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ABSTRACT

It is well-known that the backward differentation formulae (BDF) of order 1, 2 and 3 are
gradient stable. This means that when such a method is used for the time discretization of
a gradient flow, the associated discrete dynamical system exhibit properties similar to the
continuous case, such as the existence of a Lyapunov functional. By means of a Lojasiewicz-
Simon inequality, we prove convergence to equilibrium for the 3-step BDF scheme applied to
the Allen-Cahn equation with an analytic nonlinearity. By introducing a notion of quadratic-
stability, we also show that the BDF methods of order 4 and 5 are gradient stable, and that
the k-step BDF schemes are not gradient stable for k ≥ 7. Some numerical simulations
illustrate the theoretical results.
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1. Introduction

We consider k-step backward differentiation formulae (BDF) applied to gradient flows in
finite and infinite dimension. We are interested in the asymptotic behaviour, as time goes
to infinity, of the sequences generated by these methods. Our model problem in the infinite
dimensional case is the Allen-Cahn equation, which was introduced to describe the process
of phase transition [3]. It reads

ut − ∆u + g(u) = 0, t > 0, x ∈ Ω, (1)

where Ω is a bounded subset of Rd with smooth boundary and g ∈ C1(R,R) is the derivative
of a potential G. A standard choice is the double-well potential G(s) = (s2 − 1)2/4. The
unknown function u represents the order parameter. Throughout the paper, we will consider
Dirichlet boundary conditions.

Email adresses: Anass.Bouchriti@edu.uca.ac.ma (A. Bouchriti), Morgan.Pierre@math.univ-poitiers.fr (M. Pierre),
N.Alaa@uca.ac.ma (N. E. Alaa)



The Allen-Cahn equation (1) is a gradient flow of the energy

E(u) =

∫

Ω

1

2
|∇u|2 + G(u) dx (2)

for the L2(Ω) scalar product. The theoretical picture for (1) is well-known and there is a
huge litterature on this equation (for the well-posedness and some asymptotic properties,
see e.g. [17, 28]). If g is real analytic, then Simon [26] proved that every bounded solution
converges to a steady state as time goes to infinity. It is not known if this result still holds for
every choice of nonlinearity g ∈ C∞(R,R) (see [17, 23] and eqreferences therein). The proof
of Simon is based on a so-called Lojasiewicz-Simon inequality, which is an extension to the
infinite dimension of the celebrated Lojasiewicz inequality for real analytic functions [20]. We
eqrefer the reader to the recent review by Haraux and Jendoubi [18].

Our aim in this paper is to prove that convergence to equilibrium also holds for the BDF
methods of high-order (3, 4 or 5) applied to equation (1) with an analytic nonlinearity.

BDF methods of low order (1 or 2) are widely used for the time discretization of gradient-
flows such as (1). A crucial feature is that the discrete-in-time dynamical systems defined by
these methods have properties similar to the continuous-in-time problem, such as the existence
of a Lyapunov functional [25, 27]. We note that for the BDF method of order 1, the Lyapunov
functional is the energy E (2), whereas for higher-order BDF schemes, a pseudo-energy (i.e.
a modification of E) has to be used.

The one-step BDF method (BDF1) is simply the backward Euler scheme, also known
as the proximal algorithm in the context of optimization. Convergence to equilibrium for
this scheme has been shown by means of a Lojasiewicz-like inequality in finite and infinite
dimension [5, 10, 21]. The finite dimensional case arises naturally when one considers a space
semi-discretization of (1) which preserves the gradient-flow structure. This happens with
standard finite element or finite difference methods [9, 11].

Convergence to equilibrium for the two-step BDF scheme (BDF2) was proved in finite
dimension in [2], and in infinite dimension in [4] for the Cahn-Hilliard equation, which is a
gradient flow of E (2) for the H−1 scalar product. We note that a restriction on the time step
(independent of the initial data) has to be introduced in order for the gradient stability to
hold. For the BDF1 scheme, the restriction on the time step can be removed by considering
the proximal algorithm [7]. The analysis of the infinite dimensional case is interesting because
it is independent of the choice of a particular space discretization.

Since the gradient stability of the three-step BDF method is known [27], convergence to
equilibrium can be obtained in finite dimension by applying general results on descent meth-
ods, see e.g. [2, 6, 10]. The infinite dimensional case is more involved, but we work it out here in
a way similary to the BDF2 case, with a stability restriction on the time step (Theorem 5.4).
In contrast, there exist several second-order schemes which are unconditionnally gradient
stable, such as the secant scheme, but for which convergence to equilibrium in the infinite
dimensional setting remains to investigate (see [11, 12, 14, 24, 30] and references therein).
If we consider for instance the secant scheme, which is a gradient-stable Crank-Nicolson like
scheme, one issue is to obtain the precompactness of trajectories.

In [27, p. 424], Stuart and Humphries conjectured that the BDF schemes of order 4, 5 and
6 are gradient stable. To the best of our knowledge, this assertion has not yet been proved. In
this paper, by introducing a notion of quadratic-stability, we prove that this conjecture is true
for the BDF4 and BDF5 schemes. For k ≥ 7, the k-step BDF schemes are not zero-stable [16],
so they are not expected to be gradient stable. We make this clear in Remark 2.6. We note
that the gradient-stability of the BDF6 scheme remains to be investigated (Remark 2.10).
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The convergence result of Simon has been generalized to a great variety of gradient-like
equations, in particular to damped wave equations such as the sine-Gordone equation or the
modified Allen-Cahn equation (cf. [18] and references therein). Convergence to equilibrium for
the backward Euler equation applied to the modified Allen-Cahn equation has been proved
in [15, 22]. We note however that BDF schemes of order greater than one do not seem to
preserve the gradient-like structure in this situation, so that other energy stable schemes
should be considered.

The paper is organized as follows. In Section 2, we introduce the BDF methods applied to a
gradient flow in finite dimension, and we define the notion of quadratic-stability. In Section 3,
we prove that the BDF4 and BDF5 methods are gradient stable. Convergence to equilibrium
for the BDF3 scheme applied to the Allen-Cahn equation is proved in Sections 4 and 5. In
the last section, we perform some numerical simulations for the BDF3 scheme applied to (1).
They nicely illustrate the theoretical results.

2. Quadratic-stability of BDF methods

2.1. The continuous problem

We denote 〈·, ·〉 the scalar product in RM and ‖ · ‖ the euclidean norm. We consider the
gradient flow in RM

U ′(t) = −∇F (U(t)), t ≥ 0, (3)

where U : [0,+∞) → RM and F ∈ C1(RM ,R). Throughout the paper, we assume that F
satisfies the following two conditions,

〈∇F (V ) −∇F (W ), V −W 〉 ≥ −cF ‖V −W‖2, ∀V,W ∈ R
M , (4)

for some constant cF ≥ 0, and

lim
‖V ‖→∞

F (V ) = +∞. (5)

Condition (4) is known as a one-sided Lipschitz condition [27]. This condition is equivalent
to the fact that the functional V 7→ ∇F (V ) + cFV is a maximal monotone operator on RM ,
or that the function V 7→ F (V ) + (cF /2)‖V ‖2 is convex. Using the Cauchy-Peano theorem,
this guarantees, for every U0 ∈ RM , the existence of a unique solution U ∈ C1([0,+∞),RM )
of (3) such U(0) = U0 [8].

Condition (5) is called a coercivity condition. On multiplying equation (3) by U ′(t), we
obtain that

d

dt
F (U(t)) = −‖U ′(t)‖2. (6)

In particular, F (U(t)) is nonincreasing, and the coercivity condition (5) implies that the
solution U is bounded. Using Lasalle’s invariance principle [17], we obtain that the ω-limit
set of U(0), defined by

ω(U(0)) := {U⋆ ∈ R
M : ∃tn ↑ +∞ s. t. U(tn) → U⋆},
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is a compact and connected subset of RM , which is included in the set of critical points of F ,

S = {V ∈ R
M : ∇F (V ) = 0}. (7)

If the cricital points of F are isolated, this implies that U(t) → U⋆ as t → +∞. If the critical
points of F are not isolated, then convergence to equilibrium may fail if M ≥ 2, even if F is
C∞ (see e.g. [1]). Lojasiewicz [20] proved that if F : RM → R is real analytic, then we always
have U(t) → U⋆ as t → +∞.

2.2. General k-step BDF methods

Let ∆t > 0 be the time step. The general k-step backward differentiation formula (BDF)
for (3) is defined by

k∑

j=1

1

j
∂jUn+k = −∆t∇F (Un+k), n ≥ 0, (8)

where, for a sequence (Un)n≥0, the (backward) difference operator ∂j is defined recursively
by ∂jUn = ∂j−1(Un − Un−1) (j ≥ 2, n ≥ j). When j = 1, we have ∂Un = Un − Un−1.

The one-step BDF method is the backward Euler scheme:

Un+1 − Un = −∆t∇F (Un+1), n ≥ 0. (9)

The two-step BDF method reads

3

2
Un+2 − 2Un+1 +

1

2
Un = −∆t∇F (Un+2), n ≥ 0. (10)

The k-step BDF method (8) is obtained by Newton’s divided difference formula which inter-
polates U by a polynomial of degree k (see Section 4.2 for the case k = 3). It is known to have
a consistency error of order k. Moreover, it is zero-stable if and only if k ∈ {1, . . . , 6}, so that
BDF methods are not used for k ≥ 7 [16]. This also implies that if F ∈ Ck+2(RM ,R) (k ≤ 6)
and if the initial conditions are well chosen, the error between the solution U of (3) and its
approximation given by the BDF scheme (8) is of order O(∆tk) on finite time intervals [27,
Theorem 3.5.7].

In (8), the initial conditions U0, . . .Uk−1 are given in RM ; at every step n ≥ 0, the
vector Un+k is computed from Un, Un+1, . . . , Un+k−1 by solving the (generally nonlinear)
equation (8). Thanks to the coercivity condition (5), there exists at least one such Un+k.
Indeed, (8) reads

∆t∇F (Un+k) + αkU
n+k + Ln = 0, (11)

where

αk =

k∑

j=1

1/j > 0 (12)
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and Ln ∈ RM is a linear combination of the vectors Un, . . . , Un+k−1. The function

V 7→ ∆tF (V ) +
αk

2
‖V ‖2 + 〈Ln, V 〉

is continous on RM and coercive. Thus, it has at least one minimizer Un+k in RM , which
solves the Euler-Lagrange equation (11).

By using the one-sided Lipschitz condition (4), one can guarantee that the solution Un+k

of (11) is unique for ∆t small enough (for a given Ln). Indeed, if Ũn+k is another solution,
then the difference Vn = Un+k − Ũn+k satisfies

∆t[∇F (Un+k) −∇F (Ũn+k] + αkVn = 0.

On multiplying by Vn and using (4), we see that

(αk − cF∆t)‖Vn‖2 ≤ 0. (13)

Thus, if cF∆t < αk, Vn = 0 and the sequence (Un)n is uniquely defined by its initial values
U0, . . .Un+k−1 and the k-step formula (8).

2.3. Quadratic-stability of BDF methods

In [27], the proof of gradient stability for the BDF methods of order 1, 2 and 3 is essentially
based on the following algebraic computations. The authors multiply the left-hand side of (8)
by ∂Un+k, and they consider the quantity

Γk =

k∑

j=1

1

j
〈∂jUn+k, ∂Un+k〉. (14)

They use that

Γ1 = ‖∂Un+1‖2, (15)

Γ2 = ‖∂Un+2‖2 +
1

4
‖∂Un+2 − ∂Un+1‖2 +

1

4

(
‖∂Un+2‖2 − ‖∂Un+1‖2

)
, (16)

and

Γ3 =
5

6
‖∂Un+3‖2 +

1

4
‖∂Un+3 − ∂Un+2‖2

+
1

6
‖∂Un+3 − ∂Un+2 + ∂Un+1‖2 +

5

12

(
‖∂Un+3‖2 − ‖∂Un+2‖2

)

+
1

6

(
‖∂Un+3 − ∂Un+2‖2 − ‖∂Un+2 − ∂Un+1‖2

)
. (17)

In order to extend similar computations to higher-order schemes, it seems natural to consider
Γk as a quadratic form depending on the variables ∂Un+k, . . . , ∂Un+1.

For this purpose, we consider first the case M = 1 (the general case will follow immediately).
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We set x1 = ∂Un+k, . . . , xk = ∂Un+1, and we define the following quadratic form on Rk:

γk(x1, . . . , xk) =

k∑

j=1

1

j
(∂̃j−1x1)x1, (18)

where ∂̃j is the forward difference operator defined recursively by ∂̃jx1 = ∂̃j−1(x1 − x2). We
note that

∂̃jx1 =

j
∑

i=0

(−1)i
(
j
i

)

x1+i,

where

(
j
i

)

is the binomial coefficient.

We recall that a quadratic form q on Rk is uniquely associated to a symmetric matrix
Aq = (aij)1≤i,j≤k of size k through

q(x1, . . . , xk) =

k∑

i=1

k∑

j=1

aijxixj.

We will denote q ∼ Aq this univoque correspondence. The quadratic form q is positive definite
if q(x1, . . . , xk) > 0 for all (x1, . . . , xk) ∈ Rk \ {0}, or equivalently, if the matrix Aq is positive
definite.

By Sylvester’s criterion, a symmetric matrix A = (aij)1≤i,j≤k is positive definite if and only
if its leading principal minors are positive, i.e.

∀p ∈ {1, . . . , k}, ∆p := det[(aij)1≤i,j≤p] > 0. (19)

Definition 2.1. We say that the k-step BDF method is quadratic-stable if

γk(x1, . . . , xk) = qk(x1, . . . , xk−1) − qk(x2, . . . , xk) + rk(x1, . . . , xk), (20)

for all (x1, . . . , xk) ∈ Rk, where qk is a positive definite quadratic form on Rk−1 and rk is a
positive definite quadratic form on Rk.

Example 2.2. From (16), we see that γ2 is quadratic-stable with q2(x1) = x21/4 and
r2(x1, x2) = x21 + (x1 − x2)

2/4. By (17), γ3 is also quadratic-stable (and by convention,
so is γ1).

Remark 2.3. The quadratic forms qk and rk, if they exist, are not unique. Indeed, let Aε
qk

be a symmetric matrix of size k which is a small perturbation of Aqk in Rk2

, where qk ∼ Aqk .
Then Aε

rk , defined through (20) in terms of Aγk
and Aε

qk , is also a perturbation of Ark . By
Sylvester’s criterion (19), if Aε

qk is close enough to Aqk , then both Aε
qk and Aε

rk are positive
definite.

We first show that quadratic-stability implies asymptotic stability. For this purpose, we
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apply the BDF method to the linear ode

y′(t) = −λy(t), t ≥ 0, (21)

with λ > 0. Since y(t) → 0 as t → ∞, we expect a similar behaviour for the time discrete
version, which reads

k∑

j=1

1

j
∂jyn+k = −λ∆tyn+k, n ≥ 0. (22)

Proposition 2.4. If the k-step BDF method is quadratic-stable, then for all λ > 0 and for
any initial conditions y0, . . . , yn+k−1, the sequence (yn)n≥0 generated by (22) tends to 0.

Proof. We multiply (22) by ∂yn+k, and by definition (18) of γk, we obtain

γk(∂yn+k, . . . , ∂yn+1) = −λ∆tyn+k(yn+k − yn+k−1), n ≥ 0.

Using (20) and the well-known identity a(a− b) = [a2 − b2 + (a− b)2]/2, we obtain

En+k − En+k−1 +
λ

2
(∂yn+k)2 + rk(∂yn+k, . . . , ∂yn+1) = 0, n ≥ 0,

where

En+k :=
λ

2
(yn+k)2 + qk(∂yn+k, . . . , ∂yn+2).

By summing on n, we find that

∞∑

n=0

rk(∂yn+k, . . . , ∂yn+1) ≤ Ek−1 < +∞.

In particular, rk(∂yn+k, . . . , ∂yn+1) → 0 and since rk is positive definite, this shows that

(∂yn+k, . . . , ∂yn+1) → (0, . . . , 0) in R
k.

By (22), yn+k is a linear combination of ∂yn+k,. . . ,∂yn+1. Thus, yn+k → 0 and the claim is
proved.

In the following result, we use that asymptotic stability implies zero-stability.

Corollary 2.5. If k ≥ 7, the k-step BDF method is not quadratic-stable.

Proof. We consider now the BDF method applied to the ode y′(t) = 0, that is

k∑

j=1

1

j
∂jyn+k = 0, n ≥ 0. (23)
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This is a linear difference equation of order k. Its characteristic polymonial ρ(ζ), which is
obtained on replacing yn+k by ζn+k in (23) and dividing by ζn, is

ρ(ζ) =

k∑

j=1

1

j

j
∑

i=0

(−1)i
(
j
i

)

ζk−i =

k∑

j=1

1

j
ζk−j(ζ − 1)j . (24)

By definition, the k-step BDF method is zero-stable if and only if all the roots of ρ lie in the
unit disc and the ones on the unit circle are simple. This is true if and only if k ∈ {1, . . . , 6} [16].

Let now k ≥ 7. It is shown in [16] that ρ has at least one root λk ∈ C outside the unit disc,
i.e. |λk| > 1. For ε > 0, we consider now the polynomial

ρε(ζ) = ρ(ζ) + εζk.

This is the characteristic polynomial of the linear difference equation (22) with ε = λ∆t. As
ε → 0+, the roots of ρε converge to the roots of ρ, so that for ε > 0 small enough, ρε has at
leat one root λk,ε such that |λk,ε| > 1. Therefore, we have a sequence (λn

k,ε)n≥0 of complex

numbers which complies with (22), and which is unbounded. By Proposition 2.4, this k-step
BDF method cannot be quadratic-stable. We note here that the result in Proposition 2.4 is
proved for a sequence (yn)n of real numbers, but it extends immediately to complex numbers,
by considering the real and imaginary parts.

Remark 2.6. The proof above shows that for k ≥ 7, the k-step BDF schemes are not gradient
stable in the sense of [27, Definition 1.8.9]. Indeed, consider the function F (y) = λy2/2 with
λ > 0, so that (21) is the gradient flow of F . Assume by contradiction that a k-step BDF
scheme is gradient stable for some k ≥ 7. Then every sequence (yn)n defined by (22) would
be bounded, by [27, Theorem 1.8.10]. But we have seen that for ∆t > 0 small enough, this
k-step BDF scheme produces an unbounded sequence.

Proposition 2.7. The 4-step BDF method is quadratic-stable. Namely,

γ4(x1, x2, x3, x4) = q4(x1, x2, x3) − q4(x2, x3, x4) + r4(x1, x2, x3, x4),

for all (x1, x2, x3, x4) ∈ R4, where

q4 ∼
1

144





225 −92 39
−92 150 −46
39 −46 75



 and r4 ∼
1

144







75 −46 39 −18
−46 75 −46 39
39 −46 75 −46
−18 39 −46 75







. (25)

Proof. We give a constructive proof. We seek Aq4 in the form of a symmetric matrix

Aq4 =





a d g
d b f
g f c



 .

The quadratic form

q̃4(x1, x2, x3, x4) = q4(x1, x2, x3) − q4(x2, x3, x4)

8



is given by

Aq̃4 =







a d g 0
d b− a f − d −g
g f − d c− b −f
0 −g −f −c







.

We note that the sum of the elements in each diagonal of Aq̃4 amounts to 0. Since Ar4 =
Aγ4

−Aq̃4 , this shows that the sum of the elements in each diagonal of Ar4 and Aγ4
are equal.

By definition, we have

Aγ4
=







25/12 −23/24 13/24 −1/8
−23/24 0 0 0
13/24 0 0 0
−1/8 0 0 0







An easy way to choose the coefficients of Ar4 is to take the elements of a given diagonal all
equal. This gives Ar4 , and in turn, Aq̃4 and Aq4 . Using Sylvester’s criterion (19), we easily
check that Aq4 and Ar4 , given by (25), are positive definite. Indeed, the principal minors of
Aq4 are 225/144, 25 286/1442 and 1 522 296/1443 , whereas the principal minors of Ar4 are

75/144, 3 509/1442 , 155 448/1443 and 6 460 912/1444 .

Proposition 2.8. The 5-step BDF method is quadratic-stable. Namely,

γ5(x1, x2, x3, x4, x5) = q5(x1, x2, x3, x4) − q5(x2, x3, x4, x5) + r5(x1, x2, x3, x4, x5), (26)

for all (x1, x2, x3, x4, x5) ∈ R5, where

q5 ∼







1.85 −1.19 0.75 −0.3
−1.19 1.45 −0.84 0.3
0.75 −0.84 0.9 −0.37
−0.3 0.3 −0.37 0.3







(27)

and

r5 ∼
1

600









260 −101 235 −135 60
−101 240 −210 270 −180
235 −210 330 −282 180
−135 270 −282 360 −222

60 −180 180 −222 180









. (28)
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Proof. By definition, we have

γ5 ∼
1

120









274 −163 137 −63 12
−163 0 0 0 0
137 0 0 0 0
−63 0 0 0 0
12 0 0 0 0









,

so it is easily seen that (26) holds, with q5 and r5 as above. Using Sylvester’s criterion, we
can check numerically that q5 and r5 are positive definite (the computation is exact since we
work with rational numbers of reasonable size), and the proof is complete (see Remark 2.9
for a constructive approach).

Remark 2.9. The argument used in Proposition 2.7 is not sufficient in order to obtain q5
and r5. We have actually obtained q5 by numerical investigation with a Scilab program. More
precisely, let

q5 ∼ Aq5 = (ai,j)1≤i,j≤4,

where the ten coefficients ai,j for 1 ≤ i ≤ j ≤ 4 are unknown (the other coefficients are
obtained by symmetry of Aq5). The idea is to check a large number of values of the coefficients
ai,j in order to obtain the positivity of q5 and r5. We have used a grid of stepsize 0.15 in R10

for these coefficients. Remark 2.3 shows that for a stepsize small enough, this approach should
give a result, if γ5 is indeed quadratic stable.

In order to reduce the computational time, we used the following simple facts. The diagonal
coefficients of Ar5 being positive, we deduce from (26) that

274/120 > a1,1 > a2,2 > a3,3 > a4,4 > 0.

For each nondiagonal coefficient ai,j, we note that the minor ai,iaj,j − a2i,j corresponding to
q5 is positive, that is |ai,j | < √

ai,iaj,j. For every choice of Aq5 in our program, we checked
wheter the matrices Aq5 and Ar5 were positive definite or not by a numerical calculation of
there eigenvalues.

Remark 2.10. We have investigated numerically the quadratic-stability of γ6 in a manner
similar to γ5 (cf. Remark 2.9). We used a grid of stepsize 0.1 in R15 for the fifteen unknown
coefficients of Aq6 . We have not been successful. It could be interesting to perform numerical
simulations with a smaller stepsize, but we were limited by the computational time.

3. Gradient stability of the BDF4 and BDF5 methods

3.1. From R to RM

Now, we turn back to the general case M ≥ 1. If

q(x1, . . . , xk) =

k∑

i=1

k∑

j=1

aijxixj
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is a quadratic function on Rk, associated to the symmetric matrix Aq = (aij)1≤i,j≤k, we define
the following quadratic form on (RM )k:

Q(V1, . . . , Vk) =

k∑

i=1

k∑

j=1

aij〈Vi, Vj〉.

Then Q inherits the properties of q. In particular, if q is positive definite, then so is Q. Indeed,
if Aq is positive definite, there exists a matrix P ∈ O(k) such that

Aq = P t








λ1 0 · · · 0

0 λ2
. . .

...
...

. . .
. . . 0

0 · · · 0 λk








P,

where 0 < λ1 ≤ λ2 ≤ · · · λk are the eigenvalues of Aq. This reads, for all X = (x1, . . . , xk)t ∈
Rk,

q(x1, . . . , xk) = XtAqX =

k∑

i=1

λi(

k∑

j=1

pijxj)
2,

where P = (pij)1≤i,j≤k. Thus, for (V1, . . . , Vk) ∈ (RM )k, we have

Q(V1, . . . , Vk) =

k∑

i=1

λi‖
k∑

j=1

pijVj‖2

≥ λ1

k∑

i=1

‖
k∑

j=1

pijVj‖2

≥ λ1

k∑

i=1

k∑

j=1

k∑

m=1

pijpim〈Vj, Vm〉. (29)

Since P tP = Idk, we have
∑k

i=1 pijpim = δjm, where δjm is the Kronecker symbol. Thus,
(29) reads

Q(V1, . . . , Vk) ≥ λ1

k∑

j=1

‖Vj‖2,

and the claim is proved.

3.2. Gradient stability of the BDF4 method

From Proposition 2.7, we deduce:

11



Lemma 3.1. The quadratic forms Γ4, Q4 and R4 associated to γ4, q4 and r4 satisfy

Γ4(V1, V2, V3, V4) = Q4(V1, V2, V3) −Q4(V2, V3, V4) + R4(V1, V2, V3, V4) (30)

for all (V1, V2, V3, V4) ∈ (RM )4. In particular, Q4 and R4 are positive definite. Moreover,

R4(V1, V2, V3, V4) =
41

144
‖V1‖2 + R̃4(V1, V2, V3, V4), (31)

where R̃4 is positive definite on (RM )4.

Proof. It remains only to prove that R̃4 is positive definite. For this purpose, we consider
the quadratic form on R4 defined by

r̃4(x1, x2, x3, x4) = r4(x1, x2, x3, x4) − 41

144
x21.

Using Sylvester’s criterion, we easily check that Ar̃4 is positive definite. The claim on R̃4

follows. We point out that the coefficient 41/144 was found by numerical investigation and
that it is not optimal.

For V̂ = (V0, V1, V2, V3) ∈ (RM )4, we define

F̂4(V̂ ) = F (V0) +
1

∆t
Q4(V1, V2, V3),

and for a sequence (Un)n≥0 in RM , we define

Ûn+4 = (Un+4, ∂Un+4, ∂Un+3, ∂Un+2),

so that

F̂4(Ûn+4) = F (Un+4) +
1

∆t
Q4(∂U

n+4, ∂Un+3, ∂Un+2).

Theorem 3.2. If cF∆t ≤ 41/72, the 4-step BDF method (8) is gradient-stable, i.e.

F̂4(Ûn+4) +
1

∆t
R̃4(∂U

n+4, ∂Un+3, ∂Un+2, ∂Un+1) ≤ F̂4(Ûn+3), n ≥ 0. (32)

Proof. We multiply (8) by ∂Un+4 in RM , and we find

Γ4(∂U
n+4, ∂Un+3, ∂Un+2, ∂Un+1) = −∆t〈∇F (Un+4), Un+4 − Un+3〉,

where Γ4 is defined by (14). Since V 7→ F (V ) + (cF /2)‖V ‖2 is convex, we have

F (V ) − F (U) +
cF
2
‖V − U‖2 ≥ 〈∇F (U), V − U〉, ∀U, V ∈ R

M . (33)

12



We apply this relation with U = Un+4 and V = Un+3 and we use (30). This yields

F̂4(Ûn+4) +
1

∆t
R4(∂Un+4, ∂Un+3, ∂Un+2, ∂Un+1) ≤ F̂4(Ûn+3) +

cF
2
‖∂Un+4‖2,

for all n ≥ 0. Finally, using (31) and 1
∆t

41
144 − cF

2 ≥ 0, we find (32).

Let

ω((Un)n) = {U⋆ ∈ R
M : ∃np → +∞ s.t. Unp → U⋆}

denote the ω-limit set of a sequence (Un)n, and recall that S denotes the set of critical point
of F (cf. (7)).

From the gradient stability of the BDF4 method, we infer:

Corollary 3.3. Assume that cF∆t ≤ 41/72, and let (Un) be a sequence in RM defined by the
4-step BDF method. Then ω((Un)n) is a compact and connected subset of RM included in S.

Proof. Since F is continuous on RM and coercive (assumption (5)), F is bounded from below,
i.e. there exists a real number m such that

F (V ) ≥ m, ∀V ∈ R
M .

By (32), the sequence F̂4(Ûn+3) is nonincreasing; it is also bounded from below (by m), so
its converges to a value F ⋆ ∈ R. By induction, we obtain from (32) that for all N ≥ 0,

F̂4(ÛN+4) +
1

∆t

N∑

n=0

R̃4(∂U
n+4, ∂Un+3, ∂Un+2, ∂Un+1) ≤ F̂4(Û3).

Letting N tend to +∞, we find that

1

∆t

+∞∑

n=0

R̃4(∂Un+4, ∂Un+3, ∂Un+2, ∂Un+1) ≤ F̂4(Û
3) −m < +∞.

In particular, R̃4(∂U
n+4, ∂Un+3, ∂Un+2, ∂Un+1) → 0. Since R̃4 is positive definite, we know

that

λ
(
‖∂Un+4‖2 + ‖∂Un+3‖2 + ‖∂Un+2‖2 + ‖∂Un+1‖2

)

≤ R̃4(∂U
n+4, ∂Un+3, ∂Un+2, ∂Un+1),

for some constant λ > 0 independent of n, and so ∂Un+1 → 0. The boundedness of F̂4(Ûn+3)
also implies that (Un)n is bounded. A standard argument shows then that ω ((Un)n) is a
compact and connected subset of RM . If U⋆ = limp→+∞Unp+4 is an element of ω((Un)n),
then the right hand-side of (8) (with k = 4) tends to −∆t∇F (U⋆), while the left hand-side
tends to 0. Thus U⋆ ∈ S, and the proof is complete.

Corollary 3.4. Assume that cF∆t ≤ 41/72, and let (Un) be a sequence in RM defined by
the 4-step BDF method. Assume moreover that either one of the following assumptions hold:

13



i) the space dimension is M = 1;
i) the critical points of F are isolated;
ii) the function F is real analytic on RM .

Then the whole sequence (Un)n converges to a single point U⋆ which is a critical point of F .

Proof. If i) holds, a proof similar to [15, Corollary 2] can be carried out. It uses that R is an
ordered field. Details are left to the reader.

If assumption ii) holds, then the result is a direct consequence of Corollary 3.3.
If assumption iii) holds, the claim follows from general results on descent methods. We refer

for instance to [2, Theorem 2.4]. In this case, the crucial point is the Lojasiewicz inequality

for real analytic functions: it applies here to the Lyapunov function F̂4.

3.3. Gradient stability of the BDF5 method

From Proposition 2.8, we deduce:

Lemma 3.5. The quadratic forms Γ5, Q5 and R5 associated to γ5, q5 and r5 satisfy

Γ5(V1, V2, V3, V4, V5) = Q5(V1, V2, V3, V4) −Q5(V2, V3, V4, V5) + R5(V1, V2, V3, V4, V5) (34)

for all (V1, V2, V3, V4, V5) ∈ (RM )5. In particular, Q5 and R5 are positive definite. Moreover,

R5(V1, V2, V3, V4, V5) =
1

20
‖V1‖2 + R̃5(V1, V2, V3, V4, V5), (35)

where R̃5 is positive definite on (RM )5.

Proof. It remains only to prove that R̃5 is positive definite. For this purpose, we consider
the quadratic form on R5 defined by

r̃5(x1, x2, x3, x4, x5) = r5(x1, x2, x3, x4, x5) − 1

20
x21.

Using Sylvester’s criterion, we easily check that Ar̃5 is positive definite. The claim on R̃5

follows. As previously, the coefficient 1/20 was found by numerical investigation and it is not
optimal.

For V̂ = (V0, V1, V2, V3, V4) ∈ (RM )5, we define

F̂5(V̂ ) = F (V0) +
1

∆t
Q5(V1, V2, V3, V4),

and for a sequence (Un)n≥0 in RM , we define

Ûn+5 = (Un+5, ∂Un+5, ∂Un+4, ∂Un+3, ∂Un+2),

so that

F̂5(Ûn+5) = F (Un+5) +
1

∆t
Q5(∂U

n+5, ∂Un+4, ∂Un+3, ∂Un+2).
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By arguing as in the proof of Theorem 3.2 and using Lemma 3.5, we find:

Theorem 3.6. If cF∆t ≤ 1/10, the 5-step BDF method (8) is gradient-stable, i.e.

F̂5(Ûn+5) +
1

∆t
R̃5(∂U

n+5, ∂Un+4, ∂Un+3, ∂Un+2, ∂Un+1) ≤ F̂5(Ûn+4), n ≥ 0. (36)

As a consequence of the gradient stability of BDF5 method, Corollaries 3.3 and 3.4 are also
valid for a sequence (Un)n generated by the BDF5 scheme (assuming the stability condition
cF∆t ≤ 1/10 for the time step).

In Table 1, we sum up the results obtained so far regarding uniqueness and gradient stability
of k-step BDF schemes. Uniqueness is ensured if cF∆t < αk (cf. (12)-(13)) and gradient
stability is ensured if cF∆t < βk. The values of βk (1 ≤ k ≤ 3) obtained in [27] have been
improved here by a factor two, thanks to (33). For k = 1, we can have β1 = +∞ if the BDF1
scheme is the proximal algorithm [5, 21]. For k = 1, 2, we have αk < βk: a particular choice
of initial values may produce several gradient stable sequences. In contrast, for 3 ≤ k ≤ 5, we
have αk > βk, so that provably gradient stable sequences are uniquely defined. We note that
the values of β4 and β5 are not optimal (cf. Lemmas 3.1 and 3.5), and we do not know if β3 is
optimal. If the function F is convex, then cF = 0 and the BDF methods are unconditionnally
stable for 1 ≤ k ≤ 5.

Table 1. Uniqueness and gradient stability conditions for BDF methods
k 1 2 3 4 5 6 ≥ 7

αk 1 3/2 11/6 25/12 137/60 49/20
∑k

j=1
1/j

βk 2 or ∞ 2 5/3 41/72 1/10 ? 0 (not g. s.)

4. The BDF3 scheme applied to the Allen-Cahn equation

4.1. Notation and assumptions

Let H = L2(Ω) be equipped with the L2(Ω) norm |·|0 and product (·, ·). We denote V = H1
0 (Ω)

the standard Sobolev space, and |·|1 = |∇·|0 the associated hilbertian norm. Recall that
−∆ : V −→ V ′ is an isomorphism associated to the inner product on V through

< −∆u, v >V ′×V = (∇u,∇v) ∀u, v ∈ V.

We assume that the nonlinearity g : R → R in (1) is real analytic on R and if d ≥ 2, we
assume that there exist c > 0 and p ≥ 0 such that

(d− 2)p < 4 and |g′(s)| ≤ c(1 + |s|p) ∀s ∈ R. (37)

No growth assumption is required if d = 1. Moreover, there exists a constant cg ≥ 0 such that

g′(s) ≥ −cg ∀s ∈ R. (38)

The last assumption is a coercivity condition which yields

lim
|s|→∞

inf
g(s)

s
> −λ1, (39)
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where λ1 > 0 is the first eigenvalue of −∆, that is

λ1 = inf
v∈V \{0}

|v|21
|v|20

. (40)

The Poincaré inequality implies that λ1 > 0. We note that H is continuously imbedded in V ′

and for all v ∈ H, we have

‖v‖V ′ := sup
|w|1≤1

〈v,w〉V ′×V = sup
|w|1≤1

(v,w) ≤ sup
|w|1≤1

|v|0|w|0 ≤ 1√
λ1

|v|0. (41)

By the mean value theorem, we have

(g(b) − g(a))(a − b) ≥ −cf (a− b)2, ∀a, b ∈ R. (42)

Conversely, this relation implies (38), which can therefore be considered as a one-sided Lips-
chitz condition on g (cf. (4)).

We define G as the functional G(s) =

∫ s

0
g(r)dr. Assumption (38) implies that G is semi-

convex, i.e. s 7→ G(s) + (cg/2)s2 is convex.
We note that the standard choice g(s) = s3 − s satisfies (37)-(39) in space dimension

1 ≤ d ≤ 3.

4.2. Derivation of the BDF3 scheme

Consider a uniform grid on [0,+∞) with a positive stepsize ∆t and times tn = n∆t (n = 0,
1, . . . ). We shall compute u(t) at these points, and we denote (momentarily) un = u(tn).
Consider the third degree polynomial Pu interpolating un, un−1, un−2 and un−3 at times tn,
tn−1, tn−2 and tn−3 respectively,

Pu(t) =

3∑

k=0

3∏

j=0
j 6=k

t− tn−j

tn−k − tn−j
un−k.

Since the grid is uniform, this interpolation polynomial Pu can also be written in Newton
form (divided differences),

Pu(t) = un +

3∑

k=1

1

∆tkk!

k−1∏

j=0

(t− tn−j) ∂
kun,
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where ∂kun is recursively defined by ∂kun = ∂k−1(∂un) = ∂k−1(un − un−1), for k ≥ 1.
If the last equation is differentiated with respect to t, one gets

d

dt
Pu(t) =

3∑

k=1

1

∆tkk!




d

dt

k−1∏

j=0

(t− tn−j)



 ∂kun

=

3∑

k=1

1

∆tkk!






k−1∑

p=0

k−1∏

j=0
j 6=p

(t− tn−j)




 ∂kun,

that is

d

dt
Pu(t) =

3∑

k=1

1

∆tkk!









k−1∑

p=1

k−1∏

j=0
j 6=p

(t− tn−j)

︸ ︷︷ ︸

+

k−1∏

j=1

(t− tn−j)









∂kun.

P (t)

Since tn is a root of the polynomial P , by setting t = tn, we obtain

d

dt
Pu(tn) =

3∑

k=1

1

∆tkk!





k−1∏

j=1

(tn − tn−j)



 ∂kun

=

3∑

k=1

1

∆tkk!





k−1∏

j=1

j∆t



 ∂kun.

Thus, we have

d

dt
Pu(tn) =

1

∆t

3∑

k=1

1

k
∂kun. (43)

Substituting (43) into (1) yields the 3-step backward differentiation formula applied to the
Allen-Cahn equation,

1

∆t

3∑

k=1

1

k
∂kun − ∆un + g(un) = 0, (44)

that is,

1

∆t

(
11

6
un − 3un−1 +

3

2
un−2 −

1

3
un−3

)

− ∆un + g(un) = 0.

We note that (44) holds only up to order (∆t)3 if un = u(tn), so that the sequence (un)n
generated by (44) only defines an approximation of the values (u(tn))n. The third order
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accuracy of the BDF3 scheme is well-known in the finite dimensional case [27]. It could
also be carried out in our situation by using standard techniques and by assuming enough
regularity on the solution of (1). We refer to [29] for an error analysis of a fully discrete
version of (1) based on the BDF1 (i.e. backward Euler) scheme for the time discretization;
see also [25] for an error analysis in the case of a second-order scheme.

We shall study the scheme in the following form: let u0, u1, u2 ∈ V , and for n = 2, 3, . . . ,
let un+1 ∈ V solve

un+1 − 18

11
un +

9

11
un−1 − 2

11
un−2 − 6

11
∆t ∆un+1 +

6

11
∆t g(un+1) = 0 (45)

in V ′.

4.3. Existence, uniqueness and stability

Proposition 4.1 (Existence). For any (u0, u1, u2) ∈ V 3, there exists at least one sequence
(un)n≥0 in V which complies with (45).

Proof. Let un−2, un−1, un be fixed in V . Then un+1 can be obtained as a minimizer of the
functional

Gn : V −→ R

u 7−→ 1

2
|u|20 +

1

11
(u,−18un + 9un−1 − 2un−2) +

3

11
∆t |u|21 +

6

11
∆t(G(u), 1).

The growth restriction (37) and Sobolev imbeddings imply that the functional u 7→ (G(u), 1)
is well-defined and of classe C1 on V [19]. The coercivity condition (39) implies the existence
of constants k1 < λ1 and k2 ≥ 0 such that, for all s in R,

G(s) ≥ −k1
2
s2 − k2.

By integration on Ω,

(G(u), 1) ≥ −k1
2

|u|20 − k2|Ω|

≥ − k1
2λ1

|u|21 − k2|Ω|,
(46)

where in the last inequality, we use the Poincaré inequality (40). A direct consequence is that

Gn(u) ≥ 1

4
|u|20 +

(

1 − k1
λ1

)
3

11
∆t |u|21 − cn (47)

for some constant cn ≥ 0 independent of u ∈ V . In particular, Gn is bounded from below.
Denote then m = inf

v∈V
Gn(v) and consider a minimizing sequence (vk)k≥0 ⊂ V . By (47), (vk)k

is bounded in V and we know by Rellich’s theorem that V is compactly imbedded in H. Hence
we can extract a subsequence of (vk), also denoted (vk), such that (vk) converges weakly in
V , strongly in H, and a.e. in Ω to some function u⋆ ∈ V . Using Fatou’s lemma and the lower
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semi-continuity of the V -norm, we obtain

Gn(u∗) ≤ lim inf
k

Gn(vk) = m = inf
v∈V

Gn(v).

As a consequence, u⋆ is a minimizer of Gn: it satisfies the associated Euler-Lagrange equation,
i.e ( d

duGn(u∗), w) = 0, ∀w ∈ V , which reads

(u∗, w) +
1

11
(−18un + 9un−1 − 2un−2, w) +

6

11
∆t [(∇u∗,∇w) + (g(u∗), w)] = 0.

A possible value of un+1 is then u∗.

Proposition 4.2 (Uniqueness). Assume that λ1 + 11
6∆t > cg. Then for every choice of

(un−2, un−1, un) ∈ V 3, there exists at most one un+1 ∈ V which satifies (45).

Proof. Let un−2, un−1 and un be fixed in V . Suppose that un+1 and vn+1 are two solutions
of the scheme. We have







un+1 − 18

11
un +

9

11
un−1 − 2

11
un−2 − 6

11
∆t ∆un+1 +

6

11
∆t g(un+1) = 0,

vn+1 − 18

11
un +

9

11
un−1 − 2

11
un−2 − 6

11
∆t ∆vn+1 +

6

11
∆t g(vn+1) = 0.

Denote δu = un+1 − vn+1. We have

δu− 6

11
∆t ∆(δu) +

6

11
∆t

(
g(un+1) − g(vn+1)

)
= 0

On multiplying by δu in H, we get

|δu|20 +
6

11
∆t |δu|21 +

6

11
∆t

(
g(un+1) − g(vn+1), δu

)
= 0

Using the one-sided Lipschitz condition (42), we obtain

(
g(un+1) − g(vn+1), δu

)
≥ −cg |δu|20 .

Hence,

|δu|20 +
6

11
∆t |δu|21 ≤

6

11
∆tcg |δu|20 ,

and by the Poincaré inequality (40), we have

(

λ1 +
11

6∆t
− cg

)

|δu|20 ≤ 0.

The proof is complete.

Remark 4.3. Notice that if cg∆t ≤ 11/6, then uniqueness is ensured.
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In order to achieve stability, the idea is to exhibit a Lyapunov functional for (45) in a way
such that the set of equilibria set associated to the functional is related to the set of equilibria
of the Allen-Cahn equation.

First recall the energy functional associated to the Allen-Cahn equation (cf. (2)),

E : V −→ R

u 7−→ E(u) =
1

2
|u|21 + (G(u), 1).

The growth assumption (37) on g and Sobolev imbeddings imply that E is well-defined and
of class C1 on V [19].

The set of critical points of E is defined as

S = {u ∈ V, −∆u + g(u) = 0 in V ′}.

The Lyapunov functional E : V 3 −→ R associated to the BDF3 is defined by

E(u, v, w) = E(u) +
5

12∆t
|v|20 +

1

6∆t
|w|20 . (48)

Remark that the set of critical points of E is S × {0} × {0}, which, in a sense, is equivalent
to S.

The following proposition shows the nonincreasing property. As a shortcut, we denote
En = E(un, ∂un, ∂2un) for all n ≥ 2.

Proposition 4.4 (Lyapunov stability). Assume that 5
6∆t ≥ cg and let (un)n≥2 be a sequence

in V generated by (45). Then for all n ≥ 2,

En+1 +
1

2

∣
∣∂un+1

∣
∣
2

1
+ (

5

6∆t
− cg)

∣
∣∂un+1

∣
∣
2

0
+

1

4 ∆t

∣
∣∂2un+1

∣
∣
2

0

+
1

6 ∆t

∣
∣∂un+1 − ∂un + ∂un−1

∣
∣
2

0
≤ En. (49)

Proof. We write the BDF3 scheme (45) in the following form, valid for all n ≥ 2 (cf. (44)),

1

∆t

3∑

j=1

1

j
∂jun+1 − ∆un+1 + g(un+1) = 0. (50)

On multiplying (50) by ∂un+1 in H, we obtain

1

∆t

3∑

j=1

1

j
(∂jun+1, ∂un+1)

︸ ︷︷ ︸

+(∇un+1,∇(∂un+1)) + (g(un+1), ∂un+1) = 0.

Σ

(51)

By the Taylor-Lagrange theorem and (38), we deduce that

∀a, b ∈ R G(b) −G(a) ≥ (b− a)g(a) − cg
2

(a− b)2,
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and so

1

∆t
Σ + (∇un+1,∇(∂un+1)) ≤ (G(un), 1) − (G(un+1), 1) + cg

∣
∣∂un+1

∣
∣
2

0
.

Using the well known identity

(A,A−B) =
1

2
(A,A) − 1

2
(B,B) +

1

2
(A−B,A−B), (52)

we obtain

1

∆t
Σ +

1

2

(∣
∣un+1

∣
∣
2

1
− |un|21

)

+
1

2

∣
∣∂un+1

∣
∣
2

1
≤ (G(un), 1) − (G(un+1), 1) + cg

∣
∣∂un+1

∣
∣
2

0
.

By mimicking identity (17), we check that Σ can be written

Σ =
5

6

∣
∣∂un+1

∣
∣
2

0
+

1

4

∣
∣∂2un+1

∣
∣
2

0
+ +

1

6

∣
∣∂un+1 − ∂un + ∂un−1

∣
∣
2

0

+
5

12

(∣
∣∂un+1

∣
∣
2

0
− |∂un|20

)

+
1

6

(∣
∣∂2un+1

∣
∣
2

0
−
∣
∣∂2un

∣
∣
2

0

)

.

(53)

This is the key to the Lyapunov stability. Indeed, we find

En+1 +
1

2

∣
∣∂un+1

∣
∣
2

1
+

5

6∆t

∣
∣∂un+1

∣
∣
2

0
+

1

4 ∆t

∣
∣∂2un+1

∣
∣
2

0

+
1

6 ∆t

∣
∣∂un+1 − ∂un + ∂un−1

∣
∣
2

0
≤ En + cg

∣
∣∂un+1

∣
∣
2

0
,

and the proposition is proved.

5. Convergence to equilibrium for the BDF3 scheme

Let (un)n be a sequence in V . We define its ω-limit set by

ω((un)n) = {u⋆ ∈ V, ∃nk −→ ∞ s.t. unk −→ u⋆ in V } .

Throughout this section, we assume that the stability condition holds, that is 5
6∆t ≥ cg. In

particular, the uniqueness condition is also valid.

Proposition 5.1. Let (un)n≥2 be a sequence in V generated by (45). Then (un)n≥2 is bounded
in V , ∂un −→ 0 in V , ∂jun −→ 0 in H for j = 2, 3 and E is constant on ω((un)n).

Proof. We deduce from (46) that

E(u, v, w) ≥ 1

2
(1 − k1

λ1
) |u|21 +

5

12∆t
|v|20 +

1

6∆t
|w|20 − k2|Ω|, (54)

for all (u, v, w) ∈ V ×H ×H. In particular, En is bounded from below. Adding the fact that
(En)n is nonincreasing by the stability inequality (49), we conclude that En converges in R
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to some real number E⋆. From the boundedness of (En) and estimate (54), we deduce that
(un)n≥2 is bounded in V . Using now the stability inequality (49), we have

1

2

∣
∣∂un+1

∣
∣
2

1
+

1

4∆t

∣
∣∂2un+1

∣
∣
2

0
+

1

6 ∆t

∣
∣∂un+1 − ∂un + ∂un−1

∣
∣
2

0
≤ En − En+1, (55)

for all n ≥ 2. By summing on n, we find that

∞∑

n=2

(∣
∣∂un+1

∣
∣
2

1
+
∣
∣∂2un+1

∣
∣
2

0

)

≤ C

∞∑

n=2

(
En − En+1

)
< C

(
E2 − E⋆

)
,

where C = (min{1/2, 1/4∆t})−1 . Since E2 = E(u2, ∂u2, ∂2u2) < ∞, this implies that ∂un −→
0 in V and ∂2un −→ 0 in H. Thus, E(un) tends to the same limit E⋆ as En. This implies that
E is constant and equal to E⋆ on ω((un)n).

In a similar way, we obtain from (55) that

∞∑

n=2

∣
∣∂un+1 − ∂un + ∂un−1

∣
∣
2

0
≤ 6∆t(E2 − E⋆) < +∞.

Thus, ∂un+1 − ∂un + ∂un−1 → 0 in H and since

∂3un+1 = ∂un+1 − 2∂un + ∂un−1

=
(
∂un+1 − ∂un + ∂un−1

)
− ∂un,

we see that ∂3un+1 → 0 in H. The proof is achieved.

Proposition 5.2. Let (un)n≥2 be a sequence in V generated by (45). Then the set ω((un)n)
is a nonempty compact and connected subset of V included in S.

Proof. We first claim that the set {un : n ∈ N} is precompact in V . The idea is to use
elliptic regularity in order to find a constant q > 1 such that (un+1) is bounded in W2,q(Ω)
with W2,q(Ω) compactly imbedded in V . Here, W2,q(Ω) is the standard Sobolev space based
on the Lq(Ω) space. It is well-known [13] that W2,q(Ω) is compactly imbedded in V if

2 − d

q
> 1 − d

2
⇐⇒ q >

2d

2 + d
. (56)

From the BDF3 scheme (45), we have

∆un+1 = l(un+1, un, un−1, un−2) + g(un+1), (57)

where the functional l depends linearly on its variable. Thus, l(un+1, un, un−1, un−2) is
bounded in L2(Ω) (and also in Lq(Ω), for any 1 < q ≤ 2). By Proposition 5.1, (un)n is
bounded in V. This implies that (g(un+1))n is bounded in Lq(Ω) for an appropriate choice of
q. Now we discuss according to d.

First assume that d ≥ 3. For any q ∈ (1, 2], we have, using the growth condition (37),

||g(un+1)||Lq(Ω) ≤ C
(
1 + ||un+1||L(p+1)q(Ω)

)
,
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for some constant C independent of n. By Sobolev imbeddings, (un+1) is bounded in L2∗

(Ω)
where 2∗ = 2d

d−2 . Since p(d− 2) < 4, we have p+ 1 < d+2
d−2 , and by choosing q = min{ 2∗

p+1 , 2} ∈
(1, 2], relation (56) is satisfied and g(un+1) is bounded in Lq(Ω). By elliptic regularity [13],
from (57) we deduce that (un+1) is bounded in W2,q(Ω) and this concludes the case d ≥ 3.

If d = 1 or d = 2, we obtain from Sobolev embeddings that (g(un+1))n is bounded in any
Lr(Ω), r < ∞, so we may choose q = 2 in (57) and we conclude as previously. This proves
the claim concerning precompactness of the set ω((un)n).

It is well known that ω((un)n) is closed in V , so it is a nonempty compact subset of V .
Using that

∣
∣∂un+1

∣
∣
1

=
∣
∣un+1 − un

∣
∣
1

converges to 0 (cf. Proposition 5.1), a standard argument
shows that ω((un)n) is also connected in V .

Let now u⋆ ∈ ω((un)n). There exists nk −→ ∞ such that unk −→ u⋆ strongly in V and
(unk) complies with (50). By Proposition 5.1, ∂junk converges to 0 for j = 1, 2 and 3. Hence,
−∆u⋆ + g(u⋆) = 0, so u⋆ belongs to S as claimed.

The results obtained so far are valid if g ∈ C1(R,R) only. The following lemma, which is
the  Lojasiewicz-Simon inequality, uses that g is real analytic.

Lemma 5.3. Let u⋆ ∈ S. Then there exist constants θ ∈ (0, 12 ) and δ > 0 depending on u∗

such that for any u ∈ V satisfying |u− u⋆|1 < δ, we have

|E(u) − E(u⋆)|1−θ ≤ ‖ − ∆u + g(u)‖V ′ . (58)

Proof. The inequality has been proved in [18, Proposition 11.4.1].

Theorem 5.4. Let (un)n≥2 be a sequence in V generated by (45). Then the whole sequence
converges to a steady state u∞ in V , with u∞ ∈ S.

Proof. The union of balls {Bδ(u
⋆), u⋆ ∈ ω((un)n)} forms an open covering of ω((un)n). Due

to the compactness of ω((un)n) in V , we can extract a finite subcovering {Bδi(u
⋆
i )}i=1,...,m in

a way that the constants θi and δi corresponding to u∗i in Lemma 5.3 are indexed by i.
From the definition of ω((un)n), we can always find a sufficiently large n0 such that un ∈

⋃m
i=1 Bδi(u

⋆
i ) for all n ≥ n0. Consider θ = min

i=1,...,m
{θi}, then by Lemma 5.3 and Proposition 5.1,

we have for all n ≥ n0,

|E(u) − E⋆|1−θ ≤ ‖ − ∆u + g(u)‖V ′ ,

where E⋆ is the constant value of E on ω((un)n). We will also choose n0 large enough so
that

∣
∣∂jun+1

∣
∣
0
≤ 1 for j = 1, 2 and for all n ≥ n0. Denote φn = En − E⋆ so that (φn)n is

nonincreasing and bounded from below by 0.
Let n ≥ n0. Using the well-known inequality (a + b)1−θ ≤ a1−θ + b1−θ satisfied by all

nonnegative numbers a and b, we find that

(φn+1)1−θ ≤ |E(un+1) − E∞|1−θ +

(
5

12∆t

∣
∣∂un+1

∣
∣
2

0
+

1

6∆t

∣
∣∂2un+1

∣
∣
2

0

)1−θ

≤
∥
∥−∆un+1 + g(un+1)

∥
∥
V ′ +

(
5

12∆t

∣
∣∂un+1

∣
∣
2

0
+

1

6∆t

∣
∣∂2un+1

∣
∣
2

0

)1−θ

≤

∥
∥
∥
∥
∥
∥

1

∆t

3∑

j=1

∂jun+1

j

∥
∥
∥
∥
∥
∥
V ′

+

(
5

12∆t

∣
∣∂un+1

∣
∣
2

0
+

1

6∆t

∣
∣∂2un+1

∣
∣
2

0

)1−θ

.
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The last inequality is obtained by the version (50) of the BDF3 scheme. Next, we note that

3∑

j=1

∂jun+1

j
= ∂un+1 +

1

2

(
∂un+1 − ∂un

)
+

1

3

(
∂un+1 − 2∂un + ∂un−1

)

=
3

2
∂un+1 − 5

6
∂un +

1

3

(
∂un+1 − ∂un + ∂un−1

)

=
2

3
∂un+1 +

5

6

(
∂un+1 − ∂un

)
+

1

3

(
∂un+1 − ∂un + ∂un−1

)

=
2

3
∂un+1 +

5

6
∂2un+1 +

1

3

(
∂un+1 − ∂un + ∂un−1

)
.

Since H is continuously imbedded into V ′ (cf. (41)), this yields

(φn+1)1−θ ≤ 2λ
−1/2
1

3∆t

∣
∣∂un+1

∣
∣
0

+
5λ

−1/2
1

6∆t

∣
∣∂2un+1

∣
∣
0

+
λ
−1/2
1

3∆t

∣
∣∂un+1 − ∂un + ∂un−1

∣
∣
0

+(
5

12∆t
)1−θ

∣
∣∂un+1

∣
∣
2(1−θ)

0
+ (

1

6∆t
)1−θ

∣
∣∂2un+1

∣
∣
2(1−θ)

0

≤ c
(∣
∣∂un+1

∣
∣
2

1
+
∣
∣∂2un+1

∣
∣
2

0
+
∣
∣∂un+1 − ∂un + ∂un−1

∣
∣
2

0

) 1

2

, (59)

where c is a constant independent of n.
Assume first that φn+1 > φn/2. Then we have

(φn)θ − (φn+1)θ =

∫ φn

φn+1

θ xθ−1dx

≥ θ(φn)θ−1
(
φn − φn+1

)

≥ θ2θ−1(φn+1)θ−1
(
φn − φn+1

)
.

From Proposition 4.4 and 59, we obtain

(φn)θ − (φn+1)θ ≥ C
(∣
∣∂un+1

∣
∣
2

1
+
∣
∣∂2un+1

∣
∣
2

0
+
∣
∣∂un+1 − ∂un + ∂un−1

∣
∣
2

0

) 1

2

. (60)

If φn+1 ≤ φn/2, by using Proposition 4.4 again, we find that for all n ≥ 2,

(φn)
1

2 − (φn+1)
1

2 ≥
√

2 − 1√
2

(φn)
1

2

≥
√

2 − 1√
2

(φn − φn+1)
1

2

≥ C ′
(∣
∣∂un+1

∣
∣
2

1
+
∣
∣∂2un+1

∣
∣
2

0
+
∣
∣∂un+1 − ∂un + ∂un−1

∣
∣
2

0

) 1

2

.

(61)

In both cases, inequalities (60) and (61) imply that for all n ≥ n0,

∣
∣∂un+1

∣
∣
1
≤ 1

C

(

(φn)θ − (φn+1)θ
)

+
1

C ′

(

(φn)
1

2 − (φn+1)
1

2

)

.

24



By summing on n, we find that

∞∑

n=n0

∣
∣un+1 − un

∣
∣
1
≤ 1

C
(φn0)θ +

1

C ′
(φn0)

1

2 < ∞.

This implies that (un)n converges to some u∞ in V . By Proposition 5.2, u∞ belongs to S.

Remark 5.5. By using the gradient stability proved in Section 3 and by arguing as for the
BDF3 scheme, we could obtain a result similar to Theorem 5.4 for the BDF4 and BDF5
methods.

6. Numerical simulations

We present some numerical simulations to illustrate the theoretical results. We consider the
1d Allen-Cahn equation endowed with homogeneous Dirichlet boundary conditions,







ut − ∆u + g(u) = 0, (x, t) ∈ (0, L) × (0, T ],

u(0, t) = u(L, t) = 0, t ∈ (0, T ],

u(x, 0) = u0(x), x ∈ (0, L),

(62)

where g(s) = s3 − s. Note that cg = 1 (cf. (38)).

For the space discretization, we use P 1 continuous finite elements on a regular subdivision of
[0, L] with mesh size h = 1/(M +1). Due to the Dirichlet boundary conditions, the dimension
of the finite element space Vh is M . By using an appropriate basis (namely, an orthonormal
basis of Vh for the L2(0, L) scalar product), it is easily seen that this space discrete version
of (62) is a gradient flow in RM of the form (3), for a function F which satisfies (4)-(5) (see
e.g. [2]). Moreover, F is a polynomial of M variables (and therefore real analytic), so that
convergence to equilibrium holds for this gradient flow.

For the time discretization, we use the BDF3 scheme. By gradient stability [2, 27], conver-
gence to equilibrium also holds for this fully discrete version of (62).

Regarding the numerical resolution, we use the standard nodal basis of Vh (“hat functions”),
and in the following, we identify Vh to RM through this basis. We obtain the scheme

Bh
11 Un+3 − 18 Un+2 + 9 Un+1 − 2 Un

6∆t
+ Ah Un+3 + Gh(Un+3) = 0, (63)

where Ah and Bh are M×M symmetric positive-definite matrix, Gh : RM → RM corresponds
to the nonlinearity g, and Un ∈ RM is the unknown vector (see e.g. [11]). The matrix Ah is
a discretization of −∆ and Bh is the mass matrix.

This scheme is fully implicit. When Un, Un+1 and Un+2 are known, Un+3 can be obtained
as a solution of the nonlinear problem,

Hn(V ) = 0, (64)

where Hn : RM −→ RM is the function,

Hn(V ) = Bh
11V − 18Un+2 + 9Un+1 − 2Un

6∆t
+ AhV + Gh(V ).
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For the numerical resolution of (64), one possibility is to use a Newton method. This reads:
let V 0 = Un+2 and for k = 0, 1, 2, . . . , until convergence, let V k solve the linearized equation

Hn(V k) + dHn(V k)(V k+1 − V k) = 0, (65)

where dHn(V ) = Bh/∆t+Ah +dGh(V ) is a M ×M symmetric matrix. Yet, the computation
of dG(V k) is costly, so we actually use an approximate Newton method, i.e. an approximation
of dG(V k).

Figure 1. Evolution of Un to equilibrium from a regular initial condition.

Figure 1 represents the evolution of the sequence (Un) generated by (63) from a regular
initial datum u0(x) = 1

5 sin(2πxL ). The spatial discretization was chosen small enough to ensure
good accuracy of the finite elements method by setting L = 20, ∆x = 0.0995 corresponding
to M = 200 space nodes. The total time of the simulation is T = 10 with a time stepsize of
∆t = 0.5 ≤ 5

6 cg
corresponding to n = 20 iterations. The first two iterations U1 and U2 are

approximated using the Crank-Nicolson scheme, i.e for n = 0, 1

B(Un+1 − Un)/∆t + A(Un+1 + Un))/2 + [G(Un+1) + G(Un)]/2 = 0.

The choice of this second order scheme for U1 and U2 guarantees the third order accuracy of
the BDF3 scheme [27].

We see that the discrete solution rapidly converges to a steady state, with values close to
±1, except for three transition layers (one in the middle, and two near the boundaries 0 and
L. The equilibrium is reached graphically after only 14 iterations (i.e. with an accuracy of
order 0.01 in the max norm of Un).

Another simulation that shows the rapidity of convergence to equilibrium is given in Fig-
ure 2. It is a plot of the pseudo-energies En

k versus time iteration for the BDF methods of
order k = 1, 2 and 3. The pseudo-energy here is the Lyapunov function associated to the
scheme [27]. In particular, En

3 is given by E(unh) where unh ∈ Vh corresponds to Un.
Since ∆t is small enough, the pseudo-energies are decreasing, as expected. We note that

they all converge to the same value, which is the energy level of the discrete steady state.
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Figure 2. Peudo-energy vs time iteration for BDF1, BDF2 and BDF3.

Table 2. Convergence error of the
BDF3 scheme

N ∆t err∆t ratio
16 1/8 1.8483e-03 −
32 1/16 2.4165e-04 7.6487
64 1/32 3.0741e-05 7.861
128 1/64 3.8251e-06 8.0367
256 1/256 4.2679e-07 8.9624

In order to check numerically the third order accuracy of the BDF3 scheme, we have
computed in Table 2 the error for the time discretization,

err∆t = max
0≤n≤N

∥
∥
∥u∆t

h (tn) − u∆tsol
h (tn)

∥
∥
∥
L2(0,L)

.

The maximum is evaluated on the coarse grid tn = n∆t, n = 0, 1, . . . , N , with ∆t = T/N .
The notation u∆t

h (tn) represents the function in Vh corresponding to Un at time tn. Since the

exact solution is not known, we used instead the discrete solution u∆tsol
h on a fine grid with

total time solution T = 2 and time stepsize ∆tsol = 1/512 corresponding to 1024 iterations.
The values of M = 200 and u0 were chosen as above. We see that the ratio err∆t/err∆t

2
of

consecutive errors is close to 8 = 23, and this is consistent with the third order accuracy of
the BDF3 scheme.
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