
HAL Id: hal-01818308
https://hal.science/hal-01818308v1

Submitted on 5 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An algorithm for deciding the finiteness of the number
of simple permutations in permutation classes

Frédérique Bassino, Mathilde Bouvel, Adeline Pierrot, Dominique Rossin

To cite this version:
Frédérique Bassino, Mathilde Bouvel, Adeline Pierrot, Dominique Rossin. An algorithm for deciding
the finiteness of the number of simple permutations in permutation classes. Advances in Applied
Mathematics, 2015, 64, pp.124 - 200. �10.1016/j.aam.2014.12.001�. �hal-01818308�

https://hal.science/hal-01818308v1
https://hal.archives-ouvertes.fr

ar
X

iv
:1

30
7.

20
06

v3
 [

m
at

h.
C

O
]

 8
 D

ec
 2

01
4

An algorithm for deciding the finiteness of the number

of simple permutations in permutation classes 1

Frédérique Bassinoa, Mathilde Bouvel2,b, Adeline Pierrotc, Dominique Rossind

aUniversité Paris 13, Sorbonne Paris Cité, LIPN, CNRS UMR 7030, F-93430,

Villetaneuse, France.
bLaBRI UMR 5800, Univ. Bordeaux and CNRS, 351, cours de la Libération, 33405 Talence

cedex, France; and Institut für Mathematik, Uni. Zürich, Zurich, Switzerland.
cLIAFA UMR 7089, Univ. Paris Diderot and CNRS, Case 7014, 75205 Paris cedex 13,

France; and Institut für Diskrete Mathematik und Geometrie, TU Wien, Vienna, Austria;

and LRI UMR 8623, Univ. Paris Sud and CNRS, 91405 Orsay Cedex, France.
dLIX UMR 7161, Ecole Polytechnique and CNRS, 91128 Palaiseau, France.

Abstract

In this article, we describe an algorithm to determine whether a permutation
class C given by a finite basis B of excluded patterns contains a finite num-
ber of simple permutations. This is a continuation of the work initiated in
[Brignall, Ruškuc, Vatter, Simple permutations: decidability and unavoidable
substructures, 2008], and shares several aspects with it. Like in this article,
the main difficulty is to decide whether C contains a finite number of proper
pin-permutations, and this decision problem is solved using automata theory.
Moreover, we use an encoding of proper pin-permutations by words over a fi-
nite alphabet, introduced by Brignall et al. However, unlike in their article,
our construction of automata is fully algorithmic and efficient. It is based on
the study of pin-permutations in [Bassino, Bouvel, Rossin, Enumeration of pin-
permutations, 2011]. The complexity of the overall algorithm is O(n logn+s2k)
where n denotes the sum of the sizes of permutations in the basis B, s is the
maximal size of a pin-permutation in B and k is the number of pin-permutations
in B.

Keywords: Permutation class; finite basis; simple permutation; algorithm;
automaton; pin-permutation.
Mathematics Subject Classification: 05A05; 68R05; 05-04.

1. Introduction

Since the definition of the pattern relation among permutations by Knuth in
the 70’s [17], the study of permutation patterns and permutation classes in com-

1This work was completed with the support of the ANR (project ANR BLAN-0204 07
MAGNUM).

2Corresponding author. mathilde.bouvel@math.uzh.ch, +41 44 63 55 852 .

Preprint submitted to Elsevier

http://arxiv.org/abs/1307.2006v3

binatorics has been a quickly growing research field, and is now well-established.
Most of the research done in this domain concerns enumeration questions on
permutation classes. Another line of research on permutation classes has been
emerging for about a decade: it is interested in properties or results that are less
precise but apply to families of permutation classes. Examples of such general
results may regard enumeration of permutation classes that fall into general
frameworks, properties of the corresponding generating functions, growth rates
of permutation classes, order-theoretic properties of permutation classes. . . This
second point of view is not purely combinatorial but instead is intimately linked
with algorithms. Indeed, when stating general structural results on families of
permutation classes, it is natural to associate to an existential theorem an al-
gorithm that tests whether a class given in input falls into the family of classes
covered by the theorem, and in this case to compute the result whose existence
is assessed by the theorem.

Certainly the best illustration of this paradigm that can be found in the
literature is the result of Albert and Atkinson [3], stating that every permutation
class containing a finite number of simple permutations has a finite basis and
an algebraic generating function, and its developments by Brignall et al. in [9,
10, 11]. A possible interpretation of this result is that the simple permutations
that are contained in a class somehow determine how structured the class is.
Indeed, the algebraicity of the generating function is an echo of a deep structure
of the class that appears in the proof of the theorem of [3]: the permutations of
the class (or rather their decomposition trees) can be described by a context-
free grammar. In this theorem, as well as in other results obtained in this
field, it appears that simple permutations play a crucial role. They can be seen
as encapsulating most of the difficulties in the study of permutation classes
considered in their generality, both in algorithms and combinatorics.

Our work is about these general results that can be obtained for large families
of permutation classes, and is resolutely turned towards algorithmic considera-
tions. It takes its root in the theorem of Albert and Atkinson that we already
mentioned, and follows its developments in [11] and [6].

In [11], Brignall, Ruškuc and Vatter provide a criterion on a finite basis B
for deciding whether a permutation class C = Av(B) contains a finite number
of simple permutations. We have seen from [3] that this is a sufficient condition
for the class to be well-structured. To this criterion, [11] associates a decision
procedure testing from a finite basis B whether C = Av(B) contains a finite
number of simple permutations. Both in the criterion and in the procedure, the
set of proper pin-permutations introduced in [11] plays a crucial part. The pro-
cedure is based on the construction of automata that accept languages of words
on a finite alphabet (that are called pin words) that encode such permutations
that do not belong to the class. This procedure is however not fully algorithmic,
and its complexity is a double exponential, as we explain in Subsection 4.1.

Our goal is to solve the decision problem of [11] with an actual algorithm,
whose complexity should be kept as low as possible. For this purpose, we heavily
rely on [6] where we perform a detailed study of the class of pin-permutations,
which contains the proper pin-permutations of [11]. These results allow us to

2

precisely characterize the pin words corresponding to any given pin-permutation,
and to subsequently modify the automata construction of [11], leading to our
algorithm deciding whether a permutation class given by a finite basisB contains
a finite number of simple permutations. Figure 1 gives an overview of the general
structure of our algorithm (the notations it uses will however be defined later,
in Sections 3 and 4).

1. Check if C contains finitely many parallel alternations and wedge sim-
ple permutations.

2. Check if C contains finitely many proper pin-permutations:

(a) Determine the set PB of pin-permutations of B;
(b) For each π in PB, build an automaton Aπ recognizing the lan-

guage
←−
Lπ (or a variant of this language);

(c) From the automata Aπ, build an automaton AC recognizing the

language
←−−−−−−−−−
M\ ∪π∈BLπ;

(d) Check if the language recognized by AC is finite.

Figure 1: Our algorithm testing if the number of simple permutations in C =
Av(B) is finite.

As can be seen in Theorem 5.1 (p.24), the resulting algorithm is efficient:
it is polynomial w.r.t. the sizes of the patterns in B and simply exponential
w.r.t. their number, which is a significant improvement to the first decidability
procedure of [11]. Notice that we described in [5] an algorithm solving the same
problem on substitution-closed permutation classes, that is to say the classes of
permutations whose bases contain only simple permutations. The complexity
of our algorithm in this special framework is O(n logn) where n is the sum of
the size of the patterns in B.

The article is organized as follows. Section 2 starts with a reminder of previ-
ous definitions and results about permutation patterns, decomposition trees and
pin-permutations. It also recalls from [11] the characterization of classes with
a finite number of simple permutations, where proper pin-permutations enter
into play. Section 3 establishes our criterion for deciding whether a permutation
class contains a finite number of proper pin-permutations: this is the condition
tested by the second step of the algorithm of Figure 1. Stating this criterion
requires that we review the encoding of pin-permutations by pin words used by
[11] and that we go further into the interpretation of the pattern order between
pin-permutations in terms of words and languages. In Section 4, we describe and
compare two methods for testing whether a class contains finitely many proper
pin-permutations. We start with the procedure of [11], and proceed with our
method. Then we outline in Subsection 4.3 the most technical part of our algo-
rithm: building an automaton Aπ associated to every pin-permutation π of the
basis of the class. Details and proofs for this step can be found in Appendices.

3

Finally, Section 5 describes and gives the complexity of our whole algorithm to
decide, given a finite basis B, whether the class C = Av(B) contains a finite
number of simple permutations. To conclude, we put this result in the context
of previous and future research in Section 6.

2. Preliminaries on permutations

We recall in this section a few definitions and results about permutation
classes, substitution decomposition and decomposition trees, pin representations
and pin-permutations. We also recall the characterization of classes with finitely
many simple permutations. More details can be found in [3, 6, 9, 11].

2.1. Permutation classes and simple permutations

The topic of this paper is to answer algorithmically the question of whether a
permutation class contains finitely many simple permutations, thereby ensuring
that the generating function of the class is algebraic [3]. We naturally start by
the definitions of this terminology.

A permutation σ ∈ Sn is a bijective function from {1, . . . , n} onto {1, . . . , n}.
We represent a permutation σ either by the word σ1σ2 . . . σn where σi = σ(i)
for every i ∈ {1, . . . , n}, or by its diagram consisting in the set of points at
coordinates (i, σi) drawn in the plane. Figure 3 (p.7) shows for example the
diagram of σ = 4 7 2 6 3 1 5.

A permutation π = π1π2 . . . πk is a pattern of a permutation σ = σ1σ2 . . . σn

and we write π ≤ σ if and only if there exist 1 ≤ i1 < i2 < . . . < ik ≤ n such
that π is isomorphic to σi1 . . . σik (see an example in Figure 3). We also say
that σ involves or contains π. If π is not a pattern of σ we say that σ avoids π.

Let B be a finite or infinite antichain of permutations – i.e., a set of permu-
tations that are pairwise incomparable for ≤. The permutation class of basis B
denoted Av(B) is the set of all permutations avoiding every element of B.

The reader familiar with the permutation patterns literature will notice that
we do not adopt the (equivalent) point of view of defining permutation classes
as downward closed sets for ≤. Indeed, in this article, permutation classes are
always given by their bases. We will further restrict our attention to classes
having finite bases, since otherwise from [3], they contain infinitely many simple
permutations.

A block (or interval) of a permutation σ of size n is a subset {i, . . . , (i+ℓ−1)}
of consecutive integers of {1, . . . , n} whose images under σ also form an interval
of {1, . . . , n}. A permutation σ is simple when it is of size at least 4 and it
contains no block, except the trivial ones: those of size 1 (the singletons) or of
size n (σ itself). The only permutations of size smaller than 4 that have only
trivial blocks are 1, 12 and 21, nevertheless they are not considered to be simple
in this article.

4

2.2. Substitution decomposition and decomposition trees

Let σ be a permutation of Sk and π1, . . . , πk be k permutations of Sℓ1 , . . .,
Sℓk respectively. The substitution σ[π1, π2, . . . , πk] of π1, π2, . . . , πk in σ (also
called inflation in [3]) is defined as the permutation whose diagram is obtained
from the one of σ by replacing each point σi by a block containing the diagram
of πi. Alternatively, σ[π1, π2, . . . , πk] is the permutation of size

∑
ℓi which is

obtained as the concatenation p1p2 . . . pk of sequences pi of integers such that
each pi is isomorphic to πi and all integers in pi are smaller than those in pj as
soon as σi < σj . For example 1 3 2[2 1, 1 3 2, 1] = 2 1 4 6 5 3.

Permutations can be decomposed using substitutions, as described in Theo-
rem 2.2 below. For this purpose, we now introduce some definitions and nota-
tions. For any k ≥ 2, let Ik be the permutation 1 2 . . . k and Dk be k (k−1) . . . 1.
Denote by ⊕ and ⊖ respectively Ik and Dk. Notice that in inflations of the form
⊕[π1, π2, . . . , πk] = Ik[π1, π2, . . . , πk] or ⊖[π1, π2, . . . , πk] = Dk[π1, π2, . . . , πk],
the integer k is determined without ambiguity by the number of permutations
πi of the inflation.

Definition 2.1. A permutation σ is ⊕-decomposable (resp. ⊖-decomposable)
if it can be written as ⊕[π1, π2, . . . , πk] (resp. ⊖[π1, π2, . . . , πk]), for some k ≥ 2.
Otherwise, it is ⊕-indecomposable (resp. ⊖-indecomposable).

Theorem 2.2. For any n ≥ 2, every permutation σ ∈ Sn can be uniquely
decomposed as either:

• ⊕[π1, π2, . . . , πk], with k ≥ 2 and π1, π2, . . . , πk ⊕-indecomposable,

• ⊖[π1, π2, . . . , πk], with k ≥ 2 and π1, π2, . . . , πk ⊖-indecomposable,

• α[π1, . . . , πk] with α a simple permutation and k = |α| (so that k ≥ 4).

Theorem 2.2 appears in [3] under a form that is trivially equivalent. The
reader can also refer to [14] for a historical reference, or to [15] for a reference
in an algorithmic context.

Remark 2.3. Any block of σ = α[π1, . . . , πk] (with α a simple permutation) is
either σ itself, or is included in one of the πi.

Theorem 2.2 can be applied recursively on each πi leading to a complete
decomposition where each permutation is either Ik, Dk (denoted by ⊕,⊖ re-
spectively) or a simple permutation. This complete decomposition is called
the substitution decomposition of a permutation. It is accounted for by a tree,
called the substitution decomposition tree, where a substitution α[π1, . . . , πk] is
represented by a node labeled α with k ordered children representing the πi.

Definition 2.4. The substitution decomposition tree T of the permutation σ
is the unique labeled ordered tree encoding the substitution decomposition of σ,
where each internal node is either labeled by ⊕,⊖ – those nodes are called linear
– or by a simple permutation α – prime nodes. Each node labeled by α has |α|
children. See Figure 2 for an example.

5

Notice that in substitution decomposition trees, there are no edges between
two nodes labeled by ⊕, nor between two nodes labeled by ⊖, since the πi are
⊕-indecomposable (resp. ⊖-indecomposable) in the first (resp. second) item of
Theorem 2.2.

3 1 4 2

⊕

⊖

⊖

⊕

2 4 1 5 3

⊖ ⊕

Figure 2: The diagram and the substitution decomposition tree T of the permu-
tation σ = 10 13 12 11 14 1 18 19 20 21 17 16 15 4 8 3 2 9 5 6 7. The internal nodes of
T correspond to the blocks of σ marked by rectangles.

Remark 2.5. Permutations are bijectively characterized by their substitution
decomposition trees.

In the sequel, when writing a child of a node V we mean the permutation
corresponding to the subtree rooted at this child of node V .

2.3. Pin-permutations and pin representations

In this article, the pin-permutations (and their decomposition trees) play
a central role. The remaining of this preliminary section recalls their defini-
tion and explains how they are related to our problem of testing whether a
permutation class contains finitely many simple permutations.

A pin is a point in the plane. A pin p separates – horizontally or vertically –
the set of pins P from the set of pins Q if and only if a horizontal – resp. vertical
– line drawn across p separates the plane into two parts, one containing P and
the other one containing Q. The bounding box (also known as the rectangular
hull) of a set of points P is the smallest axis-parallel rectangle containing the
set P . A pin sequence is a sequence (p1, . . . , pk) of pins in the plane such that no
two points are horizontally or vertically aligned and for all i ≥ 2, pi lies outside
the bounding box of {p1, . . . , pi−1} and satisfies one of the following conditions:

• separation condition: pi separates pi−1 from {p1, . . . , pi−2};

• independence condition: pi is independent from {p1, . . . , pi−1}, i.e., it does
not separate this set into two non-empty sets.

6

A pin sequence represents a permutation σ if and only if it is isomorphic
to its diagram. We say that a permutation σ is a pin-permutation if it can be
represented by a pin sequence, which is then called a pin representation of σ
(see Figure 3). Not all permutations are pin-permutations (see for example the
permutation σ of Figure 3).

4 7 2 6 3 1 5 4 6 2 3 1 5

p1

p2
p3

p4

p5

p6

Figure 3: The permutation σ = 4 7 2 6 3 1 5, its pattern π = 4 6 2 3 1 5, a pin
representation p of π, and the bounding box of {p1, p2} with its sides shaded.

Lemma 2.17 of [6] is used several times in our proofs, and we state it here:

Lemma 2.6. Let (p1, . . . , pn) be a pin representation of σ ∈ Sn. Then for each
i ∈ {2, . . . , n− 1}, if there exists a point x of σ on the sides of the bounding box
of {p1, . . . , pi}, then it is unique and x = pi+1.

A proper pin representation is a pin representation in which every pin pi,
for i ≥ 3, separates pi−1 from {p1, . . . , pi−2}. A proper pin-permutation is a
permutation that admits a proper pin representation.

Remark 2.7. A pin representation of a simple pin-permutation is always proper
as any independent pin pi with i ≥ 3 creates a block corresponding to {p1, . . . , pi−1}.

2.4. Characterization of classes with finitely many simple permutations

In [11], Brignall et al. provide a criterion characterizing when a class contains
a finite number of simple permutations. They show that it is equivalent to the
class containing a finite number of permutations of three simpler kinds, which
they define. Among the three new kinds of permutations that they introduce
are the proper pin-permutations that we have already seen, but also the parallel
alternations and the wedge simple permutations. The definition of these families
of permutations is not crucial to our work, hence we refer the reader to [11] for
more details, and to Figure 4 for examples.

Theorem 2.8. [9, 11] A permutation class Av(B) contains a finite number of
simple permutations if and only if it contains:

• a finite number of wedge simple permutations, and

• a finite number of parallel alternations, and

• a finite number of proper pin-permutations.

7

2 4 6 8 1 3 5 7 5 3 6 2 7 1 8 4 8 6 4 1 3 5 7 9 2

Figure 4: From left to right: a parallel alternation, and two wedge simple
permutations (of type 1 and 2 respectively).

Notice also that in Theorem 2.8 above, the proper pin sequences of [11] have
been replaced by proper pin-permutations. But containing a finite number of
proper pin-permutations is equivalent to containing a finite number of proper
pin sequences. Indeed, the encoding of proper pin-permutations by proper pin
sequences provides a finite-to-one correspondence.

Whereas the exact definitions of the wedge simple permutations and the
parallel alternations have been omitted here, it is however essential for our
purpose to be able to test whether a class given by a finite basis contains a
finite number of parallel alternations and wedge simple permutations. Parallel
alternations and wedge simple permutations, that can be of type 1 or 2, are well
characterized in [11]. This characterization leads to the following lemmas:

Lemma 2.9. [11] The permutation class Av(B) contains only finitely many
parallel alternations if and only if B contains an element of every symmetry of
the class Av(123, 2413, 3412).

Lemma 2.10. [11] The permutation class Av(B) contains only finitely many
wedge simple permutations of type 1 if and only if B contains an element of every
symmetry of the class Av(1243, 1324, 1423, 1432, 2431, 3124, 4123, 4132, 4231, 4312).

Lemma 2.11. [11] The permutation class Av(B) contains only finitely many
wedge simple permutations of type 2 if and only if B contains an element of every
symmetry of the class Av(2134, 2143, 3124, 3142, 3241, 3412, 4123, 4132, 4231, 4312).

Using these lemmas together with a result of [2] we have:

Lemma 2.12. Testing whether a finitely based class Av(B) contains a finite
number of wedge simple permutations and parallel alternations can be done in
O(n logn) time, where n =

∑

π∈B |π|.

Proof. From Lemmas 2.9 to 2.11, deciding if Av(B) contains a finite number of
wedge simple permutations and parallel alternations is equivalent to checking
if elements of its basis B involve patterns of size at most 4. From [2] checking
whether a permutation π involves a fixed set of patterns of size at most 4 can be
done in O(|π| log |π|). As we check for each permutation of B the involvement of
fixed sets of permutations of size at most 4, this leads to a O(n logn) algorithm

8

for deciding whether the number of parallel alternations and of wedge simple
permutations in the class is finite.

In [11] Brignall et al. also proved that it is decidable whether C = Av(B)
contains a finite number of proper pin-permutations. Their proof heavily relies
on an encoding of proper pin-permutations by words over a finite alphabet
(called pin words), and on language theoretic arguments. In the next section,
we review and further develop the theory of pin words. Then, in Section 4 we
will review the decision procedure of [11], and explain how we could modify it
into an efficient algorithm.

3. Characterization of classes with finitely many proper pin-permutations

Our goal in this section is to provide a criterion (that can be tested algorith-
mically, in the next sections) for a permutation class C = Av(B) given by its
finite basis B to contain finitely many proper pin-permutations. The encoding
of pin-permutations by their pin words – to be reviewed in Subsection 3.1 – has
an essential property that can be used in establishing such a criterion: it allows
to interpret the pattern order ≤ on pin-permutations as an order relation 4 on
their pin words.

This property is already at the core of [11], and we recall it below as
Lemma 3.8. In [11], it is used to derive a first criterion on C to contain a
finite number of proper pin-permutations:

C contains finitely many proper pin-permutations if and only if the
language SP \

⋃
{strict pin word w | u 4 w} is finite, where the

union is taken over all pin words u that encode a permutation
π ∈ B and SP denote the language of all strict pin words (see
Definition 3.4).

This criterion may then be decided using automata theory, as explained in [11]
and reviewed in Subsection 4.1.

In what follows, we go further into the encoding of pin-permutations by
words, and into the interpretation of the pattern order ≤ in terms of words and
languages. This allows us to associate a language Lπ to every pin-permutation
π in such a way that if π ≤ σ then Lσ ⊆ Lπ . Subsequently, these languages
Lπ can be used to characterize when C contains a finite number of proper pin-
permutations – see Theorem 3.18:

C contains finitely many proper pin-permutations if and only if the
languageM\

⋃
Lπ is finite, where the union is taken over all pin-

permutations π ∈ B andM denotes the set of words on the alphabet
{L,R,U,D} with no factor in {UU,UD,DU,DD,LL,LR,RL,RR}
(see p.11).

As we shall see in Section 4, this new criterion can be tested by an algorithm,
far more efficiently than the first criterion above.

9

3.1. Pin words

Pin representations can be encoded on the alphabet {1, 2, 3, 4, U,D, L,R} by
words called pin words. Consider a pin representation (p1, . . . , pn) and choose
an origin p0 in the plane such that (p0, p1, . . . , pn) is a pin sequence. Then every
pin p1, . . . , pn is encoded by a letter according to the following rules:

• The letter associated with pi is U – resp. D,L,R – if pi separates pi−1

and {p0, p1, . . . , pi−2} from the top – resp. bottom, left, right.

• The letter associated with pi is 1 – resp. 2, 3, 4 – if pi is independent from
{p0, p1, . . . , pi−1} and is located in the up-right – resp. up-left, bottom-
left, bottom-right – corner of the bounding box of {p0, p1, . . . , pi−1}.

This encoding is summarized by Figure 5. The region encoded by 1 is called the
first quadrant with respect to the box . The same goes for 2, 3, 4. The letters
U,D,L,R are called directions, while 1, 2, 3 and 4 are numerals.

3 D 4

R

1U2

L

Figure 5: Encoding
of pins by letters.

p1

p2

11

41

4R

21

31

3R

2U

3U

Figure 6: The two letters in each cell indicate the
first two letters of the pin word encoding (p1, . . . , pn)
when p0 is taken in this cell.

Example 3.1. 14L2UR (if p0 is between p3 and p1) and 3DL2UR (if p0 is
horizontally between p1 and p4 and vertically between p2 and p6) are pin words
corresponding to the pin representation of π = 4 6 2 3 1 5 shown in Figure 3 (p.7).

Example 3.1 shows in particular that several pin words encode the same
pin representation, depending on the choice of the origin p0. We may actually
describe the number of these pin words:

Remark 3.2. Because of the choice of the origin p0, each pin-permutation of
size greater than 1 has at least 6 pin words. More precisely each pin represen-
tation p is encoded by 6 pin words if p3 is a separating pin and 8 pin words
otherwise (see Figure 6). Indeed, once a pin representation p is fixed, the letters
encoding pi for i ≥ 3 in a pin word encoding p are uniquely determined.

Conversely, pin words indeed encode pin-permutations since to each pin word
corresponds a unique pin representation, hence a unique permutation.

Remark 3.3. The definition of pin sequences implies that pin words do not
contain any of the factors UU,UD,DU,DD,LL,LR,RL and RR.

10

Definition 3.4. A strict (resp. quasi-strict) pin word is a pin word that begins
with a numeral (resp. two numerals) followed only by directions. We denote by
SP the set of all strict pin words.

Remark 3.5 (Proper pin representations, strict and quasi-strict pin words).
Every pin word encoding a proper pin representation is either strict or quasi-

strict. Conversely if a pin word is strict or quasi-strict, then the pin represen-
tation it encodes is proper. Finally a pin-permutation is proper if and only if it
admits a strict pin word.

3.2. Pattern containment and piecewise factor relation

Recall the definition of the partial order 4 on pin words introduced in [11].

Definition 3.6. Let u and w be two pin words. We decompose u in terms of its
strong numeral-led factors as u = u(1) . . . u(j), a strong numeral-led factor being
a strict pin word. We then write u 4 w if w can be chopped into a sequence of
factors w = v(1)w(1) . . . v(j)w(j)v(j+1) such that for all i ∈ {1, . . . , j}:

• if w(i) begins with a numeral then w(i) = u(i), and

• if w(i) begins with a direction, then v(i) is non-empty, the first letter of
w(i) corresponds to a point lying in the quadrant – w.r.t. the origin of the
encoding w – specified by the first letter of u(i), and all other letters in u(i)

and w(i) agree.

Example 3.7. The strong numeral-led factor decomposition of u = 14L2UR is
u = 1 · 4L · 2UR. Moreover, u 4 w = 2RU4LULURD4L, because w may be
decomposed as w = 2RU · 4L · ULUR ·D4L, where the factors w(i) satisfying
the conditions of Definition 3.6 are emphasized by bold letters.

As we mentioned already, the essential property of this order is that it is
closely related to the pattern containment order ≤ on permutations.

Lemma 3.8. [11] If the pin word w encodes the permutation σ and π ≤ σ then
there is a pin word u encoding π with u 4 w. Conversely if u 4 w then the
permutation corresponding to u is contained in the one corresponding to w.

The relation u 4 w on pin words is nearly a piecewise factor relation, the
factors being determined by the strong numeral-led factors of u. Our purpose in
the following is to adapt the relation 4 into an actual piecewise factor relation.
This is achieved in Theorem 3.13, using a further encoding of pin words that
we introduced in [5] and recall hereafter.

Recall that SP denotes the set of strict pin words, and let SP≥2 = SP \
{1, 2, 3, 4} be the set of strict pin words of length at least 2. Further denote by
M (resp. M≥3) the set of words of length at least 2 (resp. at least 3) over the
alphabet {L,R,U,D} such that L,R is followed by U,D and conversely. We
define below a bijection that sends strict pin words to words ofM. It consists

11

of replacing the only numeral in a strict pin word by two directions. Intuitively,
given a numeral q and a box , inserting two pins in the two directions pre-
scribed by the bijection ends up in a pin lying in quadrant q with respect to the
box .

Definition 3.9. We define a bijection φ from SP≥2 to M≥3 as follows. For
any strict pin word u ∈ SP≥2 such that u = u′u′′ with |u′| = 2, we set φ(u) =
ϕ(u′)u′′ where ϕ is given by:

1R 7→ RUR 2R 7→ LUR 3R 7→ LDR 4R 7→ RDR
1L 7→ RUL 2L 7→ LUL 3L 7→ LDL 4L 7→ RDL
1U 7→ URU 2U 7→ ULU 3U 7→ DLU 4U 7→ DRU
1D 7→ URD 2D 7→ ULD 3D 7→ DLD 4D 7→ DRD

For any n ≥ 2, the map φ is a bijection from the set SPn of strict pin words
of length n to the set Mn+1 of words of M of length n + 1. Furthermore, it
satisfies, for any u = u1u2 . . . ∈ SP≥2, ui = φ(u)i+1 for any i ≥ 2.

In the above table, we can notice that, for any u ∈ SP≥2, the first two
letters of φ(u) are sufficient to determine the first letter of u (which is a nu-
meral). Thus it is natural to extend the definition of φ to SP by setting for
words of length 1: φ(1) = {UR,RU}, φ(2) = {UL,LU}, φ(3) = {DL,LD} and
φ(4) = {RD,DR}, and by defining consistently φ−1(v) ∈ {1, 2, 3, 4} for any v
in {LU,LD,RU,RD,UL,UR,DL,DR}.

Lemma 3.10 below shows that for each pin word w, we know in which quad-
rant (w.r.t. the origin of the encoding) lies every pin of the pin representation p
corresponding to w. More precisely for each i ≤ |w|, knowing only wi and wi−1,
we can determine in which quadrant pi lies.

Lemma 3.10. Let w be a pin word and p be the pin representation corresponding
to w. For any i ≥ 2, the numeral indicating the quadrant in which pi lies with

respect to {p0, . . . , pi−2} is

wi if wi is a numeral;

φ−1(wi−1wi) if wi−1 and wi are directions;

φ−1(BC) otherwise, with φ(wi−1wi) = ABC.

Notice that in the third case wi−1 is a numeral and wi is a direction; conse-
quently, ABC ∈ M3 is given by the table of Definition 3.9.

Proof. Similar to the proof of Lemma 3.4 of [5], adapted to the case where w is
any pin word, i.e., is not necessarily strict.

Lemma 3.10 is used in the proofs of Lemma 3.12 and Theorem 3.13. Their
statement also requires that we extend some definitions from SP toM.

Remark 3.11. Words ofM may also be seen as encodings of pin sequences (as
in Subsection 3.1), taking the origin p0 to be a box instead of a point. Moreover,
the relation u 4 w can be extended to w ∈ M, and the map φ can be defined
on words ofM as the identity map (although this extension of φ to the domain
SP ∪M is not a bijection anymore).

12

By definition, strong numeral-led factors of any pin word u are strict pin
words. Therefore we first study how the relation u 4 w is mapped on φ(u), φ(w)
when u is a strict pin word.

Lemma 3.12. Let u be a strict pin word and w be a word of SP∪M. If |u| ≥ 2
then u 4 w if and only if φ(u) is a factor of φ(w). If |u| = 1 then u 4 w if and
only φ(w) has a factor in φ(u).

Proof. Note that if |u| ≥ 2 then φ(u) is a word but if |u| = 1 then φ(u) is a set of
two words. The case where |u| ≥ 2 and w is a strict pin word corresponds exactly
to Lemma 3.5 of [5]. Other cases are proved in a similar way, using, instead of
Lemma 3.4 of [5], its generalization provided by our current Lemma 3.10.

In the statement of Lemma 3.12, we have distinguished the cases |u| ≥ 2
and |u| = 1 since φ(u) is a word or a set of two words in these respective
cases. However, to avoid such uselessly heavy statements, we do not make this
distinction in the sequel, and we write indifferently “φ(u) is a factor of w” or

“w has a factor in φ(u)” meaning that

{

if |u| = 1, w has a factor in φ(u)

if |u| ≥ 2, φ(u) is a factor of w.

When the pin word u is not strict, Lemma 3.12 can be extended formalizing
the idea of piecewise factors mentioned at the beginning of this section.

Theorem 3.13. Let u and w be two pin words and u = u(1) . . . u(j) be the
strong numeral-led factors decomposition of u. Then u 4 w if and only if w can
be chopped into a sequence of factors w = v(1)w(1) . . . v(j)w(j)v(j+1) such that
for all i ∈ {1, . . . , j}, w(i) ∈ SP ∪M and φ(w(i)) has a factor in φ(u(i)).

Proof. We prove that u 4 w if and only if w can be chopped into a sequence
of factors w = v(1)w(1) . . . v(j)w(j)v(j+1) such that for all i ∈ {1, . . . , j}, w(i) ∈
SP ∪M and u(i) 4 w(i). Then the result follows using Lemma 3.12.

If u 4 w, then w can be chopped into w = v̄(1)w̄(1) . . . v̄(j)w̄(j)v̄(j+1) as
in Definition 3.6. We set w(i) = w̄(i) if w̄(i) begins with a numeral, and we
take w(i) to be the suffix of v̄(i)w̄(i) of length |w̄(i)|+ 1 otherwise. Then for all
i ∈ {1, . . . , j}, w(i) ∈ SP ∪M and we have u(i) 4 w(i). Indeed, if w̄(i) begins
with a direction, by Lemma 3.10 the point corresponding to the first letter of
w̄(i) lies in the quadrant determined by the last letter of v̄(i) and the first letter
of w̄(i) (w.r.t. the origin of the encoding w and also of the encoding w(i)).

Conversely if w can be chopped into w = v(1)w(1) . . . v(j)w(j)v(j+1) such that
for all i ∈ {1, . . . , j}, u(i) 4 w(i) then from Definition 3.6 we can decompose w(i)

as y(i)w̄(i)z(i) and thanks to Lemma 3.10 it is sufficient to set v̄(i) = z(i−1)v(i)y(i)

to have w = v̄(1)w̄(1) . . . v̄(j)w̄(j)v̄(j+1) as in Definition 3.6.

3.3. Pattern containment and set inclusion

Recall that our goal is to characterize when there are finitely many proper
pin-permutations in a class. By Remark 3.5, for any proper pin-permutation σ,
there exists a strict pin word wσ that encodes σ. And from Lemma 3.8, checking
whether a permutation π is a pattern of σ is equivalent to checking whether there

13

exists a pin word u corresponding to π with u 4 wσ. Consequently, to study the
proper pin-permutations not in C = Av(B), i.e. those containing some pattern
π in B, it is enough to study the strict pin words containing some pin word u
encoding π, for π in B. This is the reason why we introduce the languages L(u)
and Lπ below.

Definition 3.14. Let u be a pin word and u = u(1) . . . u(j) be its strong numeral-
led factor decomposition. We set

L(u) = A⋆φ(u(1))A⋆φ(u(2)) . . . A⋆φ(u(j))A⋆ where A = {U,D,L,R}.

Let π be a permutation, and P (π) be the set of pin words that encode π. We set

Lπ = ∪u∈P (π)L(u)

As we shall see in Lemma 3.17, the languages Lπ allow to describe the strict
pin words of proper pin-permutations that contain π (or rather their image by
φ). Note however that not all words of Lπ are in the image by φ of the strict pin
words of proper pin-permutations containing π. For instance, there are words
starting with LLLLLφ(u(1)) that belong to Lπ, and these are not even in M
(i.e., are not the image of a strict pin word by φ). But Lemma 3.17 proves that
such trivial “bad words” not belonging toM are the only ones that we should
exclude from Lπ . Indeed Lπ ∩M is in one-to-one correspondence with strict
pin words encoding proper pin-permutations that contain π, via φ−1.

These languages Lπ further have the interesting property of somehow trans-
lating the pattern involvement between pin-permutations into set inclusion, as
expressed by Theorem 3.15.

Note that Lπ is non-empty if and only if P (π) is non-empty or equivalently
π is a pin-permutation. So when π is not a pin-permutation, the results of
Theorem 3.15 and Lemma 3.17 follow easily from the following statement (see
for instance Lemma 3.3 of [6]): if π ≤ σ and σ is a pin-permutation, then π is
a pin-permutation.

Theorem 3.15. Let π and σ be permutations, such that π ≤ σ. Then Lσ ⊆ Lπ.

In the following, we write m = v(1)φ(u(1))v(2)φ(u(2)) . . . v(j)φ(u(j))v(j+1) for
m ∈ A⋆, meaning thatm = v(1)w(1)v(2)w(2) . . . v(j)w(j)v(j+1) with w(i) ∈ φ(u(i))
if u(i) has length 1 and w(i) = φ(u(i)) otherwise.

Proof. Suppose that π ≤ σ. If Lσ is empty, the statement trivially holds. Oth-
erwise, let m ∈ Lσ. We want to show that m ∈ Lπ . By definition of Lσ,
there exists w ∈ P (σ) such that m = v(1)φ(w(1))v(2) . . . φ(w(i))v(i+1) where
w = w(1)w(2) . . . w(i) is the strong numeral-led factor decomposition of w.
From Lemma 3.8 there is u ∈ P (π) such that u 4 w. Let u = u(1) . . . u(j)

be the strong numeral-led factor decomposition of u. From Theorem 3.13,
w = v̄(1)w̄(1) . . . v̄(j)w̄(j) v̄(j+1) where for all k ∈ {1, . . . , j}, w̄(k) ∈ SP ∪ M

14

and φ(w̄(k)) has a factor in φ(u(k)). But w(1)w(2) . . . w(i) is the strong numeral-
led factor decomposition of w = v̄(1)w̄(1) . . . v̄(j)w̄(j) v̄(j+1). Therefore the fac-
tors w̄(1), w̄(2), . . . w̄(j) appear in this order in w(1)w(2) . . . w(i), being non-
overlapping and each inside one w(ℓ), since each w(ℓ) begins with a numeral and
each w̄(k) is in SP∪M. Thus by definition of φ, the factors φ(w̄(1)), φ(w̄(2)), . . .,
φ(w̄(j)) appear in this order in φ(w(1))φ(w(2)) . . . φ(w(i)), being non-overlapping
and each inside one φ(w(ℓ)). Som = v(1)φ(w(1))v(2)φ(w(2)) . . . v(i)φ(w(i))v(i+1) ∈
A⋆φ(w̄(1))A⋆φ(w̄(2)) . . . A⋆φ(w̄(j))A⋆. But for all k ∈ {1, . . . , j}, φ(w̄(k)) has a
factor in φ(u(k)), thus m ∈ L(u) = A⋆φ(u(1))A⋆ φ(u(2)) . . . A⋆φ(u(j))A⋆ and so
m ∈ Lπ.

Remark 3.16. Although it is not necessary for our purpose, we would find
interesting to have a stronger version of Theorem 3.15 which would state the
equivalence between π ≤ σ and Lσ ⊆ Lπ, when π and σ are pin-permutations.
We do not know if this equivalence holds. However, we do know that, with a
small modification of L(u) to allow for an extra symbol in A (which plays the
role of a separator), then we have, for all pin-permutations π and σ, π ≤ σ if
and only if Lσ ⊆ Lπ.

3.4. Characterizing when a class has a finite number of proper pin-permutations

We conclude Section 3 by putting together the above definitions and results
to answer to our original problem: providing a criterion that characterizes when
a permutation class contains finitely many proper pin-permutations.

Lemma 3.17. Let σ be a proper pin-permutation, π be a permutation and w
be a strict pin word encoding σ. Then π ≤ σ if and only if φ(w) ∈ Lπ.

Proof. Assume that π ≤ σ, then from Theorem 3.15 Lσ ⊆ Lπ. As w is a strict
pin word, φ(w) ∈ L(w) thus φ(w) ∈ Lσ and so φ(w) ∈ Lπ.

Conversely, assume that φ(w) ∈ Lπ. Then there exists a pin word u encoding
π such that φ(w) ∈ L(u). Let us denote by u = u(1) . . . u(j) the strong numeral-
led factor decomposition of u. By definition of L(u), φ(w) can be decomposed
into t(1) . . . t(j+1), with t(i) ∈ A⋆φ(u(i)) ∩M for i ∈ {1, . . . , j}. By definition
of φ and since w is a strict pin word, there exists a strict pin word t such
that w = t t(2) . . . t(j+1). Then φ(t) = t(1) and φ(u(1)) is a factor of φ(t).
Furthermore, for i ∈ {2, . . . , j}, φ(u(i)) is a factor of φ(t(i)) = t(i) (this equality
holds because t(i) ∈ M). Consequently, from Theorem 3.13, u 4 w. Finally
from Lemma 3.8, we conclude that π ≤ σ.

By φ−1, each word of M is turned into a strict pin word and hence into a
proper pin-permutation. As a consequence of Lemma 3.17, Lπ∩M is the image
by φ of the language of strict pin words encoding proper pin-permutations σ
that contain π as a pattern: Lπ ∩M = {φ(w) | ∃σ such that π ≤ σ and w ∈
SP∩P (σ)}. With the same idea we have the following theorem, which provides
the criterion announced at the beginning of Section 3:

Theorem 3.18. A permutation class Av(B) contains a finite number of proper
pin-permutations if and only if the set M\∪π∈BLπ is finite.

15

Proof. Let SB be the set of strict pin words encoding permutations of size at
least 2 in Av(B). Then φ is a bijection from SB toM≥3 \ ∪π∈BLπ . Indeed for
any strict pin word w of length at least 2, let σ be the permutation encoded by w.
Then σ is a proper pin-permutation and Lemma 3.17 implies that σ ∈ Av(B) if
and only if φ(w) /∈ ∪π∈BLπ . We conclude the proof observing that every proper
pin-permutation σ of size n is associated to at least 1 and (very loosely) at most
8n strict pin words, as any pin word encoding σ is a word of length n over an
8-letter alphabet.

4. Algorithm(s) testing if a class contains a finite number of proper
pin-permutations

Section 3 (and specifically Theorem 3.18) provides us with a characterization
of classes Av(B) which contain finitely many proper pin-permutations: they are
those such thatM\∪π∈BLπ is finite. Our goal is now to find an algorithm, as
efficient as possible, checking this condition.

The general structure of this algorithm will be explained in Subsection 4.2.
It involves the use of some automata Aπ recognizing Lπ for any pin-permutation
π ∈ B. The construction of these automata is rather technical. Subsection 4.3
will give an overview of it, while the technical details are postponed to Appen-
dices B and C.

Before we get to our algorithm, we first review the decision procedure of [11],
which also answers the question of whether a class Av(B) contains finitely many
proper pin-permutations. This review will serve two purposes: one is to help
the reader see the common aspects and the differences between this procedure
and our algorithm; the other is to be able to compare their complexities.

4.1. The decision procedure of Brignall, Ruškuc and Vatter

As reviewed at the beginning of Section 3, Brignall et al. provided in [11] a
first characterization of classes containing finitely many proper pin-permutations.
Namely, they proved that C = Av(B) contains a finite number of proper pin-
permutations if and only if the set L = SP\

⋃

u∈P (B){strict pin word w | u 4 w}

is finite, where P (B) denotes the set of pin words encoding a permutation of B.
The main point of the procedure of [11] (which will be similar in our algorithm)
is then to decide the finiteness of the language L using automata theory.

Given a pin word u, the authors of [11] explain how to build an automaton
A(u) recognizing a language L(u) such that SP∩L(u) = {strict pin word w | u 4

w}. Then, they notice that SP is a recognizable language, and conclude – with
classical theorems of automata theory – that it is decidable whether the language
L is finite, i.e., whether C contains a finite number of proper pin-permutations.

The proof of [11] is constructive and establishes that deciding whether C
contains a finite number of proper pin-permutations may be done algorithmi-
cally. However the authors do not give an actual algorithm since many steps
are not given explicitly. More precisely, if we turn into an actual algorithm the
procedure of [11], the main steps would be:

16

1. Compute the set P (B) of pin words encoding permutations of B;

2. For each u ∈ P (B), build the automaton A(u) recognizing L(u);

3. Build an automaton A recognizing L = SP \
⋃

u∈P (B)

L(u);

4. Test whether the language accepted by A is finite.

In [11], the authors focus on the second step (which is indeed the main one),
even though the complexity of building A(u) is not analyzed. The first step is
not addressed in [11], and the third (resp. fourth) step is solved applying an
existential (resp. decidability) theorem of automata theory – in particular, the
complexity of the corresponding construction (resp. decision) is not studied.
Analyzing the above four-step procedure, we prove in the following that it has a
doubly exponential complexity due to the resolution of a co-finiteness problem
for a regular language given by a non-deterministic automaton. Let us first
introduce some notations: denote by n the sum of the sizes of permutations
in the basis B, by s′ (resp. s) the maximal size of a permutation (resp. pin-
permutation) in B and by k the number of pin-permutations in B.

Even though [11] does not study the first step of the above procedure, there
is a naive algorithm to solve it: for each permutation π in B, for each pin word
u of length |π|, check if the permutation encoded by u is π, and add u to P (B)
in the affirmative. This is performed in O(n · 8s

′

) time. In our work we explain
how to replace this step by a step solved in O(n) time.

For the second step, [11] explains how to build automata A(u) recognizing
the languages L(u). We will not detail the analysis of the complexity of building
A(u), but let us notice that these automata are non deterministic and have
O(|u|) (and at least |u|) states.

About the third step, [11] refers to automata theory without detail. The
most direct way to achieve this step is to build by juxtaposition an intermediate
automaton AP (B) recognizing

⋃

u∈P (B)

L(u), to determinize this automaton in

order to complement it, and then to compute the intersection with an automaton
recognizing SP . But the determinization of an automaton is exponential w.r.t.
the number of states of the automaton. Since the number of states of AP (B)

is O(
∑

u∈P (B) |u|) and is indeed at least
∑

u∈P (B) |u|, the complexity of this

algorithm for the third step is O(2
∑

u∈P (B) |u|). Moreover,
∑

u∈P (B) |u| ≤ k·8s ·s.
Even if this bound may not be tight, there exist pin-permutations encoded by an
exponential number of pin words. For instance, the identity of size s is encoded
by at least 2s pin words, since any word on the alphabet {1, 3} is suitable.
Therefore the complexity of the above algorithm for the third step is of order
at least O(2k·s·2

s

), which is doubly exponential w.r.t. s.
Finally, [11] refers to a classical algorithm for the fourth step. It consists in

testing whether the automaton A obtained at the end of the third step contains
a cycle that can be reached from an initial state and can lead to a final state.
This is linear w.r.t. the size of the automaton A (and we will detail why in
Subsection 5.3, as our algorithm ends with a similar step).

17

4.2. A more efficient alternative

Reviewing the procedure of [11] and analyzing its complexity, we have seen
why this procedure is not efficient. The main issue is the determinization of the
automaton AP (B) recognizing

⋃

u∈P (B)

L(u) (so that it may be complemented).

A secondary issue is that this automaton AP (B) is built by juxtaposition of a
large number of automata: one for each pin word in P (B). In this subsection,
we explain how to overcome these two issues.

First, we do not start from the same characterization of classes C = Av(B)
containing a finite number of proper pin-permutations. Instead of the one of [11],
we take our alternative criterion provided by Theorem 3.18, and provide an
algorithm testing whether the languageM\∪π∈BLπ is finite.

In this second characterization, the languages Lπ play the same role as the
languages L(u) in the first one. There is however only one language for each
π ∈ B, that somehow accounts for all the languages L(u) for u ∈ P (π). This
solves the issue of the number of automata.

Moreover, this saves us the trouble of computing P (B), a step whose com-
plexity was O(n · 8s

′

) in the procedure of [11]. Instead, since the definition of
Lπ relies on P (π), we only need to compute a description of P (π) for π ∈ B.
The detailed study of pin words done in Appendix B shows that this is possi-
ble from some quite simple tests on the decomposition tree of π, which will be
detailed in Section 5. These tests are performed in O(π), so that the total cost
of computing the description of P (π) for all π ∈ B is O(n).

To address the determinization issue, let us introduce a few notations. For
any word v = v1 . . . vp denote by ←−v = vp . . . v1 the reverse of v, and for

any language L, denote by
←−
L the language {←−v | v ∈ L}. In practice, our

algorithm does not test if M \ ∪π∈BLπ is finite, but rather whether its re-

verse language
←−−−−−−−−−
M\ ∪π∈BLπ is finite. Notice that by definition ofM, we have

←−−−−−−−−−
M\ ∪π∈BLπ =

←−
M\∪π∈B

←−
Lπ =M\∪π∈B

←−
Lπ. As in [11], to test the finiteness of

this language, we will build an automaton AC acceptingM\∪π∈B

←−
Lπ , and then

test whether AC contains a cycle – see Subsection 5.3. Taking reverse languages
is the trick that allows us to build a deterministic automaton AC , thus avoid-
ing the determinization which causes the complexity blow-up in the procedure
of [11]. The connection between reverse and determinism is certainly unclear
at the moment, but it is also hard to explain at this stage of the presentation
of the algorithm. It follows from some details of Appendix B, and we will only
explain this choice at the beginning of Appendix C.

We start with building, for each pin-permutation3 π ∈ B, a deterministic

automaton Aπ which accepts
←−
Lπ . An overview of the construction of these

automata Aπ and of its complexity is given in the next subsection, while the
details – that are quite technical – are postponed to Appendix C.

3Recall that when π is not a pin-permutation, both P (π) and
←−
Lπ are empty.

18

From deterministic automata Aπ recognizing the languages
←−
Lπ , we can ob-

tain a deterministic automaton accepting words of ∪π∈B

←−
Lπ i.e., (up to inter-

section withM) words whose reverses encode proper pin-permutations contain-
ing some pattern π ∈ B. To preserve determinism, the automaton accepting
the union is not simply built by juxtaposition of the Aπ . Instead, we do the
Cartesian product of the automata Aπ to compute a deterministic automa-

ton accepting the union ∪π∈B

←−
Lπ . This deterministic automaton can then be

complemented in linear time, in order to build the automaton AC recognizing

M \ ∪π∈B

←−
Lπ. Recall that the same operation on non-deterministic automata

would be exponential in the worst case. The construction of AC will be detailed
in Section 5, and its complexity analyzed. It is performed in O(s2k) where
s and k are, as before, the maximal size of a pin-permutation in B and the
number of pin-permutations in B. The complexity of testing with this method
whether C = Av(B) contains finitely many proper pin-permutations is then also
O(s2k). Writing that O(s2k) = O(2k·2 log s) enables us to measure the complex-
ity improvement w.r.t. the complexity O(2k·s·2

s

) of the procedure of [11]: the
complexity gain is doubly exponential w.r.t. s.

4.3. Construction of the automata Aπ

The most difficult part of the algorithm outlined above is the construction

of the deterministic automata Aπ accepting the languages
←−
Lπ, for every pin-

permutation π ∈ B. We give below the general idea of the method that is
used for this construction, together with some results about the complexity of
building Aπ . Detailed statements and proofs are provided in Appendices B
and C.

From the definition of Lπ given p.14 we have:

←−
Lπ =

⋃

u∈P (π)

u=u(1)u(2)...u(j)

A⋆
←−−−−
φ(u(j))A⋆ . . . A⋆

←−−−−
φ(u(2))A⋆

←−−−−
φ(u(1))A⋆

where A = {U,D,L,R}, φ is the map introduced in Definition 3.9 (p.12) and
for every pin word u, by u = u(1)u(2) . . . u(j) we mean that u(1)u(2) . . . u(j)

is the strong numeral-led factor decomposition of u. Therefore, we see that a

description of
←−
Lπ will follow as soon as we are able to describe the set P (π) of pin

words of π, and more precisely their strong numeral-led factor decompositions.
In our previous work [6], we have given a recursive characterization of the

decomposition trees of pin-permutations. We recall it below as Equation (⋆).
We will then follow this characterization to recursively describe P (π) for any
pin-permutation π, and to subsequently give a recursive algorithm to build the

automata Aπ recognizing
←−
Lπ. We also present an alternative construction of Aπ

whose complexity is optimized; but instead of
←−
Lπ, the automaton recognizes a

language L′π such that L′π ∩M =
←−
Lπ ∩M, which turns out to be sufficient for

our purpose (see Subsection 5.3).

19

The recursive characterization of the decomposition trees of pin-permutations
provided in [6] is as follows. It involves oscillations and quasi-oscillations, two
special kinds of pin-permutations whose definitions are technical and given in
Appendix A. The set S of substitution decomposition trees of pin-permutations
is recursively characterized by:

S = + ⊕

E+E+ E+

+ ⊕

E+

N+

E+

+ ⊖

E− E− E−

+ ⊖

E−

N−

E−

+ α + α

S \ { }

+ β+

S \ { }

12

+ β−

S \ { }

21

(⋆)

where E+ (resp. E−) is the set of decomposition trees of increasing (resp. de-
creasing) oscillations, N+ (resp. N−) is the set of decomposition trees of pin-
permutations that are not increasing (resp. decreasing) oscillations and whose
root is not ⊕ (resp. ⊖), α is any simple pin-permutation and β+ (resp. β−) is
any increasing (resp. decreasing) quasi-oscillation. In Appendix A, in addition
to recalling the definitions of increasing and decreasing (quasi-)oscillations, we
present some of their properties. For the moment, let us only mention that some
special pairs of points in quasi-oscillations can be identified, that are called aux-
iliary and main substitution points. Also, in every simple pin-permutation, we
can identify special points, that are called active points whose definition will
also be given in the appendix – see p.30. In Equation (⋆) above, edges written

(resp. ,) correspond to an active point of α (resp. to a pair formed
by an auxiliary point and a main substitution point of β+ or β−). In this equa-
tion the only terms that are recursive are those containing a subtree labeled by
N+,N− or S \ { }.

Our characterization of P (π) and construction of Aπ are divided into several
cases, depending on which term of Equation (⋆) π belongs to. First, we study
the non-recursive cases, then the recursive cases with a linear root and finally
the recursive cases with a prime root. Notice that the cases with root ⊖ (resp.
β−) are up to symmetry4 identical to those with root ⊕ (resp. β+). We will
therefore only consider the former in our analysis to follow.

Permutation of size 1. Notice first that the permutation π = 1 = (whose
decomposition tree is a leaf) has exactly four pin words – namely, P (π) =
{1, 2, 3, 4}.

4This notion of symmetry is formalized by Remark B.1 in the appendix.

20

Then

←−
Lπ = {A⋆

←−−−
φ(w)A⋆ | w ∈ P (π)} = A⋆M2A

⋆

where

M2 =M∩A2 = {UR,UL,DR,DL,RU,RD,LU,LD}.

The language
←−
Lπ is recognized by the automaton

Aπ of Figure 7.

U
,D

L
,R

L
,R

U
,D

A

L,R

U,D

Figure 7: The automa-
ton Aπ when π = 1.

Simple permutations. Let π be a simple pin-permutation. Theorem B.8 in Ap-
pendix B (p.38) shows that the number of pin words of π is at most 48. This
of course does not describe the set P (π) of pin words encoding π explicitly, but
Algorithm 2 of [5] explains how to compute P (π) in this case. We will get back
to this computation in Section 5.

The construction of an automaton Aπ accepting
←−
Lπ is then explained in

Remark C.6 in Appendix C. The time and space complexity of the construction
of Aπ is quadratic w.r.t. |π|, as soon as the pin words of π are given. In
Remark C.8 in Appendix C, we explain how to improve the complexity of the
construction of Aπ, so that it is linear in time and space. The automaton Aπ so

obtained however does not accept
←−
Lπ but a language L′π such that L′π ∩M =

←−
Lπ ∩M.

Non recursive case with a linear root. W.l.o.g., we consider π = ⊕[ξ1, . . . , ξr]
where ξi are increasing oscillations. The set of pin words of π is expressed using
the shuffle product � (defined p.39) in Theorem B.12 of Appendix B. Namely,
denoting P (1)(ξk) (resp. P

(3)(ξk)) the set of pin words that encode ξk and whose
origin lies in quadrant 1 (resp. 3) with respect to the points of ξk, we have:

P (π) =
⋃

1≤i≤r−1

P (⊕[ξi, ξi+1])·
(

(P (1)(ξi−1), . . . , P
(1)(ξ1))�(P (3)(ξi+2), . . . , P

(3)(ξj))
)

.

Together with Lemmas B.13 and B.18, this provides an explicit expression of
P (π).

The automaton Aπ accepting
←−
Lπ (resp. a language L′π such that L′π ∩M =

←−
Lπ ∩ M) is built by assembling smaller automata, which correspond to the
different languages that appear in the shuffle product expression of P (π). Sub-
section C.3 gives the details of this construction, and Theorem C.16 (resp. Re-
mark C.17) proves its correctness. Lemma C.12 shows that it is achieved in time
and space O(|π|4) (resp. O(|π|2)). The automaton Aπ in this case is shown in
Figure 23 (p.61).

Recursive case with a linear root. W.l.o.g., we consider a permutation π =
⊕[ξ1, . . . , ξℓ, ρ, ξℓ+2, . . . , ξr], where all ξi are increasing oscillations, but ρ is

21

not. By induction, we may assume that we have an explicit description of

P (ρ), and an automaton Aρ which accepts
←−
Lρ (resp. a language L′ρ such that

L′ρ ∩M =
←−
Lρ ∩M). In Appendices B and C, the decomposition tree of ρ is

denoted Ti0 .
The set P (π) of pin words of π (which of course depends on P (ρ)) is given

by Theorem B.19 in Appendix B. It always contains

P0 = P (ρ) ·
(
P (1)(ξℓ), . . . , P

(1)(ξ1)
)
�

(
P (3)(ξℓ+2), . . . , P

(3)(ξr)
)

but it may contain more words, if π satisfies additional conditions that are
shown in the middle two columns of Figure 17 (p.44). In all these possible cases
(considered up to symmetry), Theorem B.19 describes explicitly the complete
set of pin words of π.

If P (π) = P0, like in the previous case the automaton Aπ accepting
←−
Lπ

is built by assembling Aρ with small automata corresponding to the different
languages in the shuffle product defining P0. The automaton Aπ so obtained is
shown in Figure 24 (p.65).

Otherwise, P0 P (π), so that the automaton of Figure 24 accepts some

but not all words of
←−
Lπ. It is however possible to modify it by adding some

transitions, so that the resulting automaton Aπ accepts exactly
←−
Lπ. These

modifications of the automaton are shown in the last column of Figure 17 (p.44).
These constructions are explained in Subsection C.4. The proof that they

are correct are however omitted even in the appendix, as they are very similar to
some other proofs that are detailed there. The complexity of these constructions
are given in Lemmas C.19 and C.21: it is done in time and space O

(
(|π| − |ρ|)2

)

plus the additional complexity due to the construction of Aρ. The construction
and its complexity are not modified (except for the recursive part) for building

an automaton Aπ accepting a language L′π such that L′π∩M =
←−
Lπ∩M instead

of
←−
Lπ .

Recursive case with a prime root. We start with the case where π = α[1, . . . , 1, ρ,
1, . . . , 1] with α a simple pin-permutation and ρ 6= 1. The only other possibility
is that π is a permutation whose decomposition tree has a root labeled by a
quasi-oscillation with two children that are not leaves. This special case will be
considered in the next paragraph.

By induction, we may assume that we have an explicit description of P (ρ),

and an automaton Aρ which accepts
←−
Lρ (resp. a language L′ρ such that L′ρ ∩

M =
←−
Lρ ∩M). We denote by x the point of α expanded by ρ. Let us also

record here that the decomposition tree of ρ will be denoted T in Appendices B
and C.

As in Definition B.23 (p.48), let Qx(α) denote the set of strict pin words
obtained by deleting the first letter of a quasi-strict pin word encoding a pin
representation of α starting in x. The set P (π) of pin words of π is given
by Theorem B.25 (p.49) in Appendix B. As in the previous case, it always
contains a ground set of words, in this case P (ρ) · Qx(α), but it contains more

22

words in case π satisfies some further condition – denoted (C) in Appendices B
and C. Although it becomes quite technical, it is possible to make explicit the
description of P (π) in Theorem B.25, using Lemma B.27 and Remarks B.26,
B.29 and B.30.

When P (π) = P (ρ) · Qx(α), the automaton Aπ which accepts
←−
Lπ is easily

constructed from Aρ and Qx(α). As before, when P (ρ) ·Qx(α) P (π), Aπ has
the same general structure as this automaton, with some new transitions added.
This is shown on Figure 25 (p.69). Theorem C.23 proves the correctness of this
construction. This however only holds for |ρ| 6= 2. In the special case |ρ| = 2,
the construction of Aπ is not recursive anymore, and is easily solved (see p.70).

The complexity of the construction of Aπ is discussed in Lemma C.25. Ex-
cept for the special case |ρ| = 2, it is O(|π| − |ρ|) in time and space, in addition
to the complexity of computing Aρ. This holds both for the automaton Aπ ac-

cepting
←−
Lπ and for its variant (whose construction is unchanged except for the

recursive part) which accepts a language L′π such that L′π ∩M =
←−
Lπ ∩M. For

the special case |ρ| = 2, the complexity of building Aπ accepting
←−
Lπ is O(|π|3),

and it drops to O(|π|2) for the variant accepting L′π .

The special case of increasing quasi-oscillations. W.l.o.g., the only remaining
case in Equation (⋆) is that of a permutation π = β+[1, . . . , 1, ρ, 1, . . . , 1, 12, 1,
. . . , 1] where β+ is an increasing quasi-oscillation, the permutation 12 expands
an auxiliary point of β+ and ρ (of size at least 2) expands the corresponding main
substitution point of β+. Again, in Appendices B and C, the decomposition tree
of ρ is denoted T . And by induction, we may assume that we have an explicit

description of P (ρ), and an automaton Aρ which accepts
←−
Lρ (resp. a language

L′ρ such that L′ρ ∩M =
←−
Lρ ∩M).

This case is very much constrained, and the set of pin words of π is completely
determined by Theorem B.31(p.52): P (π) = P (ρ) · w, for some word w which
is uniquely determined, and that Remark B.32 shows explicitly. From this, is it

not hard to build from Aρ an automaton Aπ which accepts
←−
Lπ (resp. a language

L′π such that L′π ∩M =
←−
Lπ ∩M). This is explained in Paragraph C.5.2 (p.71),

and is performed in O
(
|π| − |ρ|

)
time and space in addition to the time and

space complexity of the construction of Aρ.

The automaton Aπ associated with a pin-permutation π is then build re-
cursively, by first determining which shape of tree in Equation (⋆) is matched
by the decomposition tree of π, and then applying the corresponding construc-
tion. From the complexities of these constructions, it is not hard to evaluate
the overall complexity of building Aπ. Namely:

Theorem 4.1. Given π a pin-permutation, the above recursive construction

allows to build an automaton Aπ which accepts
←−
Lπ (resp. a language L′π such

that L′π ∩M =
←−
Lπ ∩M) in time and space complexity O(|π|4) (resp. O(|π|2)).

The proof of Theorem 4.1 is however postponed to the appendix – see Theo-
rem C.26 (p.74). Indeed, to prove this theorem, we need to be careful about some

23

details of the construction of automata, that are only explained in the appendix.
The main difficulty is to ensure that some special states in the automata can be
“marked” in some of the above constructions without increasing the complexity.
The marking of these special states is needed to build the additional transitions
in the cases π = ⊕[ξ1, . . . , ξℓ, ρ, ξℓ+2, . . . , ξr] and π = α[1, . . . , 1, ρ, 1, . . . , 1], since
these transitions are actually pointing towards these “marked” states. Subsec-
tion C.6 explains how to mark these special states along the construction of Aπ.

5. A polynomial algorithm deciding whether a class contains a finite
number of simple permutations

In this section, we prove the main result of this article:

Theorem 5.1. Given a finite set of permutations B, we describe an algorithm
that determines whether the permutation class C = Av(B) contains a finite num-
ber of simple permutations. Denoting n =

∑

π∈B |π|, p =
∏
|π| where the prod-

uct is taken over all pin-permutations in B, k the number of pin-permutations
in B and s the maximal size of a pin-permutation of B, the complexity of the
algorithm is O(n log n+ s2k) or more precisely O(n logn+ p2).

The complexity which is achieved in Theorem 5.1 makes use of the opti-
mized variant of the construction of the automata Aπ. Notice that with the
non-optimized construction of the automata Aπ, although we would have an
algorithm whose details are a little bit simpler to describe, its complexity would
be significantly worst than with the optimized variant, namely O(n logn+p4) =
O(n logn+ s4k).

The algorithm announced in Theorem 5.1 can be decomposed into several
steps and is described in the rest of this section.

5.1. Finitely many parallel alternations and wedge simple permutations in C?

Following [11] (see Theorem 2.8 p.7) we first check whether C contains finitely
many parallel alternations and wedge simple permutations. From Lemmas 2.9,
2.10 and 2.11 (p.8) this problem is equivalent to testing if permutations of B
contain some patterns of size at most 4. Using a result of [2], this can be done
in O(n logn) time (see Lemma 2.12 p.8).

5.2. Finding pin-permutations in the basis

The next step is to determine the subset PB ⊆ B of pin-permutations of B.
To do so we use the characterization of the class of pin-permutations by their
decomposition trees established in [6], and recalled in Equation (⋆) (p.20).

More precisely, for each π ∈ B, we proceed as follows.

• First we compute its decomposition tree Tπ.
This is achieved in linear time w.r.t. |π|, computing first the skeleton of Tπ

following [7] or [12], and next the labels of linear and prime nodes as explained
in [8, §2.2].

24

• Second we add some information on the decomposition tree.
This information will be useful in later steps of our algorithm to check

whether π is a pin-permutation, and next (in the affirmative) to determine
which construction of the automaton Aπ (see Subsection 4.3 or details in Ap-
pendix C) applies to π.

- For each prime node N , we record whether the simple permutation α
labeling N is an increasing or decreasing oscillation or quasi-oscillation.

This may be recorded by performing a linear time depth-first traversal of
Tπ, and checking each node when it is reached. As there are 4 oscillations of
each size that are explicitly described as 2 4 1 6 3 8 5 . . . (see Figure 9 p.31) or
one of its symmetries, checking if a simple permutation α is of this form can be
done in linear time w.r.t. |α|. The same kind of explicit description also holds
for quasi-oscillations, and in addition we can record which children correspond
to the auxiliary and main substitution points.

- For each node N , we record whether the subtree rooted at N encodes an
increasing or decreasing oscillation.

This may be recorded easily, along the same depth-first traversal of Tπ as
above. Indeed oscillations of size greater than 3 are simple permutations, and
increasing (resp. decreasing) oscillations of smaller sizes are 1, 21, 231 and 312
(resp. 1, 12, 132 and 213). So it is sufficient to check whether N is a leaf, or a
prime node labeled by an increasing (resp. decreasing) oscillation all of whose
children are leaves, or a linear node with exactly two children satisfying extra
constraints: they are either both leaves, or one is a leaf and the second one is
a linear node with exactly two children that are both leaves. In this later case
the oscillation is increasing (resp. decreasing) if N is labeled ⊖ (resp. ⊕).

These computations are performed in linear time w.r.t. |α| for any prime
node labeled by |α|, and in constant time for any linear node. Hence, as the
sum of the sizes of the labels of all internal nodes is linear w.r.t. |π|, the overall
complexity of this step is linear w.r.t. |π|.

• Finally we determine whether π is a pin-permutation or not.
To do so, we recursively check starting with the root whether its decompo-

sition tree is of the shape described in [6] (see Equation (⋆) p.20).

- If the root is linear, with the additional information stored we can check
whether all its children are increasing (resp. decreasing) oscillations in linear
time w.r.t. the number of children. If exactly one child is not an increasing
(resp. decreasing) oscillation, we check recursively whether the subtree rooted
at this child is the decomposition tree of a pin-permutation.

- If the root is prime, we first check whether its label α is a pin-permutation.
More precisely, with Algorithm 2 of [5] we compute the set of pin words of α and
test its emptiness. By Lemma 4.1 of [5], this is done in linear time w.r.t. |α|.
Then we check whether all the children of the root are leaves.

- If exactly one child is not a leaf, we furthermore have to check whether
the point x it expands is an active point of α. With some precisions given in
the appendix, this can be done in O(|α|) time. Namely, from Remark B.24

25

(p.49) we just have to test the emptiness of Qx(α), which is computed in linear
time w.r.t. |α| (see Remark B.26 p.50). Then we check recursively whether the
subtree rooted at x is the decomposition tree of a pin-permutation.

- If exactly two children are not leaves, with the additional information
stored we can check in constant time whether α is an increasing (resp. de-
creasing) quasi-oscillation, if the two children that are not leaves expand the
auxiliary and main substitution points, and if the one expanding the auxiliary
point is the permutation 12 (resp. 21). Then we check recursively whether the
subtree rooted at the main substitution point is the decomposition tree of a
pin-permutation.

As the complexity of each step is linear w.r.t. the number of children (which
is also the size of the label for a prime node), deciding whether a permutation
π is a pin-permutation or not can be done in linear time w.r.t. |π|. The overall
determination of PB is therefore linear in n =

∑

π∈B |π|.

Moreover, in addition to computing PB, the above procedure produces ad-
ditional results, that we also record as they are useful in the next step. Namely,
for every permutation π of PB, we record its decomposition tree Tπ, together
with the additional information computed on its nodes; and we also record the
set of pin words that encode each simple permutation α labeling a prime node
N of Tπ and the set Qx(α) when N has exactly one non-trivial child. Notice
that the knowledge of these is sufficient to characterize the set of pin words that
encode π thanks to results of Appendix B outlined in Subsection 4.3.

5.3. Finitely many proper pin-permutations in C?

From Theorem 3.18 (p.15) it is enough to check whether M \ ∪π∈BLπ is
finite. This can be easily decided with a deterministic automatonAC recognizing
←−−−−−−−−−
M\ ∪π∈BLπ. From the previous step of the procedure, we know the set PB of
pin-permutations of B and some additional results described above. First notice
that ∪π∈BLπ = ∪π∈PBLπ as Lπ is empty when π is not a pin-permutation (see
p.14). We build the automaton AC as follows.

• First for each pin-permutation π ∈ PB, we construct Aπ – which is deter-

ministic and complete – recognizing a language L′π such that L′π∩M =
←−
Lπ∩M.

For this optimized variant, the construction is performed in time and space at
most O(|π|2) as presented in Subsection 4.3 and described in details in Ap-
pendix C (see Theorem 4.1 p.23 or Theorem C.26 p.74). Notice that the con-
struction of Aπ depends on the shape of the decomposition tree Tπ of π. But
thanks to the additional information stored in Tπ, we can determine which tree
shape matches Tπ in linear time w.r.t. the number of children of the root of Tπ,
and the same holds at each recursive step of the construction.

• Then we build a deterministic automatonA1 recognizing
⋃

π∈PB L
′
π, where

L′π is defined as in the first item. The automaton A1 is obtained performing
the deterministic union (as a Cartesian product, see [16] for details) of all the
automata Aπ . This is done in time and space O(

∏

π∈PB

|Aπ|) = O(
∏

π∈PB

|π|2).

26

• Then we build the automaton A2 which is the deterministic intersection
(again as a Cartesian product) between A1 and the automaton A(M) given in
Figure 8 in time and space O(|A1|.|A(M))|) = O(

∏

π∈PB

|π|2).

U,
D

L,R

L,R

U,D

U,DL,R

Figure 8: A deterministic automaton A(M) recognizing the setM of words of
length at least 2 without any factor in {UU,UD,DU,DD,RR, RL, LR, LL}.

The automaton A2 recognizes
(
⋃

π∈PB L
′
π

)

∩ M =
(
⋃

π∈PB

←−
Lπ
)

∩ M. By

Lemma 3.17 (p.15) this is the language of words
←−−−
φ(w) for all strict pin words

w encoding permutations having a pattern in PB, i.e. that are not in C. No-
tice that by Remark 3.5 (p.11) such permutations are necessarily proper pin-
permutations.

• Next we complementA2 to build a deterministic automatonA3 recognizing

A⋆ \
((⋃

π∈PB

←−
Lπ
)
∩M

)

. As A2 is deterministic, its complement is obtained

in linear time w.r.t. its size, by completing it and then turning every final (resp.
non-final) state into a non-final (resp. final) state. Moreover the size of A3 is
the same as that of the automaton obtained completing A2, i.e., O(

∏

π∈PB

|π|2)

• Finally we compute the deterministic intersection between A3 and the au-
tomaton A(M) to obtain the automaton AC . This is done in time and space
O(|A3|.|A(M))|) = O(

∏

π∈PB

|π|2). The automaton AC built in this way recog-

nizesM\
(
⋃

π∈PB

←−
Lπ
)

=
←−−−−−−−−−−−−
M\

(
⋃

π∈B Lπ
)

. This is the language of all words
←−−−
φ(w) where w is a strict pin word encoding a permutation of C (that is neces-
sarily a proper pin-permutation, as above).

Then, by Theorem 3.18 (p.15), checking whether the permutation class C
contains a finite number of proper pin-permutations is equivalent to checking
whether the language recognized by AC is finite i.e., whether AC does not con-
tain any cycle that is accessible and co-accessible (i.e., a cycle that can be
reached from an initial state and from which a final state can be reached). The
automaton AC is not necessarily accessible and co-accessible. Its accessible part
is made of all states that can be reached in a traversal of the automaton from
the initial state; its co-accessible part is obtained similarly by a traversal from
the set of final states taking the edges of the automaton backwards. Before
looking for a cycle, we make AC accessible and co-accessible by keeping only its
accessible and co-accessible part, yielding a smaller automaton A′

C . The com-
plexity of this double reduction of the size of the automaton is linear in time

27

w.r.t. the size of AC . Moreover the size of A′
C is smaller than or equal to the

one of AC , i.e., O(
∏

π∈PB

|π|2). Finally we test whether A′
C does not contain any

cycle. This can be done in O(|A′
C |) time with a depth-first traversal of A′

C .
Let s be the maximal size of a pin-permutation of B and k the number of pin-

permutations in B, then O(
∏

π∈PB

|π|2) = O(s2k). Hence putting all these steps

together leads to an algorithm whose complexity is O(s2k) to check whether
there are finitely many proper pin-permutations in C, when the set PB of pin-
permutations of B, their decomposition trees and the set of pin words of each
simple permutation appearing in these trees are given.

6. Conclusion

The work reported here follows the line opened by [3] and continued by [11].
In [3], the main theorem provides (in particular) a sufficient condition for a
permutation class C to have an algebraic generating function: namely, that C
contains a finite number of simple permutations. Then, [11] introduces new
objects (most importantly, pin-permutations) to provide a decision procedure
testing this sufficient condition, for classes with a finite and explicit basis. Mak-
ing use of the detailed study of pin-permutations in [6], we have described in
the above an algorithm testing this condition. The analysis of its complexity
shows that it is efficient.

Because an algebraic generating function is a witness of the combinatorial
structure of a permutation class, we may interpret our result as giving an ef-
ficient algorithm testing a sufficient condition for a permutation class to be
well-structured. We believe that more could and should be done on the algo-
rithmization of finding structure in permutation classes. In particular, we plan
to provide efficient algorithms that do not only test that there is an underlying
structure in a permutation class, but that also compute this structure. We set
in the sequel the main steps towards the achievement of this project.

As discussed in [3], the proof of the main theorem therein is constructive.
Namely, given the basis B of a class C, and the set SC of simple permutations in
C (assuming that both are finite), the proof of the main theorem of [3] describes
how to compute (a polynomial system satisfied by) the generating function of
C, proving thereby that it is algebraic. The main step is actually to compute a
(possibly ambiguous) context-free grammar of trees for the permutations of C,
or rather their decomposition trees.

Such a context-free grammar of trees almost captures the combinatorial
structure of a permutation class. The only reason why it does not completely is
because the grammar may be ambiguous, and thus may generate several times
the same permutation in the class. On the contrary, unambiguous context-free
grammars of trees fall exactly in the context of the combinatorial specifications
of [13], and describing a permutation class by such a combinatorial specification
is undoubtedly demonstrating the structure of the class. Consequently, we aim

28

at describing an algorithm to compute this combinatorial specification, assum-
ing we are given the finite basis B characterizing the class C. There would be
four main steps in such an algorithm.

First, we should ensure that C falls into the set of permutation classes we
can handle, i.e., ensure that C contains a finite number of simple permutations.
The present work gives an algorithm for this first step.

Second, when finite, we should compute the set SC of simple permutations
in C. A naive method to do so can be immediately deduced from the results
of [3], but it is of highly exponential complexity. An algorithm for this second
step has subsequently been described in [18], and its complexity analyzed. It
should be noticed that the complexity of this algorithm also depends on the size
of its output, namely on |SC | and on max{|π| : π ∈ SC}.

Third, from B and SC , we should turn the constructive proof of [3] into
an actual algorithm, that would compute the (possibly ambiguous) context-free
grammar of trees describing the decomposition trees of the permutations of C.

Finally, we should transform this (possibly ambiguous) context-free grammar
into an unambiguous combinatorial specification for C. We have described in the
extended abstract [4] an algorithm for these last two steps, whose complexity is
still to analyze.

Combining these four steps will provide an algorithm to obtain from a ba-
sis B of excluded patterns a combinatorial specification for the permutation
class C = Av(B). We are not only convinced of the importance of this re-
sult from a theoretical point of view, but also (and maybe more importantly)
we are confident that it will be of practical use to the permutation patterns
community. Indeed, from a combinatorial specification, it is of course possible
with the methodology of [13] to immediately deduce a system of equations for
the generating function of C. But other algorithmic developments can be con-
sidered. In particular, this opens the way to obtaining systematically uniform
random samplers of permutations in a class, or to the automatic evaluation of
the Stanley-Wilf growth rate of a class.

Acknowledgments. We are very grateful to the anonymous referee for providing
both specific comments and global suggestions on the organization of our paper.
These helped us improve the presentation of our work, on both the large and
small scales. We would also like to thank Joseph Kung for his availability and
efficiency as an editor.

Appendices

A. Simple pin-permutations, oscillations and quasi-oscillations

This appendix groups together some technical definitions and results about
subsets of pin-permutations: the simple ones, the oscillations, and the quasi-
oscillations. The last two play an important role in the characterization of

29

substitution decomposition trees associated with pin-permutations (see Equa-
tion (⋆) p.20).

A.1. Simple pin-permutations, active knights and active points

Let σ be a simple pin-permutation. We have seen from Remark 2.7 (p.7) that
all pin representations of σ are proper. This implies in particular (see [6, Lemma
4.3] for an immediate proof) that the first two points in every pin representation
of σ are in knight position, i.e., form one of the following configurations in the
diagram of σ:

; ; ; .

We define an active knight of σ to be a pair of points of σ in knight position
which is the possible start of a pin representation of σ. The definition of active
knights may be extended to pin-permutations σ that are not necessarily simple,
as pairs of points of σ that are the possible start of a pin representation of σ.
In addition to the four configurations shown above, such active “knights” of

non-simple pin-permutations may form a configuration or in the diagram
of σ. We also define an active point of σ to be a point of σ belonging to an
active knight of σ. The active knights (and hence the active points) of any
simple pin-permutation may be described (see [6, Lemma 4.6]). This is however
not needed for us in this work, except in the case of oscillations, which we will
review in the following.

A.2. Oscillations

Following [11], let us consider the infinite oscillating sequence defined by
ω = 3 1 5 2 7 4 9 6 . . . (2k + 1) (2k − 2) The leftmost part of Figure 9
shows the diagram of a prefix of ω.

Definition A.1. An increasing oscillation of size n ≥ 4 is a simple permutation
of size n that is contained as a pattern in ω. For smaller sizes the increasing
oscillations are 1, 21, 231 and 312. A decreasing oscillation is the reverse5 of
an increasing oscillation.

There are two increasing oscillations of any size greater than or equal to 3,
that can also be given explicitly. For even size, they are

2 4 1 6 3 . . . (2k + 2) (2k − 1) . . . (2n) (2n− 3) (2n− 1) and

3 1 5 2 7 4 . . . (2k + 1) (2k − 2) . . . (2n) (2n− 2);

for odd size,

2 4 1 6 3 . . . (2k + 2) (2k − 1) . . . (2n) (2n− 3) (2n+ 1) (2n− 1) and

3 1 5 2 7 4 . . . (2k + 1) (2k − 2) . . . (2n+ 1) (2n− 2) (2n).

5The reverse of σ = σ1σ2 . . . σn is ←−σ = σn . . . σ2σ1.

30

. .
.

2 4 1 6 3 8 5 9 7 8 10 6 9 4 7 2 5 1 3

M A

4 1 6 3 8 5 9 7 10 2

Figure 9: The infinite oscillating sequence ω, an increasing oscillation ξ of size
9, a decreasing oscillation of size 10, and an increasing quasi-oscillation of size
10 (obtained from ξ by addition of a maximal element or equivalently by taking
the inverse of the explicit quasi-oscillation of size 10 given in Subsection A.3),
with a pin representation for each.

A similar statement holds for decreasing oscillations. As noticed in [6, Lemma
2.23], every increasing (resp. decreasing) oscillation is a pin-permutation. More-
over, by definition all oscillations of size at least 4 are simple. Finally, notice
also that permutations 1, 2 4 1 3 and 3 1 4 2 are both increasing and decreasing
oscillations, and are the only ones with this property. The middle two diagrams
of Figure 9 show some examples of oscillations.

In Appendix B, we will describe explicitly the set of pin words of all pin-
permutations. In Subsection B.2, this requires some knowledge about the pin
words of oscillations (w.l.o.g., only increasing oscillations) – see in particular
Lemmas B.13 to B.18. In these lemmas, we have to distinguish cases according
to the active knights of the increasing oscillations. For this reason, we review
in the sequel some results from [6] about the active knights of increasing oscil-
lations.

1 2 1 2 3 1 3 1 2 2 4 1 3 3 1 4 2 3 1 5 2 7 4 8 6 3 1 5 2 7 4 9 6 8

Figure 10: The increasing oscillations of size less than 5 and two increasing
oscillations respectively of size 8 with type (V, V) and 9 with type (V,H). Active
knights are marked by edges between their two active points.

Figure 10 shows the active knights of the increasing oscillations of size up to
4. Lemma 4.6 of [6] describes the active knights of simple pin-permutations, and
in particular those of the increasing oscillations of size at least 4. It follows from
this lemma that an increasing oscillation of size at least 5 has exactly two active

31

knights. They are located at both ends of the main diagonal and they consist of
two points in relative order 21 (see Figure 10). These active knights are either

in horizontal (H) position or in vertical (V) position . Therefore there are
four types of increasing oscillations of size at least 5: (x, y) with x, y ∈ {H,V },
where x is the type of the lower left active knight and y for the upper right.
This definition can be extended to increasing oscillations of size 4, considering
their two active knights in relative order 21 (see Figure 10). Note that an even
size oscillation has type (H,H) or (V, V) and an odd size one (H,V) or (V,H).

A.3. Quasi-oscillations

We recall the definition of quasi-oscillations from [6].

Definition A.2. An increasing quasi-oscillation of size n ≥ 6 is obtained from
an increasing oscillation ξ of size n − 1 by the addition of either a minimal
element at the beginning of ξ or a maximal element at the end of ξ, followed by
the move of an element of ξ according to the rules of Table 16.

Element Pattern Pattern Element . . . which Main subs-
inserted ξ1ξ2ξ3 ξn−3ξn−2ξn−1 to move . . . becomes titution point

max 231 132 left-most right-most largest

max 231 312 left-most right-most right-most

max 213 132 smallest largest largest

max 213 312 smallest largest right-most

min 231 132 largest smallest left-most

min 231 312 right-most left-most left-most

min 213 132 largest smallest smallest

min 213 312 right-most left-most smallest

Table 1: Building quasi-oscillations from oscillations, and defining their main
substitution points.

We define the auxiliary point (A) to be the point added to ξ, and the main
substitution point (M) to be an extremal point of ξ according to Table 1.

Furthermore, for n = 4 or 5, there are two increasing quasi-oscillations of
size n: 2 4 1 3, 3 1 4 2, 2 5 3 1 4 and 4 1 3 5 2. Each of them has two possible choices
for its pair of auxiliary and main substitution points. See Figure 11 for more
details. Finally, a decreasing quasi-oscillation is the reverse of an increasing
quasi-oscillation.

In particular, it follows from Definition A.2 that the auxiliary point of in-
creasing quasi-oscillations of size at least 6 is uniquely determined, whereas

6 The first row of Table 1 reads as follows: If a maximal element is added to ξ, with ξ ∈ Sn−1

starting (resp. ending) with a pattern 231 (resp. 132), then the corresponding increasing quasi-
oscillation β is obtained by moving the left-most point of ξ so that it becomes the right-most
(in β), and the main substitution point is the largest point of ξ (see the rightmost diagram of
Figure 9).

32

2 4 1 3

M

A

2 4 1 3

A

M
3 1 4 2

M

A

3 1 4 2

M

A
2 5 3 1 4

M
A

2 5 3 1 4

M
A

4 1 3 5 2

M

A

4 1 3 5 2

M

A

Figure 11: The diagrams of the increasing quasi-oscillations of size 4 and 5,
where auxiliary (A) and main (M) substitution points are marked.

there are two possible choices of auxiliary point in increasing quasi-oscillations
of size 4 and 5.

As noticed in [6] there are four increasing (resp. decreasing) quasi-oscillations
of size n for any n ≥ 6, two of size 4 (2 4 1 3 and 3 1 4 2) and two of size 5 (2 5 3 1 4
and 4 1 3 5 2). Moreover, every quasi-oscillation is a simple pin-permutation.

Like oscillations, the quasi-oscillations of size at least 6 may also be defined
explicitly. Namely, one increasing quasi-oscillation is

4 1 6 3 . . . (2k + 2) (2k − 1) . . . (2n− 2) (2n− 5) (2n− 1)
︸ ︷︷ ︸

M

(2n− 3) (2n)
︸︷︷︸

A

2 for even size

4 1 6 3 . . . (2k + 2) (2k − 1) . . . (2n− 5) (2n) (2n− 3) (2n− 1)
︸ ︷︷ ︸

M

(2n+ 1)
︸ ︷︷ ︸

A

2 for odd size,

where M (resp. A) indicates the main substitution point (resp. the auxiliary
point). The other three increasing quasi-oscillations are obtained applying some
symmetries to the diagram of the above permutation σ, namely reflexion accord-
ing to its two diagonals. In other words, the four increasing quasi-oscillations
are σ, its so-called reverse-complement σrc, and their inverses σ−1 and (σrc)−1.
The definition of the auxiliary and main substitution points follows along the
application of these symmetries.

It should be noticed that each quasi-oscillation of size 4 or 5 is both increas-
ing and decreasing. However, once its auxiliary point is chosen among the four
possibilities, then its nature (increasing or decreasing) is determined without
ambiguity, and so is its main substitution point. Moreover, knowing the (un-
ordered) pair of points which are the auxiliary and main substitution points, we
can deduce which one is the auxiliary point without ambiguity.

We conclude this paragraph about quasi-oscillations with a remark on the
number of their active knights which involve (one of) their auxiliary point(s).
This information will be useful in the proof of Lemma B.27 (p.50).

Remark A.3. The auxiliary point of an increasing quasi-oscillation of size n
(or any of its auxiliary points, in case n = 4 or 5) belongs to exactly one active
knight if n 6= 4, and to exactly two active knights if n = 4.

Proof. Consider first increasing quasi-oscillations of size greater than 5. From
Lemma 4.6 of [6] (see also the last diagram of Figure 9), the main substitution
point belongs to exactly two active knights – one formed with the auxiliary

33

point and one formed with the point separating it from the auxiliary point –
and there are no other active knights.

Consider now an increasing quasi-oscillation of size 4 or 5 (see Figure 11)
where an auxiliary point x is chosen. We may also apply to Lemma 4.6 of [6] to
count its active knights that involve x. Namely, an increasing quasi-oscillation
of size 5 has exactly 4 active knights, all of them contain the main substitu-
tion point (which is uniquely determined, regardless of the choice of x), and
exactly one of them contains the auxiliary point x. Finally, an increasing quasi-
oscillation of size 4 has exactly 4 active knights and each of its points (including
the auxiliary point x) belongs to exactly two active knights.

We refer the reader to [6] for further properties of oscillations and quasi-
oscillations.

B. Pin words of pin-permutations

Our goal here is to describe the set P (π) of pin words that encode a pin-
permutation π, following the recursive characterization of the decomposition
trees of pin-permutations that is given by Equation (⋆) (p.20).

As outlined in Subsection 4.3, the characterization of P (π) we provide is
naturally divided into several cases, depending on which term of Equation (⋆)
π belongs to. First, we study the non-recursive cases, then the recursive cases
with a linear root and finally the recursive cases with a prime root. We start
with a preliminary study of the ways children of decomposition trees with linear
root can be read in a pin representation. These first results will be useful both
in the non-recursive and the recursive cases.

Remark B.1. In the study that follows, we never examine the case of de-
composition trees with a linear root labeled by ⊖. Indeed, permutations with
decomposition trees of this form are the reverse of permutations whose decom-
position trees have a linear root labeled by ⊕, and every argument and result on
the ⊕ case can therefore be transposed to the ⊖ case. A similar symmetry holds
for decomposition trees with prime roots labeled by increasing (resp. decreasing)
quasi-oscillations and two children that are not leaves.

B.1. Reading of children of a linear node

Definition B.2. Let π be a pin-permutation and p = (p1, . . . , pn) be a pin rep-
resentation of π. We say that p reads the points of π in the order p1, . . . , pn. For
any set D of points of π, if k is the number of maximal factors pi, pi+1, . . . , pi+j

of p that contain only points of D, we say that D is read in k pieces by p. If C
is a set of points of π disjoint from D, we say that D is read entirely before C
if every pin belonging to D appears in p before the first pin belonging to C.

Let π be a pin-permutation whose decomposition tree T has a linear root.

W.l.o.g., assume that T =
⊕

T1 T2
. . . Tr

and let p = (p1, . . . , pn) be one of

34

its pin representations. In the sequel, we denote by i0 the index of the child
which contains p1.

Lemma B.3. Let 1 ≤ i, j ≤ r such that either i < j < i0 or i0 < j < i. Then
Tj is read by p entirely before Ti.

Proof. Let ℓ = min{ℓ′, pℓ′ ∈ Ti}. Let Bp1,...,pℓ
be the bounding box of {p1, . . . , pℓ}.

As p1 ∈ Ti0 and pℓ ∈ Ti, Tj ⊆ Bp1,...,pℓ
(see Figure 12), hence it is entirely read

before pℓ in p. Indeed, for all k ≥ 2, pk lies outside the bounding box of
{p1, . . . , pk−1}.

The previous lemma gives the possible orders in which children are read.
Now we characterize the children Ti which may be read in several pieces. When
this is the case, we will prove that the decomposition tree is of a specific shape.
This can indeed be deduced from the two following lemmas.

Lemma B.4. For every k ∈ {1, . . . , n} there is at most one child whose reading
has started and is not finished after (p1, p2, . . . , pk).

Proof. Suppose that pins p1, . . . , pk have already been read and that there are
two children Ti and Tm with i < m whose readings have started and are not
finished. By Lemma B.3 there exists at most one child Tj with j < i0 and at
most one child Tj with j > i0 whose readings have started and are not finished.
Therefore i ≤ i0 and m ≥ i0. Note that i = min{ℓ | ∃h ∈ {1, . . . , k}, ph ∈ Tℓ}.
The same goes for m changing the minimum into a maximum. If the reading of
Ti is not finished, since Ti is ⊕-indecomposable, there must exist a pin pq in zone

(see Figure 13). Such a pin is on the side of the bounding box Bp1,...,pk
of

{p1, . . . , pk}, and the same remark goes for Tm. But from Lemma 2.6 (p.7) there
is at most one pin lying on the sides of a bounding box, and this contradiction
concludes the proof.

Ti

Tj

Ti0

Bp1,...,pℓ

pℓ

p1

Figure 12: Proof of
Lemma B.3.

Ti

Tm

Bp1,...,pk

Figure 13: Proof of
Lemmas B.4 and B.5.

Ti0

p1, . . . , pℓ

pℓ+1, . . . , pm−1

13

2

4

pm

Figure 14: Ti0 is read in
two pieces (Lemma B.6).

Lemma B.5. Every child Ti is read in one piece by p, except perhaps Ti0 .

35

Proof. Consider a child Ti with i 6= i0 which is read in more than one piece by p.
Consider the pin pk+1 which is the first pin outside Ti after p has started reading
Ti. As p1 is in Ti0 , p1 is outside Ti and the bounding box of {p1, p2, . . . , pk−1, pk}
allows to define a zone in Ti as shown in the bottom left part of Figure 13.
Since Ti is ⊕-indecomposable, there is at least one pin in this zone. This pin is
on the side of the bounding box of {p1, p2, . . . , pk} so it is pk+1 by Lemma 2.6
(p.7). Thus pk+1 ∈ Ti which provides the desired contradiction.

When a child may be read in several pieces, the decomposition tree of the
whole permutation π has a special shape given in the following lemma.

Lemma B.6. The only permutations π whose decomposition trees have a root ⊕
in which a child may be read in several pieces are those whose decomposition trees
have one of the shapes given in Figure 15 where ξ+ is an increasing oscillation
of size at least 4.

A given permutation π may match several shapes of Figure 15. However if
a child is read in more than one piece, then it is necessarily the first child to be
read (denoted Ti0) and it is read in two pieces; in addition, there is exactly one
shape of Figure 15 such that the first part of Ti0 to be read is S and the second
part is the remaining leaves of Ti0 with only the point x read in between.

F1 F2 F3 F4 F3+ F4+

⊕
⊖

S
x

Ti0

⊕
⊖

S
x

Ti0

⊕
⊖
⊕

S

x
Ti0

⊕
⊖
⊕

S

xTi0

⊕

ξ+

S

x

Ti0

⊕

ξ+

S

x

Ti0

G1 G2 G3 G4 G3+ G4+

⊕
⊖

S
x

Ti0

⊕
⊖

S
x

Ti0

⊕
⊖
⊕

S

x Ti0

⊕
⊖
⊕

S

x
Ti0

⊕

ξ+

S

x

Ti0

⊕

ξ+

S

x

Ti0

Figure 15: Decomposition tree of π when Ti0 may be read in several pieces.

In Figure 15 and in the sequel, we draw the attention of the reader to the

difference between trees of the shape
r

T
and

r

T : in the first case the
root r has exactly 2 children, in the second one it has at least two children, T
being a forest.

Proof. Let π be a pin-permutation whose decomposition tree has a root ⊕. Let
p = (p1, p2, . . . , pn) be a pin representation of π that reads one child in several

36

pieces. Lemma B.5 ensures that there is only one such child, which is necessarily
Ti0 . Denote p1, . . . , pℓ the first part of the reading of Ti0 . Then pℓ+1, . . . , pm−1

belong to other children until pm ∈ Ti0 .
As Ti0 is a child of the root ⊕, each pin pi with i ∈ {ℓ+1, ℓ+2, . . . ,m−1} lies

in one of the zones as shown in Figure 14. But if both zones contain at least
one pin pi with i ∈ {ℓ+1, ℓ+2, . . . ,m−1}, the bounding box of {p1, . . . , pm−1}
contains Ti0 and thus pm cannot be outside the bounding box of {p1, . . . , pm−1}.
Hence all pins pi with i ∈ {ℓ+ 1, ℓ+ 2, . . . ,m− 1} are in the same zone.

Assume w.l.o.g. that {pℓ+1, . . . , pm−1} are in the upper right zone of Fig-
ure 14 (otherwise, in the proof that follows, cases F1, . . . , F4+ of Figure 16 are
replaced by cases G1, . . . , G4+). If pm respects the independence condition, it
must lie in the lower left corner of the bounding box of {p1, . . . , pℓ} and ev-
ery future pin of Ti0 lies in the same corner leading to a ⊕-decomposable child
Ti0 which contradicts our hypothesis. Thus pm must be a separating pin and
m = ℓ+ 2.

F1 F2 F3 F4 F3+ F4+

S

x

S

x

S

x

S

x

S

x

S

x

G1 G2 G3 G4 G3+ G4+

S

x

S

x

S

x

S

x
S

x

S

x

Figure 16: Diagram of Ti0 and x if Ti0 is read in two pieces, the first part
being S.

As at most one point can lie on the sides of a bounding box, there are
only four possible positions for pm as depicted in Figure 14. If there is no pin
separating pm from {p1, . . . , pm−1} then pm is either in position 1 (case F1 on
Figure 16) or 2 (case F2); moreover pins {p1, p2, . . . , pℓ, pm} form a block and
thus represent Ti0 (because Ti0 is ⊕-indecomposable). Otherwise there is exactly
one pin pm+1 separating pm from the bounding box of {p1, . . . , pℓ}, thus pm is
either in position 3 (cases F3 and F3+) or 4 (cases F4 and F4+). Suppose
that it is in position 4 then pm+1 is a left pin separating pm from the preceding
ones. There are again two different cases: if pm+2 respects the independence
condition (case F4), then pm+1 ends Ti0 (since Ti0 is ⊕-indecomposable). If
pm+2 respects the separation condition then it can only separate pm+1 and
{p1, . . . , pm} from below (case F4+). This process can be repeated alternating
between left and down pins until the following pin pm+k+1 is an independent
pin, ending the child Ti0 .

Thus we have proved that Ti0 is read in exactly two pieces, p1, . . . pℓ for

37

the first part and pm, . . . , pm+k with m = ℓ + 2 for the second part. And
from Lemma B.5 the pin pℓ+1 is by itself a child Ti of the root. It is then
straightforward to check from Figure 16 that π has a decomposition tree of one
shape given in Figure 15 with S = {p1, . . . , pℓ} and x = pℓ+1.

Note that in the proof of Lemma B.6, the order in which the points corre-
sponding to the leaves of Ti0 \S are read is uniquely determined, leading to the
following remark:

Remark B.7. If a child Ti0 is read in two pieces with the first part fixed, then
the second part consists of all remaining points of Ti0 and the order in which
they are read is uniquely determined.

We now start the description of the set of pin words encoding any pin-
permutation, by case study on Equation (⋆) (p.20).

B.2. Non-recursive cases

Permutation of size 1. The permutation π = 1 (whose decomposition tree is a
leaf) has exactly four pin words – namely, P (π) = {1, 2, 3, 4}.

Simple permutations. The only pin-permutations whose decomposition trees
have a prime root and are non-recursive are those whose decomposition trees

are of the form

π

, i.e., the simple pin-permutations. The following
theorem describes properties of their pin words.

Theorem B.8. A simple permutation has at most 48 pin words, which are all
strict or quasi-strict.

Proof. Let π be a simple permutation. Then any pin representation p of π is
proper (see Remark 2.7 p.7) and |π| ≥ 3, so p3 is a separating pin and p is
associated to 6 pin words by Remark 3.2 (p.10).

Moreover by Lemmas 4.3 and 4.6 of [6] there are at most 8 possible begin-
nings (p1, p2) of a pin representation of π. Furthermore, each of these beginnings
gives at most one pin representation p of π. Indeed pk+1 has to be the only point
separating pk from the previous points, since pi+1 separates pi from previous
points for all i. So π has at most 8 pin representations and at most 48 pin
words. Finally the first statement of Remark 3.5 (p.11) ensures that they are
all strict or quasi-strict.

Permutations whose decomposition trees have a linear root. W.l.o.g., since we

focus on the non-recursive case, π =

⊕

ξ1 ξ2 ξr where ξi are increasing oscil-
lations. Lemma B.9 is a direct consequence of Lemma B.6.

Lemma B.9. Let p = (p1, p2, . . . , pn) be a pin representation of π. The only
child ξi which may be read in several pieces is the child ξi0 to which p1 belongs.
Moreover if p reads ξi0 in several pieces, it is read in two pieces, the second child
ξi read by p is either ξi0−1 or ξi0+1 and is a leaf, denoted x. Finally, the set
E = ξi0 ∪ {x} is read in one piece by p.

38

Lemma B.9 together with Lemma B.3 leads to the following.

Consequence B.10. Every pin representation p of π begins by entirely reading
two consecutive children of the root, say ξi and ξi+1, then p reads in one piece
each of the others ξj . Moreover the children ξj for j < i are read in decreasing
order (ξi−1, ξi−2, . . . , ξ1) and the children ξj for j > i+1 are read in increasing
order (ξi+2, ξi+3, . . . , ξr).

Consequence B.10 implies that the restriction of p to each child ξj where
j < i (resp. j > i+1) is a pin representation of ξj whose origin lies in quadrant
1 (resp. 3) with respect to the bounding box of the set of points of ξj . Indeed
p1 and p2 are in ξi or ξi+1 thus they lie in quadrant 1 (resp. 3) with respect to
ξj . Since only p2 may separate p0 from p1, p0 is also in quadrant 1 (resp. 3).
This is the reason for introducing the functions P (h) in Subsection 4.3. Recall
that for any increasing oscillation ξ, we denote by P (h)(ξ) the set of pin words
that encode ξ and whose origin lies in quadrant h = 1 or 3 with respect to the
points of ξ.

To characterize the pin words that encode a permutation π = ⊕[ξ1, ξ2, . . . , ξr]
where every ξi is an increasing oscillation, Consequence B.10 leads us naturally
to introduce the shuffle product7 of sequences. From the above discussion,
Theorem B.12 then follows, providing the desired characterization.

Definition B.11. Let A = (A1,A2, . . . ,Aq) and B = (B1,B2, . . . ,Bs) be two
sequences of sets of words. The shuffle product A � B of A and B is defined as

A� B =
{
c = c1 · . . . · cq+s | ∃ I = {i1, . . . , iq}, J = {j1, . . . , js} with I ∩ J = ∅,

i1 < . . . < iq, j1 < . . . < js, and cik ∈ Ak ∀ 1 ≤ k ≤ q, cjk ∈ Bk ∀ 1 ≤ k ≤ s
}
.

For example, letting A = ({x}, {aay}, {aa}) and B = ({b}, {b, xy}), the
shuffle of A and B is

A� B = {x · aay · aa · b · b, x · aay · aa · b · xy, for {1, 2, 3} ⊎ {4, 5}

x · aay · b · aa · b, x · aay · b · aa · xy, for {1, 2, 4} ⊎ {3, 5}

x · aay · b · b · aa, x · aay · b · xy · aa, for {1, 2, 5} ⊎ {3, 4}

x · b · aay · aa · b, x · b · aay · aa · xy, for {1, 3, 4} ⊎ {2, 5}

x · b · aay · b · aa, x · b · aay · xy · aa, for {1, 3, 5} ⊎ {2, 4}

x · b · b · aay · aa, x · b · xy · aay · aa, for {1, 4, 5} ⊎ {2, 3}

b · x · aay · aa · b, b · x · aay · aa · xy, for {2, 3, 4} ⊎ {1, 5}

b · x · aay · b · aa, b · x · aay · xy · aa, for {2, 3, 5} ⊎ {1, 4}

b · x · b · aay · aa, b · x · xy · aay · aa, for {2, 4, 5} ⊎ {1, 3}

b · b · x · aay · aa, b · xy · x · aay · aa} for {3, 4, 5} ⊎ {1, 2}

where every line in the above corresponds to the words of A�B associated with
the bipartition of {1, 2, 3, 4, 5} into I ⊎ J which is indicated on the right.

7The shuffle product is sometimes called merge in the permutation patterns literature.

39

Theorem B.12. The set P (π) of pin words of a permutation π = ⊕[ξ1, . . . , ξr]
where every ξi is an increasing oscillation is:

P (π) =
⋃

1≤i≤r−1

P (⊕[ξi, ξi+1])·
(

(P (1)(ξi−1), . . . , P
(1)(ξ1))�(P (3)(ξi+2), . . . , P

(3)(ξr))
)

.

Lemmas B.13 and B.18 below give explicit expressions for P (1)(ξ), P (3)(ξ)
and P (⊕[ξi, ξj]) for every increasing oscillations ξ, ξi and ξj , hence with The-
orem B.12 an explicit expression for P (π). Note that similar results can be
obtained for permutations with root ⊖ and decreasing oscillations using Re-
mark B.1 (p.34).

In the following lemmas, we distinguish several cases according to the type
(x, y), with x, y ∈ {H,V }, of increasing oscillations – see Subsection A.2 for the
definition of these types. It starts with Lemma B.13, whose proof immediately
follows from a comprehensive study of the different cases illustrated in Figure 10
(p.31).

Lemma B.13. Let ξ be an increasing oscillation of size n ≥ 5.
If n is even, let n = 2p+ 2, then

P (1)(ξ) =

{
3L(DL)p if ξ has type (H,H)

3D(LD)p if ξ has type (V, V)
P (3)(ξ) =

{
1R(UR)p if ξ has type (H,H)

1U(RU)p if ξ has type (V, V).

If n is odd, let n = 2p+ 1, then

P (1)(ξ) =

{
3(DL)p if ξ has type (H,V)

3(LD)p if ξ has type (V,H)
P (3)(ξ) =

{
1(RU)p if ξ has type (H,V)

1(UR)p if ξ has type (V,H).

For the increasing oscillations of size less than 4, the values of P (1) and P (3)

are:

P (1)(1) = 3 P (3)(1) = 1 P (1)(21) = {3D, 3L} P (3)(21) = {1R, 1U}

P (1)(231) = 3DL P (3)(231) = 1RU P (1)(312) = 3LD P (3)(312) = 1UR

P (1)(2413) = 3LDL P (3)(2413) = 1RUR P (1)(3142) = 3DLD P (3)(3142) = 1URU

Remark B.14. If the increasing oscillation ξ is of size 2 then P (h)(ξ) contains
two words, otherwise it is a singleton. Moreover, for the map φ studied in
Section 3 (see Definition 3.9 p.12), and for any increasing oscillation ξ, we
have φ(P (3)(ξ)) ⊆ {U,R}⋆ and φ(P (1)(ξ)) ⊆ {L,D}⋆.

We are further interested in describing the set of pin words of ⊕[ξi, ξj] for
any increasing oscillations ξi and ξj . This is achieved in Lemma B.18. For this
purpose, we first describe the set P (ξ) of pin words of any increasing oscillation
ξ, and the set Pmix(ξi, ξj) of pin words of ⊕[ξi, ξj] such that one of the two
oscillations is read in two pieces.

Lemma B.15. Let Q− (resp. S−
H , resp. S−

V) be the set of pin words of the
permutation 21 that are quasi-strict (resp. that are strict and end with R or L,
resp. with U or D): Q− = {12, 14, 22, 24, 32, 34, 42, 44}, S−

H = {1R, 2R, 3L, 4L}

40

and S−
V = {1U, 2D, 3D, 4U}. Define similarly Q+ (resp. S+

H , resp. S+
V) for the

permutation 12.
Let ξ be an increasing oscillation of size n ≥ 5.
If n is even, let n = 2p+ 2, then

P (ξ) =

{

(Q− + S−
H) · (DL)p + (Q− + S−

H) · (UR)p if ξ has type (H,H)

(Q− + S−
V) · (LD)p + (Q− + S−

V) · (RU)p if ξ has type (V, V).

If n is odd, let n = 2p+ 1, then

P (ξ) =

{

(Q− + S−
V) · L(DL)p−1 + (Q− + S−

H) · U(RU)p−1 if ξ has type (H,V)

(Q− + S−
H) ·D(LD)p−1 + (Q− + S−

V) · R(UR)p−1 if ξ has type (V,H).

For the increasing oscillations of size less than 5, we have:
P (1) = {1, 2, 3, 4} P (21) = Q− + S−

H + S−
V

P (231) = (Q− + S−
H) · U + (Q− + S−

V) · L+ (Q+ + S+
H + S+

V) · 4
P (312) = (Q− + S−

H) ·D + (Q− + S−
V) · R+ (Q+ + S+

H + S+
V) · 2

P (2413) = (Q− + S−
H) · (UR +DL) + (Q+ + S+

V) · (RD + LU)
P (3142) = (Q+ + S+

H) · (UL+DR) + (Q− + S−
V) · (RU + LD)

In particular, |P (ξ)| ≤ 48 for any increasing oscillation ξ and if |ξ| 6= 3,
P (ξ) contains only strict and quasi-strict pin words.

Proof. By comprehensive examination of the cases illustrated in Figure 10.

Definition B.16. For any pair of increasing oscillations (ξi, ξj), we denote by
Pmix(ξi, ξj) the set of pin words encoding a pin representation of ⊕[ξi, ξj] that
reads one of the two oscillations in two pieces.

Lemma B.17. Let ξi and ξj be two increasing oscillations.
If none of these two oscillations is of size 1, or if both of them are of size 1,

then Pmix(ξi, ξj) is empty.
Otherwise, assume w.l.o.g. that ξi = 1, and set |ξj | = 2p + q + 1 with

q ∈ {0, 1}. If |ξj | ≥ 4, then

Pmix(ξi, ξj) =

{
(13 + 23 + 33 + 43 + 1D + 4D) · (RU)pRq if ξj has type (H,H) or (H, V)

(13 + 23 + 33 + 43 + 1L+ 2L) · (UR)pUq if ξj has type (V, V) or (V,H).

If |ξj | = 3, i.e., ξj = 231 or 312, we have

Pmix(1, 231) = P (12) · 3R+ (13 + 23 + 33 + 43 + 1D + 4D) · RU ,
Pmix(1, 312) = P (12) · 3U + (13 + 23 + 33 + 43 + 1L+ 2L) · UR.

If |ξj | = 2, i.e., ξj = 21, we have

Pmix(1, 21) = (13+23+33+43+1D+4D) ·R+(13+23+33+43+1L+2L) ·U .

In particular, |Pmix(ξi, ξj)| ≤ 22 for any increasing oscillations ξi and ξj .

41

Proof. From Lemma B.9 (p.38) when one of the oscillations ξi or ξj is read in
two pieces, then the other one has size 1. W.l.o.g. assume that |ξi| = 1. Then
from Lemma B.6 (p.36) the decomposition tree of ⊕[ξi, ξj] has one of the shapes
of Figure 15 (p.36), with Ti0 corresponding to ξj and x corresponding to ξi.

If ξj has size 2, then ξj = 21 and ⊕[ξi, ξj] maps only to configurations G1
and G2 (see Figures 15 and 16). Therefore there are two pin representations
of ⊕[ξi, ξj] where ξj is read in two pieces. The twelve corresponding pin words
(see Remark 3.2 p.10) are those given in Lemma B.17.

If ξj has size 3, then ξj = 231 (resp. 312) and ⊕[ξi, ξj] maps only to config-
urations G2 and G4 (resp. G1 and G3), and we conclude similarly.

Otherwise, |ξj | ≥ 4. Since ξj is an increasing oscillation, ⊕[ξi, ξj] maps only
to configuration G3+ or to configuration G4+, with |S| = 1. These two cases
are exclusive, and the configuration (G3+ or G4+) to which ⊕[ξi, ξj] maps is
determined by the type (V orH) of the lower left active knight of ξj . Lemma B.6
and Remark B.7 (p.38) ensure that there is exactly one pin representation for
⊕[ξi, ξj] that reads ξj in two pieces. The six corresponding pin words are those
given in Lemma B.17.

From the expressions of P, Pmix, P (1) and P (3) we can deduce the explicit
expression of P (⊕[ξi, ξj]) making use of the following result:

Lemma B.18. For any pair of increasing oscillations (ξi, ξj):

• If |ξi| > 1 and |ξj | > 1, P (⊕[ξi, ξj]) =
(
P (ξj)·P (1)(ξi)

)⋃ (
P (ξi)·P (3)(ξj)

)

• If |ξi| = 1 and |ξj | = 1, P (⊕[ξi, ξj]) = P (12)

• Otherwise assume w.l.o.g. that |ξi| = 1 and |ξj | = 2p+ q with q ∈ {0, 1}:

P (⊕[ξi, ξj]) = Pmix(ξi, ξj)
⋃(

P (ξj) · 3
)⋃(

{1, 2, 3, 4} · P (3)(ξj)
)⋃

P sep(ξj)

with P sep(ξj) =

{

(2 + 3) · (UR)pU q if ξj has type (H,H) or (H,V)

(3 + 4) · (RU)pRq if ξj has type (V, V) or (V,H).

In particular, |P (⊕[ξi, ξj])| ≤ 192 for any oscillations ξi and ξj .

Proof. For the first item, Lemma B.17 ensures that the pin words of ⊕[ξi, ξj]
encode pin representations reading both ξi and ξj in one piece. The two terms of
the union are obtained according to which oscillation (among ξi and ξj) is read
first. The second statement follows directly from the fact that ⊕[ξi, ξj] = 12
in this case. From Lemma B.17, the situation of the third statement is the
one where there are pin words encoding pin representations reading ξj in two
pieces. The four terms of the union account for four different kinds of pin words.
Namely, Pmix(ξi, ξj) is the set of pin words reading ξj in two pieces, P (ξj) · 3
is the set of pin words reading first ξj and then ξi, {1, 2, 3, 4} · P (3)(ξj) is the
set of pin words reading first ξi and then ξj starting with an independent pin,
and P sep(ξj) is the set of pin words reading first ξi and then ξj starting with

42

a separating pin. Notice that in this last situation, the first pin of ξj may be
separating only because |ξi| = 1, so that this case does not need to appear in
the first item.

This completes the explicit description of all the sets of pin words appearing
in Theorem B.12.

B.3. Recursive case: decomposition trees with a linear root

We now focus on pin-permutations whose decomposition trees have a linear
root ⊕ and a child Ti0 which is not an increasing oscillation. From [6, Lemma
3.7] Ti0 is then the first child read by any pin representation. Lemma B.6
(p.36) gives a characterization of permutations in which Ti0 may be read in
several pieces. Moreover from Remark B.7 if Ti0 is read in two pieces the
first part S being fixed, then the order of the points of the remaining part is
uniquely determined. Nevertheless, since some permutations may satisfy several
conditions F1 to G4+ of Lemma B.6, the first part S to be read is not uniquely
determined. For example every permutation satisfying F3 also satisfies F1, and
some permutations satisfy both F1 and G2 (see Figure 16 p.37). In Figure 17
we classify the permutations according to the conditions they satisfy.

Let H be the set of permutations in which Ti0 may be read in several pieces.
Then any permutation of H satisfies exactly one of the conditions (iHj) of
Figure 17. We say that a permutation satisfies condition (iHj) when its dia-
gram has the corresponding shape in Figure 17 (up to symmetry) and does not
satisfy any condition that appears above (iHj) in Figure 17. For example a
permutation in (1H2) cannot be in (2H2). One can check by a comprehensive
verification that there is no other combination (up to symmetry) of the condi-
tions F1 to G4+ of Lemma B.6. Moreover as Ti0 is not an increasing oscillation,
the sets S and T that appear on Figure 17 are such that |S| ≥ 2 and |T | ≥ 1.

Similarly to P (π) denoting the set of pin words encoding π, we denote by
P (T) the set of pin words that encode the permutation whose decomposition
tree is T .

Theorem B.19. Let π =

⊕

ξ1 ξℓ
Ti0

ξℓ+2 ξr be a ⊕-decomposable permu-

tation where Ti0 is the only child that is not an increasing oscillation.
For every i such that 1 ≤ i ≤ ℓ and j such that ℓ+ 2 ≤ j ≤ r, set

P
(1)
(i) =

(
P (1)(ξi), . . . , P

(1)(ξ1)
)
and P

(3)
(j) =

(
P (3)(ξj), . . . , P

(3)(ξr)
)
.

We describe below the set P (π) of pin words encoding π. When π ∈ H, these
sets are given only when the diagram of π is one of those shown in Figure 17.
When the diagram of π is one of their symmetries, P (π) is modified accordingly.
• If π /∈ H (i.e., if π does not satisfy any condition shown up to symmetry

on Figure 17) then P (π) = P0 = P (Ti0) · P
(1)
(ℓ) �P

(3)
(ℓ+2).

43

Diagram Decomposition tree Automaton (see Appendix C)

2H3
(F4+G4)

y

T
a

b

c

x

S

⊕

⊖

⊕

a
T

b

c

xy

Aρ

qT∪b

LDRU

qT∪a

DRU

RDL

URDL

qS

2H2
(F1+G2)

y

T

a

b

x ⊕

y
⊖

a
T

b

x

Aρ

qT∪b

LUR

qT∪a

DRU

ULD

RDL

2H2⋆
(F4+G2)

y

S
a

b

x

S′

⊕

y
⊖

⊕

a
S

b

x

Aρ

qS
qS′

LDRU

DRU

RDL

2H1
(F1+G1)

y

S

a
x ⊕

y
⊖

a
S

x

Aρ

qS

LUR

ULD

1H2
(F1+F2)

T

a

b

x ⊕

⊖

a
T

b

x Aρ

qT∪a

DRU

qT∪b

LUR

1H2⋆
(F4)

S
a

b

x

S′

⊕

⊖

⊕

a
S

b

x

Aρ

qS

LDRU

qS′

DRU

1H1
(F1) S

a
x ⊕

⊖

a
S

x Aρ

qS

LUR

1H1+
(F4+)

S
x

⊕

ξ+

S

x
Aρ

qS

LD..LDRU

Figure 17: The set H and conditions (iHj): π ∈ H if and only if π satisfies one
of the conditions (iHj) shown above up to symmetry, that form a partition of
H.

44

• If π satisfies condition (1H1) then P (π) = P0 ∪ P1, with

P1 = P (S) · 1
︸︷︷︸

x

· L
︸︷︷︸

a
︸ ︷︷ ︸

x
⋃

Ti0

· P
(1)
(ℓ) �P

(3)
(ℓ+3).

• If π satisfies condition (1H1+) then P (π) = P0 ∪ P1, with

P1 = P (S) · 1
︸︷︷︸

x

· w

︸ ︷︷ ︸

x
⋃

Ti0

· P
(1)
(ℓ) �P

(3)
(ℓ+3),

where w is the unique word encoding the unique reading of the remaining leaves
of Ti0 . Notice that w is obtained from the unique word of P (1)(ξ) (see Re-
mark B.14 p.40) by deleting its first letter.
• If π satisfies condition (1H2⋆) then P (π) = P0 ∪ P1 ∪ P2, with

P1 = P (S) · 1
︸︷︷︸

x

· D
︸︷︷︸

b

· L
︸︷︷︸

a
︸ ︷︷ ︸

x
⋃

Ti0

· P
(1)
(ℓ) �P

(3)
(ℓ+3) and P2 = P (S′) · 1

︸︷︷︸

x

· D
︸︷︷︸

b
︸ ︷︷ ︸

x
⋃

Ti0

· P
(1)
(ℓ) �P

(3)
(ℓ+3).

• If π satisfies condition (1H2) then P (π) = P0 ∪ P1 ∪ P2, with

P1 = P (T ∪ a) · 1
︸︷︷︸

x

· D
︸︷︷︸

b
︸ ︷︷ ︸

x
⋃

Ti0

· P
(1)
(ℓ) �P

(3)
(ℓ+3) and P2 = P (T ∪ b) · 1

︸︷︷︸

x

· L
︸︷︷︸

a
︸ ︷︷ ︸

x
⋃

Ti0

· P
(1)
(ℓ) �P

(3)
(ℓ+3).

• If π satisfies condition (2H1) then P (π) = P0 ∪ P1 ∪ P2, with

P1 = P (S) · 1
︸︷︷︸

x

· L
︸︷︷︸

a
︸ ︷︷ ︸

x
⋃

Ti0

· P
(1)
(ℓ) �P

(3)
(ℓ+3) and P2 = P (S) · 3

︸︷︷︸

y

· U
︸︷︷︸

a
︸ ︷︷ ︸

y
⋃

Ti0

· P
(1)
(ℓ−1)�P

(3)
(ℓ+2).

• If π satisfies condition (2H2⋆) then P (π) = P0 ∪ P1 ∪ P2 ∪ P3, with

P1 = P (S) · 1
︸︷︷︸

x

· D
︸︷︷︸

b

· L
︸︷︷︸

a
︸ ︷︷ ︸

x
⋃

Ti0

· P
(1)
(ℓ) �P

(3)
(ℓ+3), P2 = P (S′) · 1

︸︷︷︸

x

· D
︸︷︷︸

b
︸ ︷︷ ︸

x
⋃

Ti0

· P
(1)
(ℓ) �P

(3)
(ℓ+3)

and P3 = P (S′) · 3
︸︷︷︸

y

· R
︸︷︷︸

b
︸ ︷︷ ︸

y
⋃

Ti0

· P
(1)
(ℓ−1)�P

(3)
(ℓ+2).

• If π satisfies condition (2H2) then P (π) = P0 ∪ P1 ∪ P2 ∪ P3 ∪ P4, with

P1 = P (T ∪ a) · 1
︸︷︷︸

x

· D
︸︷︷︸

b
︸ ︷︷ ︸

x
⋃

Ti0

· P
(1)
(ℓ) �P

(3)
(ℓ+3), P2 = P (T ∪ b) · 1

︸︷︷︸

x

· L
︸︷︷︸

a
︸ ︷︷ ︸

x
⋃

Ti0

· P
(1)
(ℓ) �P

(3)
(ℓ+3),

45

P3 = P (T ∪ a) · 3
︸︷︷︸

y

· R
︸︷︷︸

b
︸ ︷︷ ︸

y
⋃

Ti0

· P
(1)
(ℓ−1)�P

(3)
(ℓ+2), P4 = P (T ∪ b) · 3

︸︷︷︸

y

· U
︸︷︷︸

a
︸ ︷︷ ︸

y
⋃

Ti0

· P
(1)
(ℓ−1)�P

(3)
(ℓ+2).

• If π satisfies condition (2H3) then P (π) = P0 ∪ P1 ∪ P2 ∪ P3 ∪ P4, with

P1 = P (S) · 1
︸︷︷︸

x

· D
︸︷︷︸

c
︸ ︷︷ ︸

x
⋃

Ti0

· P
(1)
(ℓ) �P

(3)
(ℓ+3), P2 = P (T ∪ b) · 1

︸︷︷︸

x

· D
︸︷︷︸

c

· L
︸︷︷︸

a
︸ ︷︷ ︸

x
⋃

Ti0

· P
(1)
(ℓ) �P

(3)
(ℓ+3),

P3 = P (T ∪ a) · 3
︸︷︷︸

y

· R
︸︷︷︸

c

· U
︸︷︷︸

b
︸ ︷︷ ︸

y
⋃

Ti0

· P
(1)
(ℓ−1)�P

(3)
(ℓ+2), P4 = P (S) · 3

︸︷︷︸

y

· R
︸︷︷︸

c
︸ ︷︷ ︸

y
⋃

Ti0

· P
(1)
(ℓ−1)�P

(3)
(ℓ+2).

Proof. For each item, it is easy to check that the given pin words are pin words
encoding π. Conversely, we prove that a pin word encoding π is necessarily in the
set claimed to be P (π). First of all, by [6, Lemma 3.7], every pin representation
of π starts in the only child that is not an increasing oscillation, i.e., with Ti0 .

Let us start with the first point of Theorem B.19. In this case, by definition
of H, we know that Ti0 is read in one piece. By Lemma B.5 (p.35), the other
children are also read in one piece, and Lemma B.3 ensures that the children
closest to Ti0 are read first. As there is no relative order between children ξℓ+2 to
ξr and children ξℓ to ξ1, this leads to the shuffling operation between pin words
corresponding to these children, with an external origin placed in quadrant 3
(resp. 1) with respect to their bounding box.

In the other cases of Theorem B.19, by Lemma B.6, every pin representation
of π either reads Ti0 in one piece or in two pieces. In case Ti0 is read in one
piece, the pin representation is as before encoded by pin words of P0. If it is
read in two pieces, Lemma B.6 and its proof and Remark B.7 ensure that the
corresponding pin words are those described.

Consider for example π satisfying condition (1H1). Then π satisfies condi-
tion F1 of Lemma B.6, and only this one by definition of (1H1). If Ti0 is read
in two pieces, then Lemma B.6 ensures that S is the first part of Ti0 ∪ {x} to
be read, followed by x and finally a. The corresponding pin words are indeed
those described in P1.

Taking the other example of condition (2H3), P1 corresponds to condition
F2 with S = T ∪ a ∪ b, P2 corresponds to condition F4 with S = T ∪ b, P3

corresponds to condition G4 with S = T ∪ a and P4 corresponds to condition
G2 with S = T ∪ a ∪ b.

Remark B.20. If π is a ⊖-decomposable permutation, a similar description of
P (π) can be obtained from Remark B.1 (p.34).

B.4. Recursive case: decomposition trees with a prime root

We now turn to the study of the recursive case where the decomposition
tree has a root which is a simple permutation α. We start with the case where

π =

α

T
for a tree T that is not a leaf.

46

We begin with the characterization of the possible ways a pin representation
of π may read T , introducing first a condition that will be useful in the sequel.

Definition B.21. For a permutation π = α[1, . . . , 1, T, 1, . . . , 1] with α =
α1 . . . αk, we define condition (C) as follows:

(C)

•α is an increasing – resp. decreasing – quasi-oscillation (see p.32);

•T expands an auxiliary point of α;

• the shape of T is
⊕

T ′ – resp.
⊖

T ′ – if the auxiliary point is αk

or αk−1 and
⊕

T ′ – resp.
⊖

T ′ – if the auxiliary point is α1 or α2.

Lemma B.22. Let p = (p1, . . . , pn) be a pin representation associated to π =
α[1, . . . , 1, T, 1, . . . , 1]. Then one of the following statements holds:

(1) p1 ∈ T and T is read in one piece by p;

(2) T = {p1, . . . , pi}
⋃
{pn} with i 6= n− 1, and π satisfies condition (C);

(3) p1 /∈ T , T = {p2, pn}, and π satisfies condition (C).

Moreover if (3) is satisfied then p is a proper pin representation uniquely deter-
mined by α and its auxiliary point; it is up to symmetry the one depicted in the
first diagram of Figure 18. If (2) is satisfied, defining T ′ as in condition (C),
then T ′ = {p1, . . . , pi} and (pi+1, . . . , pn) is uniquely determined by α and its
auxiliary point, as shown in the second diagram of Figure 18 up to symmetry.

Tp2

pn

p3

p1

···pn−2

pn−1

TT ′

B′

pn

pi+1

···pn−2

pn−1

Figure 18: Diagram of π when one child T is not a
leaf, is read in two pieces and p1 /∈ T or p1 ∈ T .

p1

p2

B

3 4

2 1

Figure 19: Possible
positions for pn.

Proof. If p1 6∈ T , then by Lemma 3.12(ii) of [6], T = {p2, pn}. Up to symmetry
assume that {p1, p2} is an increasing subsequence of π. As {p2, pn} forms a
block, pn is in one of the 4 positions shown in Figure 19. But position 3 is
forbidden because it is inside of the bounding box B of {p1, p2}. Positions 2

and 4 lie on the side of the bounding box B. Thus, if pn lies in one of these
positions, it must be read immediately after p1 and p2 and thus must be p3 from
Lemma 2.6 (p.7). But n > 3 (α is simple so |α| ≥ 4) so that these positions are
also forbidden. Hence pn lies in position 1 and T = 12.

47

As α is a simple pin-permutation, p3 respects the separation condition. But
if p3 lies above or on the right of the bounding box B then pn will be on the
side of the bounding box of {p1, p2, p3}, hence pn = p4. But in that case, α has
only 3 children, hence |α| = 3, contradicting the fact that α is simple.

By symmetry we can assume that p3 lies below B (see the first diagram of
Figure 18). The same argument goes for every pin pi with i = 3, . . . , n− 2 and
these pins form an alternating sequence of left and down pins. As pn separates
pn−1 from all other pins, pn−1 must be an up or right pin (depending on the
parity of n). Then α is a quasi-oscillation in which the point expanded by T
is an auxiliary point and T = 12 or T = 21 depending on the nature of α –
increasing or decreasing. Consequently, π satisfies condition (C). Notice that
given α and its auxiliary point, once we know that p1 /∈ T then p is uniquely
determined.

Suppose now that p1 ∈ T but T is not read in one piece. By Lemma
3.11(i) of [6], it is read in two pieces, the second part being pn. Then T =
{p1, . . . , pi}

⋃
{pn} with n 6= i + 1. Thus pn does not lie on the sides of the

bounding box B′ of {p1, . . . , pi}. Up to symmetry, we can assume that pn lies in

quadrant 1 with respect to B′ (see Figure 18). Therefore, T =
⊕

T ′ , T ′ being

the sub-forest of T whose leaves are the points in B′, i.e., are p1, . . . , pi. As T
is a block, no pin must lie on the sides of the bounding box of {p1, . . . , pi, pn}.
Moreover pi+1 does not lie in quadrant 1 with respect to T , otherwise pn would
lie inside the bounding box of {p1, . . . , pi+1}. If pi+1 lies in quadrant 2 or 4, pn
would lie on the side of the bounding box of {p1, . . . , pi+1} and thus must be
pi+2. This is in contradiction with α being simple. Thus pi+1 lies in quadrant 3
with respect to T . The same goes for pj with j ∈ {i+ 1, . . . , n− 2}. Because α
is simple, we therefore deduce that all these pins form an alternating sequence
of left and down pins until pn−1 which must be an up or right pin depending on
the parity of n. Thus α is a quasi-oscillation in which the point expanded by T
is an auxiliary point. Moreover, π satisfies condition (C) with T ′ = {p1, . . . , pi},
as can be seen (up to symmetry) on the right part of Figure 18. Notice that
given α and its auxiliary point, once we know that T = {p1, . . . , pi}

⋃
{pn} with

i 6= n− 1 then (pi+1, . . . , pn) is uniquely determined.
Finally if we are not in one of the two cases discussed above, then p1 ∈ T

and T is read in one piece by p, concluding the proof.

With the description of the pin representations of π in Lemma B.22, we are
able to give in Theorem B.25 below an explicit description of the set P (π) of pin
words that encode π. The statement of Theorem B.25 makes use of the notation
Qx(α), which has appeared in Subsection 4.3, and that we define below.

Definition B.23. For every simple pin-permutation α, with an active point x
(see p.30) marked, we define Qx(α) as the set of strict pin words obtained by
deleting the first letter of a quasi-strict pin word of α whose first point read in
α is x.

Notice that |u| = |α| − 1 for all u ∈ Qx(α).

48

Remark B.24. To each pin representation of α whose first point read is x
corresponds exactly one word of Qx(α). Indeed the quasi-strict pin words asso-
ciated to a pin representation differ only in their first letter (see Figure 6 and
Remark 3.2 p.10).

Theorem B.25. Let π be a pin-permutation, whose decomposition tree has a
prime root α, with exactly one child T that is not a leaf. Then, denoting by x
the point of α expanded by T , the following holds:

• If π does not satisfy condition (C), then P (π) = P (T) ·Qx(α).

• If π satisfies condition (C), we define T ′ as in (C), and we distinguish two
sub-cases according to the number of leaves |T | of T :

(a) if |T | ≥ 3, let w be the unique word encoding the unique reading of the
remaining leaves in π after T ′ is read when T is read in two pieces.
Then P (π) = P (T) ·Qx(α) ∪ P (T ′) · w.

(b) if |T | = 2, let P{1,n}(π) be the set of pin words encoding the unique
pin representation p of π such that T = {p1, pn}. Define similarly
P{2,n}(π) for the case T = {p2, pn}. Then P (π) = P (T) · Qx(α) ∪
P{1,n}(π) ∪ P{2,n}(π).

Proof. In each case, it is easy to check that the given pin words are pin words
encoding π. Conversely, we prove that a pin word encoding π is necessarily in
the set claimed to be P (π). Let u = u1 . . . un ∈ P (π) and p = (p1, . . . , pn) be the
associated pin representation. Then p satisfies one statement of Lemma B.22.

If p satisfies statement (1) of Lemma B.22 then, setting k = |T |, (pk, . . . , pn)
is a pin representation of α beginning with x. Moreover as T is a block of π, pk+1

is an independent pin, so that uk+1 is a numeral. Thus for all h in {1, 2, 3, 4},
huk+1 . . . un is a pin word encoding α and starting with two numerals. As α is
simple, its pin words are strict or quasi-strict, hence huk+1 . . . un is quasi-strict.
Therefore uk+1 . . . un ∈ Qx(α). Moreover (p1, . . . , pk) is a pin representation of
T . Hence u ∈ P (T) · Qx(α) which is included in the set claimed to be P (π),
regardless of whether π satisfies condition (C) or not.

If p satisfies statement (2) of Lemma B.22 then π satisfies condition (C).
If |T | = 2 then T = {p1, pn} and u ∈ P{1,n}(π). Notice that the uniqueness
of the pin representation such that T = {p1, pn} follows from Lemma B.22.
Indeed in this case (pi+1, . . . , pn) is uniquely determined, i = 1 and p1 is the
only remaining point. If |T | ≥ 3 then from Lemma B.22, T ′ = {p1, . . . , pk−1}
with k = |T | thus the prefix of length k−1 of u is in P (T ′). From Lemma B.22,
(pk, . . . , pn) is uniquely determined. Moreover, as k ≥ 3, Remark 3.2 (p.10)
ensures that the letters encoding these points are uniquely determined. This
allows to define uniquely the word w encoding (pk, . . . , pn), yielding u ∈ P (T ′) ·
w.

If p satisfies statement (3) of Lemma B.22 then π satisfies condition (C),
|T | = 2 and u ∈ P{2,n}(π). Notice that the uniqueness of the pin representation
such that T = {p2, pn} follows from Lemma B.22.

49

To make the set P (π) of pin words in the statement of Theorem B.25 explicit
(up to the recursive parts P (T) and P (T ′)), we conclude the study of the case
π = α[1, . . . , 1, T, 1, . . . , 1] by stating some properties of the (sets of) words
Qx(α), w, P{1,n}(π) and P{2,n}(π) that appear in Theorem B.25.

Remark B.26. The set Qx(α) ⊆ P (α) can be determined in linear time w.r.t. |α|.
Indeed as α is simple it is sufficient to examine the proper pin representations of
α which start with an active knight containing x. By Lemma 2.6 (p.7), these are
entirely determined by their first two points. Since α is simple these two points
are in knight position. Consequently, there are at most 8 proper pin representa-
tions of α starting with x, and associated pin words are obtained in linear time
using Remark 3.2 (p.10).

Lemma B.27. In Theorem B.25, when π satisfies condition (C) and |T | ≥ 3,
the word w is a strict pin word of length at least 4 encoding α. Denoting by w′

the suffix of length 2 of w, then P (T ′) ·φ−1(w′) ⊆ P (T). Moreover there exist a
word w̄ of Qx(α) and a letter Z such that w = w̄ · Z and no word of φ(Qx(α))
contains Z. Finally when |α| ≥ 5 then Qx(α) contains only w̄. Otherwise
|α| = 4 and Qx(α) contains two words.

Proof. Assume that π satisfies condition (C) and |T | ≥ 3. Define T ′ as in
condition (C) and let i = |T ′|. Notice that i ≥ 2. By definition of w there
exists a pin representation p = (p1, . . . , pn) of π such that T ′ = {p1, . . . , pi},
T is read in two pieces and any corresponding pin word u = u1 . . . un satisfies
ui+1 . . . un = w. Then p satisfies statement (2) of Lemma B.22, thus T =
{p1, . . . , pi}∪{pn} as in the second diagram of Figure 18 and {pi+2, . . . , pn} are
separating pin. As i ≥ 2 and T ′ is a block of π, pi+1 is an independent pin
encoded with a numeral. So w = ui+1 . . . un is a strict pin word.

Moreover as T = {p1, . . . , pi} ∪ {pn}, (pi+1, . . . , pn) is a pin representation
of α ending with x thus w is a pin word encoding α and |w| = |α| ≥ 4. Likewise
(pi, . . . , pn−1) is a pin representation of α beginning with x.

Denoting by w′ the suffix of length 2 of w, then from Lemma 3.10 (p.12)
φ−1(w′) is a numeral indicating the quadrant in which pn lies with respect to
T ′. And as T = T ′ ∪ {pn}, for all u′ in P (T ′), u′ · φ−1(w′) belongs to P (T).

Moreover letting w̄ be the prefix of w of length |w|−1, for all h in {1, 2, 3, 4},
h w̄ is a quasi-strict pin word of α. Therefore w̄ ∈ Qx(α). Denoting Z the last
letter of w, Z encodes pn. Moreover w̄ encodes pi+1, . . . , pn−1 and the position
of pi+1, . . . , pn is the same (up to symmetry) as the one shown on Figure 18.
On this figure, it is immediate to check that φ(w̄) does not contain Z. To prove
that this holds not only for w̄ but also for all words of Qx(α), we first study the
cardinality of Qx(α).

From Remark B.24, to each pin representation of α whose first point read is
x corresponds exactly one word of Qx(α). Recall from Remark B.26 that a pin
representation of α is determined by its first two points, which form an active
knight. So we just have to compute the number of active knights of α to which
x belongs, remembering that α is an increasing quasi-oscillation and x is an
auxiliary point of α. This question has been addressed in Remark A.3 (p.33).

50

It follows that if α is an increasing quasi-oscillation of size greater than 4 and
x is an auxiliary point of α, then |Qx(α)| = 1 as x belongs to only one active
knight; and when |α| = 4, |Qx(α)| = 2 as x belongs to two active knights.

To conclude the proof, recall that the word w̄ defined earlier belongs toQx(α)
and is such that φ(w̄) does not contain Z. When |α| 6= 4, we have |Qx(α)| = 1
so that Qx(α) = {w̄} and we conclude that no word of φ(Qx(α)) contains Z.
When |α| = 4, |Qx(α)| = 2 and there is only one word w̄′ different from w̄
in Qx(α), which may be computed from Figure 11 (p.33). We then check by
comprehensive verification (of the four cases of size 4 on Figure 11) that φ(w̄′)
does not contain Z. Details are left to the reader.

We are furthermore able to describe w explicitly in Remark B.29 below, and
we record its expression here for future use in our work.

Definition B.28. To each quasi-oscillation α of which an auxiliary point A
is marked, we associate a word wA

α defined below. Denoting by M the main
substitution point of α corresponding to A and by KA,M the active knight formed
by A and M then:

When α is increasing and KA,M is of type H (resp. V),
if A is in the top right corner of α, we set

wA
α = (DL)p−2DRU (resp. wA

α = (LD)p−2LUR) if |α| = 2p
wA

α = (DL)p−2UR (resp. wA
α = (LD)p−2RU) if |α| = 2p− 1;

if A is in the bottom left corner of α, we set
wA

α = (UR)p−2ULD (resp. wA
α = (RU)p−2RDL) if |α| = 2p

wA
α = (UR)p−2DL (resp. wA

α = (RU)p−2LD) if |α| = 2p− 1;
When α is decreasing, wA

α is obtained by symmetry exchanging left and right.

Notice that for quasi-oscillations that are both increasing and decreasing the
choice of A determines their nature, so that wA

α is properly defined.

Remark B.29. If A is in the top right corner of α (see Figure 18 p.47 or
Figure 9 p.31), then w = 3 ·wA

α . If A is in the bottom left (resp. top left, bottom
right) corner of α then w = 1 · wA

α (resp. w = 4 · wA
α , w = 2 · wA

α).

Remark B.30. In Theorem B.25, if π satisfies condition (C) and |T | = 2, then
P{1,n}(π) ∪ P{2,n}(π) = {u ∈ P (π) | u strict or quasi-strict}, denoted Psqs(π).
This set corresponds to two proper pin representations, so it contains 12 pin
words (see Remark 3.2 p.10). Moreover, with the notations of Lemma B.15
(p.40), and KA,M as in Definition B.28, we have an explicit description of
Psqs(π):

When KA,M is of type H (resp. V),
if α is increasing (see Figure 18 p.47), then

Psqs(π) = (Q+ + S+
H) · wA

α (resp. Psqs(π) = (Q+ + S+
V) · wA

α)
and if α is decreasing, then

Psqs(π) = (Q− + S−
H) · wA

α (resp. Psqs(π) = (Q− + S−
V) · wA

α).

This concludes the study of the case π = α[1, . . . , 1, T, 1, . . . , 1]. It now
remains to deal with the case where more than one child of α is not a leaf.

51

From Theorem 3.1 of [6] (see also Equation (⋆) p.20), in this case α is an
increasing (resp. decreasing) quasi-oscillation having exactly two children that
are not leaves, and these are completely determined.

Theorem B.31. Let π =
β+

T
12

where β+ is an increasing quasi-

oscillation, the permutation 12 expands an auxiliary point of β+ and T (of
size at least 2) expands the corresponding main substitution point of β+. Then
P (π) = P (T) ·w where w is the unique word encoding the unique reading of the
remaining leaves in π after T is read.

Proof. Let p = (p1, . . . , pn) be a pin represen-
tation associated to π. According to Section
3.4 (and more precisely Figure 10) of [6], the
configuration depicted on Figure 20 is the only
possible configuration up to symmetry for a pin-
permutation whose root is a simple permuta-
tion with two non trivial children. Thus the
sequence (pk+1, . . . , pn) is uniquely determined
in π. Moreover k + 1 ≥ 3, so that the suffix
encoding (pk+1, . . . , pn) in a pin word of p is a
word w uniquely determined from Remark 3.2
(p.10).

T

T ′

pn

pk+1

pk+2

···pn−2

pn−1

Figure 20: Diagram of π if
two children are not leaves

Remark B.32. The word w in the statement of Theorem B.31 is a strict pin
word uniquely determined by β+ and the two points expanded in β+.

More precisely, taking the notations of Definition B.28 (with β+ instead of
α), w = 1 · wA

β+ (resp. w = 3 · wA
β+) when A is in the top right (resp. bottom

left) corner of β+ (see Figure 20).

For decomposition trees whose root is a decreasing quasi-oscillation, we ob-
tain from Remark B.1 (p.34) a description of P (π) similar to the one of Theo-
rem B.31.

C. Building deterministic automata Aπ accepting the languages
←−
Lπ

Appendix B gives a recursive description of the set P (π) of pin words encod-
ing π, for any pin-permutation π. As explained in Subsection 4.3, we next use
this precise knowledge about P (π) to build deterministic automata Aπ recog-

nizing the languages
←−
Lπ , for any pin-permutation π. Recall from Subsection 4.3

(p.19) that

←−
Lπ =

⋃

u∈P (π)

u=u(1)u(2)...u(j)

A⋆
←−−−−
φ(u(j))A⋆ . . . A⋆

←−−−−
φ(u(2))A⋆

←−−−−
φ(u(1))A⋆

52

where A = {U,D,L,R}, φ is the map introduced in Definition 3.9 (p.12) and
for every pin word u, by u = u(1)u(2) . . . u(j) we mean (here and everywhere
after) that u(1)u(2) . . . u(j) is the strong numeral-led factor decomposition of u.

To build these automata Aπ recognizing
←−
Lπ , we proceed again recursively,

distinguishing several cases following Equation (⋆) p.20, i.e., according to the
shape of the decomposition tree of π. We also present an alternative construc-

tion of Aπ whose complexity is optimized; but instead of
←−
Lπ , the automaton

recognizes a language L′π such that L′π ∩M =
←−
Lπ ∩M. In both constructions,

the automata Aπ are deterministic, and we have explained in Subsection 4.2
that this is the key to control the complexity of our algorithm. Moreover, in
addition to being deterministic, both automata are complete and have a unique
final state without outgoing transitions except for a loop labeled by all letters
of A. These properties of Aπ are inherited from the smaller automata used in
its construction.

Our construction of automata accepting words v ∈
←−
Lπ relies on a greedy

principle: at each step we find the first occurrence of
←−−−−
φ(u(ℓ)) that appears in

the suffix of the word v that has not yet been read by the automaton. This is

facilitated by the fact that in
←−
Lπ the factors

←−−−−
φ(u(ℓ)) are separated by A⋆.

The reason why we consider reversed words is in order to preserve deter-
minism. Indeed intuitively the possible beginnings of pin words encoding a
permutation may be numerous, whereas all these words end with very similar
shuffle products as it appears in Theorems B.12 and B.19 (p.40 and 43).

The description of our construction of the automata Aπ is organized as
follows. In Subsection C.1, we present generic constructions of automata that
will be used several times. In Subsections C.2 to C.5, we construct recursively

the automata Aπ that recognize the languages
←−
Lπ for any pin-permutation π,

distinguishing cases according to the decomposition tree of π – see Equation (⋆)
p.20. In these constructions, some states of the automata must be marked,
and this is detailed in Subsection C.6. We conclude with Subsection C.7 that
analyzes the complexity of building Aπ .

C.1. Generic constructions of deterministic automata

We present some generic constructions that are used in the next subsections.
We refer the reader to [16] for more details about automata.

Aho-Corasick algorithm. Let X be a finite set of words over a finite alphabet
A. The Aho-Corasick algorithm [1] builds a deterministic automaton that rec-
ognizes A⋆X in linear time and space w.r.t. the sum ‖X‖ of the lengths of the
words of X . The first step of the algorithm consists in constructing a tree-
automaton whose states are labeled by the prefixes of the words of X . The
initial state is the empty word ε. For any word u and any letter a there is a
transition labeled by a from state u to state ua if ua is a prefix of a word of X .
At this step the final states are the leaves of the tree. The second step consists
in adding transitions in the automaton according to a breadth-first traversal of
the tree-automaton to obtain a complete automaton. For any state u and any

53

letter a, the transition from u labeled by a goes to the state corresponding to
the longest suffix of ua that is also a prefix of a word of X . The set of final states
is the set of states corresponding to words having a suffix in X . These states
correspond to a leaf or an internal node – when there is a factor relation be-
tween two words of X – of the original tree-automaton. The ones corresponding
to internal nodes are marked on the fly during the construction of the missing
transitions.

Remark C.1. Notice that all transitions labeled with a letter of A that does not
appear in any word of X go to the initial state. Moreover the reading of any
word u by the automaton leads to the state labeled with the longest suffix of u
that is also a prefix of a word of X.

A variant for first occurrences. An adaptation of the Aho-Corasick algorithm
allows us to build in linear time and space w.r.t. ‖X‖ a deterministic automaton,
denoted AC(X), recognizing the set of words ending with a first occurrence of a
word of X (which is strictly included in A⋆X). First we perform the first step of
the Aho-Corasick algorithm on X , obtaining a tree automaton. We modify the
second step as follows: in the breadth-first traversal, we stop the exploration of
a branch and delete its descendants as soon as a final state is reached. Moreover
we do not build the outgoing transitions from the final states, nor the loops on
the final states. This ensures that the language recognized is the set of words
ending with a first occurrence of a word of X . Finally we merge the final states
into a unique final state f to obtain AC(X). Moreover if we add a loop labeled
by all letters of A on f we obtain an automaton AC	(X) that recognizes the
set A⋆XA⋆ of words having a factor in X .

Remark C.2. The main difference between our variant and the construction
of Aho-Corasick is that we stop as soon as a first occurrence of a word of X
is read. This ensures that AC(X) has a unique final state without any outgoing
transition.

This variant for first occurrences satisfies properties analogous to Remark C.1:

Lemma C.3. In AC(X), all transitions labeled with a letter that does not appear
in any word of X go to the initial state. Moreover let u be a word without any
factor in X except maybe as a suffix. Then the reading of u by AC(X) leads to
the state labeled with the longest suffix of u that is also a prefix of a word of X.

Proof. Let A be the usual Aho-Corasick automaton on X . Then AC(X) (before
the merge of all final states in f) is a subautomaton of A, and therefore the
first assertion is a direct consequence of Remark C.1. Let u be a word without
any factor in X except maybe as a suffix. Then the path of the reading of u by
A does not visit any final state, except maybe the last state reached. Thus all
this path is included in AC(X) and we conclude using Remark C.1.

54

A variant for a partition X1, X2. When the setX is partitioned into two subsets
X1 and X2 such that no word of X1 (resp. X2) is a factor of a word of X2 (resp.
X1)

8, we adapt the previous construction and build a deterministic automaton
AC(X1, X2) which recognizes the same language as AC(X). But instead of
merging all final states into a unique final state, we build two final states f1
and f2 corresponding to the first occurrence of a word of X1 (resp. X2). This
construction is linear in time and space w.r.t. ‖X1‖ + ‖X2‖. In what follows
we will use this construction only when X1 and X2 are languages on disjoint
alphabets, so that the factor independence condition is trivially satisfied.

Concatenation. Building an automaton A1 · A2 recognizing the concatenation
L1 · L2 of two languages respectively recognized by the deterministic automata
A1 and A2 is easy when A1 has a unique final state without outgoing transitions.
Indeed it is enough to merge the final state of A1 and the initial state of A2 into
a unique state that is not initial (resp. not final), except when the initial state
of A1 (resp. A2) is final. Note that the resulting automaton is deterministic
and of size at most |A1| + |A2|, where the size |A| is the number of states of
any automaton A. This construction is done in constant time.

When the final state of A1 has no outgoing transitions except for a loop
labeled by all letters of A and when L2 is of type A⋆ ·L for an arbitrary language
L, we can do the same construction to obtain an automaton recognizing the
concatenation L1 · L2 = L1 ·A

⋆ · L. We just have to delete the loop on the final
state of A1 before merging states.

In particular, according to this construction, the automaton obtained con-
catenating AC	(X) and A is AC(X) · A. Therefore, even though AC(X) recog-
nizes a language strictly included in A⋆X , AC(X) ·A recognizes A⋆XA⋆L when
A recognizes a language A⋆L.

Union. We say that an automaton is almost complete if for any letter a, all
non final states have an outgoing transition labeled by a (notice that the only
difference with complete automaton is that final states are allowed to miss some
transitions). LetA1 andA2 be two deterministic automata that are almost com-
plete9. We define the automaton U(A1,A2) as follows. We perform the Carte-
sian product of A1 and A2 beginning from the pair of initial states (see [16]).
However we stop exploring a path when it enters a final state of A1 or A2.
Therefore in U(A1,A2) there is no outgoing transitions from any state (q1, q2)
such that q1 or q2 is final. Moreover these states are merged into a unique final
state of U(A1,A2). Let L1 (resp. L2, L) be the language recognized by A1

(resp. A2, U(A1,A2)). Then L is the set of words of L1 ∪ L2 truncated after
their first factor in L1 ∪ L2. The language (L1 ∪ L2)A⋆ = LA⋆ is recognized
by the automaton U	(A1,A2) with an additional loop labeled by all letters of

8This is a simple condition that allows us to define without ambiguity words ending with
a first occurrence either in X1 or in X2.

9 Notice that the automata AC(X), AC	(X) and AC(X1,X2) satisfy these conditions.

55

A on the final state. Notice that U(A1,A2) (resp. U	(A1,A2)) is determin-
istic, almost complete (resp. complete) and has a unique final state without
outgoing transitions (resp. whose only outgoing transition is a loop labeled by
all letters of A). The complexity in time and space of these constructions is in
O(|A1| · |A2|).

C.2. Pin-permutation of size 1 and simple pin-permutations

Pin-permutation of size 1. When π = 1, we have seen in Subsection 4.3 that
←−
Lπ = A⋆M2A

⋆ is recognized by the automaton Aπ of Figure 7 (p.21).

Simple pin-permutations. In this paragraph, for a simple permutation π whose
set of pin words P (π) is given, we build the automaton Aπ. The computation of
P (π) from π is discussed in Subsection 5.2 as a sub-procedure of the algorithm
described in Section 5. The study that follows is based on the upcoming lemma.

Lemma C.4. For every permutation π (not necessarily simple), we have

⋃

u∈P (π)
u strict or quasi-strict

L(u) = A⋆ · Es

π ·A
⋆ ∪ A⋆ · M2 · A

⋆ ·Eqs

π · A
⋆

where Es

π = {φ(u) | u ∈ P (π), u is strict} and Eqs

π = {φ(u(2)) | u = u(1)u(2) ∈
P (π), u is quasi-strict}.

Proof. By definition of L(u) (see Definition 3.14 p.14),

⋃

u∈P (π)
u strict or quasi-strict

L(u) =
(⋃

u∈P(π)
u strict

A⋆φ(u)A⋆
) ⋃ (⋃

u=u(1)u(2)∈P (π)
u quasi-strict

A⋆φ(u(1))A⋆φ(u(2))A⋆
)

.

Moreover, as can be seen on Figure 6 (p.10), for every quasi-strict pin word
u = u(1)u(2) ∈ P (π), the words hu(2) also belong to P (π) for all h ∈ {1, 2, 3, 4}.
This allows to write

⋃

u∈P (π)
u strict or quasi-strict

L(u) =
(⋃

u∈P (π)
u strict

A⋆φ(u)A⋆
) ⋃ (⋃

h∈{1,2,3,4}

A⋆φ(h) ·
⋃

u=u(1)u(2)∈P(π)
u quasi-strict

A⋆φ(u(2))A⋆
)

.

Hence ⋃

u∈P (π)
u strict or quasi-strict

L(u) = A⋆ · Es

π ·A
⋆ ∪ A⋆ · M2 · A

⋆ · Eqs

π · A
⋆,

concluding the proof.

Lemma C.5. For every permutation π whose sets of strict and quasi-strict pin
words (or equivalently Es

π and Eqs

π) are given, one can build in time and space
O
(
|Es

π| · |E
qs

π | · |π|
2
)
a deterministic complete automaton Asqs

π having a unique
final state without outgoing transitions except for a loop labeled by all letters of

A that recognizes the language
⋃

u∈P (π)
u strict or quasi-strict

←−−
L(u).

56

Proof. From Lemma C.4, we have

⋃

u∈P (π)
u strict or quasi-strict

←−−
L(u) =

←−−−−−
A⋆Es

πA
⋆
⋃←−−−−−−−−−−−

A⋆M2A
⋆Eqs

π A⋆ =
(

A⋆
←−
Es

π

⋃

(A⋆
←−−
Eqs

π · A
⋆M2)

)

A⋆.

Recall that AC(
←−
Es

π), AC(
←−−
Eqs

π) and AC(M2) are automata recognizing re-

spectively the set of words ending with a first occurrence of a word of
←−
Es

π ,
←−−
Eqs

π

andM2 and obtained using the construction given in Subsection C.1. The sizes
of the first two automata are respectively O (|Es

π | · |π|) and O (|Eqs

π | · |π|), and
the size of the third one is constant. Indeed for all w in Es

π, |w| = |π| + 1 and
for all w in Eqs

π , |w| = |π| so that ‖Es

π‖ = |E
s

π| · (|π|+1) and ‖Eqs

π ‖ = |E
s

π| · |π|.
Then the deterministic automaton Asqs

π is obtained as the union

U	(AC(
←−
Es

π) , AC(
←−−
Eqs

π) · AC(M2)) in time and space O
(
|Es

π | · |E
qs

π | · |π|
2
)
.

Lemma C.5 is used mostly in two special cases where all the pin words of π
are strict or quasi-strict, and that we identify explicitly in the following remark.

Remark C.6. By Theorem B.8 (p.38) the pin words encoding a simple permuta-
tion are either strict or quasi-strict and there are at most 48 of them. Therefore
when π is a simple permutation, we take Aπ = Asqs

π (from Lemma C.5) and the
time and space complexity of the construction of Aπ is quadratic w.r.t. |π|, as
soon as the pin words of π are given.

Notice also that when π = 12, Aπ = Asqs

π and the time and space complexity
of the construction is O(1).

The above construction follows the general scheme announced at the begin-
ning of the section, but it is not optimized. We actually can provide a more
specific construction of Aπ whose complexity is linear when the permutation π
is simple. This construction relies on the same idea as the one we give in [5].

Lemma C.7. For every permutation π whose sets of strict and quasi-strict
pin words (or equivalently Es

π and Eqs

π) are given, one can build in time and
space O ((|Es

π|+ |E
qs

π |) · |π|) a deterministic complete automaton Asqs

π having a
unique final state without outgoing transitions except for a loop labeled by all
letters of A that recognizes a language L′ such that

L′ ∩M =
⋃

u∈P(π)
u strict or quasi-strict

←−−
L(u) ∩M.

Proof. Define Eπ = Es

π ∪ M2 · E
qs

π and L′ = A⋆ ·
←−
Eπ · A

⋆. Let us prove that

L′ ∩M =
⋃

u∈P(π)
u strict or quasi-strict

←−−
L(u) ∩M.

This will be enough to conclude the proof of Lemma C.7, setting Asqs

π =

AC	(
←−
Eπ).

57

From Lemma C.4, we have

⋃

u∈P (π)
u strict or quasi-strict

L(u) = A⋆ · Es

π · A
⋆ ∪ A⋆ ·M2 ·A

⋆ · Eqs

π ·A
⋆.

Since (A⋆ · M2 · A⋆ · Eqs

π · A
⋆) ∩ M = (A⋆ · M2 · Eqs

π · A
⋆) ∩ M and Eπ =

Es

π ∪ M2 · Eqs

π , we obtain

⋃

u∈P (π)
u strict or quasi-strict

←−−
L(u) ∩M = A⋆ ·

←−
Eπ · A

⋆ ∩M,

concluding the proof.

Remark C.8. When π is a simple permutation, the automaton Asqs

π of Lemma C.7

recognizes a language L′π such that L′π∩M =
←−
Lπ∩M. In the optimized alterna-

tive construction of Aπ mentioned in Subsection 4.3 and at the beginning of Ap-
pendix C, for a simple permutation π we take Aπ = Asqs

π from Lemma C.7 and
the time and space complexity of building the automaton Aπ is linear w.r.t. |π|
as soon as P (π) is given.

C.3. Pin-permutations with a linear root: non-recursive case

W.l.o.g. (see Remark B.1 p.34), the only non-recursive case with a linear
root is the one where π = ⊕[ξ1, . . . , ξr], every ξi being an increasing oscillation.
Theorem B.12 (p.40) gives an explicit description of the elements of P (π). These
words are the concatenation of a pin word belonging to some P (⊕[ξi, ξi+1]) with
a pin word belonging to the shuffle product

(P (1)(ξi−1), . . . , P
(1)(ξ1)) � (P (3)(ξi+2), . . . , P

(3)(ξr)).

To shorten the notations in the following, let us define

χ
(h)
j =

←−−−−−−−−
φ(P (h)(ξj)) for h = 1 or 3 and 1 ≤ j ≤ r.

From Lemma B.13 (p.40), for all j, the pin words of P (1)(ξj) and P (3)(ξj) re-
spectively are strict. Hence, the decomposition of u ∈ P (π) into strong numeral-

led factors that is needed to describe
←−
Lπ (see p.19) is easily obtained and gives:

←−
Lπ =

⋃

1≤i≤r−1

((

A⋆χ
(1)
1 , . . . , A⋆χ

(1)
i−1

)

�

(

A⋆χ(3)
r , . . . , A⋆χ

(3)
i+2

))

·
←−−−−−−
L⊕[ξi,ξi+1]

In the above equation, we have
←−−−−−−
L⊕[ξi,ξi+1] where we might have expected to find

A⋆
←−−−−−−−−−−−−
φ(P (⊕[ξi, ξi+1]))A

⋆. The reason is that the term A⋆
←−−−−−−−−−−−−
φ(P (⊕[ξi, ξi+1]))A

⋆ is
not properly defined, since P (⊕[ξi, ξi+1]) contains pin words that are not strict.

The automaton Aπ is then built by assembling smaller automata, whose
construction is explained below.

58

Construction of A(ξi, ξj). Since for all i, j, the languages χ
(1)
i and χ

(3)
j – that

contain at most two words – are defined on disjoint alphabets (see Remark B.14
p.40), we can use the construction given in Subsection C.1 to build the deter-

ministic automata A(ξi, ξj) = AC(χ
(1)
i , χ

(3)
j). Figure 21 shows a diagram of

A(ξi, ξj) and defines states sij , f
(1)
ij and f

(3)
ij .

Lemma C.9. For all i, j, the complexity in time and space of the construction
of A(ξi, ξj) is O(|ξi|+ |ξj |).

Initial state sij

Final state f
(1)
ij

accepting χ
(1)
i

Final state f
(3)
ij

accepting χ
(3)
j

{L,D}

{U,R}

Figure 21: Atomic automaton A(ξi, ξj) used
in the construction of Aπ.

A(ξi, ξi+1)

Aξi+1

Aξi
fi

A

Figure 22: Automaton
A⊕(ξi, ξi+1).

Construction of Aξi . By Lemma B.15 (p.40), for any i, |P (ξi)| ≤ 48, the pin
words in P (ξi) are explicit and all of them are either strict or quasi-strict except
when |ξi| = 3.

If |ξi| 6= 3, from Lemma C.5 it is possible to build the deterministic au-
tomaton Aξi in quadratic time and space w.r.t. |ξi|, and from Lemma C.7 the
construction can be optimized to be linear in time and space w.r.t. |ξi|.

If |ξi| = 3, P (ξi) can be partitioned into two parts Psqs ⊎ P (12) · h where
h = 4 (resp. 2) if ξi = 231 (resp. 312) and Psqs is the set of strict and quasi-
strict pin words of P (ξi). With Lemma C.5 or C.7 we build the automaton
Asqs

ξi
corresponding to Psqs, and the automaton corresponding to P (12) ·h is the

concatenation of two basic automata, AC(
←−−
φ(h)) (where φ(h) for h = 2 or 4 is

given p.12) and A12 (see Remark C.6 p.57). Finally the automaton Aξi is the

union U	(Asqs

ξi
,AC(

←−−
φ(h)) · A12). As |ξi| = 3, Aξi is built in constant time.

Lemma C.10. For all i, building Aξi is done in time and space O(|ξi|2) with
the classical construction and O(|ξi|) in the optimized version.

Construction of A⊕(ξi, ξi+1). We now explain how to build a deterministic au-

tomaton A⊕(ξi, ξi+1) recognizing
←−−−−−−
L⊕[ξi,ξi+1]. Lemma B.18 (p.42) describes the

pin words of P (⊕[ξi, ξi+1]), proving the correctness of the following construc-
tions.

If |ξi| > 1 and |ξi+1| > 1, we obtain A⊕(ξi, ξi+1) by gluing together automata

A(ξi, ξi+1), Aξi and Aξi+1 as shown in Figure 22. More precisely f
(1)
i(i+1) (resp.

59

f
(3)
i(i+1)) and the initial state of Aξi+1 (resp. Aξi) are merged into a unique state

that is neither initial nor final. The final states of Aξi and Aξi+1 are also merged
into a unique final state fi having a loop labeled by all letters of A.

If |ξi| = 1 and |ξi+1| = 1 then A⊕(ξi, ξi+1) = A12 is built using Remark C.6.
Otherwise assume w.l.o.g. that |ξi| = 1 and |ξi+1| > 1. The set of pin

words P (⊕[ξi, ξi+1]) can be partitioned into two parts Psqs and P ′, Psqs being
the set of strict and quasi-strict pin words. If |ξi+1| 6= 3, then P ′ = P (ξi+1) · 3

and A⊕(ξi, ξi+1) = U	

(

Asqs

⊕[ξi,ξi+1]
,AC(

←−−
φ(3)) · Aξi+1

)

. If |ξi+1| = 3, then P ′ =

P (ξi+1) · 3
⋃
P (12) · 3X where X is a direction, and we use again concatenation

and union but performed on automata of constant size.
Note that in all cases A⊕(ξi, ξi+1) has a unique final state – that we denote

fi – without outgoing transitions except for the loop labeled by all letters of A.

Lemma C.11. For all i, building the automaton A⊕(ξi, ξi+1) is done in time
and space O(|ξi|4+ |ξi+1|4) with the classical construction and O(|ξi|2+ |ξi+1|2)
in the optimized version.

Proof. The complexity of the construction of A(ξi, ξi+1) is linear w.r.t. |ξi| +
|ξi+1| from Lemma C.9 and the one of Aξi is quadratic – or linear in the opti-
mized version – w.r.t. |ξi| (see Lemma C.10). This concludes the proof except
when |ξi| = 1 and |ξi+1| 6= 1 (or conversely). When |ξi| = 1, from Lemma B.18
(p.42), we have an explicit description of P (⊕[ξi, ξi+1]) and |P (⊕[ξi, ξi+1])| ≤
192. Hence, the complexity of the construction of Asqs

⊕[ξi,ξi+1]
when |ξi| = 1 is

quadratic – or linear in the optimized version – w.r.t. |ξi+1|, using Lemmas C.5
and C.7. Then the result follows from the complexity of the union of two au-
tomata, which is proportional to the product of the sizes of the automata.

Assembling Aπ. According to the description of
←−
Lπ given p.58, the automata

A(ξi, ξj) and A⊕(ξi, ξi+1) can be glued together to finish the construction of
Aπ, as shown in Figure 23. More precisely for any i, j such that 1 ≤ i < j ≤ r

• if i + 1 6= j, then sij , f
(1)
(i−1)j and f

(3)
i(j+1) are merged into a unique state

qij that is neither initial (except when i = 1 and j = r) nor final,

• if i+1 = j, f
(1)
(i−1)j , f

(3)
i(j+1) and the initial state ofA⊕(ξi, ξj) = A⊕(ξi, ξi+1)

are merged into a unique state qij that is neither initial nor final,

and the final states fi of the automataA⊕(ξi, ξi+1) are merged into a unique final
state f having a loop labeled by all letters of A. The states qij defined above cor-
respond to the shuffle product construction. To be more precise, taking the final
state to be the merged state qij and adding a loop labeled by all letters of A on it,

the accepted language would be
(

A⋆χ
(1)
1 , . . . , A⋆χ

(1)
i−1

)

�

(

A⋆χ
(3)
r , . . . , A⋆χ

(3)
j+1

)

· A⋆ as it will be proved in the following. The automata A⊕(ξi, ξi+1) in the

second item above correspond to the concatenation with
←−−−−−−
L⊕[ξi,ξi+1].

Note that if r = 2, Aπ is A⊕(ξ1, ξ2).

60

A(ξ1, ξr) A(ξ2, ξr) A(ξr−2, ξr)

A(ξ1, ξr−1) A(ξ2, ξr−1)

A(ξ1, ξ3)

f

A
⊕ (ξ2

, ξ3
)

A
⊕

(
ξ
r
−

2
,
ξ
r
−

1
)

A
⊕

(
ξ
r
−

1
,
ξ
r
)

A⊕(ξ1, ξ2)

A

q 1
(r
−
1
)

q2rq1r

q12

q(r−1)r

Figure 23: Automaton Aπ for π = ⊕[ξ1, . . . , ξr] where every ξi is an increasing
oscillation.

Lemma C.12. For any permutation π such that π = ⊕[ξ1, . . . , ξr], every ξi
being an increasing oscillation, the construction of the automaton Aπ is done
in time and space O(|π|4) with the classical construction and O(|π|2) in the
optimized version.

Proof. Denote by n the size of π, then n =
∑r

i=1 |ξi|. By construction, taking
into account the merge of states:

|Aπ | ≤
r−2∑

i=1

r∑

j=i+2

|A(ξi, ξj)|+
r−1∑

i=1

|A⊕(ξi, ξi+1)|

and from Lemmas C.9 and C.11, in the classical construction

|Aπ | = O

r−2∑

i=1

r∑

j=i+2

(|ξi|+ |ξj |) +
r−1∑

i=1

(|ξi|
4 + |ξi+1|

4)

 = O(n4)

61

and in the optimized version

|Aπ| = O

r−2∑

i=1

r∑

j=i+2

(|ξi|+ |ξj |) +
r−1∑

i=1

(|ξi|
2 + |ξi+1|

2)

 = O(n2).

We conclude the proof noticing that all these automata are built in linear time
w.r.t. their size.

Correctness of the construction. We now prove that the automaton Aπ given

in Figure 23 recognizes the language
←−
Lπ , for π = ⊕[ξ1, . . . , ξr], every ξi being

an increasing oscillation.

Definition C.13. Let A be a deterministic complete automaton over the alpha-
bet A whose set of states is Q and let u be a word in A⋆. We define traceA(u)
as the word of Q|u|+1 that consists in the states of the automaton that are visited
when reading u from the initial state of A, and for all q ∈ Q we define q · u to
be the state of A reached when reading u from q.

Let u be a word in A⋆. We define two parameters on u:

i(u) = max{i ∈ {0, r} | u ∈ A⋆ · χ
(1)
1 ·A

⋆ · χ
(1)
2 . . . A⋆ · χ

(1)
i · A

⋆} , and

j(u) = min{j ∈ {1, r + 1} | u ∈ A⋆ · χ(3)
r ·A

⋆ · χ
(3)
r−1 . . . A

⋆ · χ
(3)
j ·A

⋆}.

Remark C.14. Every word u such that i(u) ≥ i and j(u) ≤ j belongs to

(

(A⋆χ
(1)
1 , A⋆χ

(1)
2 , . . . , A⋆χ

(1)
i)� (A⋆χ(3)

r , A⋆χ
(3)
r−1, . . . , A

⋆χ
(3)
j)
)

· A⋆.

Proof. By definition, u belongs to A⋆·χ
(1)
1 ·A

⋆·χ
(1)
2 . . . A⋆ ·χ

(1)
i ·A

⋆ and to A⋆ ·χ
(3)
r ·

A⋆ · χ
(3)
r−1 . . . A

⋆ · χ
(3)
j ·A

⋆. Moreover, by Remark B.14 (p.40), all χ
(1)
k are words

on the alphabet {L,D} while all χ
(3)
k are words on {U,R}. These alphabets

being disjoint, we conclude that u belongs to
(

(A⋆χ
(1)
1 , A⋆χ

(1)
2 , . . . , A⋆χ

(1)
i)�

(A⋆χ
(3)
r , A⋆χ

(3)
r−1, . . . , A

⋆χ
(3)
j)
)

·A⋆.

The following lemma characterizes the first visit of state qij in Aπ:

Lemma C.15. Let Q be the set of states of Aπ (see Figure 23), (i, j) 6= (1, r)
and u ∈ A⋆. Then traceAπ

(u) ∈ (Q \ qij)⋆ · qij if and only if u = vw with

either w ∈ χ
(1)
i−1, i(v) = i − 2 and j(v) = j + 1; or w ∈ χ

(3)
j+1, i(v) = i − 1 and

j(v) = j + 2.

Proof. By induction on r − j + i − 1, using A(ξi, ξj) = AC(χ
(1)
i , χ

(3)
j). Notice

that r−j+i−1 is the number of automata A(ξk, ξℓ) that we need to go through
before reaching qij .

62

Theorem C.16. If π = ⊕[ξ1, . . . , ξr] where every ξi is an increasing oscillation

then automaton Aπ given in Figure 23 recognizes the language
←−
Lπ.

Proof. Assume that r ≥ 3 (otherwise r = 2, Aπ is A⊕(ξ1, ξ2) and the result triv-

ially holds). We first prove that every word recognized by Aπ is in
←−
Lπ . Let u be

a word recognized by Aπ. Then traceAπ
(u) ends with the final state f of Aπ. As

f is accessible only from some A⊕(ξk, ξk+1), traceAπ
(u) contains some qk(k+1).

Moreover for all (i, j) 6= (1, r), every path from the initial state q1r to qij con-
tains q(i−1)j or qi(j+1). Therefore traceAπ

(u) ∈ qi1j1Q
⋆qi2j2Q

⋆ . . . qir−1jr−1Q
⋆f

where (i1, j1) = (1, r), (ir−1, jr−1) = (k, k + 1) and for all ℓ, (iℓ+1, jℓ+1) ∈
{(iℓ + 1, jℓ), (iℓ, jℓ − 1)}. Hence by definition of A(ξi, ξj) and A⊕(ξk, ξk+1) and

by the expression of
←−
Lπ given p.58, u ∈

←−
Lπ .

Conversely, let u ∈
←−
Lπ. We want to prove that q1r · u = f , q1r being

the initial state of Aπ and f its final state. The expression of
←−
Lπ given p.58

ensures that there exists k such that u = vw with i(v) ≥ k − 1, j(v) ≤ k + 2

and w ∈
←−−−−−−−
L⊕[ξk,ξk+1]. Let u = v′w′ with v′ = v1 . . . vs the shortest prefix of u

such that j(v′) − i(v′) ≤ 3, and set i = i(v′). Since v′ is of minimal length,
j(v′) = i+3 and there exists v′′ ∈ A⋆ such that v = v′v′′. So w′ = v′′w belongs

to A⋆ ·
←−−−−−−−
L⊕[ξk,ξk+1] =

←−−−−−−−
L⊕[ξk,ξk+1]. Thus, using also Remark C.14, we have:

u =

=

v

∈ (A⋆χ
(1)
1 , . . . , A⋆χ

(1)
k−1)� (A⋆χ

(3)
r , . . . , A⋆χ

(3)
k+2)

w

∈
←−−−−−−−−
L⊕[ξk,ξk+1]

v′

∈ (A⋆χ
(1)
1 , . . . , A⋆χ

(1)
i)� (A⋆χ

(3)
r , . . . , A⋆χ

(3)
i+3)

w′

Since v′ is of minimal length, i(v1 . . . vs−1) < i(v′) or j(v1 . . . vs−1) > j(v′).

Thus v′ = v̄w̄ with either w̄ ∈ χ
(1)
i(v′), i(v̄) = i(v′) − 1 and j(v̄) = j(v′); or

w̄ ∈ χ
(3)
j(v′), i(v̄) = i(v′) and j(v̄) = j(v′)+ 1. By Lemma C.15, traceAπ

(v′) ends

with qi(v′)+1,j(v′)−1.

Therefore u = v′w′ with q1r · v′ = qi+1,i+2 and w′ ∈
←−−−−−−−
L⊕[ξk,ξk+1].

If i = k− 1 then q1r · u = (q1r · v′) ·w′ = qk,k+1 ·w′ = f as w′ belongs to the

language
←−−−−−−−
L⊕[ξk,ξk+1] recognized by the automaton A⊕(ξk, ξk+1).

If i ≤ k − 3. By definition i(u) ≥ k − 1 and i(v′) = i, and as u = v′w′,

w′ ∈ A⋆ · χ
(1)
i+1 · A

⋆ · χ
(1)
i+2 · A

⋆ . . . A⋆ · χ
(1)
k−1 · A

⋆. Therefore as i ≤ k − 3, w′ ∈

A⋆ · χ
(1)
i+1 ·A

⋆ · χ
(1)
i+2 ·A

⋆ and w′ belongs to the language
←−−−−−−−−
L⊕[ξi+1,ξi+2] recognized

by the automaton A⊕(ξi+1, ξi+2). Finally as u = v′w′ and traceAπ
(v′) ends

with qi+1,i+2, traceAπ
(u) ends with f .

If i ≥ k + 1 then j(v′) ≥ k + 4 and by symmetry of i(u) and j(u) the proof
is similar to the previous case.

If i = k−2, as v = v′v′′ and i(v) ≥ k−1 and i(v′) = i then v′′ ∈ A⋆ ·χ
(1)
i+1 ·A

⋆.

Moreover w ∈
←−−−−−−−−
L⊕[ξi+2,ξi+3] so w′ = v′′w ∈ A⋆ · χ

(1)
i+1 ·

←−−−−−−−−
L⊕[ξi+2,ξi+3]. Therefore

w′ ∈
←−−−−−−−−−−−
L⊕[ξi+1,ξi+2,ξi+3] and by Theorem 3.15 (p.14), w′ ∈

←−−−−−−−−
L⊕[ξi+1,ξi+2

]. Hence w′

is recognized by A⊕(ξi+1, ξi+2) so q1r · u = f (since q1r · v′ = qi+1,i+2).

63

If i = k, by symmetry of i(u) and j(u) the proof is similar to the previous
case, concluding the proof of Theorem C.16.

Remark C.17. With the optimized construction of Aπ, we prove similarly that

Aπ recognizes a language L′π such that L′π ∩M =
←−
Lπ ∩M.

We end this subsection with a remark which will be useful in Subsection C.6.

Remark C.18. Let π(1) = ⊕[ξ2, . . . , ξr] be the pattern of π obtained by deletion
of the elements of ξ1. If r ≥ 3 then Aπ(1) is obtained by taking q2r (see Figure 23)
as initial state and by considering only the states of Aπ that are accessible from

q2r. Thus in Aπ the language recognized from q2r is
←−−−
Lπ(1) . If r = 2 then

π(1) = ξ2, Aπ(1) is also a part of A⊕(ξ1, ξ2) = Aπ and
←−−−
Lπ(1) is the language

recognized from the bottom right state of Figure 22 (p.59). The same property
holds with the pattern π(r) = ⊕[ξ1, . . . , ξr−1], the state q1(r−1) and the top left
state of Figure 22.

C.4. Pin-permutations with a linear root: recursive case

Suppose w.l.o.g. that the decomposition tree of π is
⊕

ξ1 ξℓ
Ti0

ξℓ+2 ξr
,

i.e., the root has label ⊕ and all of its children but one – denoted Ti0 – are
increasing oscillations. Then the automaton A(Ti0) = Aρ associated to the
permutation ρ whose decomposition tree is Ti0 is recursively obtained. We
explain how to build Aπ from Aρ.

If π /∈ H, i.e. if π does not satisfy any condition of Figure 17 (p.44). Then

Theorem B.19 (p.43) ensures that P (π) = P (ρ) ·P
(1)
(ℓ) �P

(3)
(ℓ+2) with

P
(1)
(ℓ) =

(
P (1)(ξℓ), . . . , P

(1)(ξ1)
)
and P

(3)
(ℓ+2) =

(
P (3)(ξℓ+2), . . . , P

(3)(ξr)
)
.

This characterization translates into the following expression for
←−
Lπ:

←−
Lπ =

((

A⋆χ
(1)
1 , . . . , A⋆χ

(1)
ℓ

)

�

(

A⋆χ(3)
r , . . . , A⋆χ

(3)
ℓ+2

))

·
←−
Lρ

with the notations χ
(h)
j from p.58.

To deal with the shuffle product, we use again the automata A(ξi, ξj) whose

initial and final states are sij , f
(1)
ij and f

(3)
ij (see Figure 21 p.59). We furthermore

introduce the deterministic automata A(1)(ξi) = AC(χ
(1)
i) for 1 ≤ i ≤ ℓ and

A(3)(ξj) = AC(χ
(3)
j) for ℓ+ 2 ≤ j ≤ r whose initial and final states are denoted

respectively s
(1)
i , f

(1)
i , s

(3)
j and f

(3)
j . The automaton A(1)(ξi) (resp. A(3)(ξj))

corresponds to the reading of parts of P
(1)
(ℓ)

(

resp. P
(3)
(ℓ+2)

)

in the shuffle product

P
(1)
(ℓ) �P

(3)
(ℓ+2) after all the parts of P

(3)
(ℓ+2)

(

resp. P
(1)
(ℓ)

)

are read.

64

With these notations, the language
←−
Lπ associated to π is the one recog-

nized by the automaton Aπ given in Figure 24 where the following merges are
performed:

• for any i, j such that 1 ≤ i ≤ ℓ and ℓ + 2 ≤ j ≤ r, sij , f
(1)
(i−1)j and f

(3)
i(j+1)

are merged into a unique state qij that is neither initial (except when i = 1
and j = r) nor final,

• for 1 ≤ i ≤ ℓ, s
(1)
i , f

(1)
i−1 and f

(3)
i(ℓ+2) are merged into a unique state qi that

is neither initial nor final,

• for ℓ + 2 ≤ j ≤ r, s
(3)
j , f

(3)
j+1 and f

(1)
ℓj are merged into a unique state qj

that is neither initial nor final,

• f
(3)
ℓ+2, f

(1)
ℓ and the initial state of Aρ are merged into a unique state qρ

that is neither initial nor final.

A(ξ1, ξr) A(ξ2, ξr) A(ξℓ, ξr)

A(ξ1, ξr−1) A(ξ2, ξr−1) A(ξℓ, ξr−1)

A(ξ1, ξℓ+2) A(ξ2, ξℓ+2) A(ξℓ, ξℓ+2)

A(1)(ξ1) A(1)(ξ2) A(1)(ξℓ)

Aρ A

A(3)(ξr)

A(3)(ξr−1)

A(3)(ξℓ+2)

q 1
(r
−
1
)

q1r q2r

qr−1

qr

q1 q2 qℓ qρ

qℓ+2

Figure 24: The automaton Aπ for π = ⊕[ξ1, . . . , ξℓ, ρ, ξℓ+2, . . . , ξr], where every
ξi but ρ is an increasing oscillation (in the case π /∈ H).

Note that if ℓ = 0 (resp. r = ℓ + 1) i.e., if Ti0 is the first (resp. last) child,
then only the automaton Aρ and the automata A(3)(ξj) (resp. A

(1)(ξi)) appear
in Aπ whose initial state is then qr (resp. q1).

65

The proof that the automaton Aπ obtained by this construction recognizes
←−
Lπ is omitted. However this construction is very similar to the non-recursive
case of the previous section where the proofs are detailed.

Lemma C.19. For any pin-permutation π = ⊕[ξ1, . . . , ξℓ, ρ, ξℓ+2, . . . , ξr] such
that every ξi but ρ is an increasing oscillation and π /∈ H, the construction of
the automaton Aπ (see Figure 24) is done in time and space O

(
(|π| − |ρ|)2

)
plus

the additional complexity due to the construction of Aρ, both in the classical and
the optimized construction.

Proof. First notice that |π| − |ρ| =
∑r

i=1,i6=ℓ+1 |ξi|. Moreover, taking into ac-
count the merge of states:

|Aπ| ≤
ℓ∑

i=1

r∑

j=ℓ+2

|A(ξi, ξj)|+
ℓ∑

i=1

|A(1)(ξi)|+
r∑

j=ℓ+2

|A(3)(ξj)|+ |Aρ|.

From Lemma C.9 (p.59) and the fact that |P (1)(ξi)| ≤ 2 and |P (3)(ξj)| ≤ 2 (see
Remark B.14 p.40), it follows that

|Aπ| − |Aρ| = O

ℓ∑

i=1

r∑

j=ℓ+2

(|ξi|+ |ξj |) +
r∑

i=1
i6=ℓ+1

|ξi|

 = O((|π| − |ρ|)2),

concluding the proof, since the time of the construction is linear w.r.t. the size
of the automaton.

We end this paragraph with a remark which will be useful in Subsection C.6.

Remark C.20. If ℓ 6= 0, let π(1) be the pattern of π obtained by deletion of
the elements of ξ1. Then Aπ(1) is obtained by taking q2r (see Figure 24) as
initial state and by considering only the states of Aπ that are accessible from

q2r. Thus in Aπ the language recognized from q2r is
←−−−
Lπ(1) . If r 6= ℓ+1 the same

property holds with the pattern π(r) (obtained by deletion of the elements of ξr)
and the state q1(r−1). We take the convention that q1(ℓ+1) = q1, q(ℓ+1)r = qr
and q(ℓ+1)(ℓ+1) = qρ.

If π ∈ H, i.e. if one of the conditions given in Figure 17 (p.44) holds for π.
Then Theorem B.19 (p.43) ensures that P (π) is the union of the set P0 =

P (ρ) ·P
(1)
(ℓ)�P

(3)
(ℓ+2) that we consider in the previous paragraph and some other

sets that are very similar, all ending with the same kind of shuffle product.
As the automaton Aπ recognizes reversed words, these similar ends lead to
similar beginnings in the automaton. So the automatonAπ has the same general
structure as the automaton A of Figure 24 but some transitions are added to
account for the words in P (π) not belonging to P0.

More precisely Aπ is obtained performing the following modifications on the
automaton A of Figure 24. First we add new paths as depicted in the last

66

column of Figure 17 (p.44). These paths start in the shaded states qℓ or qℓ+2 of
Figure 24 and arrive in marked states of Aρ. If a path is labeled in Figure 17
by a word w with s letters we build s− 1 new states and s transitions such that
the reading of w from the shaded state leads to the corresponding marked state
of Aρ. These marked states may be seen as initial states of subautomata: in
Figure 17, for all Y , qY is a state of Aρ such that the language recognized from

qY is
←−
Lσ, where σ is the permutation whose diagram is Y . The way in which

such states of Aρ are marked is explained in Subsection C.6.
Moreover to keep the resulting automaton deterministic and complete when

adding these new paths we have to make some other changes. Notice that state

qℓ (resp. qℓ+2) is the initial state of A(1)(ξℓ) = AC(χ
(1)
ℓ) (resp. A(3)(ξℓ+2) =

AC(χ
(3)
ℓ+2)). Remark B.14 (p.40) ensures that χ

(1)
ℓ =

←−−−−−−−
φ(P (1)(ξℓ)) (resp. χ

(3)
ℓ+2 =

←−−−−−−−−−
φ(P (3)(ξℓ+2))) is defined on the alphabet {L,D} (resp. {U,R}). Therefore,
from Lemma C.3 (p.54), transitions labeled by U or R (resp. L or D) leaving
qℓ (resp. qℓ+2) are loops on the initial state qℓ (resp. qℓ+2) of A(1)(ξℓ) (resp.
A(3)(ξℓ+2)). Hence, as can be seen on see Figure 17, the new transitions leaving
shaded states are labeled by directions that correspond to loops in A. So we
just have to delete the loops and replace them by the new transitions in order
to preserve the determinism of the automaton.

Now we make some other changes to preserve completeness and ensure that
even though we have deleted loops on shaded states, all words that were rec-
ognized by the automaton A are still recognized by the modified automaton
Aπ. As qℓ (resp. qℓ+2) is not reachable from qℓ+2 (resp. qℓ) we can handle
separately new states reachable from qℓ and new states reachable from qℓ+2.
Let q0 be qℓ (resp. qℓ+2). Like in the Aho-Corasick algorithm we label any new
state q reachable from q0 by the shortest word labeling a path from q0 to q. So
these labels begin with U or R (resp. L or D) (see Figure 17). Notice that the
states in the part A(1)(ξℓ) (resp. A(3)(ξℓ+2)) of A are also labeled in such a way,
but their labels differ from the ones of the new states since they contain only
letters L or D (resp. U or R). By Lemma C.3 (p.54), we know that in A(1)(ξℓ)
(resp. A(3)(ξℓ+2)) all transitions labeled by U or R (resp. L or D) go to q0,
therefore we replace them by transitions going to the new state labeled by U or
R (resp. L or D) if such a new state exists (otherwise we keep the transition
going to q0). We complete the construction by adding missing transitions from
the states newly created: for any such state q, the transition from q labeled by
Z goes to the longest suffix of q · Z that is a state of the automaton – either a
new state or a state of A(1)(ξℓ) (resp. A(3)(ξℓ+2)).

The proof that the automaton Aπ obtained by this construction recognizes
←−
Lπ is omitted to avoid the examination of the eight cases of Figure 17. However,
it is similar to the proof of Theorem C.23 (p.70), with some of the difficulties
released (since labels on the new paths are explicit in Figure 17, while they are
not in the proof of Theorem C.23).

Lemma C.21. The complexity of building Aπ given in Lemma C.19 (p.66) still
holds if π ∈ H.

67

Proof. When π ∈ H, the construction of Aπ is the same as in the case π /∈ H,
with some new paths added. There are at most four new paths, O(|ρ|) new states
in each path, O(|ρ|) transitions from these new states, and the modification of
transitions in A(1)(ξℓ) (resp. A(3)(ξℓ+2)) is done in O(|ξℓ|) (resp. O(|ξℓ+2|)).
So in the construction of Aπ described above, we have to add a time and space
complexity O(|ρ| + |ξℓ| + |ξℓ+2|) w.r.t. the case π /∈ H. As |ξℓ| + |ξℓ+2| =
O ((|π| − |ρ|)) and as the complexity of the construction of Aρ is bigger than
O(|ρ|), this does not change the overall estimation of the complexity of the
construction of Aπ given in Lemma C.19.

C.5. Pin-permutations with a prime root: recursive case

C.5.1. Exactly one child of the root is not a leaf.

Let π =

α

T
where α is a simple permutation all of whose children

but T are leaves. Denote by ρ the permutation whose decomposition tree is T ,
and by x the point of α expanded by T .

Recall that Qx(α) (see Definition B.23 p.48) denotes the set of strict pin
words obtained by deleting the first letter of quasi-strict pin words of α whose
first point read in α is x.

If π does not satisfy condition (C) (see Definition B.21 p.47).Then from The-

orem B.25 (p.49), P (π) = P (ρ) · Qx(α). So
←−
Lπ = A⋆ ·

←−−−−−−
φ(Qx(α)) ·

←−
Lρ and since

←−
Lρ = A⋆ ·

←−
Lρ the automaton Aπ recognizing

←−
Lπ is obtained by the concatenation

of AC(
←−−−−−−
φ(Qx(α))) with Aρ, which is recursively obtained.

If π satisfies condition (C) and |T | ≥ 3. Then by Theorem B.25 (p.49) – and
using the notations of this theorem, P (π) contains P (ρ) ·Qx(α) and some other
words. Defining T ′ as in condition (C), ρ′ the permutation whose decomposition
tree is T ′, and w the unique word encoding the unique reading of the remaining
leaves in π after T ′ is read when T is read in two pieces, these other words
are P (ρ′) · w. Note that from Lemma B.27 (p.50) w is a strict pin word. So
←−
Lπ = A⋆ ·

←−−−−−−
φ(Qx(α)) ·

←−
Lρ∪A⋆ ·

←−−−
φ(w) ·

←−
Lρ′ . The skeleton of Aπ is the concatenation

of the automaton AC(
←−−−−−−
φ(Qx(α))) with Aρ and then as in the recursive case with

a linear root, we add some new transitions to account for the words in P (ρ′) ·w.

Denoting Z the last letter of w (i.e., the first letter of
←−−−
φ(w)), Lemma B.27

ensures that no word of
←−−−−−−
φ(Qx(α)) contains Z and therefore by Lemma C.3

(p.54) all the transitions labeled by Z in the automaton AC(
←−−−−−−
φ(Qx(α))) go to its

initial state, denoted q0. We built an automaton A by performing the following

modifications on AC(
←−−−−−−
φ(Qx(α))): remove the loop labeled by Z on q0 and add

a path reading
←−−−
φ(w) from q0 to a new final state f ′. Label all states q of A by

the shortest word labeling a path from the initial state q0 to q. Replace any

transition labeled by Z from a state q of AC(
←−−−−−−
φ(Qx(α))) to q0 by a transition

from q to the new state labeled by Z. Finally complete the automaton with

68

transitions from the states of the added path: for all such states q but f ′, the
transition from q labeled by a goes to the longest suffix of q · a that is a state
of the automaton – either a new state or a pre-existing state. Notice that the
automaton A we obtain is almost complete and has exactly two final states,

without outgoing transitions: f – the unique final state of AC(
←−−−−−−
φ(Qx(α))) – and

f ′.
The automaton Aπ is then obtained from A and Aρ by merging f with the

initial state qT of Aρ and f ′ with a marked state qT ′ (see Subsection C.6) of Aρ

which is a state from which the recognized language is
←−
Lρ′ . This construction

is shown in Figure 25.

AC(
←−−−−−−
φ(Qx(α)))

q0
Aρ qT ′

←−−−
φ(w)

Z

qT

Figure 25: Automaton Aπ for π = α[1, . . . , 1, ρ, 1, . . . , 1].

Notice that the automaton A obtained from AC(
←−−−−−−
φ(Qx(α))) is somehow very

similar to AC(
←−−−−−−
φ(Qx(α)), {

←−−−
φ(w)}) but because

←−−−
φ(w) has a suffix in

←−−−−−−
φ(Qx(α))

(from Lemma B.27), the sets of words X1 =
←−−−−−−
φ(Qx(α)) and X2 = {

←−−−
φ(w)} do not

satisfy the independence condition required in our construction of AC(X1, X2).

Lemma C.22. The automaton A of the above construction recognizes the set

of words ending with a first occurrence of a word of
←−−−−−−
φ(Qx(α)). Moreover for

any word u recognized by A, q0 · u = f ′ if
←−−−
φ(w) is a suffix of u, and q0 · u = f

otherwise.

Proof. From Lemma B.27 (p.50), there exists a word w̄ ∈
←−−−−−−
φ(Qx(α)) and a letter

Z ∈ A such that
←−−−
φ(w) = Zw̄. Moreover no word of

←−−−−−−
φ(Qx(α)) contains Z.

Therefore by construction, merging states f and f ′ of A into a unique final

state, we would obtain the automaton AC(
←−−−−−−
φ(Qx(α)) ∪ {

←−−−
φ(w)}). Consequently,

since
←−−−
φ(w) has a suffix in

←−−−−−−
φ(Qx(α)), the automatonA recognizes the set of words

ending with a first occurrence of a word of
←−−−−−−
φ(Qx(α)).

Let u be a word ending with its first occurrence of a word of
←−−−−−−
φ(Qx(α)), then

u does not have any factor in
←−−−−−−
φ(Qx(α))∪{

←−−−
φ(w)} except as a suffix. Lemma C.3

(p.54) ensures that q0 ·u is the state labeled with longest suffix of u that is also

a prefix of a word of
←−−−−−−
φ(Qx(α)) ∪ {

←−−−
φ(w)}, concluding the proof.

Lemma C.22 allows us to prove the correctness of the above construction of

Aπ. The idea is the following: if u ∈ A⋆ ·
←−−−−−−
φ(Qx(α)) ·

←−
Lρ (resp. A⋆ ·

←−−−
φ(w) ·

←−
Lρ′) and

if traceAπ
(u) contains qT ′ (resp. qT) and not qT (resp. qT ′) before, then u is

still accepted by Aπ since
←−
Lρ ⊆

←−
Lρ′ (resp.

←−−−
φ(w) ·

←−
Lρ′ ⊆

←−
Lρ). This is formalized

in the following theorem.

69

Theorem C.23. The automaton Aπ obtained by the above construction recog-

nizes
←−
Lπ.

Proof. Recall that
←−
Lπ = A⋆·

←−−−−−−
φ(Qx(α))·

←−
Lρ∪A

⋆·
←−−−
φ(w)·

←−
Lρ′ . The above construction

ensures that every word accepted by Aπ belongs to the language
←−
Lπ. Conversely

let us prove that every word of
←−
Lπ is accepted by Aπ .

Let u be a word of
←−
Lπ . From Lemma B.27 (p.50), there is a word w̄ ∈

←−−−−−−
φ(Qx(α)) and a letter Z ∈ A such that

←−−−
φ(w) = Zw̄. Therefore u has a factor

in
←−−−−−−
φ(Qx(α)). Hence we can decompose u uniquely as u = u1u2 where u1 is the

prefix of u ending with the first occurrence of a factor in
←−−−−−−
φ(Qx(α)). Consequently

from Lemma C.22, q0 · u1 is either qT or qT ′ , namely q0 · u1 = qT ′ if
←−−−
φ(w) is a

suffix of u1 and q0 · u1 = qT otherwise.

Moreover, since u belongs to
←−
Lπ, and because by definition

←−
Lρ = A⋆ ·

←−
Lρ (and

similarly for ρ′), we deduce that u2 belongs to
←−
Lρ or

←−
Lρ′ . Let us finally notice

that, since ρ′ ≤ ρ, Theorem 3.15 (p.14) ensures that
←−
Lρ ⊆

←−
Lρ′ thus u2 ∈

←−
Lρ′ .

If q0 · u1 = qT ′ then as u2 ∈
←−
Lρ′ , u is recognized by Aπ . Assume on the

contrary that q0 · u1 = qT . Then q0 · u = qT · u2 and by definition of qT it is

enough to prove that u2 ∈
←−
Lρ.

Assume first that u /∈ A⋆ ·
←−−−
φ(w) ·

←−
Lρ′ . Then since u ∈

←−
Lπ, we have u ∈

A⋆ ·
←−−−−−−
φ(Qx(α)) ·

←−
Lρ. Because u1 ends with the first occurrence of a factor of

←−−−−−−
φ(Qx(α)), we deduce that u2 ∈ A⋆ ·

←−
Lρ =

←−
Lρ.

Otherwise u ∈ A⋆ ·
←−−−
φ(w) ·

←−
Lρ′ . Recall that u1 is the prefix of u ending with

the first occurrence of a factor of
←−−−−−−
φ(Qx(α)). First (using also Lemma C.22 and

q0 · u1 = qT), this implies that
←−−−
φ(w) is not a suffix of u1. And second, this also

implies that
←−−−
φ(w) is not a factor of u1. But by assumption

←−−−
φ(w) is a factor of

u. We claim that the first occurrence of
←−−−
φ(w) in u starts after the end of u1.

We have just proved that
←−−−
φ(w) is not a factor of u1. Moreover,

←−−−
φ(w) = Zw̄

starts with the letter Z, and from Lemma B.27 (p.50) the |w̄| last letters of u1

are different from Z (recall that all words of
←−−−−−−
φ(Qx(α)) have the same length

|α| = |w̄|). This proves our claim, and consequently, u2 ∈ A⋆ ·
←−−−
φ(w) ·

←−
Lρ′ .

Let v ∈ A⋆ and v′ ∈
←−
Lρ′ such that u2 = v ·

←−−−
φ(w) · v′. From Lemma B.27 p.50,

denoting by w′ the suffix of length 2 of w, for all u′ in P (ρ′), u′ ·φ−1(w′) belongs

to P (ρ). Therefore
←−
w′←−Lρ′ ⊆

←−
Lρ. But v′ ∈

←−
Lρ′ and

←−
w′ is a prefix of

←−−−
φ(w), thus

u2 = v ·
←−−−
φ(w) · v′ ∈ A⋆ ·

←−
w′ ·A⋆ ·

←−
Lρ′ ⊆

←−
Lρ, concluding the proof.

Remark C.24. With the optimized construction of Aπ, we prove similarly that

Aπ recognize a language L′π such that L′π ∩M =
←−
Lπ ∩M.

If π satisfies condition (C) and |T | = 2. Then the construction is no more
recursive. Permutation π and its pin words are explicit. More precisely from

70

Theorem B.25 (p.49), P (π) = P{1,n}(π) ∪ P{2,n}(π) ∪ P (T) ·Qx(α). Thus from
Remark B.30 (p.51),

←−
Lπ =

(⋃

u∈P (π)
u strict or quasi-strict

←−−
L(u)

) ⋃

A⋆ ·
←−−−−−−
φ(Qx(α)) ·

←−
Lρ.

Therefore Aπ is the automaton U	(Asqs

π , AC(
←−−−−−−
φ(Qx(α))) · Aρ).

Lemma C.25. Let π = α[1, . . . , 1, ρ, 1, . . . , 1] where α is a simple permutation
whose set P (α) of pin words is given. Then the construction of the automaton
Aπ is done in time and space O (|π| − |ρ|) plus the additional time and space
due to the construction of Aρ, except when π satisfies condition (C) and |T | = 2.
In this latter case, the complexity is O

(
|π|3

)
with the classical construction and

O
(
|π|2

)
in the optimized version.

Proof. Recall that Qx(α) contains words of length |α| − 1. Its cardinality is
smaller than the one of P (α), hence smaller than 48 (see Theorem B.8 p.38).
Moreover Qx(α) can be determined in linear time w.r.t. |α| as described in

Remark B.26 (p.50). Consequently, AC(
←−−−−−−
φ(Qx(α))) is built in time and space

O (|α|) = O (|π| − |ρ|).

If π does not satisfy condition (C) then Aπ = AC(
←−−−−−−
φ(Qx(α))) · Aρ, so that

|Aπ| = |AC(
←−−−−−−
φ(Qx(α)))| + |Aρ| and the time complexity of this construction is

O (|π| − |ρ|) plus the additional time to build Aρ.
If π satisfies condition (C) and |T | ≥ 3, then |w| = |α| and by Remark B.29

(p.51), w is explicitly determined. Consequently, so is the additional path la-

beled by
←−−−
φ(w) added to the automaton (see Figure 25). The modifications of the

transitions between this path and AC(
←−−−−−−
φ(Qx(α))) are performed in linear time

w.r.t. the length of this path and |AC(
←−−−−−−
φ(Qx(α)))|, i.e., in O(|φ(w)| + |α|) =

O(|π| − |ρ|). We conclude that Aπ is built in O (|π| − |ρ|) time and space plus
the additional time and space to build Aρ.

If π satisfies condition (C) and |T | = 2, then Aπ = U	(Asqs

π ,AC(
←−−−−−−
φ(Qx(α))) ·

Aρ). Recall that Psqs(π) is given in Remark B.30 (p.51) and contains 12 pin
words. Hence, with the classical construction (resp. in the optimized version),
from Lemma C.5 (p.56) (resp. Lemma C.7 p.57) and Remark B.30, we can
build Asqs

π in time and space O
(
|π|2

)
(resp. O (|π|)). Moreover since |ρ| = 2,

Aρ is obtained in constant time, so that AC(
←−−−−−−
φ(Qx(α))) · Aρ is obtained in time

and space O(|π| − |ρ|) = O (|π|). Finally, Aπ is built in time and space O
(
|π|3

)

(resp. O
(
|π|2

)
) with the classical (resp. optimized) construction.

C.5.2. Two children are not leaves.

Up to symmetry this means that π =
β+

T
12

, where β+ is an in-

creasing quasi-oscillation, the permutation 12 expands an auxiliary point of β+

and T expands the corresponding main substitution point of β+.

71

Theorem B.31 (p.52) ensures that the pin words encoding π are of the form
v.w where v ∈ P (T) and w is a strict pin word of length |β+| uniquely deter-
mined by β+ and the two points expanded in β+, and known explicitly from
Remark B.32 (p.52).

Therefore
←−
Lπ = A⋆

←−−−
φ(w)

←−
Lρ where ρ is the permutation whose decomposition

tree is T . The automatonAπ recognizing
←−
Lπ is the concatenation ofAC({

←−−−
φ(w)})

with Aρ, which is recursively obtained.

This construction is done in O
(

|
←−−−
φ(w)|

)

= O
(
|π| − |ρ|

)
time and space in

addition to the time and space complexity of the construction of Aρ.

C.6. Marking states

In our constructions of Subsections C.4 and C.5 we need transitions going
to initial states of subautomata. We could duplicate the corresponding subau-
tomata. But when these are recursively obtained an exponential blow-up can
occur. To keep a polynomial complexity we replace duplication by the marking
of these special states. The marking is made on the fly during the construction
and we explain how in this subsection.

The need of creating a transition going to a marked state (of a subautoma-
ton) happens only when building the automaton Aπ in Subsection C.4 for a
permutation π whose decomposition tree has a linear root and satisfies a con-
dition (iHj) of Figure 17 (p.44), or in Subsection C.5 for a permutation π
whose decomposition tree has a prime root and satisfies condition (C) (see Def-
inition B.21 p.47) with |T | ≥ 3.

In both cases we need to mark in the subautomaton Aρ with ρ ≤ π some

states qY such that the language recognized taking qY as initial state is
←−
Lσ,

where σ ≤ ρ is the permutation whose diagram (or decomposition tree) is Y .
As it appears in Figure 17 and in condition (C), in almost all such situations,

the marked state belongs to a subautomaton corresponding to a permutation ρ
whose decomposition tree R has a linear root. There is only one situation where
this root is prime: when π satisfies condition (1H1+). We first focus on this
case.

Prime root. Let θ be a permutation of decomposition tree R =
ξ+

S
where ξ+ is an increasing oscillation, and let γ be the permutation whose de-
composition tree is S. In the case where π satisfies condition (1H1+), we need
to mark in the automaton Aθ the state q such that when starting from q the lan-
guage recognized is the one recognized by Aγ . (Notice that w.r.t. the previous
paragraph, we have changed the notations ρ to θ and σ to γ to avoid confusions
with the notations used in Subsection C.5.)

The automaton Aθ is obtained as described in Subsection C.5, when exactly
one child of the root is not a leaf (indeed |S| ≥ 2). The marking of state
q depends on how the automaton Aθ is built and in particular on whether θ
satisfies condition (C) or not.

Recall that ξ+ is an increasing oscillation. If ξ+ has a size at least 5, it is
not a quasi-oscillation, and θ does not satisfy condition (C). Therefore Aθ is

72

the concatenation of two automata the second of which is Aγ whose initial state
can be readily marked.

If ξ+ has size 4, then ξ+ = 2 4 1 3 or 3 1 4 2 is a quasi-oscillation and θ may
satisfy condition (C). If it is not the case, Aθ is obtained as above and so is the
marking of state q. If on the contrary θ satisfies condition (C), the construction
of Aθ depends on |S|. If |S| ≥ 3, Aθ is again the concatenation of two automata
the second one being Aγ , but with some states and transitions added. As these
transitions are not reachable from the initial state of Aγ , we mark it as above.
If |S| = 2, then R has size 5 and the construction is not recursive anymore. We
want to mark in Aθ a state q corresponding to the initial state of Aγ . But in
the construction of Aθ in Subsection C.5, we have built an automaton A′ such
that Aθ = U	(Asqs

θ ,A′ ·Aγ). Therefore Aθ is a Cartesian product and the state
q has been replicated several times. As |S| = 2, Aγ has a constant size, hence
in this particular case we just duplicate it and mark its initial state instead of
marking a state inside Aθ.

Linear root. Consider now the case where the decomposition tree R of the
permutation ρ has a linear root. The need of a marked state in Aρ happens
only when the leftmost (resp. rightmost) child of R is a leaf z.

In almost all cases, the marked state q is such that the language accepted
starting from q is the set of words encoding the readings of all nodes of R except
the leaf z. There are at most two such leaves and from Remarks C.18 and C.20
(p.64 and 66), the corresponding marked states ofAρ (which is built as described
in Subsection C.3 or C.4) are q1(r−1) and q2r in Figure 23 (p.61) or 24 (p.65)
– with ρ instead of π. There is however one exception, corresponding to the
special case described in Remark C.18: when R has exactly two children, which
are z and an increasing oscillations ξ. In this special case the construction of Aρ

is not recursive anymore. Instead of marking in Aρ a state q corresponding to
the initial state of Aξ, we just duplicate Aξ and mark its initial state. If |ξ| < 4
then |Aξ| = O(1). Otherwise ξ is a simple permutation and |Aξ| is quadratic
(or linear in the optimized complexity) w.r.t. |ξ|. In both cases |Aξ|+ |Aρ| has
the same order as |Aρ| and since the construction is not recursive, this does not
change the overall complexity of the construction of Aπ .

The few cases where the marked stated q is not as above (i.e., is not such
that the language accepted starting from q is the set of words encoding the
readings of all nodes of R except z) correspond to state qS of conditions (2H2⋆)
and (1H2⋆) and states qT∪a and qT∪b of condition (2H3). In these cases, R has
exactly two children: z and a subtree R′ whose root is linear. Then the leftmost
(resp. rightmost) child of R′ is a leaf z′ and the marked state q is such that the
language accepted starting from q is the set of words encoding the readings of
all nodes of R′ except the leaf z′. We are in the same situation as above, so the
states can be marked in the same way, except that now we have to mark states
in Aρ′ instead of Aρ, where ρ′ is the permutation whose decomposition tree is
R′ and Aρ′ is a subautomaton of Aρ built recursively.

Notice that we never create transitions going to marked states belonging to
automata built more than two levels of recursion deeper. Indeed in all conditions

73

above the created transitions go to the automaton build in the previous step of
recursion, except for conditions (2H3), (2H2⋆) and (1H2⋆) where two levels of
recursion are involved.

C.7. Complexity analysis

Theorem C.26. For every pin-permutation π of size n, Aπ is built in time
and space O(n2) in the optimized version and O(n4) in the classical version.

Proof. To build Aπ, we first need to decide which shape of Equation (⋆) is
matched by the decomposition tree of π, and whether π ∈ H or whether π satis-
fies condition C. The reader familiar with matching problems will be convinced
that this can be done in O(n) time. In any case, a linear algorithm for this tree
matching problem is detailed in Subsection 5.2 as a sub-procedure of the global
algorithm of Section 5.

Then Theorem C.26 follows from the complexities of the previous construc-
tions that are summarized in Table 2 in which we denote by ρ the permutation
whose decomposition tree is T .

pin-permutation of size n Complexity Optimized Lemma

size 1 O(1) O(1)

simple O(n2) O(n) C.6, C.8

root ⊕ non-recursive O(n4) O(n2) C.12

root ⊕ recursive, O((n− |ρ|)2) + O((n− |ρ|)2) + C.19,
one child T is not an contribution for Aρ contribution for Aρ C.21
increasing oscillation

root is prime recursive,
C is satisfied, O(n3) O(n2) C.25
and T has size 2

root is prime recursive O(n− |ρ|) + O(n− |ρ|) + C.25,
(if not preceding case) contribution for Aρ contribution for Aρ §C.5.2

Table 2: Complexities of the automata constructions, in all possible cases.

In the optimized version (resp. in the classical version) the complexity is
at most in O(n2) (resp. O(n4)) in the non-recursive cases and at most in
O((n − |ρ|)2) plus the additional complexity of the construction of Aρ in the
recursive cases. Notice that no extra time is needed to mark the states of
the automaton, as they are marked when they are built. Consequently in the
optimized version (resp. in the classical version) the automaton Aπ can be built
in time and space O(n2) (resp. O(n4)), n being the size of |π|.

Indeed let K be the number of levels of recursion needed in the construction
of Aπ. Then we can set ρ1 = π and define recursively permutations ρi for
2 ≤ i ≤ K, ρi being the permutation ρ that appears recursively when building
Aρi−1 . From Table 2, we deduce that, in the optimized version, the time and

74

space complexity for building Aπ is:

O
(
(|ρ1| − |ρ2|)

2
)
+ |Aρ2 | = . . . = O

(
K−1∑

i=1

(|ρi| − |ρi+1|)
2 + |ρK |

2

)

.

Since every ρi is a pattern of π, we have |ρi| − |ρi+1| ≤ n and |ρK | ≤ n. Hence,
the time and space complexity for building Aπ is:

O

(

n ·
(K−1∑

i=1

(|ρi| − |ρi+1|) + |ρK |
)
)

= O (n · |ρ1|) = O(n
2).

In the same way we get the complexity O(n4) for the classical version.

References

[1] A. V. Aho, M. J. Corasick. Efficient string matching: An aid to biblio-
graphic search. Comm. ACM, 18 (1975) 333–340.

[2] M. H. Albert, R. E. L. Aldred, M. D. Atkinson, D. A. Holton. Algorithms
for pattern involvement in permutations, in: ISAAC ’01, LNCS 2223,
Springer, 2001, pp. 355–366.

[3] M. H. Albert, M. D. Atkinson. Simple permutations and pattern restricted
permutations. Discrete Math. 300 (2005) 1–15.

[4] F. Bassino, M. Bouvel, A. Pierrot, C. Pivoteau, D. Rossin. Combinatorial
specification of permutation classes, in: FPSAC 2012, DMTCS proceedings
AR, 2012, pp. 781–792.

[5] F. Bassino, M. Bouvel, A. Pierrot, D. Rossin. Deciding the finiteness of
the number of simple permutations contained in a wreath-closed class is
polynomial. Pure Math. Appl. (PU.M.A.) 21 (2010) 119–135.

[6] F. Bassino, M. Bouvel, D. Rossin. Enumeration of pin-permutations. Elec-
tron. J. Combin. 18 (2011) Paper P57.

[7] A. Bergeron, C. Chauve, F. de Montgolfier, M. Raffinot. Computing com-
mon intervals of K permutations, with applications to modular decompo-
sition of graphs. SIAM J. Discrete Math. 22 (2008) 1022–1039.

[8] M. Bouvel, C. Chauve, M. Mishna, D. Rossin. Average-case analysis of
perfect sorting by reversals. Discrete Math. Algorithms Appl. 3 (2011)
369–392.

[9] R. Brignall, S. Huczynska, V. Vatter. Decomposing simple permutations,
with enumerative consequences. Combinatorica 28 (2008) 385–400.

[10] R. Brignall, S. Huczynska, V. Vatter. Simple permutations and algebraic
generating functions. J. Combin. Theory Ser. A 115 (2008) 423–441.

75

[11] R. Brignall, N. Ruškuc, V. Vatter. Simple permutations: decidability and
unavoidable substructures. Theoret. Comput. Sci. 391 (2008) 150–163.

[12] B.-M. Bui Xuan, M. Habib, C. Paul. Revisiting T. Uno and M. Yagiura’s
algorithm, in: ISAAC ’05, LNCS 3827, Springer, 2005, pp. 146–155.

[13] Ph. Flajolet, R. Sedgewick. Analytic Combinatorics. Cambridge University
Press, Cambridge, 2008.

[14] T. Gallai. Transitiv orientierbare Graphen, Acta Math. Hungar. 18 (1967)
25–66.

[15] S. Heber, J. Stoye. Finding all common intervals of k permutations, in:
CPM 2001, LNCS 2089, Springer, 2001, pp. 207–218.

[16] J. E. Hopcroft, J. D. Ullman. Introduction to Automata Theory, Languages
and Computation. Addison-Wesley, USA, 1st edition, 1979.

[17] D. E. Knuth. Algorithms, volume 1 of The Art of Computer Programming.
Addison-Wesley, Reading MA, 3rd edition, 1973.

[18] A. Pierrot, D. Rossin. Simple permutation poset. Preprint available at
http://arxiv.org/abs/1201.3119, 2014.

76

	1 Introduction
	2 Preliminaries on permutations
	2.1 Permutation classes and simple permutations
	2.2 Substitution decomposition and decomposition trees
	2.3 Pin-permutations and pin representations
	2.4 Characterization of classes with finitely many simple permutations

	3 Characterization of classes with finitely many proper pin-permutations
	3.1 Pin words
	3.2 Pattern containment and piecewise factor relation
	3.3 Pattern containment and set inclusion
	3.4 Characterizing when a class has a finite number of proper pin-permutations

	4 Algorithm(s) testing if a class contains a finite number of proper pin-permutations
	4.1 The decision procedure of Brignall, Ruškuc and Vatter
	4.2 A more efficient alternative
	4.3 Construction of the automata A

	5 A polynomial algorithm deciding whether a class contains a finite number of simple permutations
	5.1 Finitely many parallel alternations and wedge simple permutations in C?
	5.2 Finding pin-permutations in the basis
	5.3 Finitely many proper pin-permutations in C?

	6 Conclusion
	A Simple pin-permutations, oscillations and quasi-oscillations
	A.1 Simple pin-permutations, active knights and active points
	A.2 Oscillations
	A.3 Quasi-oscillations

	B Pin words of pin-permutations
	B.1 Reading of children of a linear node
	B.2 Non-recursive cases
	B.3 Recursive case: decomposition trees with a linear root
	B.4 Recursive case: decomposition trees with a prime root

	C Building deterministic automata A
	C.1 Generic constructions of deterministic automata
	C.2 Pin-permutation of size 1 and simple pin-permutations
	C.3 Pin-permutations with a linear root: non-recursive case
	C.4 Pin-permutations with a linear root: recursive case
	C.5 Pin-permutations with a prime root: recursive case
	C.5.1 Exactly one child of the root is not a leaf.
	C.5.2 Two children are not leaves.

	C.6 Marking states
	C.7 Complexity analysis

