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Paul-Emile PARADAN *
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Abstract

Let G be a compact connected Lie group and let H be a subgroup
fixed by an involution. A classical result assures that the Hc-action on
the flag variety F of G admits a finite number of orbits. In this article
we propose a formula for the branching coefficients of the symmetric
pair (G, H) that is parametrized by Hc\F.
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1 Introduction

Let G be a compact connected Lie group equipped with an involution 6.
Let G? := {g € G,0(g) = g} be the subgroup fixed by the involution. We
consider a subgroup H — G such that (G%)g < H < G?. The purpose of
this paper is the study of the branching laws between G and H.

Let T be a maximal torus of G that we choose #-invariant. Let t be
the Lie algebra of T'. Let A < t* be the lattice of weights, and let t} be
a Weyl chamber. The irreducible representations of G are parametrized by
the semi-group Ag := A Nt} of dominant weights.

Let A € AL. In order to study the restriction V|y of the irreducible
G-representation VAG, we consider the H-action on the flag variety F = G/T
of G. An important object is the H-invariant subset

ZQC]:

formed of the elements x € F for which the stabilizer subgroup G, := {g €
G, gxr = x} is stable under 0. In orther words, gT € Z if and only if g~160(g)
belongs to the normalizer subgroup N (7). A well-known result tells us that
the group H has finitely many orbits in Zp, and that the finite set H\Zy
parametrizes the Hc-orbits in F [7, 13, 11, 8].

Let x € Zy. The stabilizer subgroup G, is a maximal torus in G with Lie
algebra g,. We will also consider the abelian subgroup H, := G, n H (that
is not necessarily connected). Any weight € A determines a character C,,
of the torus G, by taking p, = g-pif x = gT' € F.

We denote by R, < g2 the set of roots relative to the action of the Cartan
subalgebra g, on g® C. The map u € R — pu; € R, is an isomorphism, and
we take R} < R, as the image of R < R through this isomorphism.

The involution 6 leaves the set JR, invariant, and o € R, is an imaginary
root if (o) = «a. If « is imaginary, the subspace (g ® C), is 6-stable.
There are two cases. If the action of § on (g ® C), is trivial then « is
compact imaginary. If the action of —0 on (g®C),, is trivial, then « is non-
compact imaginary. We denote respectively by RS and by 9R2¢ the subsets



of compact imaginary and non-compact imaginary roots, and we introduce
the following G,-modules

Ed:= ) (g®Cl, EXi= > (300

aeRCART QeRDCE ART

The weight

aeRy ~O(RY)
0(o)#a

defines a character Cs(,) of the abelian group H,. Let
1 .
= §|D‘i$ N O(RY) N {0(a) # o} + dim EL°.

We denote by R(H) and by R(H,) the representations rings of the com-
pact Lie groups H and H,. An element E € R(H) can be represented as
a finite sum E = 3 _5myV, with my € Z. We denote by R(H) (resp.

R(H ;)) the space of Z-valued functions on H (resp. H, z). An element
E € R(H) can be represented as an infinite sum 2ven mvV, with my € Z.

The induction map Indf : R(H,) — R(H) is the dual of the restriction
morphism R(H) — R(H,).
The main result of this paper is the following theorem.

Theorem 1.1 Let A€ Ag. We have the decomposition

(1.1) VEln = > Qua(N)

Hze H\Zy

where the terms Qp.(\) € E(H) are defined by the following relation :
Qua(A) = (—1)™Ind (CAM( ) ® det(B2) @ Sym(EL) @ /\E)

Here Sym(ER), which is the symmetric algebra of E2, is an admissible
representation of H, and \ES = AT ESO A~ ES is a virtual representation
of Hy.

We give now another formulation for decomposition (1.1) using the
(right) action of the Weyl group W = N(T')/T on the flag variety F. If
z=gl'e Fand we W we take zw := gwT. We notice immediately that
Zy is stable under the action of W.



We associate to an element z = g7 € Zy the subgroup W1 < W defined
by the relation w € W <= Hzw = Hz. We denote by H\Zy/W the
quotient of Zy by the action of H x W, and by & € H\Zy/W the image of
x € Zy through the quotient map. We associate to & € H\Zy/W the element
Qz(\) € R(H) defined as follows

Q:Z‘()‘) = Z Qwa(A)
weWH\W
Theorem 1.1 says then that V\¥|y = Dizemzyw @z(A). Here is a new
formulation of Theorem 1.1.

Theorem 1.2 We have V¥ |y = 2ize mzyw Qz(A) where Qz(A) € ]/%(H)
has the following description

Qz(\) = Indff, (Ma(N) ® Cory @ A\ ES).
for some* M(\) € R(H,).

We finish this section by giving two basic examples associated to the
group SU(2). Here the flag variety of SU(2) is the 2-dimensional sphere
S2. For n = 0, we denote by V;, the irreducible representation of SU(2) of
dimension n + 1.

Example 1. G = SU(2) and the involution 6 is the conjugaison by the

matrix ( (1) _01 > The subgroup fixed by 6 is the torus 7'~ U(1) and the

critical set Zy < S? is composed by the poles M and the equator F, so
that T'\Zp has three terms. We take A = n in SU(2) ~ N.

For Hx = E, we have Ei = ES = {0}, H, ~ Zy, and Chro+5z) = Cnlzy-
The contribution of E is then Indgz(l)((cn|22) = (Cn ® D kez Cok-

For Hr = N, we have H, =T, E}® = Cq, Ef' = {0}, and C)_ 1 5(,) = Cy.
The contribution of N is then —C,, 42 ® Sym(Cs).

For Hx = S, we have H, = T, E2 = C_,, ES = {0}, and Cro+é(@) =
C_,,. The contribution of S is then —C_,,_5 ® Sym(C_»).

Finally, Relations (1.1) become

Wolr = C,® Z Cor — C_pp—2®Sym(C_3) — C,, 42 ® Sym(Cy)
keZ

0
= Z (C2k+n'

k=—n

!The precise expression of M ()) is given in Proposition 3.8.



Example 2. G = SU(2) x SU(2) and the involution 6 is the map
(a,b) — (b,a). The subgroup fixed by € is SU(2) embedded diagonally and
the critical set Zy = S% x S? is equal to the union of the orbits SU(2)- (N, N)
and SU(2) - (S, N). Let A = (n,m) € G.

For z = (N,N) or # = (S, N) we have Ei¢ = ES! = {0} and H, ~ T.
For 2 = (N, N) we have \; +d(x) = m +n+ 2, and for z = (S, N) we have
Az +0(z) = m — n. Relations 1.1 give then

Vo, ® Vi = Ind3" @ (Cpp_) — Ind37 @ (Cpriya).
It is not difficult to see that the previous identities correspond to the classical
Clebsch-Gordan relations (see Example 4.2).

Notations

Throughout the paper :
e (G denotes a compact connected Lie group with Lie algebra g.
e T is a maximal torus in G with Lie algebra t.

e A c t* is the weight lattice of T : every p € A defines a 1-dimensional

T-representation, denoted by C,, where t = exp(X) acts by t* :=
ei<l/«7X>'

e The coadjoint action of g € G on £ € g* is denoted by ¢ - &.

e When a Lie group K acts on set X, the stabilizer subgroup of z € X
is denoted by K, := {k € K | k-x = z} and the Lie algebra of K, is
denoted by €.

e When a Lie group K acts on a manifold M, we denote by X -m :=
%etX ~mli—g, m € M, the vector field generated by X € ¢.

2 Non abelian localization

Our main result is obtained by means of a non-abelian localization of the
Riemann-Roch character on the flag variety F of G. For that we will use
the family (2,), of symplectic structure parametrized by the interior of the
Weyl chamber t} . The symplectic structure €2, comes from the identication
gT — g-r of F with the coadjoint orbit Gr. The moment map &, : F — g*
associated to the action of G on (F,€,) is the map g7 — g - r.



At the level of Lie algebras we have g = h@q where h = g% and q = g=?.
For any £ € g = h @ q, we denote by T his h-part and by £~ his g-part. We
use a G-invariant scalar product (—,—) on g such that the involution 6 is
an orthogonal map. It induces identifications g* ~ g, h* ~ h and q* ~ g.

The moment map ®Z : F — h* associated to the action of H on (F,2,)
is the map g7 — (g-7)*.

2.1 Matsuki duality

Consider the complex reductive groups G¢ and H¢ associated to the com-
pact Lie groups G and H. Let L < G¢ be the real form such that H < L is
a maximal compact subgroup of L.

Matsuki duality is the statement that a one-to-one correspondence exists
between the Hc-orbits and the L-orbits in F; two orbits are in duality when
their intersection is a single orbit of H.

Uzawa, and Mirkovic-Uzawa-Vilonen [14, 8] proved the Matsuki corre-
spondence by showing that both Hc-orbits and L-orbits in F are parametrized
by the H-orbits in the set of critical points of the function |®X|? : F — R.

First we recall the elementary but fundamental fact that the subset Zy
is equal to the set of critical points of the function |®X|? [8, 3].

Lemma 2.1 Letx = ¢gT' € F andr € Interior(t%). The following statements
are equivalent:

i) the subalgebra g, is invariant under 0 (i.e. x € Zy),
i) g7'0(g) € N(T),
i)  is a critical point of the function ||®H|?,
i) (g-r)" and (g-r)” commutes.

Proof. Let ngy = g7 '0(g) and let  be a regular element of t* ~ t. Since
g, = Ad(g)t we see that

0(gz) = 92 <= ngye Ne(T)
= [ng-0(r),r] =0
> [0(g-r),g-r]=0
= [(g-n)"(g-r)]=0.

A small computation shows that for any X € g the derivative of the
function t — |®7 (!X 2)|? at t = 0 is equal to (X,[g-7,0(g-r)]). Hence



x = ¢T is a critical point of the function |®X|? if and only if [g-r, 8(g-r)] = 0.
Finally we have proved that the statements i), i7), 7i7) and iv) are equivalent.

]
Let us check the other easy fact.

Lemma 2.2 The set H\Zy is finite.

Proof. Let z = ¢gT € Zy. A neighborhood of x is defined by elements
of the form eXe¥z where X € h and Y € q. Now we see that eXe¥ gT € Zg
if and only if e=20" 'Y € N (T'). If Y is sufficiently small the former relation
is equivalent to g~'Y € t, and in this case eXe¥z = eXz. We have proved
that any element in H\Zjy is isolated. As H\Zy is compact, we can conclude

that H\Zy is finite. []

2.2 Borel-Weil-Bott theorem

We first recall the Borel-Weil-Bott theorem. The flag manifold F is equipped
with the G-invariant complex structure such that

r]:‘eT-F.2 Z <9®C)a

aeRT

is an identity of T-modules. Let us consider the tangent bundle TF as
a complex vector bundle on F with the invariant Hermitian structure hr
induced by the invariant scalar product on g.

Any weight A\ € A defines a line bundle £y ~ G xp Cy on F.

Definition 2.3 We associated to a weight A € A
e the spin-c bundle on F

Syi= \TFQ L,
Cc

e the Riemann-Roch character RRg(F, L)) € R(G) which is the equiv-
ariant index of the Dirac operator D) associated to the spin-c structure Sy.

The Borel-Weil-Bott theorem asserts that V¥ = RRg(F, £,) when X is
dominant. Now we consider the restriction V.| = RRy(F,Ly). In the
next section we will explain how we can localize the H-equivariant Riemann-
Roch character RRy (F, L) on the critical set of the function ||®X|? [9].



2.3 Localization of the Riemann-Roch character

In this section we explain how we perform the “Witten non-abelian local-
ization” of the Riemann-Roch character with the help of the moment map
®H . F — p* attached to a regular element 7 of the Weyl chamber [9, 5, 10].

Let us denote by X + [X],/ the projection g — g/t. The Kirwan vector
field k, on F is defined as follows:

fir(z) = —®H () -z € T,F.

Through the identification g/t ~ T, F, X — 4|,_oge!X T, the vector x,(z) €
T, F is equal to [g7'0(g) - 7]y Hence the set Zg < F is exactly the set
where k, vanishes.

Lat Dy be the Dirac operator associated to the spin-c structure Sy =
/¢ TF. The principal symbol of the elliptic operator Dy is the bundle map
o(F) e I(T*F,hom(AL TF, Ag TF)) defined by the Clifford action

o(F)(z,v) =c (V) : /\;Tz}'a /\(;Tx]:.

where v € T:O ~ v e T,O is the one to one map associated to the identifi-
cation g* ~ g (see [2]).

Now we will deform the elliptic symbol o(F) by means of the vector field
ke 19, 10].

Definition 2.4 The symbol o(F) shifted by the vector field k, is the symbol
on F defined by
o (F)(x,v) = ca(V = hir())

for any (x,v) € T*F.

Consider an H-invariant open subset U < F such that U n Zy is compact
in F. Then the restriction o, (F)|y is a H-transversally elliptic symbol on U,
and so its equivariant index is a well defined element in R(H) (see [1, 9, 10]).
Thus we can define the following localized equivariant indices.

Definition 2.5 Let Hx < Zy. We denote by
RRy(F, Ly, ®% Hz) € R(H)

the equivariant indez of o,.(F)Q L[y where U is an invariant neighbourhood
of Hx so that U n Zy = Hzx.



We proved in [9] that we have the decomposition

RRy(F.Ly) = Y. RRy(F.Ly®7 Hr) e R(H).
HzeH\Zy

The computation of the characters RRy (F, Ly, ®X, Hz) will be handle
in Section 3.1. To undertake these calculations we need to describe geomet-
rically a neighborhood of Hz in F. This is the goal of the next section.

2.4 Local model near Hx < Zy

Let x = ¢gT € Zy. We need to compute a symplectic model of a neighborhood
of Hx in (F,€,). Here we use the identification g ~ g* given by the choice
of an invariant scalar product. Let p = ¢ -r that we write p = put + p~
where u* € hand u~ €q.

The tangent space T, F is equipped with the symplectic two form €,|,:

Ql(X -2,V - 2) = (u, [X,Y]), X, Yeg.

We need to understand the structure of the symplectic vector space
(T2 F, Q). If a  gis a vector subspace we denote by a-x := {X -z, X € a}
the corresponding subspace of T, F. The symplectic orthogonal of a - x is
denoted by (a - 2)=.

If a,b are two subspaces, a small computation gives that

(2.2) (a-2)2% bz ~al A [b,pul,

where a' < g is the orthogonal of a relatively to the scalar product.

We denote by g,+ = b,+ @ q,+ the subspaces fixed by ad(u™). Notice
that g, = g, is an abelian subalgebra containing p* since [pt,p~] = 0. It
follows that g, < g,.+.

Lemma 2.6 g,+ -z and [h,u™] - x are symplectic subspaces of TyF.

Proof. It is a direct consequence of (2.2). [

We consider now the symplectic subspace V, < T,F defined by the
relation

(2.3) Ve = ([0,07]-2)5%  [g,17] - 2.

A small computation shows that X -z € V,, if and only if [X, u] < [q, uT].
We have the following important Lemma.



Lemma 2.7 e We have the following decomposition

1 4 1
where L stands for the orthogonal relative to Q|;.
e g, - x is symplectomorphic to b+ /by @ (b,+/bz)*.

e [h,ut] - x is symplectomorphic to b/b,+ equipped with the symplectic
structure Q.+ (a,0) = (u*, [u,v]).

o V, is symplectomorphic to (h-z)>%/(h-2)-P A h- .

Proof. If we use the decomposition g = g,+ @ [g, "] and the fact that
the abelian subalgebra g, is contained in g,+ we obtain

Txf:gu+ x®[g7ﬂ+] .

It is obvious to check that the subspaces [g, u*] -z and g,,+ -« are orthogonal
relatively to the symplectic form €,.|,. Since [h,ut] -z is a symplectic

subspace we have [g,u"] -z = [h,put] z (—lB Vy where V,, is defined by (2.3).
The first point is proved.

The identities g, = 0(g,) = 09(») imply the decompositions g, = b, D4y
and [g,+, 2] = [d,+,2]®[h,+,x]. The vector subspace [h,+,z] is isomorphic
to b,+/bz, and the map v — Q,[,(v,—) defines an isomorphism between
[q,+, 7] and the dual of [h,+,x]. The second point is proved.

For the third point we use the isomophism j : [b, u*] — b/b,+ induces
by the projection h — b/h,+. Then the map @ — j(u) - x defines a symplec-
tomorphism between (h/b,+,,+) and [b, "] - 2.

Now we see that (2.4) together with the decomposition h -z =
[h, 4]z + b -z leads to

(h-2)-% = ([h,p']
= ([ /j’Jr] ’ x)l7Q A (gu+ ’ ‘T) © Ve
— -2V,

b, ] 2) A (e )
b,
The last point follows. []

We denote by Q. the restriction of Q,|, on the symplectic vector sub-
space V. The action of H, on (V,, 2y, ) is Hamiltonian, with moment map
Oy, : V, — bE defined by the relation

1
<(I>Vz(’U),A> = §QVZ(U7A’U)7 v E Vg, Ae bz-

10



Thanks to Lemma 2.7, we know that the H,-symplectic vector space
(T, F,Q|,) admits the following decomposition

T, F ~ b /0 @ (0,0 /0a)* @ /b & Vi

Thanks to the normal form Theorem of Marle [6] and Guillemin-Sternberg
[4], we get the following result.

Corollary 2.8 An H-equivariant symplectic model of a mneighborhoood of
Hzx in F is Fp,:= H XH Y, where

Yo = Hye %, (0 /b)* x Vo) -

The corresponding moment map on F, is
O, ([hsn,v]) = h(n + p" + @y, (v))

for [hin,v] € H xg, ((hy+/b2)* x Vy).

We finish this section by computing a compatible complex structure on
V.

By definition, the map that sends X -z to [ X, u] defines an isomorphism
i:Vy — [q,pT]. The adjoint map ad(u) defines also an automorphism of
[9,7]: for any X € [g,u*] we denote by X € [g, "] the unique element
such that ad(u)X = X.

The symplectic structure Q,, := (i71)*Qy, satisfies the relations

QM<X7Y) = (:ua [Xv?]) = (Xv?) = _(X7Y)7 VX Ye [CI ]

We consider the one to one map —ad(p)ad(0(pn)) : [g,put] — [ ,u+]
and the H,-invariant complex structure J,+ = ad(p™)(—a ( 2yt
[g,0T]. Tt restricts to a one to one map T, : [q,u"] — [q,u7] and a
complex structure on [q, u*] (still denoted by J,+).

Let S, := (T2)~'/2T,. The map Jy, := o+ © Sz defines a H-invariant
complex structure on [q, ut].

Lemma 2.9 The H,-symplectic space (Vi,Qy.) is isomorphic to [q,pu™]
equipped with the symplectic form Q}L(v,w) = (Jy,v,w).

Proof. We know already that (V,Qy,) ~ ([q,4"],Q,). If one takes
L =T, 0 (—ad(u")?) 4o (T2)~/4, we check easily that Q,(L(v), L(w)) =
(JVI’U,ZU). ]

11



3 Proof of the main theorem
We start with the following lemma.

Lemma 3.1 The quantity RRy(F, Ly, @2 Hz) does not depend on the
choice of the regular element r in the Weyl chamber. In the following we
will denote it by Qp.(\) € R(H).

Proof. Let rg,r1 be two regular elements of the Weyl chamber. For
t € [0, 1], we consider the regular element r(t) = try + (1 —t)ro: the Kirwan
vector field &, ;) vanishes exactly on Zp for any t € [0,1]. If U is an invariant
neighbourhood of Hx so that U n Zy = Hx, then t € [0,1] — 0, (F) ®
L |t defines an homotopy of transversally elliptic symbols. Accordingly, the
equivariant index of o,y (F) ® L]y and oy, (F) @ L |y are equal. [

3.1 Computation of Q. (1))

The computation of Q. (\) is done in three steps.

3.1.1 Step 1: holomorphic induction

Let H,+ < H be the stabilizer subgroup of u* := ®/(z). We know that
an H-equivariant symplectic model of a neighborhoood of Hx in F is the
manifold H x H, Y, where

Yy =H,+ xm, ((h;ﬁ/hx)* X Vx) :

The symplectic two form on Y, is built from the canonical symplectic struc-
ture on H,+ x g, (h,+/be)* ~ T*(H,+/H,) and the symplectic structure on
V. The moment map relative to the action of H ut on Y, is

Dy, ([hin,v]) = h(n + " + Py, (v)) € by,

for [h;n,v] € H+ xm, ((hy+/02)* x Vz).

Let ky, the Kirwan vector field on Y,. It is immediate to check that
[h;n,v] € {Kky, = 0} if and only if n = 0 and (u* + Py, (v))-v = 0. The map
v — pt v is bijective and v — @y, (v) - v is homogeneous of degree equal to
3. Then there exists € > 0 such that

(pt+ @y, (v) - v=0 and |v]<e = v=0.

In Y, we still denote by x the point [e, 0,0]. We equip Y, with an invariant
almost complex structure that is compatible with the symplectic structure,

12



and we denote by RRy . (Yz, Lily,, Pv,, H,+x) the Riemann-Roch charac-
ter on Y, localized on the component H,+z < {xy, = 0}.

The quotient h/b -+ which is equipped with the invariant complex struc-
ture J,+ = ad(pt)(—ad(ut)?)~Y2, is a complex H,+-module.

In [9][Theorem 7.5], we proved that Qp.(\) = RRy(F, Ly, @, Hz) is

equal to
(3.5) Indff | (RRHﬁ (Yo Laly, s @y, Hye) ® /\ h/hw) .

3.1.2 Step 2: cotangent induction

The map ®,(v) := pu* + Py, (v) is a moment map for the Hamiltonian action
of H; on V. The moment map on the H,+-manifold

Y, = H;fr X Hy ((h;ﬁr/hx)* x Vx)

is Dy, ([hsm,0]) = hln + ©,(v)) € b,
Let ky,(v) = —®,(v) - v be the Kirwan vector field on V,. We are
interested in the connected component {0} of {ky, = 0}. We choose a
compatible almost complex structure on the symplectic vector space and we
denote by RRy, (Va, @4, {0}) € R(H,) the Riemann-Roch character localized
on {0} < {ky, = 0}.
In Section 3.3 of [10] we have proved that
(3.6)

H
RRy , (Yo, Laly,: Py, Hyrw) = Ind,"" (RRu, (Va, @0, {0}) @ L1]2) -

3.1.3 Step 3: linear case

We write q/q,+ for the vector space [q, "] equipped with the complex
structure J,,+. So q/q,+ is a H,+-module and we denote by Sym(q/q,,+) the
corresponding symmetric algebra.
We need to compare the virtual H,-modules /\ 5. Vo and A_s Ve
x I

The weight
1
o(x) = 5 Z a

aeRF o))
O(a)#a

defines a character Cg,) of the abelian group H,. Recall that m, € N
corresponds to the quantity 3[R} n 0(RF) N {0(a) # a}| + dim E2,
The following lemma will be proved in Section 3.2.

13



Lemma 3.2 The following identity holds :
A Ve = (=)™ Cyy @ det (B2 @ /\ Vi

Jv, —J,+

On the vector space V,, we can work with two localized Riemann-Roch
characters:

e RRy, (V, ®,, {0}) is defined with the complex structure Jy,,

e RRy, (Vy, @, {0}) is defined with the complex structure —.J ot

The previous Lemma gives that RR, (Vy;, @, {0}) is equal to (—1)"= Cj,)®
RRy, (Va, 2. {0}).

Proposition 3.3 We have
(37)  RR, (Vi, @4, {0}) = (1) C(z) ® det (E5") ® Sym(q/q,,+).

Proof. For s € [0, 1], we consider the H,-equivariant map ®° : V,, — b
defined by the relations ®*(v) = p* + s®y, (v). The corresponding Kirwan
vector field on V, is k*(v) = —®*(v) - v. It is not difficult to see that there
exists € > 0 such that {x* = 0} n {||v| < €} = {0} for any s € [0,1]. Then a
simple deformation argument gives that J:r{\f{Hm (V, ®%,{0}) does not depend
on s € [0,1]. We have proved that

ﬁ\ﬁHx(vxv (I)sv {0}) = ﬁ\ﬁHz(Vx7 :u+7 {O})

where put denotes the constant map ®°. Standard computations gives
RRy, (Ve u*,{0}) = Sym(q/q,+) (see [9][Proposition 5.4]). Our proof is
completed. []

3.1.4 Conclusion
If we use the formulas (3.5), (3.6) and (3.7) we obtain the following expres-
sion

Quz(A) = (1) Indj, (C)\eré(m) ® det(E3") @ Sym(a/a,+) ® /\ h/h;ﬁ)
C

in ITZ(H ). Here C,, is the character of G, associated to the weight A\, = g\.

The previous formula depends on a choice of a regular element r in the
Weyl chamber. In the next section we will propose another expression for
Q. (N) that does not depend on this choice.
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3.2 Another expression for Qy,()\)

Let R, < g be the roots for the action of the torus G, on g ® C. The
involution 6 : t* — t* leaves the set R, invariant and a root o € R, is
called imaginary if 6(a) = a. We denote respectively by RS and by Ko
the subsets of compact imaginary and non-compact imaginary roots.

We choose a generic element r € t% such that u* = (g - )" satisfies the
following relation : for any a € R, we have

(a,u™) =0 = 0(a) = —a.
Notice that an imaginary roots a is positive if and only if (o, u™) > 0.
Definition 3.4 We consider the subset A, < R,
aeA, = a(u) >0, 0(a)#

The involution 6 defines a free action of Zs on the set 2(,. We denote by
A, /Zy its quotient. For any o € R, we denote by C,, the corresponding 1-
dimensional representation of G, and C, |z, its restriction to the subgroup
H,. We have a natural map [a] € 2, /Zs —> Cq|m, € R(H,).

For any « € R, we define
=t

— &

where + is the sign of a(u)a(6(p)
We consider the H,-modules b/b,,+ := ([b, "], J+ ), a/dus = (Va, Jy)
and (V, Jy, ).

Lemma 3.5 We have the following isomorphisms of H,-modules

[a]eUs /Z2 aeRG AR
cl/quJr = @ (COC|Hx C—B C—B (COC|Hx [B]7
[a]eUs /Z2 aeRNCi ART
Verv) = @ Calm,® @ Caln, [C].
[a]eRs /Zo aeRNCi AR

Proof. Thanks to Lemma 2.9, we know that the H,-module (V,, Jy,) is
isomorphic to the vector space [q, 1] equipped with the complex structure
Jv, := J+ 0Sz. We consider the vector spaces [q, #*] and [g, u*] equipped

with the complex structure J,+. The projection (taking the real part) r :
g ® C — g induces an isomorphism of G,-modules

r: @ @E®Ca — [op']

a(ut)>0
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The orthogonal projections py : [g,ut] — [q,pF] and py : [g,puT] —
[, u] commutes with the H,-action, so the maps

pior: @ (E®C) — [q,n'],

a(ut)>0

poor: P (E®C)y — [hu']

a(ut)>0

are surjective morphisms of H, -modules.

Let V}!(a) = p1or((g® C),). We notice that dimg V! (a) € {0,1}:
V(o) = {0} only if « is a non-compact imaginary root and V,!(a) ~ Cq|p,
when V! (a) # {0}. We notice also that V,!(a) = V}(6(c)), hence

q/qu+ = ([q7 M+]7 Ju*) = @ le (Oé) S C—B Vxl (Oé)

[a]es /7o aeRCi AR T

The identity [B] is proved.

Similarly we consider V.2(a) = paor((¢g®C),). We notice that dime V,2(a) €
{0,1}: V2(a) = {0} only if a is a compact imaginary root and V2(a) ~
Calm, when V2(a) # {0}. We notice also that V.2(a) = V.2(0(c)), hence

h/hu* = ([h7 MJF]’ Ju*) = @ sz (Oé) S @ sz(a)'

[a]es /Zo aeRG AR

The identity [A] is proved.

Finally we check that the complex structures J,,+ and Jy, preserve each
V() and that (V(a),Jy,) ~ Caly, when (a,u™) > 0. The identity [C]
follows. []

We consider the H,-module V,, := Z[a]e% /Zs CalH,, and the G,-modules
Enci = I e Cq and ES = D nemc Aot Cq. In the previous lemma
we have provezd that H,-modules b/b,+ and q/ qu+ are respectively isomor-
phic to V, ®ES and V, @E2. If we use the fact that Sym(V,)® AV, = 1,
we get the following corollary.

Corollary 3.6 We have the following identity of virtual H,-modules:

Sym(a/q,+) ® /\ b/b,+ ~ Sym(EX) @ /\ ES.

Let us now prove Lemma 3.2.
Let B = A,/Zs| (R A RS). We see that N, Ve = Tlaes(l —
t%) whereas A_; Ve = Tlaes(l —t7%). Accordingly we get A, Vi ~
n T
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(-nBlc, @ A_, . Vy where B = {a € B,a = a} and n = 3,5 a. Now
o

it is easy to check that an element a € B belongs to B’ if and only if o and

6(a) both belong to R} . In other words

B = {aeR! nOR]), 0(a) # a} /Zs| R A R}
We have proved that

N\ Ve = (=1)™ Cs(y @ det(E2) @ /\ Vi

Jvy —J+

O

Finally, thanks to Lemma 3.2 and Corollary 3.6, we obtain the final
formula for Q. (A) (that does not depend on the choice of r):

Qua(N) = (—1)™Ind ((CA o) ® det(B2) @ Sym(E2) @ /\E)

3.3 Computation of the virtual module M, ()\)

According to Theorem 1.1, we have the decomposition V.|y = 31 Qz()\)
where Qz(\) = Indj (A,(\)), and A,(\) € R(H,) has the following de-

scription

1 m, nci n01 ci
Ax()‘) = W—H Z (_1) zw(c)\szré(mw) ® det<Emw) ® Sym E ® /\Exw
T weWw

The aim of this section is to simplify the expression of the virtual H,-
module Az(X). We start by comparing the Gy-modules EXS) and EX'. We
use the decomposition EL¢ = (Egm):} ® (Egm); where

(Egd):) = Z Cao, and (Egd);z Z Ca.

aeRnci nRF ART, aeRDNRT N —RTy,

We have the following basic lemma (see Lemma 3.10).

Lemma 3.7 The G -module |EX|,, := (Egd):) @ (Enct),, is isomorphic to
Enci
Tw "

Let p = %Za€%+ a. We denote by w e XA = w(A + p) — p the affine action

of the Weyl group on the lattice A.
The main result of this section is the following proposition.
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Proposition 3.8 Let x € Zy. We have
Ag(N) = My(A) ® Cspy ® /\ ES

where M, (\) € E(Hm) 1s defined by the following expression

M) = S 3 (1P Cluny, @ det((E3) ) @ SymE2L).
r weW
and
o kyw =R R, N {0(a) # ta}| + RS RS, "R,
o ny = |0(R]) N RT[ — 30(RT) N KT {0(a) # A},
Remark 3.9 We can describe Qz(\) differently by taking {w,--- ,wp} <

W such that W/WH ~ {@y,--- @,}. We have Qz(\) = Indf (Ax()\)>
with

Ar(N) = Ma(N) ® Cs(py ® \ ES
and where M, (\) € ]/%(Hx) is defined by the following expression

p
M(A) = (=1)" (=1 Clupan), @ det((EX),, ) ® Sym(E2% ).
k=1

We need to introduce some notations. To x € Zy, we associate :

e The polarized roots : to a € R, and w € W, we associate |a|, € R,
defined as follows

oty =

a if aeRt,,
—a if a¢RY,.

e The following G,-weights :

ci oL nci ,__ R
W= Y e = Y 4 = Y

aem%imm; aem&‘pimm; aem;
lor|w #ox |orfw o lor|w#ax

The proof of Proposition 3.8 is based on the following Lemma.
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Lemma 3.10 Let x € Zy and w e W. Let dfi&w be the cardinal of the set
{ae R A" RE, |alw # a}. We have the following relations

nci ci o
1. Egy =~ Zaemgcimm; Cla\w and EZ, ~ Zaemgim%z* Cla\un

2. det(ES) = C_ e ® det((EL) "),

3. NES, = (-1)EvC_a @ AES.
4. The Hy-weight 0(zw) — 6(x) is equal to the restriction of Gy-weight

nci

Yo T Vo — Yow t0 Hy.

Proof. We remark that R, = R, RS = g(RT) and R}, = g(wR™).
The first point follows and points 2. and 3. derive from the first.
Let us check the last point. The term p, := %Z aet @18 the image of

p = %Za,em+ o/ through the map u — ;. We see that
pe+0(p) = > a=20(x)+ 2007 + 205
aeRT NO(RT)

where pml = %Zae%gci At and pS = %Zaemci At O Similarly we have

Prw + 0(prw) = 26(zw) + 2PHCI + 2p?ciw

Thus the H,-weight §(zw) — §(z) is equal to the restriction to H, of the
G-weight

nci nci

B(z,w) 1= prw — pz + (P25 — p2) + (pS — pS,).

We notice that pg — pr = (wp p) = Y- Furthermore, small compu-
nci nci

tations gives that pic — Prw = Vo and pg — pi, = Vi We have proved
that f(z,w) = ’yﬁi‘v + 74 'w — Yzw- The last point follows. []

Now, we can finish the proof of the Proposition 3.8. We must check that
the virtual H,-module

A = (—1)™Cy, 1 5(ew) @ det (B2 ® /\ ES,
is equal to the virtual H,-module

B = (—1)" e Cpan), va(e) @ det(ER) ) @ A\ ES.

If we use the previous Lemma, we get
A — (_1)mxw+d§i’w(c(w()\+p)—p)z+6(x) ® det( EHCI ) ® /\ECI
Thus the equality A = B follows from the following lemma.
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Lemma 3.11 For any x € Zy and w € W, we have ng + kyw = Mgy +
ds ,, mod 2.

Proof. In order to simplify our notations, we write a = b for a =
b mod 2.

We have dim E2% = dim E2¢ and dimES' = dimES,, then
Mgy — My
1
= 5 (IR n0(R3y) N {8(a) # | = 1Ry  6(R;) N {6(e) # a}])
1
= 5 (1950 0 OO = 195 0 0(R))]) -

We remark now that
iﬁ;‘w N 9(9{;'w) = A++ ) Aff U A+7 ) A7+

with Ay =R} nO(RT) "R, nO(RT,), A = —RI n—0(R]) "R, N
O(R),), Ay =R nO(—R) nRE, nORS,) and A_y = —RI nO(R])
Ry N ORL,).

Similarly we have

m; M 9(9‘{;{) = B++ uB__u B+_ ) B__|_

with By, = R n 0(R)) n RS, nO(RS,), Bo— =R nO(RE) n =R, N
0(—R5,), Bi— = R nO(R) n R, nO(—RT,) and B, = RI nO(R])
_m;w N H(m;w)

We have the obvious relations : A,y =B, A_._ =—-B__,0(A,_) =
A_,0(Bs_)=DB_; and A; . = By;. So we get

Mgy — Mg = |[A4_| + |By_|.
Let consider A := R} n R} and B := R} n —R},. We have

Mew — My = |AnOB)|+|An—0(B)]
= A +]|AnO(A)|+|An—0(A).

Now we remark that

[AnO(A) = [An0(A)n{0(a) = a}|
= R %Ry, 0 {0(a) = a}].
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Similarly
AN =0(A) = [An—-0(A) n{0(a) =—a}
= R n R, n{0(a) = —a}l.
At this stage we have proved that

Mayw — My

= R 0 R+ IR ARG, 0 {0(a) = a}f + R AR, n {0(a) = —a}

= R 0%, 0 {0(a) # —a}| + R N RL, n {0(e) = af|.

Asdg, = |D‘{;m —Rf, N RY|, we have RS "RE, N {0(a) = a}] +.d§i7w
is equal to dimE§ + |R} n R, n ML, This implies that mg., + dS,, is
equal, modulo 2, to

my + dimES + RS A R, A R+ RS AR, {0(e) # —al|
=m, + dimES + R A RE, AR+ RS A RE, A {0(a) # +all.
By definition m, = 3|R} N 0(RS) N {0(a) # o} + dim E2 and then
- 1
my + dimES = §|9{: NORD) n {0(a) # a}] + RS n {0(a) = a}]
= n,.

Finally we have proved that mg., + dfi&w is equal, modulo 2, to ng + Kz 4.

O

4 Examples

In this section we will study in details some examples of our formula

Vil = Y, QN

Te H\Zy/W
where Qz(\) = Indfj, (M,(\) ® Cs(,y ® AES) and

(-1

Ma(¥) = i

DT (=1 Cppany, ® det((EX) ) @ Sym(JER],).
weW

Here the integers k; ,, and n, are defined as follows:
o kyw =R nRE, N {0(a) # ta}| + R N RS, nRY,

o o = [0(R]) N RT| = 3l0(0RT) A RE A {0(a) # al.
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41 Kc Kx K

Let K be a connected compact Lie group. Here we work with the Lie group
G = K x K and the involution 0(ky, ks) = (ks, k1). The subgroup H = GY
is the group K embedded diagonally in G.

Let T be a maximal torus of K and let Wx = Ng(T)/T be the Weyl
group of K. We denote by R the set of roots for (K,T'), and we make the
choice of a set D‘i}g of positive roots.

In the next lemma we describe the critical set Zy in the flag manifold
F=K/T x K/T of G.

Lemma 4.1 We have Zy = UweWK Zy with Zy, = K - (WT,T). In other
words, the set H\Zy/W is a singleton.

Proof. The element z = (a7,0T) € F belongs to Zy if and only if
= (a7'b,b"ta)e W x W. If b=ta = w e W then (aT,bT) € Zy. []

We take © = (T,T) € Zy. For each w € Wk, we write zw = (wT,T). We
take A = (a,b) € A x A = G

Our data are as follows:

e the group G, is the maximal torus T'x T' c K,

e the group H, is the maximal torus T c K,

* Clwen)o+5(2) = Cuw(atrp)+b+p as a character of T

¢ Ny = |9{;r{|’

o kyq is equal to [wRE N RE| + R, so (—1)k=w = (—1)v,

e the vector spaces ES, E2! are reduced to {0}.

In this context we recover the classical relation

48) V@WK = (—n)@mEME N (1) Indf (Cugatp)+bep) -

u}EWK
Example 4.2 The irreducible representation SU(2) are parametrized by N.
If n = 0, the irreducible representation V,, of SU(2) satisfies

Vi = Indg”((Co — C2) ® o).
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If we take m =n = 0, then (4.8) gives

SU(2 SU(2
Va®Vim = Indy P (Conn) = Indy P (Connyo)

Indf]((]l(f)(((co —Co) ® Crrign—ak)

I
1=

B
Il

0

Il
1=

Vm+n—2k-

B
Il

0

We recognize here the classical Clebsch-Gordan relations.

4.2 U(p)xU(q) = Ulp+q)

Let p>¢q>1and n=p+ q We take G = U(n) with maximal torus T ~
U(1)™ the subgroup formed by the diagonal matrices. We use the canonical
map 7 from the symmetric group &, into G. It induces an isomorphism
between &,, and the Weyl group W of G.

We work with the involution 6(g) = AgA~! where A := diag(I,, —1I,):
the subgroup fixed by 0 is H = U(p) x U(q).

In the next section we describe the critical set Zy < F. For another type
of parametrization of Hc\F, see Section 5 of [12].

4.2.1 The critical set

We consider the following elements of O(2):

1
HEEIEN R
V2

The element R is of order 8, R> = —J and R™* < (1) 1 > R=2S5.

Il
7N
= O

|
e~
~

Sl

To any j € {0, ..., q} we associate :

e g; :=diag(1,...,1,R,...,R, 1,...,1) e G,
—. A S
p—j times j times ¢—j times

e the permutation w; € &, that fixes the elements of [1,--- ,p — j]
Ulp+j+1,---,n] and such that

wi(p—j+2k—1) =p—j+k, wj(p—ji+2k)=p+k, for 1<k<j

e kj =Tjg; € G, where 7; € N(T') is the image of w; by 7,
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° xj:ijG.F.

We notice that the adjoint map Ad(rj) : G — G sends the matrix
diag(a1,...,ap—j,b1,...,b2j,¢1,...,¢q—j) to the matrix

diag(al, ce ,ap,j,bl,bg, ce ,b2j717b2,b47 ce ,bgj,cl, N ,Cq,j).
We see then that

oj = k; ' Akj = diag(1,...,1,5,...,9,-1,...,—1)

Mw_-/ ——— —
p—j times 5 times q—7 times

and k:j_lﬁ(k‘j) = 0;A belong to N(T'). Thus the elements xo,...,z, belongs

to Zy.

Lemma 4.3 In the flag manifold F the set Zy has the following description:

Zg = U U ijw

0<j<q weW, \W
So we have H\Zg/W = {Zo, ..., Zq}.

Proof. If 1 < a < b < n, we denote by 7, € N(T') the permutation matrix
associated to the transposition (a,b).

Let gT € Zy. Then k := g~ '0(9)A = g~ 'Ag is an element of order two
in N(T). The Weyl group element k € W is of order two, then there exists
0 <1< mn/2, and a family (a1 < b1),...,(a; < b;) of disjoint couples in
{1,...,n} such that kT = 74, 4, ... g, 0, T

Now, if we use the fact that the characteristic polynomial of k € G is
equal to (X — 1)P(X + 1)? with p > ¢ > 1, we see that

el <gq,

o there exists n € N(T) such that n=tkn = oy = k; ' Ak;.

If we take w = n € W, the previous identity says that g € HkjwT. []

4.2.2 Localized indices

We work with the groups T < H = U(p) x U(q) € G = U(n) and the
corresponding Lie algebras t  h < g. Let R = {g, — g5} be the set of
non-zero roots for the action of T on g ® C. We choose the Weyl chamber
so that R 1= {e, — &5, 1 <7 <s<n}.
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Let j € {0,. .A,q}. The aim of this section is to compute the localized
index Qz;(\) € R(H). In order to have a fairly simple expression we will
rewrite the terms of the form Indng (Cs@ A E%)

We write {1,...,n} = [} UI7 UI? U I} where I[ = {1 <k <p—j}, [} =
{p—j+1<k<plI={p+1<k<p+jland [} ={p+j+1<k<n}

For the maximal torus T' < G we have a decomposition

7l 2 3 4
T_Tj ><Tj ><Tj ><Tj

where Tf = {(tx),k € If}. Let T; < Tj2 X Tf be the subtorus defined by

the relations : ((tx)per2, (Sk/)wers) € Tj if and only if ¢, = sy for all
J J

1<k<j.

The elements of order two ¢; € G induce involutions on G' (by conjuga-
tion) that we still denote by o;. We start with a basic lemma whose proof
is left to the reader.

Lemma 4.4 Let x; = k;T € F.

o The adjoint map Ad(k;) : g — g realizes an isomorphism between the
vector space t equipped with the involution induced by o; and the vector space
9z; equipped with the involution 6.

o The group N(T)% /T is isomorphic with S,_j x S4_; x &; x {£}/.

e The adjoint map Ad(k;) : G — G induces an isomorphism N (T')% /T
~ Wy,.

o The stabilizer subgroup H,, is equal to le x T x T;—l cT.

o If Cy is a character of T, then Cg,q is a character of Gy, and Crq is
a character of T. We have the relation

Ck‘ja|ij = era‘sz-
e The set of roots i)‘i;lj is equal to
kj-{sr—ss,l<r<s<p—j}Ukj~{ar—as,p+j+l<r<s<n}
andf)‘ig;i=kj~{€r—ss,1<r<p—j&p+j+1<s<n}.
We denote by M; the T-module CP~7 ® (C477)* where the subgroup
sz X Tf’ acts trivially and the le X Tj‘-l—action is the canonical one. Thank
to Lemma 4.4, we have the following isomorphisms of H, ;-modules:

nci .
B ~ M.
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We consider the Lie group
Kj:=U(p—j)xUlg—j)

that we view as a subgroup of H in such a way that T1 X T4 is a maximal torus
of K;. A set of positive roots for (Kj,le X T]?l) ise,—es for 1<r<s<p—j
and p+j+1<r<s<n Weequip Ej/tjl- X t;* with a complex structure
such that

ES. =~ &/t x t;
is an isomorphism of le X Tf—modules.

The holomorphic induction map HolKj R(le X T;l) — R(Kj) is
J

TixTd
defined as follows:

K; K;
m%#ﬁaﬂ:hMﬁﬂ%V®/WM@xé)

Ifa=(ag > >ay;)€ZP7andb=(by > >by_j) € ZI, then
Cla,p) defines a character of le X T;l and

iy Ulg—j
HOlTle4 (Clap) = VP vy )
is the irreducible representation of K; with highest weight (a,b).
A character Cg of the torus T' can we written Cg = (CBM ® (C523 where
Cpaa is a character of le X T;l and Cpgas is a character of Tj2 X Tf’. Note that
(CTjg|ij = Cp11 ® Cy where ' = 7;8% defines a character of T < Tj2 X TJ‘?’.

Lemma 4.5 Let Cg be a character of T. Then Indgz_(Cﬁ\ij ® /\E%) is
J
equal to

Indgj XT2xT3 <H01 1 (Cpua) @ Cpos @ L*(T7 x T7/T; ))
><T3

zmmﬁmxﬁmdeﬂ 7(1) e R(T? x TP).

Remark 4.6 To gain some space in our formulas, we will write HolT1>< T3 (Cp)

instead of HolT]f o ((C 514) ®XC 523

We need to fix some notations.
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Definition 4.7 e Let x : H — C be the character (A, B) — det(A) det(B)™!.
e Let v, be the character? of T associated to the weight

D (a—p+2+2j — 4k)ep_jih-

1<k<j
o For any (j,w) € [0,q] x W, we define the integer d; ., by the relation
djw = dim(My) + {1 Sk < j, wl(p—j +2k = 1) <w™'(p—j + 2k)}].
A small computation gives the following lemma.
Lemma 4.8 e The H,-character (C(;(xj) is equal to &I ® %"ij-
e For any (j,w) € [0,q] x W, we have
(=1 e = (1D (1 (1),
The main result of this section is the following proposition.

Proposition 4.9
U(n) N
Vi oot = D, Qe (V)
j=0

where Qz; (\) € R(U(p) x U(q)) is determined by the relation
-1 j(n+1) " . U U " )
Qz;(N) = S D, (FDP(=1b IndK(-px);%fgz'? (AF(N) @1;) @ x®.
‘ij‘ welW A
Here the elements AY()) € E(Kj X Tj2 X Tf’) are defined as follows:

A () = Holg g (Cpyuen) © det((14)5) @ Sym(My ) ) ®LA (TP TH/T5).

We finish this section by considering particular situations.

2Remark that 1, is trivial le X Tj3 X Tf.
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4.2.3 The extreme cases : j=0or j=gq

When j = 0, the torus T and 7§ are trivial and Ko = U(p) x U(q) = H.
Moreover My = CP ® (C?)* and dp,, = dim(My),;,. Thanks to Lemma 4.4,
we know also that W, ~ &, x &,.
So we get the formula
1

Qz(A) = ol D (#)w Holf! (Cyar ® det((Mp);h) © Sym(|Mol.,))
T weWw

where (£), = (—1)”(—1)dim(M0)’~+U.
Remark 4.10 An useful exercise is to consider the term
Ay 1= () Holff (Cpar ® det((Mo)) ® Sym([Mol))
and verify that Ay, = A, when w' € Wy,.
When j = ¢, the torus T; is trivial, K, = U(p — ¢q) and M, = {0}.
Moreover W, ~ &,_, x &4 x {#+}7. In this case we obtain

(_1)q(n+1)

Qz, (A) = >, (CDE D X QY ()

_ 1!
(p q)q2q weW
with

w U U U(p—
§ ) = Indg@ 0D,y (Holy”™ (Crywen) @ ¥y ® L(T7 x T3/T,) ).

424 U(n—-1)xU(1l)cU(n)

Here we are in the case where ¢ = 1, and so

V,\U(n)|U(n—1)xU(1) = Qzo(N) + Qz, (N).

To simplify the expression of Qz,(A) we use the fact that the quotient
Wao \W is represented by the class of the elements 74, € G associated to
the transposition (k,n) for 1 < k <n. We write T'=T" x U(1) where 7" is
a maximal torus of U(n — 1). The T'-module C"~! can be decomposed as
Vi @ V), where Vj, = Z;:ll C., and V) = Z;:,i C,,.

The T-module My is equal to C" '®C* =V, ® C_., ®V, ®C_,, and
the polarized T-module M|, , is equal to V; ®C_, ®V,®C.,. We have
dim(Mo)}, =k — 1 and det(Mo)}, = = Cp, ® C21F with puy, = 35~ C. .
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So we obtain

)kH()lg’(nil) <(C'rk,n0)\+uk ® Symj (Vi) ® Symi (W)) ® (C€®nl+i*j*k’

‘1
H

where (+);, = (=1)¥ if k <n and (), = (=1)""L.

We consider now the term Qz,(\). When j = ¢ = 1, the torus T} is
trivial, K1 = U(n—2) and My = {0}. Moreover W, ~ &,,_o x {£}, 1 = Id
and 11 = (2—n)ep—1. Here the quotient W,,\W is represented by the class
of the elements 7; ,_17;,, € G for 1 <1i < j <n. We denote by \;; the term
Tin—1Tjn ® A.

In this case we obtain

QM) =(-1" Y, (-1l @ Qi ()

with

i U(n—1)xT? U(n—
YO = dggn” iiTéfox (Holl" (Cr,,) @ @ LA(TE x TH/T1))

= Y Indy(r7)) e (Hol (" (Cy,) ©CEF ) @CE R,
keZ

Let us finish this section by considering the simplest example: U(1) x
U(l) < U(2). Take A = (A1 = A2) € U(2). We have V)\U(2)|U(1)XU(1) -
Qzo(N) + Qz, (X) where

Ao—A1—1
Qi’()()i_CA® Z Cel 62_C®ZC€1 €2

k>1

and Qz,(\) = CA ® Y., CEF _ . We recover the basic relation

e1—e2”

|U(1 xU(1 =C\® Z (Cgk €2°
k=MXo—
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