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Paul-Emile PARADAN ∗
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Abstract

Let G be a compact connected Lie group and let H be a subgroup
fixed by an involution. A classical result assures that the HC-action on
the flag variety F of G admits a finite number of orbits. In this article
we propose a formula for the branching coefficients of the symmetric
pair pG,Hq that is parametrized by HCzF .
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1 Introduction

Let G be a compact connected Lie group equipped with an involution θ.
Let Gθ :“ tg P G, θpgq “ gu be the subgroup fixed by the involution. We
consider a subgroup H Ă G such that pGθq0 Ă H Ă Gθ. The purpose of
this paper is the study of the branching laws between G and H.

Let T be a maximal torus of G that we choose θ-invariant. Let t be
the Lie algebra of T . Let Λ Ă t˚ be the lattice of weights, and let t˚` be
a Weyl chamber. The irreducible representations of G are parametrized by
the semi-group Λ`

G :“ Λ X t˚` of dominant weights.
Let λ P Λ`

G. In order to study the restriction V G
λ |H of the irreducible

G-representation V G
λ , we consider the H-action on the flag variety F “ G{T

of G. An important object is the H-invariant subset

Zθ Ă F

formed of the elements x P F for which the stabilizer subgroup Gx :“ tg P
G, gx “ xu is stable under θ. In orther words, gT P Zθ if and only if g´1θpgq
belongs to the normalizer subgroup NpT q. A well-known result tells us that
the group H has finitely many orbits in Zθ, and that the finite set HzZθ

parametrizes the HC-orbits in F [7, 13, 11, 8].
Let x P Zθ. The stabilizer subgroup Gx is a maximal torus in G with Lie

algebra gx. We will also consider the abelian subgroup Hx :“ Gx XH (that
is not necessarily connected). Any weight µ P Λ determines a character Cµx

of the torus Gx by taking µx “ g ¨ µ if x “ gT P F .
We denote byRx Ă g˚

x the set of roots relative to the action of the Cartan
subalgebra gx on gbC. The map µ P R ÞÑ µx P Rx is an isomorphism, and
we take R`

x Ă Rx as the image of R` Ă R through this isomorphism.
The involution θ leaves the set Rx invariant, and α P Rx is an imaginary

root if θpαq “ α. If α is imaginary, the subspace pg b Cqα is θ-stable.
There are two cases. If the action of θ on pg b Cqα is trivial then α is
compact imaginary. If the action of ´θ on pgbCqα is trivial, then α is non-
compact imaginary. We denote respectively by Rci

x and by Rnci
x the subsets
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of compact imaginary and non-compact imaginary roots, and we introduce
the following Gx-modules

E
ci
x :“

ÿ

αPRci
x XR`

x

pg b Cqα, E
nci
x :“

ÿ

αPRnci
x XR`

x

pg b Cqα.

The weight

δpxq :“
1

2

ÿ

αPR`
x XθpR`

x q

θpαq‰α

α

defines a character Cδpxq of the abelian group Hx. Let

mx “
1

2
|R`

x X θpR`
x q X tθpαq ‰ αu| ` dimE

nci
x .

We denote by RpHq and by RpHxq the representations rings of the com-
pact Lie groups H and Hx. An element E P RpHq can be represented as
a finite sum E “

ř
V P pH mV V , with mV P Z. We denote by pRpHq (resp.

pRpHxq) the space of Z-valued functions on pH (resp. xHx). An element
E P pRpHq can be represented as an infinite sum

ř
V P pH mV V , with mV P Z.

The induction map IndKH : pRpHxq Ñ pRpHq is the dual of the restriction
morphism RpHq Ñ RpHxq.

The main result of this paper is the following theorem.

Theorem 1.1 Let λ P Λ`
G. We have the decomposition

(1.1) V G
λ |H “

ÿ

Hx PHzZθ

QHxpλq

where the terms QHxpλq P pRpHq are defined by the following relation :

QHxpλq “ p´1qmxIndHHx

´
Cλx`δpxq b detpEnci

x q b SympEnci
x q b

ľ
E
ci
x

¯
.

Here SympEnci
x q, which is the symmetric algebra of E

nci
x , is an admissible

representation of Hx and
Ź

E
ci
x “

Ź`
E
ci
x a

Ź´
E
ci
x is a virtual representation

of Hx.

We give now another formulation for decomposition (1.1) using the
(right) action of the Weyl group W “ NpT q{T on the flag variety F . If
x “ gT P F and w P W we take xw :“ gwT . We notice immediately that
Zθ is stable under the action of W .
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We associate to an element x “ gT P Zθ the subgroup WH
x Ă W defined

by the relation w P WH
x ðñ Hxw “ Hx. We denote by HzZθ{W the

quotient of Zθ by the action of H ˆ W , and by x̄ P HzZθ{W the image of
x P Zθ through the quotient map. We associate to x̄ P HzZθ{W the element
Qx̄pλq P pRpHq defined as follows

Qx̄pλq “
ÿ

w̄PWH
x zW

QHxwpλq.

Theorem 1.1 says then that V G
λ |H “

ř
x̄ PHzZθ{W Qx̄pλq. Here is a new

formulation of Theorem 1.1.

Theorem 1.2 We have V G
λ |H “

ř
x̄ PHzZθ{W Qx̄pλq where Qx̄pλq P pRpHq

has the following description

Qx̄pλq “ IndHHx

´
Mxpλq b Cδpxq b

ľ
E
ci
x

¯
,

for some1 Mxpλq P pRpHxq.

We finish this section by giving two basic examples associated to the
group SUp2q. Here the flag variety of SUp2q is the 2-dimensional sphere
S
2. For n ě 0, we denote by Vn the irreducible representation of SUp2q of

dimension n` 1.

Example 1. G “ SUp2q and the involution θ is the conjugaison by the

matrix

ˆ
1 0
0 ´1

˙
. The subgroup fixed by θ is the torus T » Up1q and the

critical set Zθ Ă S
2 is composed by the poles S,N and the equator E, so

that T zZθ has three terms. We take λ “ n in {SUp2q » N.
For Hx “ E, we have E

nci
x “ E

ci
x “ t0u, Hx » Z2, and Cλx`δpxq “ Cn|Z2

.

The contribution of E is then Ind
Up1q
Z2

pCn|Z2
q “ Cn b

ř
kPZC2k.

For Hx “ N , we have Hx “ T , Enci
x “ C2, E

ci
x “ t0u, and Cλx`δpxq “ Cn.

The contribution of N is then ´Cn`2 b SympC2q.
For Hx “ S, we have Hx “ T , Enci

x “ C´2, E
ci
x “ t0u, and Cλx`δpxq “

C´n. The contribution of S is then ´C´n´2 b SympC´2q.
Finally, Relations (1.1) become

Vn|T “ Cn b
ÿ

kPZ
C2k ´ C´n´2 b SympC´2q ´ Cn`2 b SympC2q

“
0ÿ

k“´n

C2k`n.

1The precise expression of Mxpλq is given in Proposition 3.8.
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Example 2. G “ SUp2q ˆ SUp2q and the involution θ is the map
pa, bq ÞÑ pb, aq. The subgroup fixed by θ is SUp2q embedded diagonally and
the critical set Zθ Ă S

2ˆS
2 is equal to the union of the orbits SUp2q¨pN,Nq

and SUp2q ¨ pS,Nq. Let λ “ pn,mq P pG.
For x “ pN,Nq or x “ pS,Nq we have Enci

x “ Eci
x “ t0u and Hx » T .

For x “ pN,Nq we have λx ` δpxq “ m` n` 2, and for x “ pS,Nq we have
λx ` δpxq “ m´ n. Relations 1.1 give then

Vn b Vm “ Ind
SUp2q
T pCm´nq ´ Ind

SUp2q
T pCm`n`2q.

It is not difficult to see that the previous identities correspond to the classical
Clebsch-Gordan relations (see Example 4.2).

Notations

Throughout the paper :

• G denotes a compact connected Lie group with Lie algebra g.

• T is a maximal torus in G with Lie algebra t.

• Λ Ă t˚ is the weight lattice of T : every µ P Λ defines a 1-dimensional
T -representation, denoted by Cµ, where t “ exppXq acts by tµ :“
eixµ,Xy.

• The coadjoint action of g P G on ξ P g˚ is denoted by g ¨ ξ.

• When a Lie group K acts on set X, the stabilizer subgroup of x P X
is denoted by Kx :“ tk P K | k ¨ x “ xu and the Lie algebra of Kx is
denoted by kx.

• When a Lie group K acts on a manifold M , we denote by X ¨ m :“
d
dt
etX ¨m|t“0, m P M , the vector field generated by X P k.

2 Non abelian localization

Our main result is obtained by means of a non-abelian localization of the
Riemann-Roch character on the flag variety F of G. For that we will use
the family pΩrqr of symplectic structure parametrized by the interior of the
Weyl chamber t˚`. The symplectic structure Ωr comes from the identication
gT Ñ g ¨ r of F with the coadjoint orbit Gr. The moment map Φr : F Ñ g˚

associated to the action of G on pF ,Ωrq is the map gT ÞÑ g ¨ r.
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At the level of Lie algebras we have g “ h‘q where h “ gθ and q “ g´θ.
For any ξ P g “ h‘ q, we denote by ξ` his h-part and by ξ´ his q-part. We
use a G-invariant scalar product p´,´q on g such that the involution θ is
an orthogonal map. It induces identifications g˚ » g, h˚ » h and q˚ » q.

The moment map ΦH
r : F Ñ h˚ associated to the action of H on pF ,Ωrq

is the map gT ÞÑ pg ¨ rq`.

2.1 Matsuki duality

Consider the complex reductive groups GC and HC associated to the com-
pact Lie groups G and H. Let L Ă GC be the real form such that H Ă L is
a maximal compact subgroup of L.

Matsuki duality is the statement that a one-to-one correspondence exists
between the HC-orbits and the L-orbits in F ; two orbits are in duality when
their intersection is a single orbit of H.

Uzawa, and Mirkovic-Uzawa-Vilonen [14, 8] proved the Matsuki corre-
spondence by showing that bothHC-orbits and L-orbits in F are parametrized
by the H-orbits in the set of critical points of the function }ΦH

r }2 : F Ñ R.
First we recall the elementary but fundamental fact that the subset Zθ

is equal to the set of critical points of the function }ΦH
r }2 [8, 3].

Lemma 2.1 Let x “ gT P F and r P Interiorpt˚`q. The following statements
are equivalent:

i) the subalgebra gx is invariant under θ (i.e. x P Zθ),

ii) g´1θpgq P NpT q,

iii) x is a critical point of the function }ΦH
r }2,

iv) pg ¨ rq` and pg ¨ rq´ commutes.

Proof. Let ng “ g´1θpgq and let r be a regular element of t˚ » t. Since
gx “ Adpgqt we see that

θpgxq “ gx ðñ ng P NGpT q

ðñ rng ¨ θprq, rs “ 0

ðñ rθpg ¨ rq, g ¨ rs “ 0

ðñ rpg ¨ rq`, pg ¨ rq´s “ 0.

A small computation shows that for any X P g the derivative of the
function t ÞÑ }ΦH

r petXxq}2 at t “ 0 is equal to pX, rg ¨ r, θpg ¨ rqsq. Hence
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x “ gT is a critical point of the function }ΦH
r }2 if and only if rg¨r, θpg¨rqs “ 0.

Finally we have proved that the statements iq, iiq, iiiq and ivq are equivalent.
l

Let us check the other easy fact.

Lemma 2.2 The set HzZθ is finite.

Proof. Let x “ gT P Zθ. A neighborhood of x is defined by elements
of the form eXeY x where X P h and Y P q. Now we see that eXeY gT P Zθ

if and only if e´2g´1Y P NpT q. If Y is sufficiently small the former relation
is equivalent to g´1Y P t, and in this case eXeY x “ eXx. We have proved
that any element in HzZθ is isolated. As HzZθ is compact, we can conclude
that HzZθ is finite. l

2.2 Borel-Weil-Bott theorem

We first recall the Borel-Weil-Bott theorem. The flag manifold F is equipped
with the G-invariant complex structure such that

TeTF »
ÿ

αPR`

pg b Cqα

is an identity of T -modules. Let us consider the tangent bundle TF as
a complex vector bundle on F with the invariant Hermitian structure hF
induced by the invariant scalar product on g.

Any weight λ P Λ defines a line bundle Lλ » G ˆT Cλ on F .

Definition 2.3 We associated to a weight λ P Λ
‚ the spin-c bundle on F

Sλ :“
ľ

C

TF b Lλ,

‚ the Riemann-Roch character RRGpF ,Lλq P RpGq which is the equiv-
ariant index of the Dirac operator Dλ associated to the spin-c structure Sλ.

The Borel-Weil-Bott theorem asserts that V G
λ “ RRGpF ,Lλq when λ is

dominant. Now we consider the restriction V G
λ |H “ RRHpF ,Lλq. In the

next section we will explain how we can localize theH-equivariant Riemann-
Roch character RRHpF ,Lλq on the critical set of the function }ΦH

r }2 [9].
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2.3 Localization of the Riemann-Roch character

In this section we explain how we perform the “Witten non-abelian local-
ization” of the Riemann-Roch character with the help of the moment map
ΦH
r : F Ñ h˚ attached to a regular element r of the Weyl chamber [9, 5, 10].
Let us denote by X ÞÑ rXsg{t the projection g Ñ g{t. The Kirwan vector

field κr on F is defined as follows:

κrpxq “ ´ΦH
r pxq ¨ x P TxF .

Through the identification g{t » TxF ,X ÞÑ d
dt

|t“0ge
tXT , the vector κrpxq P

TxF is equal to rg´1θpgq ¨ rsg{t. Hence the set Zθ Ă F is exactly the set
where κr vanishes.

Lat D0 be the Dirac operator associated to the spin-c structure S0 “Ź
C
TF . The principal symbol of the elliptic operator D0 is the bundle map

σpFq P ΓpT˚
F ,homp

Ź`
C
TF ,

Ź´
C
TFqq defined by the Clifford action

σpFqpx, νq “ cxpν̃q :
ľ`

C
TxF Ñ

ľ´
C
TxF .

where ν P T˚
xO » ν̃ P TxO is the one to one map associated to the identifi-

cation g˚ » g (see [2]).
Now we will deform the elliptic symbol σpFq by means of the vector field

κr [9, 10].

Definition 2.4 The symbol σpFq shifted by the vector field κr is the symbol
on F defined by

σrpFqpx, νq “ cxpν̃ ´ κrpxqq

for any px, νq P T˚
F .

Consider an H-invariant open subset U Ă F such that U XZθ is compact
in F . Then the restriction σrpFq|U is a H-transversally elliptic symbol on U ,
and so its equivariant index is a well defined element in pRpHq (see [1, 9, 10]).

Thus we can define the following localized equivariant indices.

Definition 2.5 Let Hx Ă Zθ. We denote by

RRHpF ,Lλ,Φ
H
r ,Hxq P pRpHq

the equivariant index of σrpFqbLλ|U where U is an invariant neighbourhood
of Hx so that U X Zθ “ Hx.
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We proved in [9] that we have the decomposition

RRHpF ,Lλq “
ÿ

HxPHzZθ

RRHpF ,Lλ,Φ
H
r ,Hxq P pRpHq.

The computation of the characters RRHpF ,Lλ,Φ
H
r ,Hxq will be handle

in Section 3.1. To undertake these calculations we need to describe geomet-
rically a neighborhood of Hx in F . This is the goal of the next section.

2.4 Local model near Hx Ă Zθ

Let x “ gT P Zθ. We need to compute a symplectic model of a neighborhood
of Hx in pF ,Ωrq. Here we use the identification g » g˚ given by the choice
of an invariant scalar product. Let µ “ g ¨ r that we write µ “ µ` ` µ´

where µ` P h and µ´ P q.
The tangent space TxF is equipped with the symplectic two form Ωr|x:

Ωr|xpX ¨ x, Y ¨ xq “ pµ, rX,Y sq, X, Y P g.

We need to understand the structure of the symplectic vector space
pTxF ,Ωr|xq. If a Ă g is a vector subspace we denote by a¨x :“ tX ¨x,X P au
the corresponding subspace of TxF . The symplectic orthogonal of a ¨ x is
denoted by pa ¨ xqK,Ω.

If a, b are two subspaces, a small computation gives that

(2.2) pa ¨ xqK,Ω X b ¨ x » aK X rb, µs,

where aK Ă g is the orthogonal of a relatively to the scalar product.
We denote by gµ` “ hµ` ‘ qµ` the subspaces fixed by adpµ`q. Notice

that gµ “ gx is an abelian subalgebra containing µ` since rµ`, µ´s “ 0. It
follows that gx Ă gµ` .

Lemma 2.6 gµ` ¨ x and rh, µ`s ¨ x are symplectic subspaces of TxF .

Proof. It is a direct consequence of (2.2). l

We consider now the symplectic subspace Vx Ă TxF defined by the
relation

(2.3) Vx “ prh, µ`s ¨ xqK,Ω X rg, µ`s ¨ x.

A small computation shows that X ¨ x P Vx if and only if rX,µs Ă rq, µ`s.
We have the following important Lemma.

9



Lemma 2.7 • We have the following decomposition

(2.4) TxF “ gµ` ¨ x
K
‘
“
h, µ`‰ ¨ x

K
‘ Vx

where K stands for the orthogonal relative to Ωr|x.

• gµ` ¨ x is symplectomorphic to hµ` {hx ‘ phµ` {hxq˚.

• rh, µ`s ¨ x is symplectomorphic to h{hµ` equipped with the symplectic
structure Ωµ`pū, v̄q “ pµ`, ru, vsq.

• Vx is symplectomorphic to ph ¨ xqK,Ω{ph ¨ xqK,Ω X h ¨ x.

Proof. If we use the decomposition g “ gµ` ‘ rg, µ`s and the fact that
the abelian subalgebra gx is contained in gµ` we obtain

TxF “ gµ` ¨ x‘ rg, µ`s ¨ x.

It is obvious to check that the subspaces rg, µ`s ¨x and gµ` ¨x are orthogonal
relatively to the symplectic form Ωr|x. Since rh, µ`s ¨ x is a symplectic

subspace we have rg, µ`s ¨ x “ rh, µ`s ¨ x
K
‘ Vx where Vx is defined by (2.3).

The first point is proved.
The identities gx “ θpgxq “ gθpxq imply the decompositions gx “ hx ‘ qx

and rgµ` , xs “ rqµ` , xs‘rhµ` , xs. The vector subspace rhµ` , xs is isomorphic
to hµ` {hx, and the map v ÞÑ Ωr|xpv,´q defines an isomorphism between
rqµ` , xs and the dual of rhµ` , xs. The second point is proved.

For the third point we use the isomophism j : rh, µ`s Ñ h{hµ` induces
by the projection h Ñ h{hµ` . Then the map ū ÞÑ jpūq ¨x defines a symplec-
tomorphism between ph{hµ` ,Ωµ` q and rh, µ`s ¨ x.

Now we see that (2.4) together with the decomposition h ¨ x “
rh, µ`s ¨ x` h ¨ x leads to

ph ¨ xqK,Ω “ prh, µ`s ¨ xqK,Ω X phµ` ¨ xqK,Ω

“ prh, µ`s ¨ xqK,Ω X pgµ` ¨ xq ‘ Vx

“ ph ¨ xqK,Ω X h ¨ x‘ Vx.

The last point follows. l

We denote by ΩVx the restriction of Ωr|x on the symplectic vector sub-
space Vx. The action of Hx on pVx,ΩVxq is Hamiltonian, with moment map
ΦVx : Vx Ñ h˚

x defined by the relation

xΦVxpvq, Ay “
1

2
ΩVxpv,Avq, v P Vx, A P hx.
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Thanks to Lemma 2.7, we know that the Hx-symplectic vector space
pTxF ,Ωr|xq admits the following decomposition

TxF » hµ`{hx ‘ phµ` {hxq˚ K
‘ h{hµ`

K
‘ Vx

Thanks to the normal form Theorem of Marle [6] and Guillemin-Sternberg
[4], we get the following result.

Corollary 2.8 An H-equivariant symplectic model of a neighborhoood of
Hx in F is Fx :“ H ˆH

µ` Yx where

Yx “ Hµ` ˆHx

`
phµ` {hxq˚ ˆ Vx

˘
.

The corresponding moment map on Fx is

ΦFxprh; η, vsq “ hpη ` µ` ` ΦVxpvqq

for rh; η, vs P H ˆHx

`
phµ` {hxq˚ ˆ Vx

˘
.

We finish this section by computing a compatible complex structure on
Vx.

By definition, the map that sends X ¨x to rX,µs defines an isomorphism
i : Vx Ñ rq, µ`s. The adjoint map adpµq defines also an automorphism of
rg, µ`s: for any X P rg, µ`s we denote by X̃ P rg, µ`s the unique element
such that adpµqX̃ “ X.

The symplectic structure Ωµ :“ pi´1q˚ΩVx satisfies the relations

ΩµpX,Y q “ pµ, rX̃, Ỹ sq “ pX, Ỹ q “ ´pX̃, Y q, @X,Y P rq, µ`s.

We consider the one to one map ´adpµqadpθpµqq : rg, µ`s Ñ rg, µ`s
and the Hx-invariant complex structure Jµ` “ adpµ`qp´adpµ`q2q´1{2 on
rg, µ`s. It restricts to a one to one map Tx : rq, µ`s Ñ rq, µ`s and a
complex structure on rq, µ`s (still denoted by Jµ`).

Let Sx :“ pT 2
x q´1{2Tx. The map JVx :“ Jµ` ˝ Sx defines a Hx-invariant

complex structure on rq, µ`s.

Lemma 2.9 The Hx-symplectic space pVx,ΩVxq is isomorphic to rq, µ`s
equipped with the symplectic form Ω1

µpv,wq “ pJVxv,wq.

Proof. We know already that pVx,ΩVxq » prq, µ`s,Ωµq. If one takes
L “ Tx ˝ p´adpµ`q2q´1{4 ˝ pT 2

x q´1{4, we check easily that ΩµpLpvq, Lpwqq “
pJVxv,wq. l
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3 Proof of the main theorem

We start with the following lemma.

Lemma 3.1 The quantity RRHpF ,Lλ,Φ
H
r ,Hxq does not depend on the

choice of the regular element r in the Weyl chamber. In the following we
will denote it by QHxpλq P pRpHq.

Proof. Let r0, r1 be two regular elements of the Weyl chamber. For
t P r0, 1s, we consider the regular element rptq “ tr1 ` p1 ´ tqr0: the Kirwan
vector field κrptq vanishes exactly on Zθ for any t P r0, 1s. If U is an invariant
neighbourhood of Hx so that U X Zθ “ Hx, then t P r0, 1s ÞÑ σrptqpFq b
Lλ|U defines an homotopy of transversally elliptic symbols. Accordingly, the
equivariant index of σr0pFq b Lλ|U and σr1pFq b Lλ|U are equal. l

3.1 Computation of QHxpλq

The computation of QHxpλq is done in three steps.

3.1.1 Step 1: holomorphic induction

Let Hµ` Ă H be the stabilizer subgroup of µ` :“ ΦH
r pxq. We know that

an H-equivariant symplectic model of a neighborhoood of Hx in F is the
manifold H ˆH

µ` Yx where

Yx “ Hµ` ˆHx

`
phµ` {hxq˚ ˆ Vx

˘
.

The symplectic two form on Yx is built from the canonical symplectic struc-
ture on Hµ` ˆHx phµ` {hxq˚ » T˚pHµ`{Hxq and the symplectic structure on
Vx. The moment map relative to the action of Hµ` on Yx is

ΦYxprh; η, vsq “ hpη ` µ` ` ΦVxpvqq P h˚
µ` ,

for rh; η, vs P Hµ` ˆHx

`
phµ` {hxq˚ ˆ Vx

˘
.

Let κYx the Kirwan vector field on Yx. It is immediate to check that
rh; η, vs P tκYx “ 0u if and only if η “ 0 and pµ` `ΦVxpvqq ¨ v “ 0. The map
v ÞÑ µ` ¨ v is bijective and v ÞÑ ΦVxpvq ¨ v is homogeneous of degree equal to
3. Then there exists ǫ ą 0 such that

pµ` ` ΦVxpvqq ¨ v “ 0 and }v} ď ǫ ùñ v “ 0.

In Yx, we still denote by x the point re, 0, 0s. We equip Yx with an invariant
almost complex structure that is compatible with the symplectic structure,
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and we denote by RRH
µ` pYx,Lλ|Yx ,ΦYx ,Hµ`xq the Riemann-Roch charac-

ter on Yx localized on the component Hµ`x Ă tκYx “ 0u.
The quotient h{hµ` , which is equipped with the invariant complex struc-

ture Jµ` :“ adpµ`qp´adpµ`q2q´1{2, is a complex Hµ`-module.
In [9][Theorem 7.5], we proved that QHxpλq “ RRHpF ,Lλ,Φ

H
r ,Hxq is

equal to

(3.5) IndHH
µ`

´
RRH

µ` pYx,Lλ|Yx ,ΦYx ,Hµ`xq b
ľ

h{hµ`

¯
.

3.1.2 Step 2: cotangent induction

The map Φxpvq :“ µ` `ΦVxpvq is a moment map for the Hamiltonian action
of Hx on Vx. The moment map on the Hµ`-manifold

Yx “ Hµ` ˆHx

`
phµ` {hxq˚ ˆ Vx

˘

is ΦYxprh; η, vsq “ hpη ` Φxpvqq P h˚
µ.

Let κVxpvq “ ´Φxpvq ¨ v be the Kirwan vector field on Vx. We are
interested in the connected component t0u of tκVx “ 0u. We choose a
compatible almost complex structure on the symplectic vector space and we
denote by RRHxpVx,Φx, t0uq P pRpHxq the Riemann-Roch character localized
on t0u Ă tκVx “ 0u.

In Section 3.3 of [10] we have proved that
(3.6)

RRH
µ` pYx,Lλ|Yx ,ΦYx ,Hµ`xq “ Ind

H
µ`

Hx
pRRHxpVx,Φx, t0uq b Lλ|xq .

3.1.3 Step 3: linear case

We write q{qµ` for the vector space rq, µ`s equipped with the complex
structure Jµ` . So q{qµ` is a Hµ`-module and we denote by Sympq{qµ` q the
corresponding symmetric algebra.

We need to compare the virtual Hx-modules
Ź

JVx
Vx and

Ź
´J

µ`
Vx.

The weight

δpxq :“
1

2

ÿ

αPR`
x XθpR`

x q

θpαq‰α

α

defines a character Cδpxq of the abelian group Hx. Recall that mx P N

corresponds to the quantity 1

2
|R`

x X θpR`
x q X tθpαq ‰ αu| ` dimE

nci
x .

The following lemma will be proved in Section 3.2.
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Lemma 3.2 The following identity holds :
ľ

JVx

Vx » p´1qmx Cδpxq b detpEnci
x q b

ľ

´J
µ`

Vx.

On the vector space Vx, we can work with two localized Riemann-Roch
characters:

• RRHxpVx,Φx, t0uq is defined with the complex structure JVx ,

• ĄRRHxpVx,Φx, t0uq is defined with the complex structure ´Jµ` .

The previous Lemma gives that RRHxpVx,Φx, t0uq is equal to p´1qmx Cδpxqb
ĄRRHxpVx,Φx, t0uq.

Proposition 3.3 We have

(3.7) RRHxpVx,Φx, t0uq “ p´1qmxCδpxq b detpEnci
x q b Sympq{qµ` q.

Proof. For s P r0, 1s, we consider the Hx-equivariant map Φs : Vx Ñ h˚
x

defined by the relations Φspvq “ µ` ` sΦVxpvq. The corresponding Kirwan
vector field on Vx is κspvq “ ´Φspvq ¨ v. It is not difficult to see that there
exists ǫ ą 0 such that tκs “ 0u X t}v} ď ǫu “ t0u for any s P r0, 1s. Then a

simple deformation argument gives that ĄRRHxpVx,Φ
s, t0uq does not depend

on s P r0, 1s. We have proved that

ĄRRHxpVx,Φ
s, t0uq “ ĄRRHxpVx, µ

`, t0uq

where µ` denotes the constant map Φ0. Standard computations gives
ĄRRHxpVx, µ

`, t0uq “ Sympq{qµ` q (see [9][Proposition 5.4]). Our proof is
completed. l

3.1.4 Conclusion

If we use the formulas (3.5), (3.6) and (3.7) we obtain the following expres-
sion

QHxpλq “ p´1qmxIndHHx

˜
Cλx`δpxq b detpEnci

x q b Sympq{qµ` q b
ľ

C

h{hµ`

¸

in pRpHq. Here Cλx
is the character of Gx associated to the weight λx “ gλ.

The previous formula depends on a choice of a regular element r in the
Weyl chamber. In the next section we will propose another expression for
QHxpλq that does not depend on this choice.
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3.2 Another expression for QHxpλq

Let Rx Ă g˚
x be the roots for the action of the torus Gx on g b C. The

involution θ : t˚ Ñ t˚ leaves the set Rx invariant and a root α P Rx is
called imaginary if θpαq “ α. We denote respectively by Rci

x and by Rnci
x

the subsets of compact imaginary and non-compact imaginary roots.
We choose a generic element r P t˚` such that µ` “ pg ¨ rq` satisfies the

following relation : for any α P Rx, we have

pα, µ`q “ 0 ðñ θpαq “ ´α.

Notice that an imaginary roots α is positive if and only if pα, µ`q ą 0.

Definition 3.4 We consider the subset Ax Ă Rx

α P Ax ðñ αpµ`q ą 0, θpαq ‰ α

The involution θ defines a free action of Z2 on the set Ax. We denote by
Ax{Z2 its quotient. For any α P Rx, we denote by Cα the corresponding 1-
dimensional representation of Gx, and Cα|Hx its restriction to the subgroup
Hx. We have a natural map rαs P Ax{Z2 ÞÝÑ Cα|Hx P RpHxq.

For any α P Rx we define
α̃ “ ˘α

where ˘ is the sign of αpµqαpθpµqq.
We consider the Hx-modules h{hµ` :“ prh, µ`s, Jµ` q, q{qµ` :“ pVx, Jµ` q

and pVx, JVxq.

Lemma 3.5 We have the following isomorphisms of Hx-modules

h{hµ` »
à

rαsPAx{Z2

Cα|Hx ‘
à

αPRci
x XR`

x

Cα|Hx rAs,

q{qµ` »
à

rαsPAx{Z2

Cα|Hx ‘
à

αPRnci
x XR`

x

Cα|Hx rBs,

pVx, JVxq »
à

rαsPAx{Z2

Cα̃|Hx ‘
à

αPRnci
x XR`

x

Cα̃|Hx rCs.

Proof. Thanks to Lemma 2.9, we know that the Hx-module pVx, JVxq is
isomorphic to the vector space rq, µ`s equipped with the complex structure
JVx :“ Jµ` ˝Sx. We consider the vector spaces rq, µ`s and rg, µ`s equipped
with the complex structure Jµ` . The projection (taking the real part) r :
g b C Ñ g induces an isomorphism of Gx-modules

r :
à

αpµ`qą0

pg b Cqα ÝÑ rg, µ`s.
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The orthogonal projections p1 : rg, µ`s Ñ rq, µ`s and p2 : rg, µ`s Ñ
rh, µ`s commutes with the Hx-action, so the maps

p1 ˝ r :
à

αpµ`qą0

pg b Cqα ÝÑ rq, µ`s,

p2 ˝ r :
à

αpµ`qą0

pg b Cqα ÝÑ rh, µ`s

are surjective morphisms of Hx-modules.
Let V 1

x pαq “ p1 ˝ rppg b Cqαq. We notice that dimC V
1
x pαq P t0, 1u:

V 1
x pαq “ t0u only if α is a non-compact imaginary root and V 1

x pαq » Cα|Hx

when V 1
x pαq ‰ t0u. We notice also that V 1

x pαq “ V 1
x pθpαqq, hence

q{qµ` “ prq, µ`s, Jµ` q »
à

rαsPAx{Z2

V 1
x pαq ‘

à

αPRnci
x XR`

x

V 1
x pαq.

The identity rBs is proved.
Similarly we consider V 2

x pαq “ p2˝rppgbCqαq. We notice that dimC V
2
x pαq P

t0, 1u: V 2
x pαq “ t0u only if α is a compact imaginary root and V 2

x pαq »
Cα|Hx when V 2

x pαq ‰ t0u. We notice also that V 2
x pαq “ V 2

x pθpαqq, hence

h{hµ` “ prh, µ`s, Jµ` q »
à

rαsPAx{Z2

V 2
x pαq ‘

à

αPRci
x XR`

x

V 2
x pαq.

The identity rAs is proved.
Finally we check that the complex structures Jµ` and JVx preserve each

V 1
x pαq and that pVxpαq, JVxq » Cα̃|Hx when pα, µ`q ą 0. The identity rCs

follows. l

We consider theHx-moduleVx :“
ř

rαsPAx{Z2
Cα|Hx , and theGx-modules

E
nci
x :“

ř
αPRnci

x XR`
x
Cα and E

ci
x :“

ř
αPRci

x XR`
x
Cα. In the previous lemma

we have proved that Hx-modules h{hµ` and q{qµ` are respectively isomor-
phic to Vx ‘E

ci
x and Vx ‘E

nci
x . If we use the fact that SympVxq b

Ź
Vx “ 1,

we get the following corollary.

Corollary 3.6 We have the following identity of virtual Hx-modules:

Sympq{qµ` q b
ľ

h{hµ` » SympEnci
x q b

ľ
E
ci
x .

Let us now prove Lemma 3.2.
Let B :“ Ax{Z2

Ť
pRnci

x X R`
x q. We see that

Ź
JVx

Vx “
ś

αPBp1 ´

tα̃q whereas
Ź

´J
µ`
Vx “

ś
αPBp1 ´ t´αq. Accordingly we get

Ź
JVx

Vx »
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p´1q|B1|
Cη b

Ź
´J

µ`
Vx where B1 “ tα P B, α̃ “ αu and η “

ř
αPB1 α. Now

it is easy to check that an element α P B belongs to B1 if and only if α and
θpαq both belong to R`

x . In other words

B
1 “

 
α P R`

x X θpR`
x q, θpαq ‰ α

(
{Z2

ď
Rnci

x X R`
x .

We have proved that

ľ

JVx

Vx » p´1qmx Cδpxq b detpEnci
x q b

ľ

´J
µ`

Vx.

l

Finally, thanks to Lemma 3.2 and Corollary 3.6, we obtain the final
formula for QHxpλq (that does not depend on the choice of r):

QHxpλq “ p´1qmxIndHHx

´
Cλx`δpxq b detpEnci

x q b SympEnci
x q b

ľ
E
ci
x

¯
.

3.3 Computation of the virtual module Mxpλq

According to Theorem 1.1, we have the decomposition V G
λ |H “

ř
x̄Qx̄pλq

where Qx̄pλq “ IndHHx
pAxpλqq, and Axpλq P pRpHxq has the following de-

scription

Axpλq “
1

|WH
x |

ÿ

wPW
p´1qmxwCλxw`δpxwq b detpEnci

xwq b SympEnci
xwq b

ľ
E
ci
xw.

The aim of this section is to simplify the expression of the virtual Hx-
module Axpλq. We start by comparing the Gx-modules E

nci
xw and E

nci
x . We

use the decomposition E
nci
x “

`
E
nci
x

˘`
w

‘
`
E
nci
x

˘´
w
where

`
E
nci
x

˘`
w
:“

ÿ

αPRnci
x XR`

x XR`
xw

Cα, and
`
E
nci
x

˘´
w

“
ÿ

αPRnci
x XR`

x X´R`
xw

Cα.

We have the following basic lemma (see Lemma 3.10).

Lemma 3.7 The Gx-module |Enci
x |w :“

`
E
nci
x

˘`
w

‘ pEnci
x q´

w is isomorphic to

E
nci
xw.

Let ρ “ 1

2

ř
αPR` α. We denote by w ‚λ “ wpλ` ρq ´ ρ the affine action

of the Weyl group on the lattice Λ.
The main result of this section is the following proposition.

17



Proposition 3.8 Let x P Zθ. We have

Axpλq “ Mxpλq b Cδpxq b
ľ

E
ci
x

where Mxpλq P pRpHxq is defined by the following expression

Mxpλq “
p´1qnx

|WH
x |

ÿ

wPW
p´1qkx,w Cpw‚λqx b detp

`
E
nci
x

˘`
w

q b Symp|Enci
x |wq,

and

• kx,w “ |R`
x X R`

xw X tθpαq ‰ ˘αu| ` |R`
x X R`

xw X Rci
x |,

• nx :“ |θpR`
x q X R`

x | ´ 1

2
|θpR`

x q X R`
x X tθpαq ‰ αu|.

Remark 3.9 We can describe Qx̄pλq differently by taking tw1, ¨ ¨ ¨ , wpu Ă

W such that W {WH
x » tw̄1, ¨ ¨ ¨ , w̄pu. We have Qx̄pλq “ IndHHx

´
Ãxpλq

¯

with
Ãxpλq “ M̃xpλq b Cδpxq b

ľ
E
ci
x

and where M̃xpλq P pRpHxq is defined by the following expression

M̃xpλq “ p´1qnx

pÿ

k“1

p´1qkx,wk Cpwk‚λqx b detp
`
E
nci
x

˘`
wk

q b Symp|Enci
x |wk

q.

We need to introduce some notations. To x P Zθ, we associate :

• The polarized roots : to α P Rx and w P W , we associate |α|w P Rx

defined as follows

|α|w “

#
α if α P R`

xw,

´α if α R R`
xw.

• The following Gx-weights :

γcix,w :“
ÿ

αPRci
x XR

`
x

|α|w‰α

α, γncix,w :“
ÿ

αPRnci
x XR

`
x

|α|w‰α

α, γx,w :“
ÿ

αPR`
x

|α|w‰α

α.

The proof of Proposition 3.8 is based on the following Lemma.
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Lemma 3.10 Let x P Zθ and w P W . Let dcix,w be the cardinal of the set

tα P Rci
x X R`

x , |α|w ‰ αu. We have the following relations

1. E
nci
xw »

ř
αPRnci

x XR`
x
C|α|w and E

ci
xw »

ř
αPRci

x XR`
x
C|α|w ,

2. detpEnci
xwq “ C´γnci

x,w
b detp

`
E
nci
x

˘`
w

q,

3.
Ź

E
ci
xw “ p´1qd

ci
x,w C´γci

x,w
b
Ź

E
ci
x .

4. The Hx-weight δpxwq ´ δpxq is equal to the restriction of Gx-weight
γncix,w ` γcix,w ´ γx,w to Hx.

Proof. We remark that Rx “ Rxw, R
`
x “ gpR`q and R`

xw “ gpwR`q.
The first point follows and points 2. and 3. derive from the first.

Let us check the last point. The term ρx :“ 1

2

ř
αPR`

x
α is the image of

ρ :“ 1

2

ř
α1PR` α1 through the map µ ÞÑ µx. We see that

ρx ` θpρxq “
ÿ

αPR`
x XθpR`

x q
α “ 2δpxq ` 2ρncix ` 2ρcix

where ρncix “ 1

2

ř
αPRnci

x XR`
x
α and ρcix “ 1

2

ř
αPRci

x XR`
x
α. Similarly we have

ρxw ` θpρxwq “ 2δpxwq ` 2ρncixw ` 2ρcixw.

Thus the Hx-weight δpxwq ´ δpxq is equal to the restriction to Hx of the
Gx-weight

βpx,wq :“ ρxw ´ ρx ` pρncix ´ ρncixwq ` pρcix ´ ρcixwq.

We notice that ρxw ´ ρx “ pwρ ´ ρqx “ ´γx,w. Furthermore, small compu-
tations gives that ρncix ´ ρncixw “ γncix,w and ρcix ´ ρcixw “ γcix,w. We have proved

that βpx,wq “ γncix,w ` γcix,w ´ γx,w. The last point follows. l

Now, we can finish the proof of the Proposition 3.8. We must check that
the virtual Hx-module

A :“ p´1qmxwCλxw`δpxwq b detpEnci
xwq b

ľ
E
ci
xw

is equal to the virtual Hx-module

B :“ p´1qnx`kx,w Cpw‚λqx`δpxq b detp
`
E
nci
x

˘`
w

q b
ľ

E
ci
x .

If we use the previous Lemma, we get

A “ p´1qmxw`dcix,wCpwpλ`ρq´ρqx`δpxq b detp
`
E
nci
x

˘`
w

q b
ľ

E
ci
x .

Thus the equality A “ B follows from the following lemma.
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Lemma 3.11 For any x P Zθ and w P W , we have nx ` kx,w “ mxw `
dci

x,w mod 2.

Proof. In order to simplify our notations, we write a ” b for a “
b mod 2.

We have dimE
nci
x “ dimE

nci
xw and dimE

ci
x “ dimE

ci
xw, then

mxw ´mx

“
1

2

`
|R`

xw X θpR`
xwq X tθpαq ‰ αu| ´ |R`

x X θpR`
x q X tθpαq ‰ αu|

˘

“
1

2

`
|R`

xw X θpR`
xwq| ´ |R`

x X θpR`
x q|

˘
.

We remark now that

R`
xw X θpR`

xwq “ A`` YA´´ YA`´ YA´`

with A`` “ R`
x X θpR`

x q XR`
xw X θpR`

xwq, A´´ “ ´R`
x X ´θpR`

x q XR`
xw X

θpR`
xwq, A`´ “ R`

x X θp´R`
x q XR`

xw X θpR`
xwq and A´` “ ´R`

x X θpR`
x q X

R`
xw X θpR`

xwq.
Similarly we have

R`
x X θpR`

x q “ B`` YB´´ YB`´ YB´`

with B`` “ R`
x X θpR`

x q X R`
xw X θpR`

xwq, B´´ “ R`
x X θpR`

x q X ´R`
xw X

θp´R`
xwq, B`´ “ R`

x X θpR`
x q XR`

xw X θp´R`
xwq and B´` “ R`

x X θpR`
x q X

´R`
xw X θpR`

xwq.
We have the obvious relations : A`` “ B``, A´´ “ ´B´´, θpA`´q “

A´`, θpB`´q “ B´` and A`` “ B``. So we get

mxw ´mx ” |A`´| ` |B`´|.

Let consider A :“ R`
x X R`

xw and B :“ R`
x X ´R`

xw. We have

mxw ´mx ” |A X θpBq| ` |A X ´θpBq|

” |A| ` |A X θpAq| ` |A X ´θpAq|.

Now we remark that

|A X θpAq| ” |A X θpAq X tθpαq “ αu|

” |R`
x X R`

xw X tθpαq “ αu|.

20



Similarly

|A X ´θpAq| ” |A X ´θpAq X tθpαq “ ´αu|

” |R`
x X R`

xw X tθpαq “ ´αu|.

At this stage we have proved that

mxw ´mx

” |R`
x X R`

xw| ` |R`
x X R`

xw X tθpαq “ αu| ` |R`
x X R`

xw X tθpαq “ ´αu|

” |R`
x X R`

xw X tθpαq ‰ ´αu| ` |R`
x X R`

xw X tθpαq “ αu|.

As dcix,w “ |R`
x X ´R`

xw X Rci
x |, we have |R`

x X R`
xw X tθpαq “ αu| ` dcix,w

is equal to dimE
ci
x ` |R`

x X R`
xw X Rnci

x |. This implies that mxw ` dcix,w is
equal, modulo 2, to

mx ` dimE
ci
x ` |R`

x X R`
xw X Rnci

x | ` |R`
x X R`

xw X tθpαq ‰ ´αu|

” mx ` dimE
ci
x ` |R`

x X R`
xw X Rci

x | ` |R`
x X R`

xw X tθpαq ‰ ˘αu|.

By definition mx “ 1

2
|R`

x X θpR`
x q X tθpαq ‰ αu| ` dimE

nci
x and then

mx ` dimE
ci
x ”

1

2
|R`

x X θpR`
x q X tθpαq ‰ αu| ` |R`

x X tθpαq “ αu|

” nx.

Finally we have proved that mxw `dcix,w is equal, modulo 2, to nx `kx,w.
l

4 Examples

In this section we will study in details some examples of our formula

V G
λ |H “

ÿ

x̄ PHzZθ{W
Qx̄pλq

where Qx̄pλq “ IndHHx

`
Mxpλq b Cδpxq b

Ź
E
ci
x

˘
and

Mxpλq “
p´1qnx

|WH
x |

ÿ

wPW
p´1qkx,w Cpw‚λqx b detp

`
E
nci
x

˘`
w

q b Symp|Enci
x |wq.

Here the integers kx,w and nx are defined as follows:

• kx,w “ |R`
x X R`

xw X tθpαq ‰ ˘αu| ` |R`
x X R`

xw X Rci
x |,

• nx “ |θpR`
x q X R`

x | ´ 1

2
|θpR`

x q X R`
x X tθpαq ‰ αu|.
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4.1 K Ă K ˆ K

Let K be a connected compact Lie group. Here we work with the Lie group
G “ K ˆ K and the involution θpk1, k2q “ pk2, k1q. The subgroup H “ Gθ

is the group K embedded diagonally in G.
Let T be a maximal torus of K and let WK “ NKpT q{T be the Weyl

group of K. We denote by RK the set of roots for pK,T q, and we make the
choice of a set R`

K of positive roots.
In the next lemma we describe the critical set Zθ in the flag manifold

F “ K{T ˆK{T of G.

Lemma 4.1 We have Zθ “
Ť

wPWK
Zw with Zw “ K ¨ pwT, T q. In other

words, the set HzZθ{W is a singleton.

Proof. The element x “ paT, bT q P F belongs to Zθ if and only if
“ pa´1b, b´1aq P W ˆW . If b´1a “ w P W then paT, bT q P Zw. l

We take x “ pT, T q P Zθ. For each w P WK , we write xw “ pwT, T q. We
take λ “ pa, bq P Λ`

K ˆ Λ`
K “ pG.

Our data are as follows:
‚ the group Gx is the maximal torus T ˆ T Ă K,
‚ the group Hx is the maximal torus T Ă K,
‚ Cpw‚λqx`δpxq “ Cwpa`ρq`b`ρ as a character of T ,

‚ nx “ |R`
K |,

‚ kx,w is equal to |wR`
K X R`

K | ` |R`
K |, so p´1qkx,w “ p´1qw,

‚ the vector spaces Eci
x ,E

nci
x are reduced to t0u.

In this context we recover the classical relation

(4.8) V K
a b V K

b “ p´1qdimpK{T q{2 ÿ

wPWK

p´1qw IndKT
`
Cwpa`ρq`b`ρ

˘
.

Example 4.2 The irreducible representation SUp2q are parametrized by N.
If n ě 0, the irreducible representation Vn of SUp2q satisfies

Vn “ Ind
SUp2q
Up1q ppC0 ´ C2q b Cnq.
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If we take m ě n ě 0, then (4.8) gives

Vn b Vm “ Ind
SUp2q
Up1q pCm´nq ´ Ind

SUp2q
Up1q pCm`n`2q

“
nÿ

k“0

Ind
SUp2q
Up1q ppC0 ´ C2q b Cm`n´2kq

“
nÿ

k“0

Vm`n´2k.

We recognize here the classical Clebsch-Gordan relations.

4.2 Uppq ˆ Upqq Ă Upp ` qq

Let p ě q ě 1 and n “ p ` q. We take G “ Upnq with maximal torus T »
Up1qn the subgroup formed by the diagonal matrices. We use the canonical
map τ from the symmetric group Sn into G. It induces an isomorphism
between Sn and the Weyl group W of G.

We work with the involution θpgq “ ∆g∆´1 where ∆ :“ diagpIp,´Iqq:
the subgroup fixed by θ is H “ Uppq ˆ Upqq.

In the next section we describe the critical set Zθ Ă F . For another type
of parametrization of HCzF , see Section 5 of [12].

4.2.1 The critical set

We consider the following elements of Op2q:

R “

˜
1?
2

1?
2

´1?
2

1?
2

¸
, S “

ˆ
0 1
1 0

˙
, J “

ˆ
0 ´1
1 0

˙
.

The element R is of order 8, R2 “ ´J and R´1

ˆ
1 0
0 ´1

˙
R “ S.

To any j P t0, . . . , qu we associate :

• gj :“ diagp1, . . . , 1loomoon
p´j times

, R, . . . , Rlooomooon
j times

, 1, . . . , 1loomoon
q´j times

q P G,

• the permutation wj P Sn that fixes the elements of r1, ¨ ¨ ¨ , p ´ js
Yrp` j ` 1, ¨ ¨ ¨ , ns and such that

wjpp´j`2k´1q “ p´j`k, wjpp´j`2kq “ p`k, for 1 ď k ď j,

• kj “ τjgj P G, where τj P NpT q is the image of wj by τ ,
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• xj “ kjT P F .

We notice that the adjoint map Adpτjq : G Ñ G sends the matrix
diagpa1, . . . , ap´j, b1, . . . , b2j , c1, . . . , cq´jq to the matrix

diagpa1, . . . , ap´j , b1, b3, . . . , b2j´1, b2, b4, . . . , b2j , c1, . . . , cq´jq.

We see then that

σj :“ k´1

j ∆kj “ diagp1, . . . , 1loomoon
p´j times

, S, . . . , Slooomooon
j times

,´1, . . . ,´1looooomooooon
q´j times

q

and k´1

j θpkjq “ σj∆ belong to NpT q. Thus the elements x0, . . . , xq belongs
to Zθ.

Lemma 4.3 In the flag manifold F the set Zθ has the following description:

Zθ “
ď

0ďjďq

ď

w̄PWxj
zW

Hxjw

So we have HzZθ{W “ tx̄0, . . . , x̄qu.

Proof. If 1 ď a ă b ď n, we denote by τa,b P NpT q the permutation matrix
associated to the transposition pa, bq.

Let gT P Zθ. Then k :“ g´1θpgq∆ “ g´1∆g is an element of order two
in NpT q. The Weyl group element k̄ P W is of order two, then there exists
0 ď l ď n{2, and a family pa1 ă b1q, . . . , pal ă blq of disjoint couples in
t1, . . . , nu such that kT “ τa1,b1 . . . τal,blT .

Now, if we use the fact that the characteristic polynomial of k P G is
equal to pX ´ 1qppX ` 1qq with p ě q ě 1, we see that

‚ l ď q,
‚ there exists n P NpT q such that n´1kn “ σl “ k´1

l ∆kl.
If we take w “ n̄ P W , the previous identity says that g P HklwT . l

4.2.2 Localized indices

We work with the groups T Ă H “ Uppq ˆ Upqq Ă G “ Upnq and the
corresponding Lie algebras t Ă h Ă g. Let R “ tεr ´ εsu be the set of
non-zero roots for the action of T on g b C. We choose the Weyl chamber
so that R` :“ tεr ´ εs, 1 ď r ă s ď nu.
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Let j P t0, . . . , qu. The aim of this section is to compute the localized
index Qx̄j

pλq P pRpHq. In order to have a fairly simple expression we will

rewrite the terms of the form IndHHxj
pCβ b

Ź
E
ci
xj

q.

We write t1, . . . , nu “ I1j Y I2j Y I3j Y I4j where I1j “ t1 ď k ď p´ ju, I2j “

tp´ j` 1 ď k ď pu, I3j “ tp` 1 ď k ď p` ju, and I4j “ tp` j` 1 ď k ď nu.
For the maximal torus T Ă G we have a decomposition

T » T 1
j ˆ T 2

j ˆ T 3
j ˆ T 4

j

where T p
j “ tptkq, k P I

p
j u. Let Tj Ă T 2

j ˆ T 3
j be the subtorus defined by

the relations : pptkqkPI2j , psk1qk1PI3j q P Tj if and only if tp´j`k “ sp`k for all

1 ď k ď j.

The elements of order two σj P G induce involutions on G (by conjuga-
tion) that we still denote by σj. We start with a basic lemma whose proof
is left to the reader.

Lemma 4.4 Let xj “ kjT P F .
‚ The adjoint map Adpkjq : g Ñ g realizes an isomorphism between the

vector space t equipped with the involution induced by σj and the vector space
gxj

equipped with the involution θ.
‚ The group NpT qσj{T σj is isomorphic with Sp´j ˆ Sq´j ˆ Sj ˆ t˘uj .
‚ The adjoint map Adpkjq : G Ñ G induces an isomorphism NpT qσj{T σj

» Wxj
.

‚ The stabilizer subgroup Hxj
is equal to T 1

j ˆ Tj ˆ T 4
j Ă T .

‚ If Cα is a character of T , then Ckjα is a character of Gxj
and Cτjα is

a character of T . We have the relation

Ckjα|Hxj
“ Cτjα|Hxj

.

‚ The set of roots Rci
xj

is equal to

kj ¨ tεr ´ εs, 1 ď r ă s ď p´ ju
ď
kj ¨ tεr ´ εs, p` j ` 1 ď r ă s ď nu

and Rnci
xj

“ kj ¨ tεr ´ εs, 1 ď r ď p´ j & p` j ` 1 ď s ď nu.

We denote by Mj the T -module C
p´j b pCq´jq˚ where the subgroup

T 2
j ˆ T 3

j acts trivially and the T 1
j ˆ T 4

j -action is the canonical one. Thank
to Lemma 4.4, we have the following isomorphisms of Hxj

-modules:

E
nci
xj

» Mj.
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We consider the Lie group

Kj :“ Upp´ jq ˆ Upq ´ jq

that we view as a subgroup ofH in such a way that T 1
j ˆT 4

j is a maximal torus

of Kj. A set of positive roots for pKj , T
1
j ˆT 4

j q is εr ´εs for 1 ď r ă s ď p´j

and p ` j ` 1 ď r ă s ď n. We equip kj{t1j ˆ t4j with a complex structure
such that

E
ci
xj

» kj{t1j ˆ t4j

is an isomorphism of T 1
j ˆ T 4

j -modules.

The holomorphic induction map Hol
Kj

T 1

j ˆT 4

j

: RpT 1
j ˆ T 4

j q Ñ RpKjq is

defined as follows:

Hol
Kj

T 1

j
ˆT 4

j

pV q :“ Ind
Kj

T 1

j
ˆT 4

j

pV b
ľ

kj{t1j ˆ t4j q.

If a “ pa1 ě ¨ ¨ ¨ ě ap´jq P Z
p´j and b “ pb1 ě ¨ ¨ ¨ ě bq´jq P Z

q´j, then
Cpa,bq defines a character of T 1

j ˆ T 4
j and

Hol
Kj

T 1

j ˆT 4

j

`
Cpa,bq

˘
“ V Upp´jq

a b V
Upq´jq
b

is the irreducible representation of Kj with highest weight pa, bq.
A character Cβ of the torus T can we written Cβ “ Cβ14 b Cβ23 where

Cβ14 is a character of T 1
j ˆT 4

j and Cβ23 is a character of T 2
j ˆT 3

j . Note that

Cτjβ|Hxj
“ Cβ14 bCβ1 where β1 “ τjβ

23 defines a character of Tj Ă T 2
j ˆT 3

j .

Lemma 4.5 Let Cβ be a character of T . Then IndHHxj
pCβ|Hxj

b
Ź

E
ci
xj

q is

equal to

IndH
KjˆT 2

j ˆT 3

j

ˆ
Hol

Kj

T 1

j ˆT 4

j

`
Cβ14

˘
b Cβ23 b L2pT 2

j ˆ T 3
j {Tjq

˙
,

where L2pT 2
j ˆ T 3

j {Tjq “ Ind
T 2

j ˆT 3

j

Tj
p1q P pRpT 2

j ˆ T 3
j q.

Remark 4.6 To gain some space in our formulas, we will write Hol
Kj

T 1

j ˆT 4

j

pCβq

instead of Hol
Kj

T 1

j ˆT 4

j

`
Cβ14

˘
b Cβ23

We need to fix some notations.
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Definition 4.7 ‚ Let χ : H Ñ C be the character pA,Bq ÞÑ detpAqdetpBq´1.
‚ Let ψj be the character2 of T associated to the weight

ÿ

1ďkďj

pq ´ p` 2 ` 2j ´ 4kqεp´j`k.

‚ For any pj, wq P r0, qs ˆW , we define the integer dj,w by the relation

dj,w “ dimpMjq`
w ` |t1 ď k ď j, w´1pp´ j ` 2k ´ 1q ă w´1pp´ j ` 2kqu|.

A small computation gives the following lemma.

Lemma 4.8 • The Hxj
-character Cδpxjq is equal to χbj b ψj|Hxj

.

• For any pj, wq P r0, qs ˆW , we have

p´1qnxj
`kxj,w “ p´1qjpn`1qp´1qwp´1qdj,w .

The main result of this section is the following proposition.

Proposition 4.9

V
Upnq
λ |UppqˆUpqq “

qÿ

j“0

Qx̄j
pλq

where Qx̄j
pλq P pRpUppq ˆ Upqqq is determined by the relation

Qx̄j
pλq “

p´1qjpn`1q

|Wxj
|

ÿ

wPW
p´1qwp´1qdj,w Ind

UppqˆUpqq
KjˆT 2

j
ˆT 3

j

`
A
w
j pλq b ψj

˘
b χbj.

Here the elements A
w
j pλq P pRpKj ˆ T 2

j ˆ T 3
j q are defined as follows:

A
w
j pλq “ Hol

Kj

T 1

j ˆT 4

j

´
Cτjpw‚λq b detppMjq`

wq b Symp|Mj |wq
¯

bL2pT 2
j ˆT 3

j {Tjq.

We finish this section by considering particular situations.

2Remark that ψj is trivial T 1

j ˆ T 3

j ˆ T 4

j .
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4.2.3 The extreme cases : j “ 0 or j “ q

When j “ 0, the torus T 2
0
and T 3

0
are trivial and K0 “ Uppq ˆ Upqq “ H.

Moreover M0 “ C
p b pCqq˚ and d0,w “ dimpM0q`

w . Thanks to Lemma 4.4,
we know also that Wx0

» Sp ˆ Sq.
So we get the formula

Qx̄0
pλq “

1

p!q!

ÿ

wPW
p˘qw HolHT

`
Cw‚λ b detppM0q`

wq b Symp|M0|wq
˘

where p˘qw “ p´1qwp´1qdimpM0q`
w .

Remark 4.10 An useful exercise is to consider the term

Aw :“ p˘qw HolHT
`
Cw‚λ b detppM0q`

wq b Symp|M0|wq
˘

and verify that Aw1w “ Aw when w1 P Wx0
.

When j “ q, the torus T 4
q is trivial, Kq “ Upp ´ qq and Mq “ t0u.

Moreover Wxq » Sp´q ˆ Sq ˆ t˘uq. In this case we obtain

Qx̄1
pλq “

p´1qqpn`1q

pp´ qq!q!2q

ÿ

wPW
p´1qwp´1qdq,w χbq bQw

q pλq

with

Qw
q pλq “ Ind

UppqˆUpqq
Upp´qqˆT 2

q ˆT 3
q

´
Hol

Upp´qq
T 1
q

`
Cτqpw‚λq

˘
b ψq b L2pT 2

q ˆ T 3
q {Tqq

¯
.

4.2.4 Upn´ 1q ˆ Up1q Ă Upnq

Here we are in the case where q “ 1, and so

V
Upnq
λ |Upn´1qˆUp1q “ Qx̄0

pλq `Qx̄1
pλq.

To simplify the expression of Qx̄0
pλq we use the fact that the quotient

Wx0
zW is represented by the class of the elements τk,n P G associated to

the transposition pk, nq for 1 ď k ď n. We write T “ T 1 ˆ Up1q where T 1 is
a maximal torus of Upn ´ 1q. The T 1-module C

n´1 can be decomposed as
Vk ‘ V

1
k where Vk “

řk´1

j“1
Cεj and V

1
k “

řn´1

j“k Cεj .

The T -module M0 is equal to C
n´1 b C

˚ “ Vk b C´εn ‘ V
1
k b C´εn and

the polarized T -module |M0|τk,n is equal to Vk bC´εn ‘V1
k bCεn . We have

dimpM0q`
τk,n

“ k ´ 1 and detpM0q`
τk,n

“ Cµk
b C

b1´k
εn

with µk “
řk´1

j“1
Cεj .
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So we obtain

Qx̄0
pλq “
ÿ

i,jě0

1ďkďn

p˘qkHol
Upn´1q
T 1

´
Cτk,n‚λ`µk

b SymjpVkq b SymipV1
kq
¯

b C
b1`i´j´k
εn ,

where p˘qk “ p´1qk if k ă n and p˘qn “ p´1qn´1.
We consider now the term Qx̄1

pλq. When j “ q “ 1, the torus T 4
1 is

trivial, K1 “ Upn´2q and M0 “ t0u. Moreover Wx1
» Sn´2 ˆ t˘u, τ1 “ Id

and ψ1 “ p2´nqεn´1. Here the quotient Wx1
zW is represented by the class

of the elements τi,n´1τj,n P G for 1 ď i ă j ď n. We denote by λij the term
τi,n´1τj,n ‚ λ.

In this case we obtain

Qx̄1
pλq “ p´1qn

ÿ

1ďiăjďn

p´1q|ti,juXtn´1,nu| χbQ
ij
1

pλq

with

Q
ij
1

pλq “ Ind
Upn´1qˆT 2

1

Upn´2qˆT 2

1
ˆT 3

1

´
Hol

Upn´2q
T 1

1

`
Cλij

˘
b ψ1 b L2pT 2

1 ˆ T 3
1 {T1q

¯

“
ÿ

kPZ
Ind

Upn´1q
Upn´2qˆT 2

1

´
Hol

Upn´2q
T 1

1

`
Cλij

˘
b C

bk
εn´1

¯
b C

b2´n´k
εn .

Let us finish this section by considering the simplest example: Up1q ˆ

Up1q Ă Up2q. Take λ “ pλ1 ě λ2q P zUp2q. We have V
Up2q
λ |Up1qˆUp1q “

Qx̄0
pλq `Qx̄1

pλq where

Qx̄0
pλq “ ´ Cλ b

λ2´λ1´1ÿ

´8
C

bk
ε1´ε2

´ Cλ b
ÿ

kě1

C
bk
ε1´ε2

and Qx̄1
pλq “ Cλ b

ř
kPZ C

bk
ε1´ε2

. We recover the basic relation

V
Up2q
λ |Up1qˆUp1q “ Cλ b

0ÿ

k“λ2´λ1

C
bk
ε1´ε2

.
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