators of the form 0s; + b, where s belongs either to R or to
the circle Sg. We also compute various Calderén projectors. The formulas in this
section will be used later in Sect. 6 to express Calderén projectors for second order
elliptic operators obtained from abstract Klein-Gordon operators by Wick rotation.

4.1. Green operators and Calder6on projectors. Let b a selfadjoint operator

on a Hilbert space h with Kerb = {0}. We recall that Sg = [—g, g[ is the circle of
length 5. For 0 < 8 < oo we set
(4.10) hs = L*(Sp) @b, for § < 00, hoo = L*(R) @b,

The operator 05 is anti-selfadjoint on hg with its natural domain. Denoting still by
b the extension of b to hz we see that Bg = J; + b with domain Domd, N Domb is
normal.
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4.1.1. Green operators. If 0 € o(b) then 0 € o(Bg) but we can still make sense out
of B,B_1 as

B3l (=9 +6%)Ehs — b

A straightforward computation shows that:

(4.11) B (s) = / Gools — ) (s)ds', | € CY(R; ),
for
(4.12) Goo(s) = = (g (5) Igs () — T (5) T ()

Similarly for 5 < oo, we have

(4.13) Bﬁ_lf(s) = / Gp(s — &) f(s')ds', f € C%Sp;h),
Se
for G(s) defined as follows: we set
Gals) = o~ (T (5)(1 — )~ — o (5)(1 ™)), s[5, ]

(note that Gg(g) =Ga(— g)) and extend it to s € R by f—periodicity. In particular
we have:

(414)  Gp(s) = (Tar ()1 —e )7 =T ()1 = ™) 7"), s €[5, B].
4.1.2. Calderén projectors for Bu. We set It = +]0,4+o0[. In the sequel we use
the notation recalled in 1.3.7. If F € CO(I*;h) satisfies (0, + b)F = 0 in I* we set

It F =F(0%) = lim F(s).

s—0*t

Denoting by i% F the extension of F by 0 in R\ I* we have
(05 + b)it F = +60(s) @ TE F,
hence iX F = £+B'6y(s) @ f for f = 't F. This implies formally that
f =415 0 B! (do(s) @ f)

if f = TELF for F solving (95 + b)F = 0 in I£. This motivates the following
definition:

Definition 4.1. The Calderén projectors CL € B(h) are:
(4.15) CEf = 4T% 0 B (6o(5) @ f), f€h.
Proposition 4.2. We have:

(4.16) CE = Tg= (D).

It follows that CL are bounded projections on b with CL + C = 1.

Proof. We approximate dp(-) by a sequence ny(n-) where x € C5°(R) with
[ x(s)ds = 1 and see from (4.12) that CE are well defined and (4.16) follows
directly from (4.12). O
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4.1.3. Calderon projectors for Bg. For f < oo we set Ig[ = i](),g[. If Fe
@(Iﬁi; h) satisfies (05 +b)F =0 in IBi we set:

_ 8
) rtF=F0erd )= FeryF,
4.17
By_
I,F=F0)aFE ) =T For F
Denoting by z%F the extension of F' by 0 in Sg \Igt, we have
8
(95 + D)t F = (0o (s) O TS F = 8, (s) @ T F),
which as before leads to the following definition:
Definition 4.3. The Calder6n projectors C; € B(hadh) are:
(4.18) CEf:=4T5 0 By (0o(s) ® O — 65 (s)® f &), f=fD @ f® epanp.
Proposition 4.4. We have:
— — 1. B
e e e
B (1 _ e—ﬁb)—le—ib (1 _ eﬂb)—l ’
(1 — efb)~1 —e2b(1 — efb)~1
—e~gb(1—e Bb)~1l (1 — e Bb)-1
On 17(b)h @ 1;(b)y for any I € R* one has:
ot ok o - _
CyCy=Cgz, Cy+C5 =1

(4.19)
C; =

Note that if 0 € o(b) then C[ﬂf are unbounded on h @ b.
Proof. The proof of (4.19) is a routine computation, using (4.14). The second
statement is checked using the identity (1 —a)™' + (1 —a=')"! =1 for a = e7°.
O

5. VACUA AND KMS STATES FOR STABLE SYMPLECTIC DYNAMICS

In this section we recall well-known formulas for the covariances of the vacuum
and KMS states associated to a symplectic flow on a symplectic space. The sym-
plectic flow has to be stable, ie generated by a positive classical energy. In concrete
situations the symplectic flow is generated by a time-like Killing vector field. We
also recall the definition of the double KMS state, due to Kay [K1, K2]|, which is
related to the Araki-Woods representation of a KMS state.

The new result of this section is that the covariances of the vacuum and double
KMS states can be expressed by the Calderdn projectors introduced in Sect. 4.
Note that only the double KMS states will be important for the construction of the
HHI state later on. Nevertheless the case of vacuum state is simpler and we include
it for pedagogical reasons.

5.1. Weakly stable symplectic dynamics. We describe now a framework for
symplectic dynamics, which can be found in [DG, Sect. 18.2.1], called there a
weakly stable symplectic dynamics.

Let (V,q) a Hermitian space and E € Ly(),Y*) with E > 0, the function
Y 3 y — y-Fy being the classical energy. The energy space Ve, is the completion
of Y for the scalar product (y1|y2)en = 7;-Ey2and is a complex Hilbert space.

Let r, = €'** be a strongly continuous unitary group on Y., with selfadjoint
generator b. We assume that r, : Y — Y, V) C Domb, Kerb = {0} and:

(5.1) U1-Ey2 =71 -qby2, y1,y2 € V.
15



The meaning of (5.1) is that {r:}+cr is the symplectic evolution group associated

to the classical energy 3-Ey and the symplectic form o =i~ !q.

5.1.1. Dynamical Hilbert space. It is convenient, in connection with the quantiza-
tion of the symplectic flow {r;}:cr, to introduce the dynamical Hilbert space

Yayn = [b]? Ven,
see [DG, Subsect. 18.2.1|, equipped with the scalar product (y1|y2)dayn = (y1/]6] ™ y2)en-
The group {r; }+cr extends obviously as a unitary group on Y4y,. If we denote the
generator of 74 on Ven/dyn DY ben/dyn then bey = b and bayn = |b|%ben|b|’% since
|b|_% : Vayn — Yen is unitary. Therefore we will denote both generators by the
same letter b.
Moreover from (5.1) we obtain that:

(5.2) U1-qy2 = (y1lsgn(b)y2)yay.
so ¢ is a bounded sesquilinear form on Yiyn, but in general not on Ye,, unless

0 ¢ a(b).

5.2. Vacuum state. We now recall the definition of the vacuum state wy,. asso-
ciated to the dynamics {r:}icr.

Definition 5.1. The vacuum state wyac @s defined by the covariances:

(5.3) U1 Aacy2 = (y1[Tgx (b)y2) ayn-
From (5.2) we obtain that:

(5.4) et =T oq7 = Tg= (D).

It follows from Def. 4.1 that:

(5.5) Cuae = Caes

where the Calderén projectors CL are defined in Def. 4.1, for h = YVayn-

5.3. KMS state. Let us now define the 3—KMS state wg associated to the dy-
namics {r¢}rer.

Definition 5.2. The $-KMS state wg is defined by the covariances:

(5.6) §1'>‘;3F?JZ =7,-q(1 —e PP~y
Ui Azy2 = ¥1-q(e” — 1) Ly,.

5.4. Double S—KMS states. The double 5—KMS state see [K1, K2| can easily
be related to the Araki- Woods representation of wg, see eg [DG, Subsect. 17.1.5],
that we first briefly recall. In the sequel Vayn will be simply denoted by V.

5.4.1. Araki-Woods representation. Let us denote by Z the space Vg equipped with
the complex structure
j=1osgn(b)

and the scalar product:

(21]22)z == (Y1+|y2+ )y + (y2—|y1-)y,
for y+ := lg+(b)y and z = y (considered as an element of Z). Z is a Hilbert
space equal to YV, @& Y_ for Vi = T+ (b)Y. Note that since [b,j] = 0, b induces a
selfadjoint operator on Z| still denoted by b. We set
(5.7) pi= (" —1)7,

which is a selfadjoint operator on Z.
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We also introduce the Hilbert space Z@® Z and the bosonic Fock space (2 @Z),
see eg [DG, Subsect. 3.3.1]. For (z1,%2) € Z® Z we denote by a*)(z;,%3) the Fock
creation /annihilation operators acting on I'\(Z @ Z).

The left/right Araki-Woods creation/annihilation operators are defined by:

ai (2) = a*((1 4 p)#2,0) + a(0, p?2),
(5.8) ai(z) = a((1+ p)72,0) + a*(0,p7%),
' a3(z) = a(p?2,0) +a*(0, (14 7)),
ax(Z) = a*(p22,0) + a(0, (1 + p)2%2).
One has:
[a1(21), af (22)] = (21]22) 21, [a:(Z1), 07 (Z2)] = (Z1]72) =1,

all other commutators being equal to 0. Setting z4+ = y+ for y € ) we set

(5.9) Ury) = ai*(i+) + al(z:), i(y) = al(zj) + ai*(Z:) e
Ur(y) = ar(Z-) + ax(Z4), ey) == () + ai (Z4),

An easy computation show that
(5.10) [1(y1), ¥f (y2)] = Tr-qy, [¥e(y1), 07 (2)] = =1 -qye,
all other commutators being equal to 0. Moreover ) > y +— wl*/r(y) is C-linear.
This means that Y 3> y — 1/11(/*2 (y) induces two commuting representations of
CCR(Y, +q).
From (5.9) we obtain that:
Q1Y) e (¥2)Dr, (za7) = T1- A5 v2,
QY (y2) 01 (1) D1, z67) = Y1 A5 Y2
(QWl(yz)q/’l(yl)Q)rs(z@E) = (Qwr(yz)l/}]*(yl)g)rs(z@}) =0,

where 2 is the vacuum vector in I's(Z @ Z). If maw, is the representation of

CCR(Y, q) defined by maw 1(4:))(y) = ¢ (), then (waw 1, [s(Z @ Z),Q) is the
GNS representation associated to the J—KMS state wg.

5.4.2. The double B—KMS state. To define the double S—KMS state associated to
wg we set

Recalling that ¢ = i~'q, this corresponds to add to the real symplectic space
(Vr, Reo) its anti-symplectic copy (Vr, —Rec). From (5.10) we see that X 3 x —
\I/E:‘?V(m) for

(5.11) Ui (@) = o) + ), 2 = (y,y) € X

induces a representation of CCR(X, Q).

Definition 5.3. The double 8—KMS state wq is the quasi-free state on CCR(X, Q)
defined by

wa (W) (21) T (23)) = (QUSGR (21) by (22) Q) z57), 71,72 € X

Proposition 5.4. wq is a pure, gauge invariant quasi-free state on CCR(X, Q). If
)\(jf are the covariances of wq we have

fl')\ixg = :I:El-QC';;xz, T1,x0 € X.

where C'ﬁjE is the Calderon projectors for Bg defined in Def. 4.3.
17



Remark 5.5. Let us denote (), q) by (V1,q1) and let (Y2, q2) another Hermitian
space with I : (V2,q2) — (D1, —q1) unitary. Then wq induces a quasi-free state on
CCR(X, ® X, 1 @ q2). Its covariances are

(o 0o 7)==(8 )00 ~)e(57)
Proof of Prop. 5.4. We obtain from (5.9), (5.8):
Aw (@) = af (20)Q + a(22)Q + af (ZL)Q + a. ()2
= ((p+Dizy + iz}, 527 + (p+1)37.),
Vaw (2)Q = a1(24)Q2 + af (2-)Q + a:(z1)2 + 0] (2, )02
= ((p+ 1%z +p22 527+ (p+1):7,),

(5.12)

as elements of Z @ Z. From (5.12) we immediately obtain that
wa(Vaw (21)Waw (72)) = wa(Vaw (21) Vaw (22)) = 0,
ie wy is gauge invariant for the complex structure i @i of X'. We have next
wa(Vaw (21)Vaw (22)) = (Vaw (21) Q2 jw (22)2) 767
= (4 D3ys+pboilo+ Do+ phupy )
+ (P + (o + VAl _lpye + (0 + 1)%yéf)y

If \T =: Qo CJ, where Q = ¢ & —¢, we obtain from (5.2) that:

C+_< (p+ 1)1y — pll —p2(p+ 121y +p2(p+1)7 1 )
d — l 1 1 5
S(p+1)E0y —pE(p+1)21 —pli + (p+ 1)1
for 1 = Ig+(b). We compute:
(1+p)y — pl_

— (1= )T, — (1 — o) = (1 - e 8)
—pr(14p)2 1y +p2(1+p)21_

_ _efﬂb/Z(l _ efﬁb)fl =+ eﬁb/2(1 _ e[ﬁb)fl _ eﬁb/Z(l _ eﬁb)fl
p2(L+p)2 1y —p2 (14 p)2 1

= P21 Ph) L = o Bb/2(] — o= Bb)~1

—ply +(1+p)1_
= —e P(1—eP)7 11 + (1 €)1 = (1—eft)!
Therefore Cg‘ = C’;. Since Cg‘ + Cy =1, we have also Cy = Cj.
To see that wq is pure, we have to check that the representation of the Weyl
algebra CCRVY! (X, Q) associated to \I/XF\;V(:E), x € X is irreducible. This follows
from the definition (5.11) of W(3, and statements (5), (7) in [DG, Thm. 17.24]. O

6. ABSTRACT KLEIN-GORDON EQUATIONS

In this section we collect some results about abstract Klein-Gordon equations of
the form

(6.1) (0 + ") (0 — @) + hod = 0,

where (;NS : R — H, H is some Hilbert space and ho, @ are linear operators on #. Such
Klein-Gordon equations arise from stationary metrics on a spacetime M =R x .S,
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with Killing vector field equal to %, when w represent the shift vector field and the
lapse function is equal to 1. The case of general stationary Klein-Gordon operators
will be considered later in Sect. 8.

We will also consider the Wick rotated operator K, g obtained by setting ¢ = is,
where s belongs either to R or to Sg. Using sesquilinear form techniques we give a

rigorous meaning to its inverse K 5 ! and relate it to the Green operators in Sect.
4.

6.1. Hypotheses. We will assume the following hypotheses:
i) hy is selfadjoint on H and kg > 0,

W
iii) if h:= hg — @*w then h ~ h.

=

=

ol ™

We can rewrite (6.1) as

(6.3) 02¢ — 2ikdyd + hep = 0,
where k = (2i)"!(& — @*), which was considered in [GGH]| in a more general
situation.

6.2. Quadratic pencils. One associates to (6.3) the quadratic pencil
p(z) = 2(2k — 2) + h = (iz + ©*)(iz — @) + ho € B({ho) " *H, (ho)?H), z € C,

obtained by replacing 0; by iz, and denotes by p(ﬁ, l~c) the set of z € C such that
p(z) : (ho) 2 H = <h0)_%7-l; Since h > 0 it follows from [GGH, Prop. 2.3| that
{z : |Imz| > |Rez| + ¢} C p(h, k) for some ¢y > 0.

6.3. First order system. Setting

(6.4) ft) = 416 := (i—l(aﬂtzb)qf?(tg N (?1)8) ’

(6.1) is formally rewritten as
P e F —iw 1
(6.5) 6tf—1Hf,H—< o iw*)'
The conserved energy is
(6.6) FEf =|fi —iwfoll® + (folhfo),
which is positive definite by (6.2). The Hilbert space associated to F will be denoted
1

~ -1 ~ L1
by £. It equals h, > H@OH as a topological vector space. We set also £* := HDhgH.
The following proposition will be proved in Subsect. 6.5.

—iw 1

Proposition 6.1. The operator H = < i - ) s bounded from Etol*. It
0

induces on € the operator H defined by
DomH = {fe & - Hf e ENE*Y.
H is a densely defined selfadjoint operator on & with res(H) = p(h, k).
Note that (€,£*) form a non degenerate dual pair for the charge
(6.7) f-af = (hlfo)a + (ol fz FE€ Jeé,

and one has

S Y

Bf=J.aif.f e
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6.4. The Wick rotated operator. Setting formally ¢ = is we obtain the formal
expression

(6.8) K = —(0s +1w*)(9s — i) + ho.

To give a meaning to (6.8), we will use sesquilinear forms techniques. Let us set as
in Sect. 4.1 for 0 < 8 < o0:

(6.9) Hs = L3 (Sp) @ H, for B < 00, Heo = L*(R) @ H.
We consider the sesquilinear form associated to K:
Qp(u,u) = ||8Su\|%ﬂ + (u\ﬁu)gﬂ — i(Osuldu)y, — i(@uldsu)y,,
with domain DomQp = (—02 + ﬁ0>_%7-lg, where 0, is equipped with its natural
domain on Hg. From hypotheses (6.2) we obtain that
ReQp(u, u) ~ ||85u\|%5 + (u\fzou)ﬂﬂ, TmQs(u, u)| < CReQp(u, u),

hence Qg is a closed sectorial form. By Lax-Milgram theorem Q g induces a bound-
edly invertible operator
(610) Kﬁ . (—83 + }NL())_%’}:[Q l) (—8? + B())%’}:lg.

We can apply the results of Subsect. 4.1 setting h = &, b = H, see (4.10) for the
notation used, and obtain an operator

Os+ H:E5 > (—07 + H)2E.
The relation between f(ﬁ_l and 9, 4+ H is given by the following proposition. Below

we denote by m; the maps m;f = f; for f = (j;o).
1

Proposition 6.2. One has
(6.11) Ki' =m0 + H) 7.
6.5. Proofs of Props. 6.1 and 6.2.

6.5.1. Preparations. We will prove Props. 6.1, 6.2 using results in [GGH]. There
the form (6.3) of the Klein-Gordon equation is used and instead of (6.4) one sets:

(6.12) gi= (r%&) 7

(6.3) is formally rewritten as
P 0 1

9-Eg = lg1]1” + (90lhgo)-
The Hilbert space &€ naturally associated to E equals again Ba
If f is given by (6.4) and g by (6.12) one has

fogforUz(.]l~ (ﬁ),

The conserved energy is

1
2

HoH.

iw

and
(6.13) U&= E (UglUg)s = (glg)e-
Formally one has H = U HU!, andAsince U:£E5€Eis unitary, Prop. 6.1 follows
if we prove the analogous result for H. One sets then

~ ~ ~1 -

E i =HBhH,
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which forms again a dual pair with & for
g-49' = (g1 +igo|90) 5, + (90lg1 + 0gp), g€ E€,,9' € E”.
We have of course ¢ = U*qU.

6.5.2. Proof of Prop. 6.1. The matrix H induces a bounded operator H : & — £*.
One denotes by H the linear operator induced by H on €. Its domain is

DomH = {ge € :Hge EnE*).

Note that although in general £ is not included in &€ *) the intersection ENEris

well defined. In fact the intersections H N ila %7:1 and H N }Nlé H are well defined, as
follows easily from the spectral theorem. In concrete applications, where iLo, W are
differential operators on some manifold NV, one can also consider these intersections
inside D’ (N).

It follows then from [GGH, Prop. 5.8, Thm. 5.9], and the fact that there exists
z # 0 in p(h k), that FI with the domain above is a densely defined selfadjoint
operator on & with res(H) = p(h, k). Setting

H:=UHU!
completes the proof of Prop. 6.1.

6.5.3. Proof of Prop. 6.2. One can express the resolvent (H 2)~! using p(z2) as
follows: if z € p(h, k) then:

(6.14) (H—2)"' = p(z)! ( 2 }12’“ il ) € BE,&).

Note that (6.14) is different from the formula found in [GGH, Prop. 5. 8] because
weaker assumptions on &, k were used there. In our case using that k|hg|™ : € B(H)
one deduces from [GGH, Lemma 2.2] that

p(2) : H+ |ho|2H — (ho) 2 H C HO |ho| 2 H, z € p(h, k).
Using this fact it is straightforward to show that the rhs in (6.14) maps € into itself.

In general we have 0 ¢ p(h, k) hence 0 € o(H) but H~' is well defined as

.\ _9oh—11 RH-1 - . -
(6.15) = ( ”]Ll K ho > € B(E,|h| " " H e H)
which corresponds to (6.14) for z = 0.

We have KerH = {0} since Hg = 0 implies g1 = 0,hgo = 0 and h is injective.
Therefore we can apply the results of Subsect. 4.1 to construct (9s + H )~1 for
b=H, h =¢&. As before we introduce the Hilbert spaces Hg and &3 for 8 €]0, oo].

Using Fourier transform in s either on R for 8 = oo or on Sg for 8 < 0o we can

express (Js + H')’l using (6.14), replacing z by —d;. We claim that for f(g defined
in Subsect. 6.4 we have

(6.16) K" =70(0s + H) ',

which will prove Prop. 6.2 since mU ™! = my and Un} = m}.
Let us prove (6.16). We have:

(=02 + ho) ¥ Hy = |95 Hs + hE Hg,

(0% + H?)2E5 = |0,|E5 + | H|E5.
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- - 1 - -
If v = Oyu € |8,|Hg then 7iv = dyniu € 0,Ep. Similarly if v = hiu € |ho|2Hg
~ ~ 1
~ [7-173 g
then nfv = H h (?02 %) € HEs. In conclusion we have shown that

i (—0? + Eo)%ﬁg — (02 + ffz)%gg continuously.
Next if g € €5 and (9, + H)g = (2) for v € (=92 + ho)2Hg we have

dsgo+ g1 =0, Kgo =,

hence 0599 € Hg, hO go € Hg and Kgo = v, which shows that (05 + ﬂ)*lwfv =
KB v. This completes the proof of (6.16). O

7. VACUA AND KMS STATES FOR ABSTRACT KLEIN-GORDON EQUATIONS

In this section we consider vacuum and KMS states for abstract, time-independent
Klein-Gordon equations, which can be reduced to the framework of Sect. 5. We
will show that the covariances of the vacuum and double S-KMS states can be
expressed by the Calderén projectors defined in Sect. 5.

7.1. Vacua and KMS states. Let us consider an abstract Klein-Gordon equation
(8 + ") (9 — W)p + hod = 0,
as in Sect. 6, where ¢ : R — H and H is a Hilbert space. We denote by
= (O +w*) (0 — W) + ho

the corresponding Klein-Gordon operator. In the sequel we use the notation intro-
duced in Subsect. 5.1.

The assumptions corresponding to those in Subsect. 5.1 are as follows:

We assume that there exists a dense subspace D C H and set

@) Y=DeD Faf= (i + Gl F= (P) e

We fix linear operators 710, W, w* on H with domain D such that:
(ulhou) > 0, (w*ulv) = (u|@v), u,v € D,

| ul|? < (1 = 0)(ulhou), |lw*ul? < c(ulhou), u e D for ¢ > 0,0 < 4§ < 1.

(7.2)

Setting Go(u, u) = (u|hou) with Domgy = D, it follows that go is closeable and we
still denote by ho the operator associated to q , ie the Friedrichs extension of hg
on D. We assume that Kerhg = {0} and deduce then from (7. 2) that hypotheses

(6.2) are satisfied by ho, W, w*. By construction D is dense in h 27—[
We set then

(7.3) F-Ef = (fle = I —i@foll? + (folhfo), fed.
and by the density of D in ﬁg%’;’:[ we obtain that Y., = £. Setting then

. —iw 1
b_H_( ho lw)

where H is defined as a selfadjoint operator on € by Prop. 6.1, we see that the
identity (5.1) follows from (7.1), (7.3).

We can then apply Subsects. 5.2, 5.3, 5.4 and define the vacuum state @yac,
the B-KMS state g and the double S-KMS state wq associated to the symplectic
dynamics ry = et
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7.2. The Calder6on projectors. In Subsect. 6.4 we defined the Wick rotated
operators

Kp = —(0s + 1w0*)(ds — i) + ho
and the Hilbert spaces H for 0 < § < oo defined in (6.9). We now define Calderon
projectors for K 8, which are similar to the Calderén projectors for the operators
Bg =05 + H, acting on the Hilbert spaces g’@, defined in 4.1.2 and 4.1.3.

7.2.1. Calderon projectors for K. We follow the construction and notation in
4.1.2, in particular I£ = 4]0, +oo[, and L is the extension by 0 in R\ IZ. If
@ € C°(R;H) we denote by 7@ the trace of @ at s = 0:

Fooll = <_(as li(?%)&(O)) ’

whose formal adjoint 7% is given by:
509 = 05(s) ® g1 + Go(s) ® (Jo — 10" G1)-
If & € CO(IE; H) satisfies Kt = 0 in I£ we set

At~ a(0%) _ (9%
Tt = (—(as —iw)a(0%)) ~ \gi )
We have formally

KociZi(s) = £(=06)(s) @ Go + 0o(s) ® (§1 — i0* o))

= F45,54,

Pt 2iw*  —1
5o (30 Y.

It follows that i @ = :FK 15 S g for g = 'yoou This implies formally that

for

7= Fre K 9557
if § = 4L for @ solving K@ =0 in It . This leads to the following definition.
Definition 7.1. The Calderon projectors ¢t are
(7.4) — RS,
Proposition 7.2. We have:

==

where C’g':c are the Calderén projectors for Bog = 85+ b, with b= H, b = £, defined
in Def. 4.1.

;&) with (05 + H)F(s) =0 in
= —(0s —iw)u(s) in 1L which
(s) = dog(s) ® g for g = TLF

Proof. We prove only the + case. Let F € CO(I%
It If a(s) = Fy(s) we have Ki(s) = 0 and Fi(s )
implies that It F = 3% 4. We have (95 + H)it F
which implies that
Kil Fy(s) = =6)(5) © Jo + do(s) ® (g1 — ith*o)-
This implies using the relation between f(o_ol and (95 + f[)_l in Prop. 6.2 that:
Ctg= Tf (a + H)" Y6 ® §)

= ALK (=8)(s) ® go + do(s) ® (g1 — 10" o)) = ¢&.9. O
From Subsect. 5.2 we obtain the following result, expressing the covariances of
the vacuum state @y, for P in terms of the Calderén projectors Efo for the Wick
rotated operator Ko
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Proposition 7.3. The covariances of the vacuum state wya. are equal to:

PE=
Avac

=4Goét,

7.2.2. Calderon projectors for K 5. We follows now the construction and notation
in 4.1.3, in particular IBjE = 4]0, g[ and z?; is the extension by 0 in Sg \ Igc. If
@ € CO(Sp; H) we denote by i the vector obtained from its traces at s = 0 and

_ B.

for

Vg a = (_(as 7:—6(?33)@(0)) : ﬁ)ﬂ - ((85 —ﬁi(g))ﬂ(g)> '

Note the change of sign in the second component of ﬁ<§>a, which corresponds to
choosing the exterior normal derivative to Ig. We have

~ % ~(0)x* ,.é*
7/3:72) +7§2)

)

for
5 FO = y(s) @ £ + do(s) @ (£ — 1 1),

(L)« (8 s g . s
357 = =8y () @ [P +65(s) @ (f5") +1w f).
Ifue @(Iﬂi;’}—z) satisfies K@ = 0 in Iﬁi we set:

~(0)£ ~ ESE.
7[(30) (%)

Ve =qy u @y, i,

Ay = ((as a(?;))a(oi)) A= ((85 fl(j)%)(¢§)) '

The same computation as before shows that if

for

one has:
Risi= (=) 03" + o) & G~ 03
+(s MC (&) (D)
(7.5) §(8)®go + §(8)®(gl + iw* g, )
~ By ~
= F (55050 455 5(‘3)9(5))’
for
c(0) 2iw* -1 a8y _ —2iw* -1
(7.6) 5_<]1 0>,52_( ot 1y,

Again this leads to the following definition.

Definition 7.4. The Calder6n projectors Ejﬂt are
~ R ~(8y (B
&G = F5 K5 35(80n 0 + 5§ (®)),

where (/3§ = §(0/2).
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Proposition 7.5. On has
G=1eT)oCio(laTl)™, méaf,
where C’Bi are the Calderon projectors for Bg = 0s + b, with b = H,h=E, defined

in Def. 4.8, and T = < 2)1 _0]1 )
Proof. We prove only the + case. Let F' € @(Ig; &) with (9, + H)F(s) = 0 in
I If @(s) = Fy(s) we have Ki(s) = 0 and Fy(s) = —(0s — ib)a(s) in I]. This
implies that

7(@0”71 _ F[SOHF, ﬁég)ﬂl _ ( g)l ,0]1 ) F(ﬁg)+Fa

28
where Fg))Jr, Fgf '* are defined in (4.17). Setting

§=7iu f=T}F,

we can rewrite this identity as

(7.7) i= a1/ forT:((ljl _0]1>

Next we have
(D5 + H)if F = do(s) @ [ = 55 (5) © /)

where f = fO @ f([’;)7 which implies that:
Kifi= (=0(s) @ 3" +6o(s) @ (" =" f3”)
/ (%) (B (B)
+(5§(5) ® fo? + 5%(5) @ (=f1? +i0 fy?")).

If we compare this with the first line in (7.5) and use also the relation between K 5 !
and (95 + H)~' in Prop. 6.2 we obtain that ég =M@T)oCqo(laT) " as
claimed. O

As in Prop. 7.3 we can using Subsect. 5.4 express the covariances of the double
B-KMS state @q for P in terms of the Calderén projectors 6? for the Wick rotated

operator f(ﬁ.
Proposition 7.6. The covariances of the double B-KMS state for P are equal to
M =EQo(laT) 1), for Q=% —q.

8. KLEIN-GORDON EQUATIONS ON STATIONARY SPACETIMES

In this section we consider Klein-Gordon equations on stationary spacetimes. If
the lapse function N associated to the Killing vector field w is equal to 1, one can
directly reduce oneself to the situation of Sect. 7. In general one has to replace
the Klein-Gordon operator P by P = NPN, which has the same purpose as a
conformal transformation.

As an application we consider the Klein-Gordon operator P in M™ and express
the covariances of the double 5-KMS state in M~ U M™ using the Calderén pro-
jectors for the elliptic operator Kz obtained from P by Wick rotation in the Killing
time coordinate ¢.

8.1. Klein-Gordon equations on stationary spacetimes.
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8.1.1. Stationary metrics. Let (S,h) a Riemannian manifold, N € C*>°(S), N > 0
and w' a vector field on S. Let us denote by y the elements of S. We define the
Lorentzian metric g on M =R x §:

g= —N2(y)dt* + h;;(y)(dy’ + w'(y)dt)(dy’ + wI (y)dt).

We assume that {0} x S is a Cauchy surface for (M, g). Such spacetimes are called
standard stationary spacetimes in the terminology of [S2].

The vector field % is Killing for g and is time-like iff

(8.1) N*(y) > w'(y)hi;(y)w (y), y € S.

We will need later to impose the following stronger condition:

Definition 8.1. The Killing vector field % is uniformly time-like if there exists
0 <6 <1 such that:

(1-08)N?(y) > w'(y)hy;(y)w/ (y), z € S.

We have:

(82 gl = Nlhln = N2 ),

where n is the future directed unit normal to the foliation S; = {t} x S.

8.1.2. Stationary Klein-Gordon operators. We consider a stationary Klein-Gordon
operator on (M, g):

(8.3) P =—-0g+m(y), me C*(S;R).
We will always assume that
(84) m(y) = mg, mo >0,

ie that the Klein-Gordon equation is massive. Setting

(8.5) ho :=V*h™'V +m, w:=w"0,,
we have
(8.6) P = (9, +w*)N"%(8, — w) + ho,

where in (8.5), (8.6) the adjoints are computed with respect to the scalar product
mmMZ/mwm%mL
M

8.1.3. Hilbert spaces. We denote by L?(M) the Hilbert space associated to the
scalar product (-|-)as and by H = L2(S, |h|2dy) the Hilbert space associated to the
scalar product

mmﬂz/mm%y
S

We will also need the Hilbert space H = L3(S, N|h|%dy) associated to the scalar
product

mmﬁ:/mNmﬁ%
S

so that L2(M) = L*(R, dt; H).
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8.1.4. An operator inequality. The inequality in Lemma 8.2 below is understood as
an operator inequality on .

0
Lemma 8.2. Assume that — is uniformly time-like. Then

ot
(1 —=368)ho > w*N?w on C°(S).

Proof. Let X a real vector space, k € Lg(X,X#) strictly positive and ¢ € X.
Then for v = ke € X# and £ € CA# we have

(€ = (€le)y) kHE — (€le)y)
= &k'€—2Re((lc)y-k1E) + [(E]e) Pyk Ty
= k76— (2 cko)lElo)f?,

hence

k™! —[e)(e] > (1 — cke)le)(d].
Replacing k by (1 — §) 'k shows that if (1 — ) > ¢-ke we have
(8.7) (1=0)k™" > |c){c|.

For u € C§°(S) we write
(ul((1 - )ho— w*N~w)u)y
=[5 0,((1 = 8)h (y) — w'(y)N>w (y))dys u(y)N|h| 2 dy.

Applying (8.7) under the integral sign for k = h;;(y), ¢ = N~ (y)w'(y) we obtain
the lemma. O

8.2. Selfadjoint operators. In the rest of this section we will assume that % is
uniformly time-like.

Let go(u,u) = (ulhou)y with Domgy = Cg°(S). The form qq is closeable and
we denote still denote by hg the selfadjoint operator on H associated to qcl, ie the
Friedrichs extension of hy on C§°(S). We have:

ho  hy *H 5 Wi A
Note that ha%’}:{, C H since hg > m3. We set also
(8.8) do(u,u) = qo(Nu, Nu)z, Domgy = C5°(5),

and denote by ho the selfadjoint operator on H associated to o, which formally
equals NhoN. From (8.8) we obtain that

(8.9) N:hg®H S by ®H, N:hi#H s hit,
and we have:
(8.10) hio = NhoN as an identity in B(hg *H, hi H).

We also set

w=N"1wN = N’lwi-ﬁyiN,
(8.11) B N -
= Nw*N~" = —|h|720,:-w'|h|2,

with domain C§°(S).
Let us introduce the assumption

(8.12) N72w'.(VEN), N"'VPw' are bounded on S.
Lemma 8.3. Assume (8.12). Then hg,w,w* satisfy the conditions (7.2) for D =

C§e(9).
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Proof. We have seen in Lemma 8.2 that w*N~2w < (1 — §)hg on C§°(S), which
implies @w*m < (1 —8)hg on C§°(S). Let (y',...,y?) be local coordinates on S. We
have

Wt = —w0, |h|% i W |h| ) = w0, — Viw

Condition (8.12) implies that w* = —w +r, where r € C*°(S5, TN~ Lis bounded on
H. The inequality ww* < Chy follows from w*w < (1-— 5)h0 and m3N? < ho.

8.3. Associated first order system. We set:

(8.13) 016 = (ilNl(%(tt)_ w)¢(t)) =/= (?ﬁ) ’

and rewrite P¢ = 0 as:

_ . —iN—1 1 -
(8.14) N 18tf1Hf,H< 1h0 v it N-1 > feCs(S;C?).

The conserved energy is
(8.15) f-Ef = Il f1— iN_l’wf()H?;L + (fo|hfo)7:l, h=hy—w*N 2w,
and the conserved charge is

faf = (filfo)n + (folfr)n

1. .
The energy space £ associated to E equals h§ H @ H as topological vector spaces.

8.4. Reduction. We now introduce the Klein-Gordon operator
P =NPN = (0, + 0*)(0 — @) + ho,

which is of the form considered in Sects. 6, 7. The operators g;, H, the energy E
and charge ¢ are defined as in Subsect. 6.3:

0= (rl(aﬁftzm&(w) = ( [ ) |

}N' f=|f1— i@fOHQ" + (fo\ilfo) 7

f' ~Z(JE1|J?0) fo|f1) € Cy° (55(@2)-
Setting

. N 0 . 1 0

10 (N30,
we have:
(8.17) oeN =Zp, N'0, —iH = 7'(0, —iH)Z 1,
(8.18) Z*EZ =E, Z*qZ = G on C°(S;C?).

o 2H @®H, and from (8.9)

I\]‘H ~—

We saw that the energy space £ associated to E equal
we obtain that:
Z:ESE.
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8.5. Vacuum and KMS states. In Subsect. 7.1 we defined vacuum and f—KMS
states for P. We obtain the corresponding vacuum and S—KMS states for P by
conjugation by the map Z.

Definition 8.4. We define the vacuum state wyac, the S-KMS state wg and the
double 5-KMS state wq by their covariances:

Moo= (Z7)NeZ7h Ny = (27527,
M=z ez YNz ez,

where the covariances NE ;\g and 5\3[ are defined in Defs. 5.1, 5.2 and Prop. 5.4

vac’

forb=H.
8.6. The Wick rotated operator.

8.6.1. The Wick rotated metric. Let us denote by k the complex metric on R x .S
obtained from g by the substitution ¢t = is. We have:

k = N(y)ds® + hy;(y)(dy’ + iw' (y)ds)(dy’ + iw? (y)ds),

0
Using that En is uniformly time-like we obtain that there exists C' > 0 such that

(8.19) - Imk(y)n| < Cq-Ren(y)n, y € S,n € CT,,S,
Moreover we have
(8.20) |k|(y) is real valued and |k|% (y) = N(y)|h|% (y).

With the terminology in Def. 9.1 this means that the complex metric k is uniformly
sectorial.
If Q =]0, +00[x .S, the outer unit normal vector field to € for k, see 9.1.2, is

0
— N Y
(8.21) v=-N (85 iw),
while if Q =]0, g[xS it equals
(8.22) (/%) = ;N—l(ag —iw) on {o/g} x S.
s

The real vectors Imv, Imy(9/%) are tangent to .S, ie condition (9.5) below is satisfied.

8.6.2. The Wick rotated operator. We consider now the Wick rotated operator K
obtained from P by the substitution ¢t = is. We have:

(8.23) K = —Ax +m(y) = —(0s + iw*)N2(0s — iw) + ho,

acting on the Hilbert spaces Hg for 0 < 8 < oo defined in (6.9). We refer the reader
to 9.1.1 fo the Laplacian Ay associated to k. We recall that

Hp = L2(Sz x S, N(y)|h|2 (y)dyds), for 0 < 3 < oo,
Hoo = L*(R x S, N(y)|h|2 (y)dyds).
It follows from Lemma 8.2 that if A = hg — w* N 2w we have:
h ~ ho, w*N"2w < h, on C5°(R x S),

where we use the scalar product of 7:[5 in the operator inequalities. We have:
(8.24)
(ulKu)g, = HN—lasqu_zB + (ulhu)g,

fi(N7185u|N’1wu)q,_~lﬁ - i(Nflwu|N7183u)7:lB, u € C§°(R x S).
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The sesquilinear form associated to the realization Kg of K is
Qsuww) = N0l + (ulhu)y,
—i(N’lasu\N*Iwu)gﬂ — i(Nflwu|N’185u)ﬁﬁ,
with domain DomQs = (Ko)~2Hz and Ky = —N 292+ h with its natural domain
on Hg. From (8.9) we obtain that
N~ :DomQp =5 DomQp, Qs(Nu, Nu) = Qp(u,u),
where Qg is defined in Subsect. 6.4. It follows that (g is a closed sectorial form
and we denote as before by Kpg:
S U
Kg: Ky *Hg — KiHgp
the induced operator. We have
B N 1 1
N:Ky*Hg — Ky *Hg, N:KiHg— KjHgp
- 1 . 1~
Kz = NKgN, as elements of B(K, *Hg, K Hp),
where K is the operator defined in Subsect. 6.4.
8.7. Calder6n projectors. We now define the Calderén projectors for Kz and
relate them to those for K3 defined in Subsect. 7.2. We use the notation Iﬁi, z‘g,
A8, :yﬁi introduced in Subsect. 7.2.

8.7.1. Calderon projectors for K. If u € CO(R; 7:[) the trace yoou of w on s =0 is

Vooll = (_N—l(aus((i) iw)u(0)> - (;Jé)()))) ’

see (8.21), and we have

700N = Z”‘}‘/OCM
where Z is defined in (8.16). We denote by ~Z% the formal adjoint of v from
L2(R x S; N|h|2dsdy) = Heo to L2(S, |h|2dy; C?) = H ® C2. We have:
(8.25) g =04(8) @ N™2g1 + 0(s) @ (N~ tgo — iw*N~"2gy).
If u(s) € CY(IE;H) satisfies Ku = 0 in I we set

£, _ u(0F)
Toolt = (—N—l(as — iw)u(0%) )

so that

N = 73,
Setting g = Yoou and u = N1, § = Y5 @ = Z~1g, we obtain from 7.2.1 that

7= FinK <3559,
hence using v N = ZyE and Koo = NKN:
9=F1KLNTL827 g,

2iw*  —1

where S = ( 1 0

>. A tedious computation shows that

~ i *N—2
NN 5z = s, 5= ( ANON 1)
Note that the imaginary part of v equals N~'w and its adjoint on L2(S, |h|2dy)
equals Nw*N~2 (recall that w* is the adjoint of w for the scalar product of
L*(S, N|h|dy)).
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This leads to the following definition.
Definition 8.5. The Calderén prOJectors ct for Ko are:
= :i:'y K v5S.
Proposition 8.6. The covariances of the vacuum state wy,. are equal to:
)\:I:

vac iq © C:oto
Proof. This follows from the identities:
i) M.=2XE 7, 4=27"4Z,

i) AL, =+gek, f =zetz.

vac OO

The identities in i) are obvious, the first identity in ) is shown in Prop. 7.3, the
second follows from the computations before Def. 8.5. O

8.7.2. Calderon projectors for Kg. If u € @(Sg;?jl) we denote by ygu the vector
obtained from its traces at s =0 and s = 5

You = 7§ )u@vfg u,

’ﬁm‘(deg@mmm):(ﬂﬁ%ﬂ

( ) U(ﬁ) _ u(
V57 U= <(N1(8s 2iw)u(§)> - <y<§)

see (8.22), and we have:

for

N = (Z2© Z)3s,
where Z is defined in (8.16). Again we denote by 7} the formal adjoint of v5 from
L2(R x S; N|h|2dsdy) = Hoo to L2(S |h|zdy; C2) & L2(S, |h|2dy; C2?). We have:
(0)* ( )*

for

7 9 = 8(s) @ N2m+%®®W”%)IWN2@L

8y 8y 8

g0 = 8, (5) @ N 291 48, (5) @ (N9 + 1w N2},

Ifue @(Iﬁi;f[) satisfies Ku = 0 in Ii we set:

0)+ Syt
vEu =~y u@’n(f) (u),

0%, _ u(0%) (3%, _ u(¥5)
g U= <—N‘1(8S - iw)u(oi)) » Ts - (N‘l(o”!s —iw)u(:F§)> '

for

Setting g = "yﬂiu and u = N, g = ﬁ;ﬂ = (Z® Z)~'g, we obtain that
* ~ * 5By (B
§= TR (5050 4 5 < *5(8)5(5)),
where S, 5(3) are defined in (7.6). The same computation as in 8.7.1 gives that
)* Bye (B B
9=F3K; ( S©4© +vé2) S g2y,

S(O) — 2iNw*N—2 —1 S(g) — —2iNw*N~2 -1 .
1 0 ’ 1 0

Again this leads to the following definition.
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Definition 8.7. The Calder6n projectors c§ for K3 are:
— 0)* By« B B
ok = TR () SOx® 44T sEnE)),
where W(O/Q)g = g(o/g).

Using now Prop. 7.6, the same argument as in 8.7.1 gives the following propo-
sition.

Proposition 8.8. The covariances of the double 3-KMS state wq are equal to:
A =2Qo(laT) 'G(laT), Q=qaq,

1 0
whereT—(O ]l)'

8.8. The double 3-KMS state in M* U M™~. We now apply the computations
of the previous subsections to S = X1. In fact if ¢; is the flow of the Killing vector
field V, the map

X:Rx I3 (ty) = ¢(y) € MT
is a diffeormorphism such that y*g is as in Subsect. 8.1.

We first claim that 2 is uniformly time-like and (8.12) holds on X*F.

Proposition 8.9. Assume that hypothesis (H) holds. Then % s uniformly time-
like and (8.12) holds on ©7.

Proof. We first check that % is uniformly time-like and that (8.12) holds on

¥+ \ U, where U is any small neighborhood of B in X%, by hypotheses (H). To
check the conditions on U, we use Prop. 2.4. Recalling that (u,w) are Gaussian
normal coordinates to B in (X, h), we obtain

w-hw € O(u*), w-(VN) € O?®), (V-w) € Ou?),w-V(|h|?) € O(u?),

from which our claim follows, since N(y) = xku + O(u?). O

8.8.1. The double B-KMS state in MTUM™. Let us now define the double S-KMS
state in MT UM~

The wedge reflection R is an isometric involution from (M™,g) to (M, g). It
induces on ¥ the weak wedge reflection r, which equals the identity on B and maps
¥~ bijectively on XF.

R reverses the time orientation, hence induces a unitary involution:
PO (M) PO (M*)’
In a more familiar language, R is anti-symplectic. Since

Ce(M*)
PC§e(M*)
is unitary, R induces the unitary involution
Re: (C5°(27),a) = (C5°(27), —q).

The following expression for Ry follows from the fact that R reverses the time
orientation.

Lemma 8.10. One has

R:( ,1G) € [u] — [uo R] € ( —iG).

o+ oG :( = (CSO(Ei),q)

REf = T’l"*f,

anere = (g 5y ) and v ) = £ ).
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We have defined in Subsect. 8.5 the double S-KMS state wq through its Cauchy
surface covariances )\cjf. The associated Hermitian space is

C5o(275C%),q) @ C3°(27;.C?), —q).

(MT UM™,g) is a (disconnected) globally hyperbolic spacetime with Cauchy
surface ¥ U X~ and we denote a Cauchy data on X7 UX™ as

f=fref, [feleE(EsC?)

Using Remark 5.5, we obtain from wq a pure, quasi-free state wp in M+ UM~ as
follows:

Definition 8.11. The double 8-KMS state wp in MT U M~ is defined by the
Cauchy surface covariances:

FASf=TaRs)fATAORs)f, f=fT@f €CPETUSCY).
From Prop. 8.8 and Lemma 8.10 we obtain the following expresssion for )\]%.
Proposition 8.12. One has:
Ap =2Qo(Ma@r)  eg(lar),

where cg[ are the Calderon projectors for Kg defined in Def. 8.7 and Q = q @ q.

9. THE HHI STATE

In this section we construct the HHI state wpgyr in M and prove that it is a
pure Hadamard state, extending the double S-KMS state wp in M~ U M™ for
B = (2m)k~!. We use the expression of wp by Calderéon projectors for the Wick
rotated operator Kg, see Subsect. 8.8.

Since K is a Laplace operator for the complex metric g®'! on Meue! = Sgx BT,
one can if 8 = (27‘()/{71 extend it to a Laplace operator Koy on the smooth extension
(ME2et, genet).

The boundary of the open set Qext extending Qg =]0, g[xEJr is diffeomorphic to
the full Cauchy surface X, and we can use the Calderén projectors for Koy, Qext to
define a pair of covariances )\ﬁHI. The fact that they define a pure state is actually
quite easy, using some standard continuity properties of the Calderén projectors
and density results in Sobolev spaces. The proof of the Hadamard property of wypp
relies also on an easy argument using pseudodifferential calculus, taken from [G].

9.1. Laplacians for complex metrics. We recall that complex metrics on a man-
ifold X are defined in 2.7.1.

Definition 9.1. A complex metric k on a manifold X is called uniformly sectorial

if
(1) there exists C > 0 such that
(9.1) T (7K (2)0°)] < CRe(T%kqp(2)00), Vo € X, v € CT,X;

(2) |k(z)| = det(kap(x)) > 0 Vo € X.
Note that if k is uniformly sectorial, then
(9.2) [Tm(E, 5 (2)6)] < CRe(€,k*(2)&) ¥a € X, € € CTL X,

ie k~! is also uniformly sectorial. In fact if € = kv we have £ k™ '¢é =kv-v =7 - kv
and (9.2) follows from (9.1).
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9.1.1. Laplacians for compler metrics. If k is a complex metric on X, one defines
the Christoffel symbols:

1= gk Ouked + Okaa — k).
the covariant derivative:
vt = 9,17% + T8 T°,
and the Laplacian associated to k, acting on C§°(X):
Ay = VIOV

as for real metrics.
For m € C*°(X,R), we set:

K :=—Ax+m,
and equip C§°(X) with the scalar product:

(ulv) ::/ ﬂv|k\%d:c.
X

Proposition 9.2. Assume that k is uniformly sectorial and that mg < m(z) for
mg > 0. Let

Q(u,u) = (u|Ku), Dom@Q = C§°(X).
Then Q is closeable, the domain DomQ* of its closure Q' is the space HL(X) equal
to the completion of C§°(X) for the norm

Jull = [ (GruReke oy -+ m(a)m i d

Moreover Q° is sectorial and induces an isomorphism:
Ke: HY(X) =5 HA(X)",
with K% = K on O$°(X).
Proof. We have
(9.3) VT = k|70, (k|2 T,
which is proved in Subsect. A.3. Therefore K = —|k|~ 28,k |k|28, + m and

(9.4) Q(u,u) = (u|Ku) = /X(ﬂkab(?bu + m(m)ﬂu)|k|%dx.

Using (9.2) under the integral sign, we obtain |ImQ(u,u)| < CReQ(u, ) and that
Q is closeable. The domain of its closure Q°' equals HL(X). The statement about
K follows from the Lax-Milgram theorem. O

9.1.2. Quter unit normal. Let @ C X with a smooth boundary 02 denoted by ¥
in the sequel. We set
QF =0, O =X\
We can define the outer unit normal vector field to X, denoted by n € CT'X by the
following conditions:
1) n(z) k(x)v=0, Yv e T3,

i) n(z) - k(z)n(z) =1,

i7i) Ren(z) is outwards pointing.
If © is locally equal to {f > 0} for f € C*°(X,R) with df # 0 on {f = 0}, we have:

na _ _kabvbf
(Vafk®V )%
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where in the denominator we take the usual determination of z2.
We also assume the following condition:

(9.5) Imn(z) € T,X, v €%,

which is equivalent to V,fk®V,f € R on X, if Q = {f > 0}.

The volume form dVoly = \k|%dx1 A --- A dx™ associated to k is real, as is the
associated density duy = |dVolx| = |k|zdz. It is easy to see from (9.5) that the
induced density dop, = |dVoly| associated to the induced metric h on ¥ is also real
valued.

9.1.3. Trace operators. For u € C*(X) we set:
= (a:[frz) € C(5;C2).
We denote by v* the formal adjoint of
v LA X, duy) — L*(2, doy) ® C2.
We have
v f = (dp) ™" fodS + (dpe) ™ (n#0),)* f1d2,
where if g € C*°(X), gd¥ is the distributional density defined as

(u]gd%) = / ugdon, u € C5°(X),
)

and
(ul(n"9,)" gd%) = (n"0),ulgdX).
Similarly for u € C°°(Q%) we set:

= (U
'Y:tu o <8nu§FE) ’

where the trace is taken from Q7.

In the rest of this subsection, we assume that k is uniformly sectorial and that
(9.5) holds.

9.1.4. Calderon projectors.

Definition 9.3. The Calderén projectors ¢t associated to (K,Q) are defined as
C:I:::F,Y:i:o[(*lofy*os7

2ib* 1
= (7 )

b= ImnV, and b* is the adjoint of b in L*(X, doy,).

where

Note that the operator S is well defined on C§°(3; C?), since Imn is tangent to
3.

It is not a priori clear that ¢t are well defined, since even for f € C§°(%;C?),
v*Sf does not belong to HyL(X)*.

To show that ¢* make sense, one can apply the following proposition. We denote
by Hi(X) resp. Hj .(X) for s € R, the compactly supported, resp. local Sobolev
spaces on Y and set:

s s—1 s—1—1
Hc/loc(z) = HC/IOQC(E) ® Hc/loc ’ (Z>7
(9.6) ~ ol 1l
Hﬁ/loc(E):H 2(¥)® H 2(2), seR.

c/loc c/loc

Proposition 9.4. (1) ¢ : H () — Hi (X)) continuously for any s € R,

loc
(2) ¢t are 2 x 2 matrices with entries in W (X).
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Proof. The differential operator K is elliptic, since its principal symbol equals
¢k (z)¢. K admits hence a properly supported parametrix @ € ¥;?%(X), and
K~1 — @ is a smoothing operator, ie has a smooth distributional kernel.

It suffices hence to check the proposition with K ~! replaced by @ in the definition
of ¢*. From the topology of Hi/loc(EL we see that we can assume that ¥ is
compact, and since @ is properly supported, that X is compact, which is the
situation considered in [Gr, Sect. 11.1].

A neighborhood V of ¥ in X is then diffeomorphic to | — 4, [x X, and one can

use coordinates (s,y) on | —4,0[xX. In [Gr, Sect. 11.1] the trace operator is defined

: s (500 ).

Clearly we have v = L o7, where L = ( 7]} (])1 ) and r is a first order differential
operator on Y. This implies that L : H (%) — Hjoe(3). The Calderon

projectors C* in |Gr, Sect. 11.1] are equal to L™! o ¢ o L, and |Gr, Prop. 11.7]
implies that CF : HE(X) — H{ (2) for all s € R, which implies (1).
Property (2) is a standard fact, see [Gr, Sect. 11.1]. O

9.2. Construction of the HHI state.

9.2.1. The Laplacian on MSF'. We now apply the above framework to (X, k)=

ext

(Meeet geuel) the smooth extension of (MU, geu!) constructed in Prop. 2.5, for
B = (2m)k~!. We assume that hypothesis (H) in Subsect. 2.4 holds. By Prop.
8.9 the Wick rotated metric g€ satisfies the conditions in 8.6.1, ie is uniformly

sectorial. By continuity the same is true of its extension g€i¢!. We denote by

Kext = Agg;‘tcl + Mext,

the associated Laplacian. We choose the open set Qexy C MY, whose boundary
0Ny 18 diffeomorphic to 33, see Prop. 2.5. We saw in 8.6.1 that if v is the unit outer
normal to |0, 2[xX*, then Imv is tangent to 9(]0, 5[xXF). Again by continuity,
the same is true of the unit outer normal to Qe¢, ie condition (9.5) is satisfied.
Therefore we can apply the results of Subsect. 9.1 to Koy and Qeyg.

We need one more result, which states that K.y is the unique extension of
Kory—1 to L2(Mevehy,

ext

Proposition 9.5. Let U : C5° (M) — C5°(MEI! \ Bext) defined by:

ext

Uu=wuoyx L

Then U extends as a unitary operator
U L* (M, N(y)[b|? (y)dyds) — L* (M, |90 |2 do),
with Kext = UK(Q.,‘-)H—I U*.

Proof. U clearly extends as a unitary operator. Let us check the second statement.
As a differential operator, K(ax),-1 equals —Agewer +m. As an unbounded oper-
ator, K(gq),-1 is defined in 8.6.2 using the sesquilinear form Q(27),-1, while Koy is
defined with the sesquilinear form Qe for k = geu¢! and m = mey, see Prop. 9.2.
Q(2x)x—1 1s the closure of its restriction to Cs° (MU, while Qex is the closure

of its restriction to C§°(MEuc).

Taking into account the isometry x : Mt =5 MU\ B, it suffices to check

that C§° (M \ Beyt) is a form core for Qeys, ie that this space is dense in the

ext

space HL(X) for (X, k) = (M, geucl), see Prop. 9.2.
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Using the coordinates (X,Y,w) near Bexs ~ {0} x B, this follows from the fact
that C§°(R?\{0}) is dense in H'(R?), see eg [A, Thm. 3.23]. O

9.2.2. The HHI state. Let us denote by Cit the Calderon projectors for (Kext, Qext),
defined as in Def. 9.3.
The following theorem is a slightly more precise version of Thm. 1.1.

Theorem 9.6. (1) )\ﬁHI = :l:qocfatXt are the Cauchy surface covariances of a pure

quasi-free state wyur for P in M, called the HHI state.

(2) The restriction of wpmr to MT U M~ is the double S—KMS state wp for
B=(2m)kL.

(3) whmr s a Hadamard state in M.

(4) Let w a quasi-free state for P in M whose restriction to M™ U M™ equals
wp and such that its space-time covariances map C§° (M) into C°(M). Then
W = WHHI-

Note that it follows from (4) above that wypnr is the unique Hadamard state in
M whose restriction to MT U M~ equals wp.
Proof. We first prove (2). We note that the map (1&r*) in Prop. 8.12 corresponds
to the embedding of C§° (Xt UX~; C?) into C5°(X\ B) obtained from ¢ : ¥ — Meucl
in Prop. 2.5. The exterior normal to ey is the image under x of the exterior
normal to ]0, 75~} [xXT for defined in (8.22). Therefore using also Prop. 9.5 we

obtain that
(9.7) (L&) oy (A BT) = s

on C§°(Xt UX™). This implies (2).

Let us now prove (1). Let us denote by hey the metric induced by g&uc!
and use the scalar product of L?(3, |hext|%dy) ® C? to identify sesquilinear forms
0 1
1 0 )

We recall that the spaces H (%), H.(X) are defined in (9.6). We note that

loc \*

q: M (X)) = Hi2(X), and that HE(X), Hi (X) form a dual pair for the above

loc » Mtoc
scalar product. It follows then from Prop. 9.4 that A*, ¢ are continuous sesquilinear
1 1
forms for the topology of H.(X) = HZ () @ H, 2(X). Now it is a well-known fact
1
that since B C 3 is of codimension 1, C§° (32 \ B) is dense in HE? (2).
By (2) and the fact that wp is a state, we obtain that

on X

with operators, so that ¢ =

+ + - _
)‘HHI >0, )‘HHI - >‘HHI =q,

on C§°(X\ B; C?). By the continuity and density result shown above, this extends
to C§°(%; C?), which proves that )\ﬁHI are the Cauchy surface covariances of a state
WHHI-

Let us now prove that wppyy is pure. Let us set for simplicity of notation ) =
Cs°(%;C%), Vo = C°(X \ B; C?) and denote by Y°P!, Spl the completion of Y, YV
for the norm | f||2 = f-(Mfgr + M) f- The density and continuity result above
shows that Y°Pl = ygpl. The purity of wypyr follows then from the purity of wp and
Prop. 3.2.

Let us now prove (3). By Thm. 3.4 there exists a reference Hadamard state wyef
for P in M whose Cauchy surface covariances on % /\f[ef are 2 x 2 matrices with
entries in U>°(%). By Prop. 9.4 the same is true for Ay,

The restriction of wypr to M™T is a Hadamard state for P, since it is a (27)r -
KMS state for a time-like, complete Killing vector field. The restriction of wyyy to
M~ is also a Hadamard state for P.
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In fact by Prop. 8.12, its Cauchy surface covariances on ¥~ are the images of
those of wp on ¥ by the weak wedge reflection 7. Since 7*h = h, r*N = —N and
r*w = w, see 2.2.1, the expression (8.6) of P in R x X~ shows that the restriction
of wp to M~ is also a Hadamard state.

This implies that the restriction of wygyr to MTUM™ is a Hadamard state. The
same is true of the restriction of the reference Hadamard state wyer to M+t U M™.
Passing to Cauchy surface covariances on .+ U~ this implies that if y € C§°(X%),
then

X © (AEHI - )\if) o x is a smoothing operator on X.

We claim that this implies that )\ﬁHI — /\]?;f is smoothing, which will imply that
whmr 1s a Hadamard state.

If fact let a be one of the entries of )\ﬁHI —)\;tef, which is a scalar pseudodifferential

operator belonging to U™ (%) for some m € R. We know that y oao x is smoothing
for any x € C§°(X\B). Then its principal symbol op,.(a) vanishes on T*(X\B)
hence on T*Y by continuity, so a € ¥™~1(X). Iterating this argument we obtain
that a is smoothing, which completes the proof of (3).

The proof of (4) is identical to |G, Prop. 7.4]. O

APPENDIX A

A.1. Proof of Prop. 2.4. Since 7 is an isometry of (X,h), 7z = Idand r : ¥ —
Y~ we obtain (2.4). The first identity in (2.5) follows from the fact that (u,w) are
normal Gaussian coordinates to B for h, the other are tautologies.

We obtain from (2.4) and 2.2.1 that v, w” are odd in u, w®, k,s are even in u
with w®(0,w) = 0. The function m is even in v by invariance under r. We now use
Killing’s equation

(A.1) VoW + VpVa =0,
noting that since V =0 on B we have
(A.2) VoV = 9,V on B.
If we work in Gaussian normal coordinates to X for g, so that
g = —dt’ + hy;(t,y)dy'dy’, V = =N (t, )0 + w°(t,y)0u + W (t,y) Do
and y = (u,w), we obtain from (A.1), (A.2) that:
2uVo(0,w) = 0= 9, w’(0,w) = 0.

Summarizing we have:

N(u,w) = ua(u?,w),
(A.3) wl(u,w) = u3b(u?, w), w(u,w) = u?c*(u?w),

kop(u,w) = dog(u?,w), m(u,w) = n(u?,w),
for smooth functions a,b, c®,dyg ;] — €, €[xB — R with

n(0,w) > ¢ >0,¢ M < [dap(0,w)] < cll, for some ¢ > 0.

To complete the proof of the proposition it remains to show that x = a(0,w).
To do this we reexpress the surface gravity x. By [S1, Lemma 2.5] we have:

K2 = (W99, NO;N) 5 — 5(h”h’“v§h>le§.h)wk)|3,
which using (A.3) gives k = a(0,w). O
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A.2. Proof of Prop. 2.5. We recall that we defined the coordinates (u,w) €
] — 4,6[xB on a small neighborhood U of B in . U N Xt is diffeomorphic to
10, 6[x B using the coordinates (u,w). If
X = ucos(ks),Y = usin(ks),
we have:
du=u"YXdX +YdY), ds =k 'u"?(XdY — YdX).

By Prop. 2.4 we obtain:

Kop (U, w)dw*dw? = dop(X? + V2 w)dw*dw?,

iWo (U, w)dwds = ik 1he (X2 + Y2, w)(XdY — YdX)dw®,

iwg (u, w)duds = ik 1hg(X? + Y2, w)(XdY — YdX)(XdX +YdY),

02 (u, w)ds?® + du?

= u?k?(1 4+ u?d(u?,w))rk2uH(XdY — YdX)? + u2(XdX + YdY)?

= dX? +dY? +d(X2 + Y2, w)(XdY — YdX)2.
Let us denote by B2(0,9) = {(X,Y) € R? : X?2+Y? < §2} the open disk of center 0

and radius ¢ in R2. If 8 = (27)x !, then (u, xs) €]0,6[xS2, are polar coordinates
on By(0,8)\ {0}. The expression (2.10) for g®"“! and the estimates above show that

g®u“! extends as a smooth complex metric on B(0,d) ® B.

We then construct M by gluing B (0,d) x B with Ml = S5 x %+ over
{(X,Y) e R?: 16% < X2 4+ Y? < §?} x B using the map:
Spx]0,0[xB — B(0,d) x B

(s,u,w) — (ucos(ks),usin(ks),w).

(A4)

The complex metric g®! defined on S x X+ extends to a smooth complex metric
eucl

geucl on Ml By Prop. 2.4 we have m = n(X? + Y2, w), hence m extends as a

ext

smooth function on MSUc!,

Let us now embed ¥ isometrically into M. In the coordinates (u,w) on X

near B the embedding 1& becomes
(0, u,w) for 0 < u < 4,
(8, —u,w) for —6 <u <0,

(u,w) »—>{ g

which smoothly extends to u = 0, the image of ¥ under this extension being locally
equal to {Y = 0}.

The open set Qeyy is obtained by gluing {Y > 0} with 0, g[xZ+ using the map
(A.4). This completes the proof.

A.3. Proof of (9.3). A mechanical computation gives:
S ViTt= Y, 0T + 1 Dok ki (0;kg + Okki — Orki)TF
= 20T+ 33 Kok T = 1,
using that k¥ = k%, ki, = k. Next

> kTR0 (k|2 T ZaTw Z|k| L9, |k|T* =: I1.

7

Since

< Awy),

detA(t)_l%detA(t) = Tr(A() S

we get that 0;|k| = |k|Tr(k*18-k). Next we compute:
(k19,k)], Zkﬂa k., Tr(k '9;k) Zkkla K,
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which shows that [ = I71. O
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