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SYMMETRIC PAIRS AND BRANCHING LAWS

PAUL-ÉMILE PARADAN

Abstract. Let G be a compact connected Lie group and let H be a subgroup fixed
by an involution. A classical result assures that the HC-action on the flag variety F
of G admits a finite number of orbits. In this article we propose a formula for the
branching coefficients of the symmetric pair (G,H) that is parametrized by HC\F .
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1. Introduction

Let G be a compact connected Lie group equipped with an involution θ. Let Gθ :=
{g ∈ G, θ(g) = g} be the subgroup fixed by the involution. We consider a subgroup
H ⊂ G such that (Gθ)0 ⊂ H ⊂ Gθ. The purpose of this paper is the study of the
branching laws between G and H.

Let T be a maximal torus of G that we choose θ-invariant. Let t be the Lie algebra of
T . Let Λ ⊂ t∗ be the lattice of weights, and let t∗+ be a Weyl chamber. The irreducible
representations of G are parametrized by the semi-group Λ+ := Λ ∩ t∗+ of dominant
weights.

Let λ ∈ Λ+. In order to study the restriction V G
λ |H of the irreducibleG-representation

V G
λ , we consider the H-action on the flag variety F = G/T of G. An important object

is the H-invariant subset
Zθ ⊂ F

formed of the elements x ∈ F for which the stabilizer subgroup Gx := {g ∈ G, gx = x}
is stable under θ. In other words, gT ∈ Zθ if and only if g−1θ(g) belongs to the
normalizer subgroup N(T ). A well-known result tells us that the group H has finitely
many orbits in Zθ, and that the map O ∈ HC\F 7−→ O ∩ Zθ ∈ H\Zθ is bijective
[8, 14, 12, 9].

Let x ∈ Zθ. The stabilizer subgroup Gx is a maximal torus in G, stable under θ,
with Lie algebra gx. We will also consider the abelian subgroup Hx := Gx ∩H (that is
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not necessarily connected). Any weight µ ∈ Λ determines a character Cµx of the torus
Gx by taking µx = g · µ if x = gT ∈ F .

We denote by Rx ⊂ g∗x the set of roots relative to the action of the Cartan subalgebra
gx on g⊗C. The map µ ∈ R 7→ µx ∈ Rx is an isomorphism, and we take R+

x ⊂ Rx as
the image of R+ ⊂ R through this isomorphism.

The involution θ leaves the set Rx invariant, and α ∈ Rx is an imaginary root if
θ(α) = α. If α is imaginary, the subspace (g ⊗ C)α is θ-stable. There are two cases.
If the action of θ on (g ⊗ C)α is trivial then α is compact imaginary. If the action of
−θ on (g⊗C)α is trivial, then α is non-compact imaginary. We denote respectively by
Rci

x and by Rnci
x the subsets of compact imaginary and non-compact imaginary roots,

and we introduce the following Gx-modules

Eci
x :=

∑
α∈Rci

x ∩R+
x

(g⊗ C)α, Enci
x :=

∑
α∈Rnci

x ∩R+
x

(g⊗ C)α.

The weight

δ(x) :=
1

2

∑
α∈R+

x ∩θ(R+
x )

θ(α)̸=α

α

defines a character Cδ(x) of the abelian group Hx.
We denote by R(H) and by R(Hx) the representations rings of the compact Lie

groups H and Hx. An element E ∈ R(H) can be represented as a finite sum E =∑
V ∈Ĥ mV V , with mV ∈ Z. We denote by R̂(H) (resp. R̂(Hx)) the space of Z-valued

functions on Ĥ (resp. Ĥx). An element E ∈ R̂(H) can be represented as an infinite

sum
∑

V ∈Ĥ mV V , with mV ∈ Z. The induction map IndH
Hx

: R̂(Hx) → R̂(H) is the
dual of the restriction morphism R(H) → R(Hx).

Let mx = 1
2
|R+

x ∩ θ(R+
x ) ∩ {θ(α) ̸= α}|+ dimEnci

x ∈ N.

The main result of this paper is the following theorem.

Theorem 1.1. Let λ ∈ Λ+. We have the decomposition

(1.1) V G
λ |H =

∑
Hx∈H\Zθ

QHx(λ)

where the terms QHx(λ) ∈ R̂(H) are defined by the following relation :

QHx(λ) = (−1)mxIndH
Hx

(
Cλx+δ(x) ⊗ det(Enci

x )⊗ Sym(Enci
x )⊗

∧
Eci

x

)
.

Here Sym(Enci
x ), which is the symmetric algebra of Enci

x , is an admissible representation
of Hx and

∧
Eci

x =
∧+ Eci

x ⊖
∧− Eci

x is a virtual representation of Hx.

We give now another formulation for decomposition (1.1) using the (right) action
of the Weyl group W = N(T )/T on the flag variety F . If x = gT ∈ F and w ∈ W
we take xw := gwT . We notice that Zθ is stable under the action of W and that the
quotient Zθ/W parametrizes the set of maximal tori of G stable under θ.

We associate to an element x = gT ∈ Zθ the subgroup WH
x ⊂ W defined by the

relation w ∈ WH
x ⇐⇒ Hxw = Hx. We denote by H\Zθ/W the quotient of Zθ by the
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action of H×W , and by x̄ ∈ H\Zθ/W the image of x ∈ Zθ through the quotient map.

We associate to x̄ ∈ H\Zθ/W the element Qx̄(λ) ∈ R̂(H) defined as follows

Qx̄(λ) =
∑

w̄∈WH
x \W

QHxw(λ).

The previous theorem says then that V G
λ |H =

∑
x̄∈H\Zθ/W

Qx̄(λ). Here is a new for-
mulation of Theorem 1.1.

Theorem 1.2. We have V G
λ |H =

∑
x̄∈H\Zθ/W

Qx̄(λ) where Qx̄(λ) ∈ R̂(H) has the
following description

Qx̄(λ) = IndH
Hx

(
Mx(λ)⊗ Cδ(x) ⊗

∧
Eci

x

)
,

for some1 Mx(λ) ∈ R̂(Hx).

We finish this section by giving two basic examples associated to the group SU(2).
Here the flag variety of SU(2) is the 2-dimensional sphere S2. For n ≥ 0, we denote by
Vn the irreducible representation of SU(2) of dimension n+ 1.

Example 1. G = SU(2) and the involution θ is the conjugation by the matrix(
1 0
0 −1

)
. The subgroup fixed by θ is the torus T ≃ U(1) and the critical set

Zθ ⊂ S2 is composed of the poles S,N and the equator E, so that T\Zθ has three

terms. We take λ = n in ŜU(2) ≃ N.
For Hx = E, we have Enci

x = Eci
x = {0}, Hx ≃ Z2, and Cλx+δ(x) = Cn|Z2 . The

contribution of E is then Ind
U(1)
Z2

(Cn|Z2) = Cn ⊗
∑

k∈ZC2k.

For Hx = N , we have Hx = T , Enci
x = C2, Eci

x = {0}, and Cλx+δ(x) = Cn. The
contribution of N is then −Cn+2 ⊗ Sym(C2).
For Hx = S, we have Hx = T , Enci

x = C−2, Eci
x = {0}, and Cλx+δ(x) = C−n. The

contribution of S is then −C−n−2 ⊗ Sym(C−2).
Finally, Relations (1.1) become

Vn|T = Cn ⊗
∑
k∈Z

C2k − C−n−2 ⊗ Sym(C−2)− Cn+2 ⊗ Sym(C2)

=
0∑

k=−n

C2k+n.

Example 2. G = SU(2)×SU(2) and the involution θ is the map (a, b) 7→ (b, a). The
subgroup fixed by θ is SU(2) embedded diagonally and the critical set Zθ ⊂ S2 × S2 is

equal to the union of the orbits SU(2) · (N,N) and SU(2) · (S,N). Let λ = (n,m) ∈ Ĝ.
For x = (N,N) or x = (S,N) we have Enci

x = Eci
x = {0} andHx ≃ T . For x = (N,N)

we have λx+δ(x) = m+n+2, and for x = (S,N) we have λx+δ(x) = m−n. Relations
(1.1) give then

Vn ⊗ Vm = Ind
SU(2)
T (Cm−n)− Ind

SU(2)
T (Cm+n+2).

1The precise expression of Mx(λ) is given in Proposition 3.8.
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It is not difficult to see that the previous identities correspond to the classical Clebsch-
Gordan relations (see Example 4.2).

Here is a brief overview of the article. Sections 2 and 3 are devoted to the proof of
our main result. In Section 4, we detail the case of U(p)×U(q) ⊂ U(n): in particular,
we explain the branching formula we obtain for the restriction of U(n) to U(n− 1). In
the last section, we recall Kostant’s branching formula and explain the formula it gives
in the case of the restriction of U(n) to U(n− 1), in order to compare it with our own
formula.

Notations

Throughout the paper :

• G denotes a compact connected Lie group with Lie algebra g.
• T is a maximal torus in G with Lie algebra t.
• Λ ⊂ t∗ is the weight lattice of T : every µ ∈ Λ defines a 1-dimensional T -
representation, denoted by Cµ, where t = exp(X) acts by tµ := ei⟨µ,X⟩.

• The coadjoint action of g ∈ G on ξ ∈ g∗ is denoted by g · ξ.
• When a Lie group K acts on set X, the stabilizer subgroup of x ∈ X is denoted
by Kx := {k ∈ K | k · x = x} and the Lie algebra of Kx is denoted by kx.

• When a Lie group K acts on a manifoldM , we denote by X ·m := d
dt
etX ·m|t=0,

m ∈M , the infinitesimal action of X ∈ k on M .

Acknowledgments. We would like to thank the referees for their invaluable advice,
which enabled me to improve this text.

2. Non abelian localization

Our main result is obtained by means of a non-abelian localization of the Riemann-
Roch character on the flag variety F of G. For that purpose we will use the family
(Ωr)r of symplectic structure parametrized by the interior of the Weyl chamber t∗+.
The symplectic structure Ωr comes from the identication gT → g · r of F with the
coadjoint orbit Gr. The moment map Φr : F → g∗ associated to the action of G on
(F ,Ωr) is the map gT 7→ g · r.

At the level of Lie algebras we have g = h ⊕ q where h = gθ and q = g−θ. For any
ξ ∈ g = h⊕ q, we denote by ξ+ his h-part and by ξ− his q-part. We use a G-invariant
scalar product (−,−) on g such that the involution θ is an orthogonal map. It induces
identifications g∗ ≃ g, h∗ ≃ h and q∗ ≃ q.

The moment map ΦH
r : F → h∗ associated to the action of H on (F ,Ωr) is the map

gT 7→ (g · r)+.

2.1. Matsuki duality. Consider the complex reductive groups GC and HC associated
to the compact Lie groups G and H. Let L ⊂ GC be the real form such that H ⊂ L is
a maximal compact subgroup of L.

Matsuki duality is the statement that a one-to-one correspondence exists between
the HC-orbits and the L-orbits in F ; two orbits are in duality when their intersection
is a single orbit of H.
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Uzawa, and Mirkovic-Uzawa-Vilonen [16, 9] proved the Matsuki correspondence by
showing that both HC-orbits and L-orbits in F are parametrized by the H-orbits in
the set of critical points of the function ∥ΦH

r ∥2 : F → R.
First we recall the elementary but fundamental fact that the subset Zθ is equal to

the set of critical points of the function ∥ΦH
r ∥2 [9, 3].

Lemma 2.1. Let x = gT ∈ F and r ∈ Interior(t∗+). The following statements are
equivalent:

i) the subalgebra gx is invariant under θ (i.e. x ∈ Zθ),
ii) g−1θ(g) ∈ N(T ),
iii) x is a critical point of the function ∥ΦH

r ∥2,
iv) (g · r)+ and (g · r)− commute.

Proof. Let ng = g−1θ(g) and let r be a regular element of t∗ ≃ t. Since gx = Ad(g)t we
see that

θ(gx) = gx ⇐⇒ ng ∈ NG(T )

⇐⇒ [ng · θ(r), r] = 0

⇐⇒ [θ(g · r), g · r] = 0

⇐⇒ [(g · r)+, (g · r)−] = 0.

A small computation shows that for any X ∈ g the derivative of the function t 7→
∥ΦH

r (e
tXx)∥2 at t = 0 is equal to (X, [g · r, θ(g · r)]). Hence x = gT is a critical point of

the function ∥ΦH
r ∥2 if and only if [g · r, θ(g · r)] = 0. Finally we have proved that the

statements i), ii), iii) and iv) are equivalent. □

Let us check the other easy fact.

Lemma 2.2. The set H\Zθ is finite.

Proof. Let x = gT ∈ Zθ. A neighborhood of x is defined by elements of the form eXeY x
where X ∈ h and Y ∈ q. Now we see that eXeY gT ∈ Zθ if and only if e−2g−1Y ∈ N(T ).
If Y is sufficiently small the former relation is equivalent to g−1Y ∈ t, and in this case
eXeY x = eXx. We have proved that any element in H\Zθ is isolated. As H\Zθ is
compact, we can conclude that H\Zθ is finite. □

2.2. Borel-Weil-Bott theorem. We first recall the Borel-Weil-Bott theorem. The
flag manifold F is equipped with the G-invariant complex structure such that

TeTF ≃
∑
α∈R+

(g⊗ C)α

is an identity of T -modules. Let us consider the tangent bundle TF as a complex vector
bundle on F with the invariant Hermitian structure hF induced by the invariant scalar
product on g.

Any weight λ ∈ Λ defines a line bundle Lλ ≃ G×T Cλ on F .

Definition 2.3. We associate to a weight λ ∈ Λ
• the spin-c bundle on F

Sλ :=
∧
C

TF ⊗ Lλ,
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• the Riemann-Roch character RRG(F ,Lλ) ∈ R(G) which is the equivariant index
of the Dirac operator Dλ associated to the spin-c structure Sλ.

The Borel-Weil-Bott theorem asserts that V G
λ = RRG(F ,Lλ) when λ is dominant.

Now we consider the restriction V G
λ |H = RRH(F ,Lλ). In the next section, we will

explain how we can localize the H-equivariant Riemann-Roch character RRH(F ,Lλ)
on the critical set of the function ∥ΦH

r ∥2 [10].

2.3. Localization of the Riemann-Roch character. In this section, we recall how
we perform the “Witten non-abelian localization” of the Riemann-Roch character with
the help of the moment map ΦH

r : F → h∗ attached to a regular element r of the Weyl
chamber [10, 6, 11].

Let us denote by X 7→ [X]g/t the projection g → g/t. The Kirwan vector field κr on
F is defined as follows:

κr(x) = −ΦH
r (x) · x ∈ TxF .

Through the identification g/t ≃ TxF , X 7→ d
dt
|t=0ge

tXT , the vector κr(x) ∈ TxF is
equal to [g−1θ(g) · r]g/t. Hence the set Zθ ⊂ F is exactly the set where κr vanishes.

Let D0 be the Dirac operator associated to the spin-c structure S0 =
∧

C TF . The
principal symbol of the elliptic operator D0 is the bundle map
σ(F) ∈ Γ(T∗F , hom(

∧+
C TF ,

∧−
C TF)) defined by the Clifford action

σ(F)(x, ν) = cx(ν̃) :
∧+

C
TxF →

∧−

C
TxF .

Here ν ∈ T∗
xO ≃ ν̃ ∈ TxO is the one to one map associated to the identification g∗ ≃ g

(see [2]).
Now we deform the elliptic symbol σ(F) by means of the vector field κr [10, 11].

Definition 2.4. The symbol σ(F) shifted by the vector field κr is the symbol on F
defined by

σr(F)(x, ν) = cx(ν̃ − κr(x))

for any (x, ν) ∈ T∗F .

Consider an H-invariant open subset U ⊂ F such that U ∩Zθ is compact in F . Then
the restriction σr(F)|U is a H-transversally elliptic symbol on U , and so its equivariant

index is a well defined element in R̂(H) (see [1, 10, 11]).
Thus we can define the following localized equivariant indices.

Definition 2.5. Let Hx ⊂ Zθ. We denote by

RRH(F ,Lλ,Φ
H
r , Hx) ∈ R̂(H)

the equivariant index of σr(F)⊗Lλ|U where U is an invariant neighbourhood of Hx so
that U ∩ Zθ = Hx.

We proved in [10] that the following decomposition holds in R̂(H):

RRH(F ,Lλ) =
∑

Hx∈H\Zθ

RRH(F ,Lλ,Φ
H
r , Hx).

The computation of the characters RRH(F ,Lλ,Φ
H
r , Hx) will be handle in Section

3.1. To undertake these calculations we need to describe geometrically a neighborhood
of Hx in F . This is the goal of the next section.
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2.4. Local model near Hx ⊂ Zθ. Let x = gT ∈ Zθ. We need to compute a sym-
plectic model of a neighborhood of Hx in (F ,Ωr). Here we use the identification
g ≃ g∗ given by the choice of an invariant scalar product. Let µ = g · r that we write
µ = µ+ + µ− where µ+ ∈ h and µ− ∈ q.

The tangent space TxF is equipped with the symplectic two form Ωr|x:

Ωr|x(X · x, Y · x) = (µ, [X, Y ]), X, Y ∈ g.

We need to understand the structure of the symplectic vector space (TxF ,Ωr|x). If
a ⊂ g is a vector subspace we denote by a · x := {X · x,X ∈ a} the corresponding
subspace of TxF . The symplectic orthogonal of a · x is denoted by (a · x)⊥,Ω.

If a, b are two subspaces, a small computation gives that

(2.2) (a · x)⊥,Ω ∩ b · x ≃ a⊥ ∩ [b, µ],

where a⊥ ⊂ g is the orthogonal of a relatively to the scalar product.
We denote by gµ+ = hµ+ ⊕ qµ+ the subspaces fixed by ad(µ+). Notice that gµ = gx

is an abelian subalgebra containing µ+ since [µ+, µ−] = 0. It follows that gx ⊂ gµ+ .

Lemma 2.6. [g, µ+] · x, gµ+ · x and [h, µ+] · x are symplectic subspaces of TxF .

Proof. It is a direct consequence of (2.2). □

We consider now the symplectic subspace Vx ⊂ TxF defined by the relation

(2.3) Vx = ([h, µ+] · x)⊥,Ω ∩ [g, µ+] · x.

A small computation shows that X · x ∈ Vx if and only if [X,µ] ∈ [q, µ+].
We have the following important Lemma.

Lemma 2.7. • We have the following decomposition

(2.4) TxF = gµ+ · x
⊥
⊕
[
h, µ+

]
· x

⊥
⊕ Vx

where ⊥ stands for the orthogonal relative to Ωr|x.
• gµ+ · x is symplectomorphic to hµ+/hx ⊕ (hµ+/hx)

∗.
• [h, µ+] · x is symplectomorphic to h/hµ+ equipped with the symplectic structure
Ωµ+(ū, v̄) = (µ+, [u, v]).

• Vx is symplectomorphic to (h · x)⊥,Ω/
[
(h · x)⊥,Ω ∩ h · x

]
.

Proof. If we use the decomposition g = gµ+ ⊕ [g, µ+] and the fact that the abelian
subalgebra gx is contained in gµ+ we obtain

TxF = gµ+ · x⊕ [g, µ+] · x.

It is obvious to check that the subspaces [g, µ+]·x and gµ+ ·x are orthogonal relatively to
the symplectic form Ωr|x. Since [h, µ+] ·x is a symplectic subspace we have [g, µ+] ·x =

[h, µ+] · x
⊥
⊕ Vx where Vx is defined by (2.3). The first point is proved.

The identities gx = θ(gx) = gθ(x) imply the decompositions gx = hx ⊕ qx and
gµ+ ·x = qµ+ ·x⊕ hµ+ ·x. The vector subspace hµ+ ·x is isomorphic to hµ+/hx, and the
map v 7→ Ωr|x(v,−) defines an isomorphism between qµ+ · x and the dual of hµ+ · x.
The second point is proved.
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For the third point we use the isomophism j : [h, µ+] → h/hµ+ induced by the
projection h → h/hµ+ . Then the map ū 7→ j(ū) · x defines a symplectomorphism
between (h/hµ+ ,Ωµ+) and [h, µ+] · x.

Now we see that (2.4) together with the decomposition h · x =

hµ+ · x
⊥
⊕ [h, µ+] · x leads to

(h · x)⊥,Ω = ([h, µ+] · x)⊥,Ω ∩ (hµ+ · x)⊥,Ω

= hµ+ · x⊕ Vx

=
[
(h · x)⊥,Ω ∩ h · x

]
⊕ Vx.

The last point follows. □

We denote by ΩVx the restriction of Ωr|x on the symplectic vector subspace Vx. The
action of Hx on (Vx,ΩVx) is Hamiltonian, with moment map ΦVx : Vx → h∗x defined by
the relation

⟨ΦVx(v), A⟩ =
1

2
ΩVx(v,Av), v ∈ Vx, A ∈ hx.

Thanks to Lemma 2.7, we know that the Hx-symplectic vector space (TxF ,Ωr|x)
admits the following decomposition

TxF ≃ hµ+/hx ⊕ (hµ+/hx)
∗ ⊥
⊕ h/hµ+

⊥
⊕ Vx.

Thanks to the normal form Theorem of Marle [7] and Guillemin-Sternberg [5], we
get the following result.

Corollary 2.8. An H-equivariant symplectic model of a neighborhoood of Hx in F is
Fx := H ×Hµ+

Yx where

Yx = Hµ+ ×Hx ((hµ+/hx)
∗ × Vx) .

The corresponding moment map on Fx is

ΦFx([h; η, v]) = h(η + µ+ + ΦVx(v))

for [h; η, v] ∈ H ×Hx ((hµ+/hx)
∗ × Vx).

We finish this section by computing a compatible complex structure on Vx.
By definition, the map that sends X · x to [X,µ] defines an isomorphism i : Vx →

[q, µ+]. The adjoint map ad(µ) defines also an automorphism of [g, µ+]: for any X ∈
[g, µ+] we denote by X̃ ∈ [g, µ+] the unique element such that ad(µ)X̃ = X.
The symplectic structure Ωµ := (i−1)∗ΩVx satisfies the relations

Ωµ(X, Y ) = (µ, [X̃, Ỹ ]) = (X, Ỹ ) = −(X̃, Y ), ∀X, Y ∈ [q, µ+].

We work with the following Hx-equivariant maps

• the one to one map Tµ := −ad(µ)ad(θ(µ)) : [g, µ+] → [g, µ+],
• the complex structure Jµ+ = ad(µ+)(−ad(µ+)2)−1/2 on [g, µ+].
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The map Tµ restricts to a one to one map Tx : [q, µ+] → [q, µ+] and Jµ+ defines a
complex structure on [q, µ+] (still denoted by Jµ+).

Let Sx := (T 2
x )

−1/2Tx. The map JVx := Jµ+ ◦ Sx defines a Hx-invariant complex
structure on [q, µ+].

Lemma 2.9. The Hx-symplectic space (Vx,ΩVx) is isomorphic to [q, µ+] equipped with
the symplectic form Ω1

µ(v, w) = (JVxv, w).

Proof. We know already that (Vx,ΩVx) ≃ ([q, µ+],Ωµ). If one takes L =
Tx ◦ (−ad(µ+)2)−1/4 ◦ (T 2

x )
−1/4, we check easily that Ωµ(L(v), L(w)) = (JVxv, w). □

3. Proof of the main theorem

We start with the following lemma.

Lemma 3.1. The quantity RRH(F ,Lλ,Φ
H
r , Hx) does not depend on the choice of

the regular element r in the Weyl chamber. In the following we will denote it by

QHx(λ) ∈ R̂(H).

Proof. Let r0, r1 be two regular elements of the Weyl chamber. For t ∈ [0, 1], we
consider the regular element r(t) = tr1+(1−t)r0: the Kirwan vector field κr(t) vanishes
exactly on Zθ for any t ∈ [0, 1]. If U is an invariant neighbourhood of Hx so that
U ∩ Zθ = Hx, then t ∈ [0, 1] 7→ σr(t)(F) ⊗ Lλ|U defines an homotopy of transversally
elliptic symbols. Accordingly, the equivariant index of σr0(F)⊗Lλ|U and σr1(F)⊗Lλ|U
are equal. □

3.1. Computation of QHx(λ). The computation of QHx(λ) is done in three steps.

3.1.1. Step 1: holomorphic induction. Let Hµ+ ⊂ H be the stabilizer subgroup of
µ+ := ΦH

r (x). By Corollary 2.8, a symplectic H-equivariant model of a neighborhoood
of Hx in F is the manifold H ×Hµ+

Yx where

Yx = Hµ+ ×Hx ((hµ+/hx)
∗ × Vx) .

The symplectic two form on Yx is built from the canonical symplectic structure on
Hµ+ ×Hx (hµ+/hx)

∗ ≃ T∗(Hµ+/Hx) and the symplectic structure on Vx. The moment
map relative to the action of Hµ+ on Yx is

ΦYx([h; η, v]) = h(η + µ+ + ΦVx(v)) ∈ h∗µ+ ,

for [h; η, v] ∈ Hµ+ ×Hx ((hµ+/hx)
∗ × Vx).

Let κYx the Kirwan vector field on Yx. It is immediate to check that [h; η, v] ∈ {κYx =
0} if and only if η = 0 and (µ+ + ΦVx(v)) · v = 0. The map v ∈ Vx 7→ µ+ · v ∈ Vx is
bijective and v 7→ ΦVx(v) · v is homogeneous of degree equal to 3. Then there exists
ϵ > 0 such that

(µ+ + ΦVx(v)) · v = 0 and ∥v∥ ≤ ϵ =⇒ v = 0.

In Yx, we still denote by x the point [e, 0, 0]. We equip Yx with an invariant almost
complex structure that is compatible with the symplectic structure, and we denote
by RRHµ+

(Yx,Lλ|Yx ,ΦYx , Hµ+x) the Riemann-Roch character on Yx localized on the

component Hµ+x ⊂ {κYx = 0}.
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The quotient h/hµ+ , which is equipped with the invariant complex structure Jµ+

:= ad(µ+)(−ad(µ+)2)−1/2, is a complex Hµ+-module.
In [10][Theorem 7.5], we proved that QHx(λ) = RRH(F ,Lλ,Φ

H
r , Hx) is equal to

(3.5) IndH
Hµ+

(
RRHµ+

(Yx,Lλ|Yx ,ΦYx , Hµ+x)⊗
∧

h/hµ+

)
.

3.1.2. Step 2: cotangent induction. The map Φx(v) := µ+ + ΦVx(v) is a moment map
for the Hamiltonian action of Hx on Vx. The moment map on the Hµ+-manifold

Yx = Hµ+ ×Hx ((hµ+/hx)
∗ × Vx)

is ΦYx([h; η, v]) = h(η + Φx(v)) ∈ h∗µ.
Let κVx(v) = −Φx(v) · v be the Kirwan vector field on Vx. We are interested in

the connected component {0} of {κVx = 0}. We choose a compatible almost complex
structure on the symplectic vector space Vx and we denote by RRHx(Vx,Φx, {0}) ∈
R̂(Hx) the Riemann-Roch character localized on {0} ⊂ {κVx = 0}.
In Section 3.3 of [11] we have proved that

(3.6) RRHµ+
(Yx,Lλ|Yx ,ΦYx , Hµ+x) = Ind

Hµ+

Hx
(RRHx(Vx,Φx, {0})⊗ Lλ|x) .

3.1.3. Step 3: linear case. We write q/qµ+ for the vector space [q, µ+] equipped with
the complex structure Jµ+ . So q/qµ+ is a Hµ+-module and we denote by Sym(q/qµ+)
the corresponding symmetric algebra.

We need to compare the virtual Hx-modules
∧

JVx
Vx and

∧
−Jµ+

Vx. The weight

δ(x) :=
1

2

∑
α∈R+

x ∩θ(R+
x )

θ(α)̸=α

α

defines a character Cδ(x) of the abelian group Hx. Recall that mx ∈ N corresponds to

the quantity 1
2
|R+

x ∩ θ(R+
x ) ∩ {θ(α) ̸= α}|+ dimEnci

x .
The following lemma will be proved in Section 3.2.

Lemma 3.2. The following identity holds :∧
JVx

Vx ≃ (−1)mx Cδ(x) ⊗ det(Enci
x )⊗

∧
−Jµ+

Vx.

On the vector space Vx, we can work with two localized Riemann-Roch characters:

• RRHx(Vx,Φx, {0}) is defined with the complex structure JVx ,

• R̃RHx(Vx,Φx, {0}) is defined with the complex structure −Jµ+ .

Thanks to the previous Lemma we know that RRHx(Vx,Φx, {0}) is equal to (−1)mx Cδ(x)⊗
det(Enci

x )⊗ R̃RHx(Vx,Φx, {0}).

Proposition 3.3. We have

(3.7) RRHx(Vx,Φx, {0}) = (−1)mxCδ(x) ⊗ det(Enci
x )⊗ Sym(q/qµ+).

Proof. For s ∈ [0, 1], we consider the Hx-equivariant map Φs : Vx → h∗x defined by
the relation Φs(v) = µ+ + sΦVx(v). The corresponding Kirwan vector field on Vx
is κs(v) = −Φs(v) · v. It is not difficult to see that there exists ϵ > 0 such that
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{κs = 0} ∩ {∥v∥ ≤ ϵ} = {0} for any s ∈ [0, 1]. Then a simple deformation argument

gives that R̃RHx(Vx,Φ
s, {0}) does not depend on s ∈ [0, 1]. We have proved that

R̃RHx(Vx,Φx, {0}) = R̃RHx(Vx, µ
+, {0})

where µ+ denotes the constant map Φ0. Standard computations give R̃RHx(Vx, µ
+, {0})

= Sym(q/qµ+) (see [10][Proposition 5.4]). Our proof is completed. □

3.1.4. Conclusion. If we use the formulas (3.5), (3.6) and (3.7) we obtain the following
expression

QHx(λ) = (−1)mxIndH
Hx

(
Cλx+δ(x) ⊗ det(Enci

x )⊗ Sym(q/qµ+)⊗
∧
C

h/hµ+

)
in R̂(H). Here Cλx is the character of Gx associated to the weight λx = gλ.
The previous formula depends on a choice of a regular element r in the Weyl chamber.

In the next section we will propose another expression for QHx(λ) that does not depend
on this choice.

3.2. Another expression for QHx(λ). Let Rx ⊂ g∗x be the roots for the action of
the torus Gx on g ⊗ C. The involution θ : t∗ → t∗ leaves the set Rx invariant and a
root α ∈ Rx is called imaginary if θ(α) = α. We denote respectively by Rci

x and by
Rnci

x the subsets of compact imaginary and non-compact imaginary roots.
We choose a generic element r ∈ t∗+ such that µ+ = (g · r)+ satisfies the following

relation : for any α ∈ Rx, we have

(α, µ+) = 0 ⇐⇒ θ(α) = −α.
Notice that an imaginary roots α is positive if and only if (α, µ+) > 0.

Definition 3.4. We consider the subset Ax ⊂ Rx defined by the following relations:

α ∈ Ax ⇐⇒ α(µ+) > 0 and θ(α) ̸= α.

The involution θ defines a free action of Z2 on the set Ax. We denote by Ax/Z2

its quotient. For any α ∈ Rx, we denote by Cα the corresponding 1-dimensional
representation of Gx, and Cα|Hx its restriction to the subgroup Hx. We have a natural
map [α] ∈ Ax/Z2 7−→ Cα|Hx ∈ R(Hx).

For any α ∈ Rx we define
α̃ = ±α

where ± is the sign of α(µ)α(θ(µ)).
We consider theHx-modules h/hµ+ := ([h, µ+], Jµ+), q/qµ+ := (Vx, Jµ+) and (Vx, JVx).

Lemma 3.5. We have the following isomorphisms of Hx-modules

h/hµ+ ≃
⊕

[α]∈Ax/Z2

Cα|Hx ⊕
⊕

α∈Rcix ∩R+
x

Cα|Hx [A],

q/qµ+ ≃
⊕

[α]∈Ax/Z2

Cα|Hx ⊕
⊕

α∈Rncix ∩R+
x

Cα|Hx [B],

(Vx, JVx) ≃
⊕

[α]∈Ax/Z2

Cα̃|Hx ⊕
⊕

α∈Rncix ∩R+
x

Cα̃|Hx [C].
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Proof. Thanks to Lemma 2.9, we know that the Hx-module (Vx, JVx) is isomorphic to
the vector space [q, µ+] equipped with the complex structure JVx := Jµ+ ◦ Sx. We
consider the vector spaces [q, µ+] and [g, µ+] equipped with the complex structure
Jµ+ . The projection (taking the real part) r : g ⊗ C → g induces an isomorphism of
Gx-modules

r :
⊕

α(µ+)>0

(g⊗ C)α −→ [g, µ+].

The orthogonal projections p1 : [g, µ
+] → [q, µ+] and p2 : [g, µ

+] → [h, µ+] commute
with the Hx-action, so the maps

p1 ◦ r :
⊕

α(µ+)>0

(g⊗ C)α −→ [q, µ+],

p2 ◦ r :
⊕

α(µ+)>0

(g⊗ C)α −→ [h, µ+]

are surjective morphisms of Hx-modules.
Let V 1

x (α) = p1 ◦ r((g ⊗ C)α). We notice that dimC V
1
x (α) ∈ {0, 1}: V 1

x (α) = {0}
only if α is a non-compact imaginary root and V 1

x (α) ≃ Cα|Hx when V 1
x (α) ̸= {0}. We

notice also that V 1
x (α) = V 1

x (θ(α)), hence

q/qµ+ = ([q, µ+], Jµ+) ≃
⊕

[α]∈Ax/Z2

V 1
x (α)⊕

⊕
α∈Rncix ∩R+

x

V 1
x (α).

The identity [B] is proved.
Similarly we consider V 2

x (α) = p2 ◦r((g⊗C)α). We notice that dimC V
2
x (α) ∈ {0, 1}:

V 2
x (α) = {0} only if α is a compact imaginary root and V 2

x (α) ≃ Cα|Hx when V 2
x (α) ̸=

{0}. We notice also that V 2
x (α) = V 2

x (θ(α)), hence

h/hµ+ = ([h, µ+], Jµ+) ≃
⊕

[α]∈Ax/Z2

V 2
x (α)⊕

⊕
α∈Rcix ∩R+

x

V 2
x (α).

The identity [A] is proved.
Finally we check that the complex structures Jµ+ and JVx preserve each V 1

x (α) and
that (Vx(α), JVx) ≃ Cα̃|Hx when (α, µ+) > 0. The identity [C] follows. □

We consider the Hx-module Vx :=
∑

[α]∈Ax/Z2
Cα|Hx , and the Gx-modules Enci

x :=∑
α∈Rncix ∩R+

x
Cα and Eci

x :=
∑

α∈Rcix ∩R+
x
Cα. In the previous lemma we have proved that

Hx-modules h/hµ+ and q/qµ+ are respectively isomorphic to Vx ⊕ Eci
x and Vx ⊕ Enci

x .
If we use the fact that Sym(Vx)⊗

∧
Vx = 1, we get the following corollary.

Corollary 3.6. We have the following identity of virtual Hx-modules:

Sym(q/qµ+)⊗
∧

h/hµ+ ≃ Sym(Enci
x )⊗

∧
Eci

x .

Proof of Lemma 3.2. Let B := Ax/Z2

⋃
(Rnci

x ∩ R+
x ). We see that

∧
JVx

Vx =∏
α∈B(1 − tα̃) whereas

∧
−Jµ+

Vx =
∏

α∈B(1 − t−α). Accordingly we get
∧

JVx
Vx ≃

(−1)|B
′| Cη ⊗

∧
−Jµ+

Vx where B′ = {α ∈ B, α̃ = α} and η =
∑

α∈B′ α. Now it is easy
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to check that an element α ∈ B belongs to B′ if and only if α and θ(α) both belong to
R+

x . In other words

B′ =
{
α ∈ R+

x ∩ θ(R+
x ), θ(α) ̸= α

}
/Z2

⋃
Rnci

x ∩R+
x .

We have proved that∧
JVx

Vx ≃ (−1)mx Cδ(x) ⊗ det(Enci
x )⊗

∧
−Jµ+

Vx.

2

Finally, thanks to Lemma 3.2 and Corollary 3.6, we obtain the final formula for
QHx(λ) (that does not depend on the choice of r):

QHx(λ) = (−1)mxIndH
Hx

(
Cλx+δ(x) ⊗ det(Enci

x )⊗ Sym(Enci
x )⊗

∧
Eci

x

)
.

3.3. Computation of the virtual module Mx(λ). According to Theorem 1.1, we
have the decomposition V G

λ |H =
∑

x̄Qx̄(λ) where Qx̄(λ) = IndH
Hx

(Ax(λ)), and Ax(λ) ∈
R̂(Hx) has the following description

Ax(λ) =
1

|WH
x |
∑
w∈W

(−1)mxwCλxw+δ(xw) ⊗ det(Enci
xw )⊗ Sym(Enci

xw )⊗
∧

Eci
xw.

The aim of this section is to simplify the expression of the virtual Hx-module Ax(λ).
We start by comparing the Gx-modules Enci

xw and Enci
x . We use the decomposition

Enci
x =

(
Enci

x

)+
w
⊕
(
Enci

x

)−
w
where(

Enci
x

)+
w
:=

∑
α∈Rnci

x ∩R+
x ∩R+

xw

Cα, and
(
Enci

x

)−
w
=

∑
α∈Rnci

x ∩R+
x ∩−R+

xw

Cα.

We have the following basic lemma (see Lemma 3.10).

Lemma 3.7. The Gx-module |Enci
x |w :=

(
Enci

x

)+
w
⊕ (Enci

x )
−
w is isomorphic to Enci

xw .

Let ρ = 1
2

∑
α∈R+ α. We denote by w •λ = w(λ+ρ)−ρ the affine action of the Weyl

group on the lattice Λ.
The main result of this section is the following proposition.

Proposition 3.8. Let x ∈ Zθ. We have

Ax(λ) = Mx(λ)⊗ Cδ(x) ⊗
∧

Eci
x

where Mx(λ) ∈ R̂(Hx) is defined by the following expression

Mx(λ) =
(−1)nx

|WH
x |

∑
w∈W

(−1)kx,w C(w•λ)x ⊗ det(
(
Enci

x

)+
w
)⊗ Sym(|Enci

x |w),

and

• kx,w = |R+
x ∩R+

xw ∩ {θ(α) ̸= ±α}|+ |R+
x ∩R+

xw ∩Rci
x |,

• nx := |θ(R+
x ) ∩R+

x | − 1
2
|θ(R+

x ) ∩R+
x ∩ {θ(α) ̸= α}|.
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Remark 3.9. We can describe Qx̄(λ) differently by taking {w1, · · · , wp} ⊂ W such

that WH
x \W ≃ {w̄1, · · · , w̄p}. We have Qx̄(λ) = IndH

Hx

(
Ãx(λ)

)
with

Ãx(λ) = M̃x(λ)⊗ Cδ(x) ⊗
∧

Eci
x

and where M̃x(λ) ∈ R̂(Hx) is defined by the following expression

M̃x(λ) = (−1)nx

p∑
k=1

(−1)kx,wk C(wk•λ)x ⊗ det(
(
Enci

x

)+
wk
)⊗ Sym(|Enci

x |wk
).

We need to introduce some notations. To x ∈ Zθ, we associate :

• The polarized roots : to α ∈ Rx and w ∈ W , we associate |α|w ∈ Rx defined
as follows

|α|w =

{
α if α ∈ R+

xw,

−α if α /∈ R+
xw.

• The following Gx-weights :

γcix,w :=
∑

α∈Rcix ∩R+
x

|α|w ̸=α

α, γncix,w :=
∑

α∈Rncix ∩R+
x

|α|w ̸=α

α, γx,w :=
∑
α∈R+

x
|α|w ̸=α

α.

The proof of Proposition 3.8 is based on the following Lemma.

Lemma 3.10. Let x ∈ Zθ and w ∈ W . Let dcix,w be the cardinal of the set

{α ∈ Rci
x ∩R+

x , |α|w ̸= α}. We have the following relations

(1) Enci
xw ≃

∑
α∈Rnci

x ∩R+
x
C|α|w and Eci

xw ≃
∑

α∈Rci
x ∩R+

x
C|α|w ,

(2) det(Enci
xw ) = C−γncix,w

⊗ det(
(
Enci

x

)+
w
),

(3)
∧

Eci
xw = (−1)d

ci
x,w C−γcix,w

⊗
∧
Eci

x .

(4) The Hx-weight δ(xw)−δ(x) is equal to the restriction of Gx-weight γ
nci
x,w+γ

ci
x,w−

γx,w to Hx.

Proof. We remark that Rx = Rxw, R
+
x = g(R+) and R+

xw = g(wR+). The first point
follows and points (ii) and (iii) derive from the first.

Let us check the last point. The term ρx := 1
2

∑
α∈R+

x
α is the image of ρ :=

1
2

∑
α′∈R+ α′ through the map µ 7→ µx. We see that

ρx + θ(ρx) =
∑

α∈R+
x ∩θ(R+

x )

α = 2δ(x) + 2ρncix + 2ρcix

where ρncix = 1
2

∑
α∈Rnci

x ∩R+
x
α and ρcix = 1

2

∑
α∈Rci

x ∩R+
x
α. Similarly we have

ρxw + θ(ρxw) = 2δ(xw) + 2ρncixw + 2ρcixw.

Thus the Hx-weight δ(xw)− δ(x) is equal to the restriction to Hx of the Gx-weight

β(x,w) := ρxw − ρx + (ρncix − ρncixw ) + (ρcix − ρcixw).
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We notice that ρxw − ρx = (wρ − ρ)x = −γx,w. Furthermore, small computations
give that ρncix − ρncixw = γncix,w and ρcix − ρcixw = γcix,w. We have proved that β(x,w) =

γncix,w + γcix,w − γx,w. The last point follows. □

Now, we can finish the proof of the Proposition 3.8. We must check that the virtual
Hx-module

A := (−1)mxwCλxw+δ(xw) ⊗ det(Enci
xw )⊗

∧
Eci

xw

is equal to the virtual Hx-module

B := (−1)nx+kx,w C(w•λ)x+δ(x) ⊗ det(
(
Enci

x

)+
w
)⊗

∧
Eci

x .

If we use Lemma 3.10, we get

A = (−1)mxw+dcix,wC(w(λ+ρ)−ρ)x+δ(x) ⊗ det(
(
Enci

x

)+
w
)⊗

∧
Eci

x .

Thus the equality A = B follows from the following lemma.

Lemma 3.11. For any x ∈ Zθ and w ∈ W , we have nx + kx,w = mxw + dcix,w mod 2.

Proof. In order to simplify our notations, we write a ≡ b for a = b mod 2.
We have dimEnci

x = dimEnci
xw and dimEci

x = dimEci
xw, then

mxw −mx =
1

2

(
|R+

xw ∩ θ(R+
xw) ∩ {θ(α) ̸= α}| − |R+

x ∩ θ(R+
x ) ∩ {θ(α) ̸= α}|

)
=

1

2

(
|R+

xw ∩ θ(R+
xw)| − |R+

x ∩ θ(R+
x )|
)
.

We remark now that

R+
xw ∩ θ(R+

xw) = A++ ∪ A−− ∪ A+− ∪ A−+

with A++ = R+
x ∩ θ(R+

x ) ∩ R+
xw ∩ θ(R+

xw), A−− = −R+
x ∩ −θ(R+

x ) ∩ R+
xw ∩ θ(R+

xw),
A+− = R+

x ∩ θ(−R+
x ) ∩R+

xw ∩ θ(R+
xw) and A−+ = −R+

x ∩ θ(R+
x ) ∩R+

xw ∩ θ(R+
xw).

Similarly we have

R+
x ∩ θ(R+

x ) = B++ ∪B−− ∪B+− ∪B−+

with B++ = R+
x ∩ θ(R+

x ) ∩ R+
xw ∩ θ(R+

xw), B−− = R+
x ∩ θ(R+

x ) ∩ −R+
xw ∩ θ(−R+

xw),
B+− = R+

x ∩ θ(R+
x ) ∩R+

xw ∩ θ(−R+
xw) and B−+ = R+

x ∩ θ(R+
x ) ∩ −R+

xw ∩ θ(R+
xw).

We have the obvious relations : A++ = B++, A−− = −B−−, θ(A+−) = A−+,
θ(B+−) = B−+ and A++ = B++. So we get mxw −mx ≡ |A+−|+ |B+−|.

Let consider A := R+
x ∩R+

xw and B := R+
x ∩ −R+

xw. We have

mxw −mx ≡ |A ∩ θ(B)|+ |A ∩ −θ(B)|
≡ |A|+ |A ∩ θ(A)|+ |A ∩ −θ(A)|.

Now we remark that

|A ∩ θ(A)| ≡ |A ∩ θ(A) ∩ {θ(α) = α}|
≡ |R+

x ∩R+
xw ∩ {θ(α) = α}|.

Similarly

|A ∩ −θ(A)| ≡ |A ∩ −θ(A) ∩ {θ(α) = −α}|
≡ |R+

x ∩R+
xw ∩ {θ(α) = −α}|.
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At this stage we have proved that

mxw −mx ≡ |R+
x ∩R+

xw|+ |R+
x ∩R+

xw ∩ {θ(α) = α}|+ |R+
x ∩R+

xw ∩ {θ(α) = −α}|
≡ |R+

x ∩R+
xw ∩ {θ(α) ̸= −α}|+ |R+

x ∩R+
xw ∩ {θ(α) = α}|.

As dcix,w = |R+
x ∩ −R+

xw ∩Rci
x |, we have |R+

x ∩R+
xw ∩ {θ(α) = α}| + dcix,w is equal to

dimEci
x + |R+

x ∩R+
xw ∩Rnci

x |. This implies that mxw + dcix,w is equal, modulo 2, to

mx + dimEci
x + |R+

x ∩R+
xw ∩Rnci

x |+ |R+
x ∩R+

xw ∩ {θ(α) ̸= −α}|

≡ mx + dimEci
x + |R+

x ∩R+
xw ∩Rci

x |+ |R+
x ∩R+

xw ∩ {θ(α) ̸= ±α}|.
By definition mx = 1

2
|R+

x ∩ θ(R+
x ) ∩ {θ(α) ̸= α}|+ dimEnci

x and then

mx + dimEci
x ≡ 1

2
|R+

x ∩ θ(R+
x ) ∩ {θ(α) ̸= α}|+ |R+

x ∩ {θ(α) = α}|
≡ nx.

Finally we have proved that mxw + dcix,w is equal, modulo 2, to nx + kx,w.
□

4. Examples

In this section we will study in details some examples of our formula

V G
λ |H =

∑
x̄∈H\Zθ/W

Qx̄(λ)

where Qx̄(λ) = IndH
Hx

(
Mx(λ)⊗ Cδ(x) ⊗

∧
Eci

x

)
and

Mx(λ) =
(−1)nx

|WH
x |

∑
w∈W

(−1)kx,w C(w•λ)x ⊗ det(
(
Enci

x

)+
w
)⊗ Sym(|Enci

x |w).

Here the integers kx,w and nx are defined as follows:

• kx,w = |R+
x ∩R+

xw ∩ {θ(α) ̸= ±α}|+ |R+
x ∩R+

xw ∩Rci
x |,

• nx = |θ(R+
x ) ∩R+

x | − 1
2
|θ(R+

x ) ∩R+
x ∩ {θ(α) ̸= α}|.

4.1. K ⊂ K ×K. Let K be a connected compact Lie group. Here we work with the
Lie group G = K ×K and the involution θ(k1, k2) = (k2, k1). The subgroup H = Gθ

is the group K embedded diagonally in G.
Let T be a maximal torus of K and let WK = NK(T )/T be the Weyl group of K.

We denote by RK the set of roots for (K,T ), and we make the choice of a set R+
K of

positive roots.
In the next lemma we describe the critical set Zθ in the flag manifold F = K/T×K/T

of G.

Lemma 4.1. We have Zθ =
⋃

w∈WK
Zw with Zw = K · (wT, T ). In other words, the

set H\Zθ/W is a singleton.

Proof. The element x = (aT, bT ) ∈ F belongs to Zθ if and only if = (a−1b, b−1a) ∈
W ×W . If b−1a = w ∈ W then (aT, bT ) ∈ Zw. □
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We take x = (T, T ) ∈ Zθ. For each w ∈ WK , we write xw = (wT, T ). We take

λ = (a, b) ∈ Λ+
K × Λ+

K = Ĝ.
Our data are as follows:
• the group Gx is the maximal torus T × T ⊂ K,
• the group Hx is the maximal torus T ⊂ K,
• C(w•λ)x+δ(x) = Cw(a+ρ)+b+ρ as a character of T ,
• nx = |R+

K |,
• kx,w is equal to |wR+

K ∩R+
K |+ |R+

K |, so (−1)kx,w = (−1)w,
• the vector spaces Eci

x ,Enci
x are reduced to {0}.

In this context we obtain the following relation

(4.8) V K
a ⊗ V K

b = (−1)dim(K/T )/2
∑

w∈WK

(−1)w IndK
T

(
Cw(a+ρ)+b+ρ

)
.

This type of generalized Clebsch-Gordan formula what first noticed by Steinberg [15]
(see Section 5).

Example 4.2. The irreducible representation SU(2) are parametrized by N. If n ≥ 0,
the irreducible representation Vn of SU(2) satisfies

Vn = Ind
SU(2)
U(1) ((C0 − C2)⊗ Cn).

If we take m ≥ n ≥ 0, then (4.8) gives

Vn ⊗ Vm = Ind
SU(2)
U(1) (Cm−n)− Ind

SU(2)
U(1) (Cm+n+2)

=
n∑

k=0

Ind
SU(2)
U(1) ((C0 − C2)⊗ Cm+n−2k)

=
n∑

k=0

Vm+n−2k.

We recognize here the classical Clebsch-Gordan relations.

4.2. U(p) × U(q) ⊂ U(p + q). Let p ≥ q ≥ 1 and n = p + q. We take G = U(n)
with maximal torus T ≃ U(1)n the subgroup formed by the diagonal matrices. We use
the canonical map τ from the symmetric group Sn into G. It induces an isomorphism
between Sn and the Weyl group W of G.

We work with the involution θ(g) = ∆g∆−1 where ∆ := diag(Ip,−Iq): the subgroup
fixed by θ is H = U(p)× U(q).

In the next section we describe the critical set Zθ ⊂ F . For another type of
parametrization of HC\F , see Section 5 of [13].

4.2.1. The critical set. We consider the following elements of O(2):

R =

( 1√
2

1√
2

−1√
2

1√
2

)
, S =

(
0 1
1 0

)
, J =

(
0 −1
1 0

)
.

The element R is of order 8, R2 = −J and R−1

(
1 0
0 −1

)
R = S.

To any j ∈ {0, . . . , q} we associate :
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• gj := diag(1, . . . , 1︸ ︷︷ ︸
p−j times

, R, . . . , R︸ ︷︷ ︸
j times

, 1, . . . , 1︸ ︷︷ ︸
q−j times

) ∈ G,

• the permutation wj ∈ Sn that fixes the elements of [1, · · · , p − j]
∪[p+ j + 1, · · · , n] and such that

wj(p− j + 2k − 1) = p− j + k, wj(p− j + 2k) = p+ k, for 1 ≤ k ≤ j,

• kj = τjgj ∈ G, where τj = τ(wj) ∈ N(T ),
• xj = kjT ∈ F .

The adjoint mapAd(τj) : G→ G sends the matrix diag(a1, . . . , ap−j, b1, . . . , b2j, c1, . . . , cq−j)
to the matrix diag(a1, . . . , ap−j, b1, b3, . . . , b2j−1, b2, b4, . . . , b2j, c1, . . . , cq−j).

We see then that

σj := k−1
j ∆kj = diag(1, . . . , 1︸ ︷︷ ︸

p−j times

, S, . . . , S︸ ︷︷ ︸
j times

,−1, . . . ,−1︸ ︷︷ ︸
q−j times

)

and k−1
j θ(kj) = σj∆ belong to N(T ). Thus the elements x0, . . . , xq belongs to Zθ.

Lemma 4.3. In the flag manifold F the set Zθ has the following description:

Zθ =
⋃

0≤j≤q

⋃
w̄∈Wxj \W

Hxjw

So we have H\Zθ/W = {x̄0, . . . , x̄q}.

Proof. If 1 ≤ a < b ≤ n, we denote by τa,b ∈ N(T ) the permutation matrix associated
to the transposition (a, b).

Let gT ∈ Zθ. Then k := g−1θ(g)∆ = g−1∆g is an element of order two in N(T ). The
Weyl group element k̄ ∈ W is of order two, then there exists 0 ≤ l ≤ n/2, and a family
(a1 < b1), . . . , (al < bl) of disjoint couples in {1, . . . , n} such that kT = τa1,b1 . . . τal,blT .

Now, if we use the fact that the characteristic polynomial of k ∈ G is equal to
(X − 1)p(X + 1)q with p ≥ q ≥ 1, we see that

• l ≤ q,
• there exists n ∈ N(T ) such that nkn−1 = σl = k−1

l ∆kl.
If we take w = n̄ ∈ W , the previous identity says that g ∈ HklwT . □

4.2.2. Localized indices. We work with the groups T ⊂ H = U(p)× U(q) ⊂ G = U(n)
and the corresponding Lie algebras t ⊂ h ⊂ g. Let R = {εr − εs} be the set of
non-zero roots for the action of T on g ⊗ C. We choose the Weyl chamber so that
R+ := {εr − εs, 1 ≤ r < s ≤ n}.
Let j ∈ {0, . . . , q}. The aim of this section is to compute the localized index Qx̄j

(λ) ∈
R̂(H). In order to have a fairly simple expression we will rewrite the terms of the form
IndH

Hxj
(Cβ ⊗

∧
Eci

xj
).

Let {1, . . . , n} = I1j ∪I2j ∪I3j ∪I4j where I1j = {1 ≤ k ≤ p−j}, I2j = {p−j+1 ≤ k ≤ p},
I3j = {p+ 1 ≤ k ≤ p+ j}, and I4j = {p+ j + 1 ≤ k ≤ n}.
For the maximal torus T ⊂ G we have a decomposition

T ≃ T 1
j × T 2

j × T 3
j × T 4

j
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where T p
j = {(tk)nk=1, tk ∈ U(1), tk = 1 unless k ∈ Ipj }. Let Tj ⊂ T 2

j × T 3
j be the

subtorus defined by the relations: an element ((tk)
n
k=1, (sk)

n
k=1) ∈ T 2

j × T 3
j belongs to

Tj if and only if tp−j+k = sp+k for all 1 ≤ k ≤ j.

The elements of order two σj ∈ G induce involutions on G (by conjugation) that we
still denote by σj. We start with a basic lemma whose proof is left to the reader.

Lemma 4.4. Let xj = kjT ∈ F .
• The adjoint map Ad(kj) : g → g realizes an isomorphism between the vector space

t equipped with the involution induced by σj and the vector space gxj
equipped with the

involution θ.
• The group N(T )σj/T σj is isomorphic with Sp−j ×Sq−j ×Sj × {±}j.
• The adjoint map Ad(kj) : G→ G induces an isomorphism N(T )σj/T σj ≃ Wxj

.
• The stabilizer subgroup Hxj

is equal to T 1
j × Tj × T 4

j ⊂ T .
• If Cα is a character of T , then Ckjα is a character of Gxj

and Cτjα is a character
of T . We have the relation

Ckjα|Hxj
= Cτjα|Hxj

.

• The set of roots Rci
xj

is equal to

kj · {εr − εs, 1 ≤ r < s ≤ p− j}
⋃

kj · {εr − εs, p+ j + 1 ≤ r < s ≤ n}

and Rnci
xj

= kj · {εr − εs, 1 ≤ r ≤ p− j & p+ j + 1 ≤ s ≤ n}.

We denote by Mj the T -module Cp−j ⊗ (Cq−j)∗ where the subgroup T 2
j × T 3

j acts

trivially and the T 1
j × T 4

j -action is the canonical one. Thanks to Lemma 4.4, we have

the following isomorphisms of Hxj
-modules: Enci

xj
≃ Mj. Following Lemma 3.7, one can

associate the modules (Mj)
±
w and |Mj|w to each w ∈ W .

We consider the Lie group

Kj := U(p− j)× U(q − j)

that we view as a subgroup of H in such a way that T 1
j × T 4

j is a maximal torus of

Kj. A set of positive roots for (Kj, T
1
j × T 4

j ) is εr − εs for 1 ≤ r < s ≤ p − j and

p+ j + 1 ≤ r < s ≤ n. We equip kj/
[
t1j × t4j

]
with a complex structure such that

Eci
xj

≃ kj/
[
t1j × t4j

]
is an isomorphism of T 1

j × T 4
j -modules.

The holomorphic induction map Hol
Kj

T 1
j ×T 4

j
: R̂(T 1

j × T 4
j ) → R̂(Kj) is defined as

follows:

Hol
Kj

T 1
j ×T 4

j
(V ) := Ind

Kj

T 1
j ×T 4

j
(V ⊗

∧
kj/
[
t1j × t4j

]
).

If a = (a1 ≥ · · · ≥ ap−j) ∈ Zp−j and b = (b1 ≥ · · · ≥ bq−j) ∈ Zq−j, then C(a,b) defines a
character of T 1

j × T 4
j and

Hol
Kj

T 1
j ×T 4

j

(
C(a,b)

)
= V U(p−j)

a ⊗ V
U(q−j)
b

is the irreducible representation of Kj with highest weight (a, b).
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A character Cβ of the torus T can be written Cβ = Cβ14 ⊗ Cβ23 where Cβ14 is a
character of T 1

j ×T 4
j and Cβ23 is a character of T 2

j ×T 3
j . Note that Cτjβ|Hxj

= Cβ14⊗Cβ′

where β′ = τjβ
23 defines a character of Tj ⊂ T 2

j × T 3
j .

Lemma 4.5. Let Cβ be a character of T . Then IndH
Hxj

(Cβ|Hxj
⊗
∧
Eci

xj
) is equal to

IndH
Kj×T 2

j ×T 3
j

(
Hol

Kj

T 1
j ×T 4

j
(Cβ14)⊗ Cβ23 ⊗ L2(

[
T 2
j × T 3

j

]
/Tj)

)
,

where L2(
[
T 2
j × T 3

j

]
/Tj) = Ind

T 2
j ×T 3

j

Tj
(1) ∈ R̂(T 2

j × T 3
j ).

Remark 4.6. To gain some space in our formulas, we will write Hol
Kj

T 1
j ×T 4

j
(Cβ) instead

of Hol
Kj

T 1
j ×T 4

j
(Cβ14)⊗ Cβ23

We need to fix some notations.

Definition 4.7. • Let χ : H → C be the character (A,B) 7→ det(A) det(B)−1.
• Let ψj be the character2 of T associated to the weight∑

1≤k≤j

(q − p+ 2 + 2j − 4k)εp−j+k.

• For any (j, w) ∈ [0, q]×W , we define the integer dj,w by the relation

dj,w = dim(Mj)
+
w + |{1 ≤ k ≤ j, w−1(p− j + 2k − 1) < w−1(p− j + 2k)}|.

A small computation gives the following lemma.

Lemma 4.8. • The Hxj
-character Cδ(xj) is equal to χ

⊗j ⊗ ψj|Hxj
.

• For any (j, w) ∈ [0, q]×W , we have (−1)nxj+kxj,w = (−1)j(n+1)(−1)w(−1)dj,w .

The main result of this section is the following proposition.

Proposition 4.9.

V
U(n)
λ |U(p)×U(q) =

q∑
j=0

Qx̄j
(λ)

where Qx̄j
(λ) ∈ R̂(U(p)× U(q)) is determined by the relation

Qx̄j
(λ) =

(−1)j(n+1)

|Wxj
|

χ⊗j ⊗
∑
w∈W

(−1)w(−1)dj,w Ind
U(p)×U(q)

Kj×T 2
j ×T 3

j

(
Aw

j (λ)⊗ ψj

)
.

Here the elements Aw
j (λ) ∈ R̂(Kj × T 2

j × T 3
j ) are defined as follows:

Aw
j (λ) = Hol

Kj

T 1
j ×T 4

j

(
Cτj(w•λ) ⊗ det((Mj)

+
w)⊗ Sym(|Mj|w)

)
⊗ L2(

[
T 2
j × T 3

j

]
/Tj).

We finish this section by considering particular situations.

2Remark that ψj is trivial T 1
j × T 3

j × T 4
j .
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4.2.3. The extreme cases : j = 0 or j = q. When j = 0, the torus T 2
0 and T 3

0 are
trivial and K0 = U(p)× U(q) = H. Moreover M0 = Cp ⊗ (Cq)∗ and d0,w = dim(M0)

+
w .

Thanks to Lemma 4.4, we know also that Wx0 ≃ Sp ×Sq.
So we get the formula

Qx̄0(λ) =
1

p!q!

∑
w∈W

(±)w HolHT
(
Cw•λ ⊗ det((M0)

+
w)⊗ Sym(|M0|w)

)
where (±)w = (−1)w(−1)dim(M0)

+
w .

Remark 4.10. An useful exercise is to consider the term

Aw := (±)w HolHT
(
Cw•λ ⊗ det((M0)

+
w)⊗ Sym(|M0|w)

)
and verify that Aw′w = Aw when w′ ∈ Wx0.

When j = q, the torus T 4
q is trivial, Kq = U(p − q) and Mq = {0}. Moreover

Wxq ≃ Sp−q ×Sq × {±}q. In this case we obtain

Qx̄q(λ) =
(−1)q(n+1)

(p− q)!q!2q
χ⊗q ⊗

∑
w∈W

(−1)w(−1)dq,w Qw
q (λ)

with

Qw
q (λ) = Ind

U(p)×U(q)

U(p−q)×T 2
q ×T 3

q

(
Hol

U(p−q)

T 1
q

(
Cτq(w•λ)

)
⊗ ψq ⊗ L2(

[
T 2
q × T 3

q

]
/Tq)

)
.

4.2.4. U(n− 1)× U(1) ⊂ U(n). Here we are in the case where q = 1, and so

V
U(n)
λ |U(n−1)×U(1) = Qx̄0(λ) +Qx̄1(λ).

To simplify the expression of Qx̄0(λ) we use the fact that the quotient Wx0\W is
represented by the class of the elements τk,n ∈ G associated to the transposition (k, n)
for 1 ≤ k ≤ n. We write T = T ′×U(1) where T ′ is a maximal torus of U(n−1). The T ′-

module Cn−1 can be decomposed as Vk⊕V′
k where Vk =

∑k−1
j=1 Cεj and V′

k =
∑n−1

j=k Cεj .

The T -module M0 is equal to Cn−1⊗C∗ = Vk ⊗C−εn ⊕V′
k ⊗C−εn and the polarized

T -module |M0|τk,n is equal to Vk ⊗C−εn ⊕V′
k ⊗Cεn . We have dim(M0)

+
τk,n

= k− 1 and

det(M0)
+
τk,n

= Cµk
⊗ C⊗1−k

εn with µk =
∑k−1

j=1 εj.
So we obtain

Qx̄0(λ) =∑
a,b≥0

1≤k≤n

(±)k Hol
U(n−1)
T ′

(
Cτk,n•λ+µk

⊗ Symb(Vk)⊗ Syma(V′
k)
)
⊗ C⊗1+a−b−k

εn ,

where (±)k = (−1)k if k < n and (±)n = (−1)n−1.
We consider now the term Qx̄1(λ). When j = q = 1, the torus T 4

1 is trivial, K1 =
U(n− 2) and M1 = {0}. Moreover Wx1 ≃ Sn−2 × {±}, τ1 = Id and ψ1 = (2− n)εn−1.
Here the quotient Wx1\W is represented by the class of the elements τl,nτk,n−1 for
1 ≤ k < l ≤ n. We denote by λkl the term τl,nτk,n−1 • λ.
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In this case we obtain

Qx̄1(λ) = (−1)n χ ⊗

(
Qn−1,n

x̄1
(λ)−

∑
1≤k<n−1

Qk,n
x̄1

(λ) +
∑

1≤k<l≤n−1

Qk,l
x̄1
(λ)

)
with

Qk,l
x̄1
(λ) = Ind

U(n−1)×T 3
1

U(n−2)×T 2
1×T 3

1

(
Hol

U(n−2)

T 1
1

(Cλkl
)⊗ ψ1 ⊗ L2(

[
T 2
1 × T 3

1

]
/T1)

)
=

∑
a∈Z

Ind
U(n−1)

U(n−2)×T 2
1

(
Hol

U(n−2)

T 1
1

(Cλkl
)⊗ C⊗a

εn−1

)
⊗ C⊗2−n−a

εn .

Let us finish this section by considering the simplest example: U(1)× U(1) ⊂ U(2).

Take λ = (λ1 ≥ λ2) ∈ Û(2). We have V
U(2)
λ |U(1)×U(1) = Qx̄0(λ) +Qx̄1(λ) where

Qx̄0(λ) = − Cλ ⊗
λ2−λ1−1∑

−∞

C⊗k
ε1−ε2

− Cλ ⊗
∑
k≥1

C⊗k
ε1−ε2

and Qx̄1(λ) = Cλ ⊗
∑

k∈ZC
⊗k
ε1−ε2 . We recover the basic relation

V
U(2)
λ |U(1)×U(1) = Cλ ⊗

0∑
k=λ2−λ1

C⊗k
ε1−ε2

.

4.2.5. U(n − 1) ⊂ U(n). If we restrict the representation V
U(n)
λ to the subgroup

U(n− 1), we get

(4.9) V
U(n)
λ |U(n−1) = Q0(λ) +Q1(λ),

where the characters Q0(λ), Q1(λ) ∈ R̂(U(n− 1)) are given by the relations

Q0(λ) =
n∑

k=1

(±)k Hol
U(n−1)
T ′

(
Cτk,n•λ+µk

⊗ Sym(Vk)⊗ Sym(V′
k)
)
,

and

Q1(λ) = (−1)ndet ⊗

(
Qn−1,n

1 (λ)−
∑

1≤k<n−1

Qk,n
1 (λ) +

∑
1≤k<l≤n−1

Qk,l
1 (λ)

)
,

with Qk,l
1 (λ) = Ind

U(n−1)
U(n−2)

(
Hol

U(n−2)

T 1
1

(Cλkl
)
)
.

Let’s detail expression (4.9) when n = 3.
Small calculations give Q0(λ) = B1(λ) + B2(λ) + B3(λ) with

B1(λ) = Hol
U(2)
T

(
Cτ1,3•λ+µ1

)
⊗ Sym(C2) =

∑
λ2−1≥a≥λ3−1≥b

V
U(2)
(a,b) ,

B2(λ) = Hol
U(2)
T

(
Cτ2,3•λ+µ2 ⊗ Sym(Cϵ1)⊗ Sym(Cϵ2)

)
=

∑
a≥λ1+1, λ3−1≥b

V
U(2)
(a,b) ,

B2(λ) = Hol
U(2)
T

(
Cτ3,3•λ+µ3

)
⊗ Sym(C2) =

∑
a≥λ1+1≥b≥λ2+1

V
U(2)
(a,b) .
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For the other term, we obtain Q1(λ) = A1(λ)− A2(λ)− A3(λ) with

A1(λ) = det⊗Q1,3
1 (λ) = det⊗ Ind

U(2)
U(1) (Cλ2−1) =

∑
a≥λ2≥b

V
U(2)
(a,b) ,

A2(λ) = det⊗Q2,3
1 (λ) = det⊗ Ind

U(2)
U(1) (Cλ1) =

∑
a≥λ1+1≥b

V
U(2)
(a,b) ,

A3(λ) = det⊗Q1,2
1 (λ) = det⊗ Ind

U(2)
U(1) (Cλ3−2) =

∑
a≥λ3−1≥b

V
U(2)
(a,b) .

Finally one checks that the decomposition

V
U(3)
λ |U(2) = A1(λ)− A2(λ)− A3(λ) + B1(λ) + B2(λ) + B3(λ)

permits to recover the classical relation V
U(3)
λ |U(2) =

∑
λ1≥a≥λ2≥b≥λ3

V
U(2)
(a,b) (see [4]).

Figure 1. Restriction from U(3) to U(2)

In Figure 1, we can visualise the supports of the differents characters: we have

A1(λ) =
∑
µ∈A1

V U(2)
µ , A2(λ) =

∑
µ∈A2∪B1

V U(2)
µ , A3(λ) =

∑
µ∈A3∪B1

V U(2)
µ ,

B1(λ) =
∑
µ∈B1

V U(2)
µ , B2(λ) =

∑
µ∈B2

V U(2)
µ , B3(λ) =

∑
µ∈B3

V U(2)
µ ,

so that V
U(3)
λ |U(2) =

∑
µ∈C V

U(2)
µ .

5. Kostant multiplicity formula

The aim of this section is first to recall the Kostant multiplicity formula : we follow
the line of [4], Section 8.2. Then, we rewrite it in a form similar to the one we use in
this article (see Proposition 5.4). Finally, we detail Kostant’s multiplicity formula for
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the restriction of U(n) to U(n− 1), in order to compare it with the calculations done
in Section 4.2.5.

Let G′ ⊂ G be two connected compact Lie groups with maximal tori T ′ ⊂ T . The
corresponding Lie algebras are t ⊂ g and t′ ⊂ g′. In this section, we make the following
regularity assumption:

(R) The centralizer Zg(t
′) of t′ in g is abelian.

We recall the following well-known fact.

Lemma 5.1. The assumption (R) is valid when G′ is the connected component of a
fixed-point subgroup of an involution.

Proof : Suppose that G′ = (Gτ )0 for some involution τ . Then, we have a decomposi-
tion g = g′ ⊕ q where q = {X ∈ g, τ(X) = −X}. The centralizer Zg(t

′) is stable under
the involution τ and under the adjoint action of T . Thus t ⊂ Zg(t

′) = t′ ⊕ Zq(t
′): in

particular the torus T is invariant under τ .
If Zg(t

′) is not abelian, there exits a roots α ∈ R such that (gC)α ⊂ Zg(t
′)C =

t′C⊕Zq(t
′)C. Then we obtain a contradiction: on one hand (gC)α ⊂ Zg(t

′)C implies that
α|t′ = 0 and on the other hand since (gC)α ⊂ qC, we must have σ(α) = α. The two
conditions α|t′ = 0 and σ(α) = α implies that α = 0. 2.

Let R and R′ and be the set of roots for the pairs T ⊂ G and T ′ ⊂ G′. Note that
assumption (R) is equivalent to :

(R′) There exists Xo ∈ t′ such that ⟨α,Xo⟩ ≠ 0 for all α ∈ R.

If ξ ∈ t∗ we write ξ for the restriction of ξ to (t′)∗. Because of our assumption, α ̸= 0
for all α ∈ R.

The positive roots areR+ := {α ∈ R, ⟨α,Xo⟩ > 0} andR′
+ := {β ∈ R′, ⟨β,Xo⟩ > 0}.

We write R+ := {α, α ∈ R+} for the set of positive restricted roots: we keep track of
the multiplicity na = #{α ∈ R+, α = a} of each element a ∈ R+.

Since R′
+ is contained in R+, we may consider the set of roots Σ := R+ −R′

+: the

multiplicity of β ∈ R+ in Σ is equal to

mβ :=

{
nβ if β /∈ R′

+,

nβ − 1 if β ∈ R′
+.

Let Λ′ ⊂ (t′)∗ be the lattice of weights for the torus T ′. Let (t′)∗+ be the Weyl chamber
associated to the system R′

+. The irreducible representations of G′ are parameterized
by Λ′

+ = Λ′ ∩ (t′)∗+.

Definition 5.2. We denote by PΣ : Λ′ → N the partition function associated to the
set Σ. For all ξ′ ∈ Λ′, PΣ(ξ

′) is the number of way of writing ξ′ =
∑

β∈Σ xββ, where
xβ ∈ N and each β that occurs is counted with multiplicity mβ.

For dominant weights λ ∈ Λ+ and µ ∈ Λ′
+, we denote by mλ(µ) the multiplicity

of the irreducible G′-representation V G′
µ with highest weight µ in the irreducible G-

representation V G
λ with highest weight λ.

If w ∈ W , we note w • λ := w(λ + ρ) − ρ where ρ is the half sum of the positive
roots.
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Theorem 5.3. The branching multiplicities are

(5.10) mλ(µ) =
∑
w∈W

(−1)w PΣ(w • λ− µ).

We briefly recall how to obtain (5.10). Let χG
λ be the character of V G

λ . The Weyl
relation gives

χG
λ |T

∏
α∈R+

(1− e−α) =
∑
w∈W

(−1)w ew•λ.

When we restrict this identity to T ′ ⊂ T , the relations∏
α∈R+

(1− e−α)|T ′ =
∏

β∈R′
+

(1− e−β)
∏
γ∈Σ

(1− e−γ)

and ∏
γ∈Σ

(1− e−γ)

(∑
ξ′∈Λ′

PΣ(ξ
′) e−ξ′

)
= 1

permit to obtain

χG
λ |T ′

∏
β∈R′

+

(1− e−β) =

(∑
w∈W

(−1)w ew•λ

)(∑
ξ′∈Λ′

PΣ(ξ
′) e−ξ′

)

=
∑
ξ′∈Λ′

Nλ(ξ
′)eξ

′
.

with Nλ(ξ
′) :=

∑
w∈W (−1)w PΣ(w • λ− ξ′).

On the other hand, we have the decomposition χG
λ |H =

∑
µ∈Λ′

+
mλ(µ)χ

G′
µ and then3

χG
λ |T ′

∏
β∈R′

+

(1− e−β) =
∑
µ∈Λ′

+

mλ(µ)χ
G′

µ

∏
β∈R′

+

(1− e−β)

=
∑
µ∈Λ′

+

∑
w′∈W ′

(−1)w
′
mλ(µ) e

w′•µ.

Finally, we obtain the identity∑
ξ′∈Λ′

Nλ(ξ
′)eξ

′
=
∑
µ∈Λ′

+

∑
w∈W ′

(−1)w
′
mλ(µ) e

w′•µ,

that shows two things:

• Nλ(µ) = mλ(µ) if µ is dominant,
• Nλ(w

′ • ξ′) = (−1)w
′
Nλ(ξ

′), for every (w′, ξ′) ∈ W ′ × Λ′.

At this stage, we have proved Kostant’s multiplicity formula. In the following we
rewrite this formula in another form. Let’s consider the following T ′-module

nΣ :=
⊕
β∈Σ

C−β.

3Here w′ • ξ′ := w′(λ+ ρ′)− ρ′ where ρ′ = 1
2

∑
β∈R′

+
β.
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Proposition 5.4. For any λ ∈ Λ+, we have the following restriction formula

(5.11) V G
λ |G′ =

1

#W ′

∑
w∈W

(−1)w HolG
′

T ′ (Cw•λ ⊗ Sym(nΣ)) .

Proof: Since Sym(nΣ) =
∑

ξ′∈Λ′ PΣ(ξ
′)C−ξ′ we have∑

w∈W

(−1)w Cw•λ ⊗ Sym(nΣ) =
∑
w∈W

∑
ξ′∈Λ′

(−1)w PΣ(ξ
′)Cw•λ−ξ′

=
∑
ξ′∈Λ′

Nλ(ξ
′)Cξ′ .

Hence the right hand side of (5.11) is equal to 1
#W ′

∑
ξ′∈Λ′ Nλ(ξ

′)HolG
′

T ′ (Cξ′). We use

now the following facts:

– Nλ(w
′ • ξ′)HolG′

T ′ (Cw′• ξ′) = NΣ(ξ
′)HolG

′

T ′ (Cξ′) for every (w′, ξ′) ∈ W ′ × Λ′.

– Nλ(ξ
′)HolG

′

T ′ (Cξ′) = 0 if ξ′ /∈ W ′ • Λ′
+.

– Nλ(µ)Hol
G′

T ′ (Cµ) = mλ(µ)V
G′
µ if µ ∈ Λ′

+.

We have completed the proof of (5.11). 2

We conclude this section with a few examples.

5.1. K ⊂ K ×K. Let K be a connected compact Lie group. Here we work with the
Lie group G = K ×K containg K diagonally. Here Σ ⊂ t∗ is equal to the set R+ of
positive roots for K. We denote by P : Λ → N the partition function associated to the
set R+.

If λ, µ, ν are three dominant weights, we denote by cνλ,µ the multiplicity of V K
ν in

V K
λ ⊗ V K

µ . The branching formula (5.10) becomes

cνλ,µ =
∑

w1,w2∈W

(−1)w1w2 P(w1 • λ+ w2 • µ− ν).

This formula was first observed by Steinberg [15].
Let’s take a closer look at the branching formula (5.11). The T -module nΣ is equal

to n :=
∑

α>0C−α. By definition of the holomorphic induction map HolKT , we have

HolKT (Θ⊗ Sym(n)) = (−1)d IndK
T (Θ⊗ C2ρ)

for any Θ ∈ R(T ), with d = 1
2
dimK/T . Finally, (5.11) becomes

V K
λ ⊗ V K

µ |K =
(−1)d

#W

∑
w1,w2∈W

(−1)w1w2IndK
T

(
Cw1(λ+ρ)+w2(µ+ρ)

)
= (−1)d

∑
w∈W

(−1)wIndK
T

(
Cw(λ+ρ)+µ+ρ

)
.

The latter formula is also obtained in (4.8).
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5.2. U(p) × U(q) ⊂ U(n). In this example the torus T of diagonal matrices is the
maximal torus for both U(n) and the subgroup U(p) × U(q). Here the T -module nΣ
is the T -restriction of the U(p) × U(q)-module (Cp)∗ ⊗ Cq, and the quotient W ′\W
is isomorphic to the subset Shuffle(p, q) formed by the elements w ∈ Sn satisfying
w(1) < · · · < w(p) and w(p+ 1) < · · · < w(p+ q). Here, the branching formula (5.11)
gives

(5.12) V
U(n)
λ |U(p)×U(q) =

 ∑
w∈Shuffle(p,q)

(−1)w Hol
U(p)×U(q)
T (Cw•λ)

⊗ Sym((Cp)∗ ⊗ Cq).

Let’s consider the case q = 1. From (5.12), we derive the following branching formula
for the restriction to the subgroup U(n− 1):

V
U(n)
λ |U(n−1) =

(
n∑

k=1

(−1)n−k V
U(n−1)
λ[k]

)
⊗ Sym((Cn−1)∗),

with λ[n] = (λ1, . . . , λn−1) and λ[k] = (λ1, . . . , λk−1, λk+1 − 1, . . . , λn − 1) for 1 ≤ k ≤
n− 1.

Figure 2. Kostant decomposition

Let’s consider the case n = 3. For any λ = (λ1 ≥ λ2 ≥ λ3) we obtain the following
formula

V
U(3)
λ |U(2) =

(
V

U(2)
λ[3] − V

U(2)
λ[2] + V

U(2)
λ[1]

)
⊗ Sym((C2)∗).
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Hence V
U(3)
λ |U(2) = A1(λ)− A2(λ) + A3(λ) with

A3(λ) = V
U(2)
λ[3] ⊗ Sym((C2)∗) =

∑
λ1≥a≥λ2≥b

V
U(2)
(a,b) ,

A2(λ) = V
U(2)
λ[2] ⊗ Sym((C2)∗) =

∑
λ1≥a≥λ3−1≥b

V
U(2)
(a,b) ,

A1(λ) = V
U(2)
λ[1] ⊗ Sym((C2)∗) =

∑
λ2−1≥a≥λ3−1≥b

V
U(2)
(a,b) .

We recover the classical branching formula V
U(3)
λ |U(2) :=

∑
λ1≥a≥λ2≥b≥λ3

V
U(2)
(a,b) (see [4],

section 8.1). In Figure 2, one can visualize the support of each characters Ak(λ).

References

[1] M.F. Atiyah, Elliptic operators and compact groups, Lecture Notes in Mathematics 401,
Springer-Verlag, Berlin, 1974.

[2] N. Berline, E. Getzler and M. Vergne, Heat kernels and Dirac operators, Grundlehren 298,
Springer, Berlin, 1991.

[3] R. Bremigan and J. Lorch, Orbit duality for flag manifolds, Manuscripta Math. 109 (2002),
233–261.

[4] R. Goodman and N. R. Wallach, Symmetry, representations, and invariants, Graduate Texts
in Mathematics 255, Springer, 2009.

[5] V. Guillemin and S. Sternberg, A normal form for the moment map, Differential geometric
methods in mathematical physics, 6 (1984), 161–175.

[6] X. Ma and W. Zhang, Geometric quantization for proper moment maps: the Vergne conjecture,
Acta Mathematica 212 (2014), 11–57.
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