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SYMMETRIC PAIRS AND BRANCHING LAWS
PAUL-EMILE PARADAN

ABSTRACT. Let G be a compact connected Lie group and let H be a subgroup fixed
by an involution. A classical result assures that the Hc-action on the flag variety F
of G admits a finite number of orbits. In this article we propose a formula for the
branching coefficients of the symmetric pair (G, H) that is parametrized by Hc\F.
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1. INTRODUCTION

Let G be a compact connected Lie group equipped with an involution 6. Let G? :=
{g € G,0(g) = g} be the subgroup fixed by the involution. We consider a subgroup
H C G such that (G%, Cc H C G’ The purpose of this paper is the study of the
branching laws between G and H.

Let T be a maximal torus of GG that we choose f-invariant. Let t be the Lie algebra of
T. Let A C t* be the lattice of weights, and let t be a Weyl chamber. The irreducible
representations of G' are parametrized by the semi-group A := ANt} of dominant
weights.

Let A € A,. In order to study the restriction V.¥|  of the irreducible G-representation
V&, we consider the H-action on the flag variety F = G/T of G. An important object
is the H-invariant subset

Zy CF
formed of the elements = € F for which the stabilizer subgroup G, := {g € G, gz = =}
is stable under #. In other words, gT' € Z, if and only if g7'6(g) belongs to the
normalizer subgroup N (7). A well-known result tells us that the group H has finitely
many orbits in Zy, and that the map O € Hc\F —— O N Zy € H\Zy is bijective
8, 14, 12, 9].

Let © € Zy. The stabilizer subgroup G, is a maximal torus in G, stable under 6,
with Lie algebra g,. We will also consider the abelian subgroup H, := G, N H (that is
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2 PAUL-EMILE PARADAN

not necessarily connected). Any weight ¢ € A determines a character C,, of the torus
G, by taking pu, =g-p it x = gT' € F.

We denote by R, C g} the set of roots relative to the action of the Cartan subalgebra
g, on g ®C. The map p € R — pu, € R, is an isomorphism, and we take R C R, as
the image of R C R through this isomorphism.

The involution € leaves the set R, invariant, and o € R, is an imaginary root if
f(a) = a. If a is imaginary, the subspace (g ® C), is #-stable. There are two cases.
If the action of # on (g ® C), is trivial then « is compact imaginary. If the action of
—60 on (g® C), is trivial, then « is non-compact imaginary. We denote respectively by
MR and by 2 the subsets of compact imaginary and non-compact imaginary roots,
and we introduce the following G,-modules

ES = Z (g ®C)a, Elxmi = Z (g ®Ca.

aeRI Rt aeR2 Rt

The weight

d(z) = % Z a

aeRrFnomt)

0(a) £
defines a character Cs(,) of the abelian group H,.

We denote by R(H) and by R(H,) the representations rings of the compact Lie
groups H and H,. An element £ € R(H) can be represented as a finite sum E =
Y ven vV, with my € Z. We denote by }A%(H) (resp. ﬁ(Hx)) the space of Z-valued
functions on H (resp. I-/I\x) An element E € E(H ) can be represented as an infinite
sum Yy myvV, with my € Z. The induction map Indj] R(H,) — R(H) is the
dual of the restriction morphism R(H) — R(H,).

Let m, = 3R NO(R) N {0(a) # a}|+ dimEL € N.

The main result of this paper is the following theorem.

Theorem 1.1. Let A € A,. We have the decomposition
(1.1) Vn =Y. Qu(N

Hz € H\Z,

where the terms Qp.(\) € ﬁ(H) are defined by the following relation :

Qua(N) = (=1)™Indff, (Cass © det (BL) @ Sym(BL) @ /\ ES')
nci

Here Sym(E2) | which is the symmetric algebra of P4, is an admissible representation
of H, and NES = NTES © \™EY is a virtual representation of H,.

We give now another formulation for decomposition (1.1) using the (right) action
of the Weyl group W = N(T')/T on the flag variety F. If © = g7 € F and w € W
we take xw := gwT. We notice that Zy is stable under the action of W and that the
quotient Zp /W parametrizes the set of maximal tori of G stable under 6.

We associate to an element x = ¢gT' € Z, the subgroup WH C W defined by the
relation w € WH <= Hxw = Hz. We denote by H\Zy/W the quotient of Z, by the
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action of H x W, and by = € H\Zy/W the image of x € Zy through the quotient map.
We associate to z € H\Zy/W the element Qz(\) € R(H) defined as follows

weWH\W
The previous theorem says then that V\%|y = > mzow @z(A). Here is a new for-
mulation of Theorem 1.1.

Theorem 1.2. We have V&|y = Yozemzyw Qa(A) where Qz(N) € R(H) has the
following description

Qs(\) = Indff, (ML(N) ® Csy @ \ES),

for some" My(\) € R(H,).

We finish this section by giving two basic examples associated to the group SU(2).
Here the flag variety of SU(2) is the 2-dimensional sphere S?. For n > 0, we denote by
V,, the irreducible representation of SU(2) of dimension n + 1.

Example 1. G = SU(2) and the involution # is the conjugation by the matrix

( (1) _01 ) The subgroup fixed by 6 is the torus 7' ~ U(1) and the critical set

Zy C S* is composed of the poles S, N and the equator E, so that T\ Z, has three
terms. We take A =n in SU(2) ~ N.

For Hx = E, we have E2® = Ef' = {0}, H, ~ Z,, and Cy 454) = Cylz,. The
contribution of E is then Ind%l)(cn\h)': C,® Z(cez Cyp.

For Hx = N, we have H, = T, EX¥ = C,, EZ' = {0}, and C, 45y = C,. The
contribution of N is then —C,, ;o ® Sym(Cy). _

For Hx = S, we have H, = T, E¥ = C_,, ES' = {0}, and C,, 45,) = C_,. The
contribution of S is then —C_,, 5 ® Sym(C_,).

Finally, Relations (1.1) become

Valr = C,® Z Cor — C_j2 ® Sym(C_y) — Cp o ® Sym(Cy)
keZ

0
= Z CQk’-{—n'

k=—n

Example 2. G = SU(2) xSU(2) and the involution 6 is the map (a, b) + (b, a). The
subgroup fixed by 6 is SU(2) embedded diagonally and the critical set Zy C S? x S? is
equal to the union of the orbits SU(2)- (N, N) and SU(2)- (S, N). Let A = (n,m) € G.

For x = (N, N) or z = (S, N) we have El¢ = ES = {0} and H, ~ T. For z = (N, N)
we have A\, +9(z) = m+n+2, and for x = (S, N) we have A\, +0(z) = m—n. Relations
(1.1) give then

Vo, @ Vi = Indy? ® (Cron) — Ind37 @ (Crinya).

IThe precise expression of M., (X) is given in Proposition 3.8.
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It is not difficult to see that the previous identities correspond to the classical Clebsch-
Gordan relations (see Example 4.2).

Here is a brief overview of the article. Sections 2 and 3 are devoted to the proof of
our main result. In Section 4, we detail the case of U(p) x U(q) C U(n): in particular,
we explain the branching formula we obtain for the restriction of U(n) to U(n —1). In
the last section, we recall Kostant’s branching formula and explain the formula it gives
in the case of the restriction of U(n) to U(n — 1), in order to compare it with our own
formula.

Notations
Throughout the paper :

e (& denotes a compact connected Lie group with Lie algebra g.

e T is a maximal torus in G with Lie algebra t.

e A C t"is the weight lattice of T' : every pu € A defines a 1-dimensional 7T-
representation, denoted by C,, where ¢t = exp(X) acts by t# := e!*X),

e The coadjoint action of g € G on £ € g* is denoted by g - £.

e When a Lie group K acts on set X, the stabilizer subgroup of x € X is denoted
by K, :={k € K | k-z =z} and the Lie algebra of K, is denoted by ¢,.

e When a Lie group K acts on a manifold M, we denote by X -m := Let* -m|,_,

dt
m € M, the infinitesimal action of X € € on M.

Acknowledgments. We would like to thank the referees for their invaluable advice,
which enabled me to improve this text.

2. NON ABELIAN LOCALIZATION

Our main result is obtained by means of a non-abelian localization of the Riemann-
Roch character on the flag variety F of (G. For that purpose we will use the family
(€2.), of symplectic structure parametrized by the interior of the Weyl chamber t.
The symplectic structure €2, comes from the identication ¢7" — g - r of F with the
coadjoint orbit Gr. The moment map ®, : F — g* associated to the action of G on
(F, ) is the map ¢T — g - r.

At the level of Lie algebras we have g = h @ q where h = g’ and q = g=%. For any
£ €g="haq, we denote by T his h-part and by £~ his g-part. We use a G-invariant
scalar product (—, —) on g such that the involution # is an orthogonal map. It induces
identifications g* ~ g, h* ~ h and q* ~ q.

The moment map ®# : F — h* associated to the action of H on (F,(2,) is the map
g —(g-1)".

2.1. Matsuki duality. Consider the complex reductive groups G¢ and H¢ associated
to the compact Lie groups G and H. Let L C G¢ be the real form such that H C L is
a maximal compact subgroup of L.

Matsuki duality is the statement that a one-to-one correspondence exists between
the Hc-orbits and the L-orbits in F; two orbits are in duality when their intersection
is a single orbit of H.



SYMMETRIC PAIRS AND BRANCHING LAWS 5

Uzawa, and Mirkovic-Uzawa-Vilonen [16, 9] proved the Matsuki correspondence by
showing that both Hc-orbits and L-orbits in F are parametrized by the H-orbits in
the set of critical points of the function || ®#]|? : F — R.

First we recall the elementary but fundamental fact that the subset Zy is equal to
the set of critical points of the function ||®]|? [9, 3].

Lemma 2.1. Let x = ¢gT € F and r € Interior(t}). The following statements are
equivalent:

i) the subalgebra g, is invariant under 0 (i.e. x € Zy),
i) g='6(g) € N(T),

iii)  is a critical point of the function ||®H]|?,

iv) (g-r)" and (g-r)” commute.

Proof. Let n, = g~'0(g) and let r be a regular element of t* ~ t. Since g, = Ad(g)t we
see that
0(g:) =9, <= ny € Ng(T)
< [ng-0(r),r] =0
— [0(g-r),g-1]=0
< [lg-r)"(g-r)]=0
A small computation shows that for any X € g the derivative of the function ¢ —
|®H (X z)||* at t = 0 is equal to (X, [g-7,0(g-r)]). Hence z = ¢T is a critical point of
the function |®]? if and only if [g - r,0(g - r)] = 0. Finally we have proved that the
statements 4),4i), i17) and iv) are equivalent. O
Let us check the other easy fact.
Lemma 2.2. The set H\Zy is finite.

Proof. Let x = gT € Zy. A neighborhood of z is defined by elements of the form eXe¥ x
where X € h and Y € q. Now we see that eXe¥ gT € Zy if and only if e207 Y ¢ N(T).
If Y is sufficiently small the former relation is equivalent to ¢g='Y € t, and in this case
eXe¥x = e®x. We have proved that any element in H\Zy is isolated. As H\Z, is
compact, we can conclude that H\Zy is finite. O

2.2. Borel-Weil-Bott theorem. We first recall the Borel-Weil-Bott theorem. The
flag manifold F is equipped with the G-invariant complex structure such that

ToF~ Y (9®C),
aeRt
is an identity of T-modules. Let us consider the tangent bundle TF as a complex vector
bundle on F with the invariant Hermitian structure hz induced by the invariant scalar
product on g.

Any weight A € A defines a line bundle £y ~ G x1 C, on F.

Definition 2.3. We associate to a weight A € A
e the spin-c bundle on F

S>\ = /\T.F@ﬁ)\,
C
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e the Riemann-Roch character RRa(F, L)) € R(G) which is the equivariant index
of the Dirac operator D) associated to the spin-c structure Sy.

The Borel-Weil-Bott theorem asserts that V¢ = RRg(F, £y) when X is dominant.
Now we consider the restriction VC|y = RRy(F,Ly). In the next section, we will
explain how we can localize the H-equivariant Riemann-Roch character RRy (F, L))
on the critical set of the function ||® ] [10].

2.3. Localization of the Riemann-Roch character. In this section, we recall how
we perform the “Witten non-abelian localization” of the Riemann-Roch character with
the help of the moment map ®Z : F — h* attached to a regular element r of the Weyl
chamber [10, 6, 11].

Let us denote by X +— [X]g/ the projection g — g/t. The Kirwan vector field x, on
F is defined as follows:

kp(r) = —®H (1) -2 € T, F.

Through the identification g/t ~ T, F, X — %|tzogetXT, the vector k,.(z) € T, F is
equal to [g7'0(g) - r]y/. Hence the set Zy C F is exactly the set where k, vanishes.

Let Dy be the Dirac operator associated to the spin-c structure Sy = A TF. The

principal symbol of the elliptic operator Dy is the bundle map
o(F) € D(T*F,hom(A\L TF, Ac TF)) defined by the Clifford action

o(F)(x,v) = c (v /\ T]—“—)/\ T, F.
Here v € T;O ~ v € T,O is the one to one map associated to the identification g* ~ g
(see [2]).

Now we deform the elliptic symbol o(F) by means of the vector field &, [10, 11].
Definition 2.4. The symbol o(F) shifted by the vector field k, is the symbol on F
defined by

0r(F)(@,v) = oV — hir(2))
for any (x,v) € T*F.

Consider an H-invariant open subset & C F such that U N Zy is compact in F. Then

the restriction o,.(F)|y is a H-transversally elliptic symbol on I, and so its equivariant

index is a well defined element in R(H) (see [1, 10, 11]).
Thus we can define the following localized equivariant indices.

Definition 2.5. Let Hx C Zy. We denote by
RRy(F, Ly, ®7 Hz) € R(H)

the equivariant index of 0,.(F) ® L|y where U is an invariant neighbourhood of Hx so
that U N Zy = Hx.

We proved in [10] that the following decomposition holds in R(H):
RRy(F.Ly) = Y RRy(F, Lo Hz).
HxeH\Zp
The computation of the characters RRy(F, Ly, ¥, Hz) will be handle in Section

3.1. To undertake these calculations we need to describe geometrically a neighborhood
of Hx in F. This is the goal of the next section.
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2.4. Local model near Hx C Zy. Let v = ¢gT € Zy. We need to compute a sym-
plectic model of a neighborhood of Hz in (F,€,). Here we use the identification
g ~ g* given by the choice of an invariant scalar product. Let p = g - r that we write
w=pt 4+ p~ where ut € hand u~ € q.

The tangent space T, F is equipped with the symplectic two form 2.,

Ql.(X -2, Y -2)=(n,[X,Y]), X, Y eg.

We need to understand the structure of the symplectic vector space (T, F,Q,|,). If
a C g is a vector subspace we denote by a-x := {X -z, X € a} the corresponding
subspace of T,F. The symplectic orthogonal of a - x is denoted by (a - ).

If a,b are two subspaces, a small computation gives that

(2.2) (a-2)2*Nb-x~atnb,ul,

where a C g is the orthogonal of a relatively to the scalar product.
We denote by g,+ = h,+ @ q,+ the subspaces fixed by ad(n"). Notice that g, = g,
is an abelian subalgebra containing p* since [p*, p~] = 0. It follows that g, C g,+.

Lemma 2.6. [g,pu"] - 2, g+ -« and [h, pT] - © are symplectic subspaces of T, F.
Proof. 1t is a direct consequence of (2.2). O

We consider now the symplectic subspace V,, C T, F defined by the relation

(2:3) Vo= (b, 1] 2)7" N [g, 1] - .

A small computation shows that X - € V, if and only if [X, u] € [q, uT].
We have the following important Lemma.

Lemma 2.7. e We have the following decomposition

1 1
(2.4) T,F=gu+ 2®[hp]-zaV,

where L stands for the orthogonal relative to Q,|,.

e g,+ - x is symplectomorphic to b+ /b, & (h,+/ba)*

o [, ut] - x is symplectomorphic to b/b,+ equipped with the symplectic structure
Qﬂ* (’EL, T)) = (MJF’ [u’ U])

o V, is symplectomorphic to (b - )%/ [(b )N - x}

Proof. If we use the decomposition g = g,+ @ [g, u"] and the fact that the abelian
subalgebra g, is contained in g,+ we obtain

T,F =g+ & [g,pu']-

It is obvious to check that the subspaces [g, 11]-x and g,,+ -« are orthogonal relatively to
the symplectic form 2,|,. Since [h, u™] -z is a symplectic subspace we have [g, u*] -z =

b, u] -z é V, where V. is defined by (2.3). The first point is proved.

The identities g, = 6(gs) = go(x) imply the decompositions g, = b, @ g, and
gu+ T = qu+ - x Db+ -x. The vector subspace b+ -« is isomorphic to b+ /b, and the
map v — ,|,;(v, —) defines an isomorphism between q,+ - z and the dual of §,+ - z.
The second point is proved.
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For the third point we use the isomophism j : [, u*] — b/b,+ induced by the
projection h — b/b,+. Then the map @ — j(@) - = defines a symplectomorphism
between (h/h,+,,+) and [h, ut] - x.

Now we see that (2.4) together with the decomposition bh - = =

bt - @ ELB b, uT] - x leads to
(h-2)=% = ([o,p"]-2)"" N (hur - 2)-°
= hu+ -x EB V:B
= [(h-2)"np 2] @V,
The last point follows. O

We denote by €y, the restriction of €2,|, on the symplectic vector subspace V.. The
action of H, on (V, y,) is Hamiltonian, with moment map ®y, : V,, — b* defined by

the relation

1
<¢Vz(v)7A> = §QV1(U7AU)7 v E V;:a A € bz

Thanks to Lemma 2.7, we know that the H,-symplectic vector space (T,F,|:)
admits the following decomposition

ToF = B /B @ (0t /02)" @ b/b s B Vi

Thanks to the normal form Theorem of Marle [7] and Guillemin-Sternberg [5], we
get the following result.

Corollary 2.8. An H-equivariant symplectic model of a neighborhoood of Hx in F 1is
Fr.=H XH,, Y, where
Ve = Hyr X, (v /02)" X Ve).

The corresponding moment map on F, s
Cr, ([h;n,v]) = h(n + " + Oy, (v))
for [h;n,v] € H xg, ((hu+ /he)* x Va).

We finish this section by computing a compatible complex structure on V.

By definition, the map that sends X -z to [X, u| defines an isomorphism i : V, —
[q, ). The adjoint map ad(u) defines also an automorphism of [g, u™]: for any X €
g, 1] we denote by X € [g, ] the unique element such that ad(pu)X = X.

The symplectic structure Q,, := (i~!)*Qy, satisfies the relations

QM(X’ Y) = (:ua [Xv?]) = (X7 Y/) = _(X7Y>7 VXY € [q7:u+]'

We work with the following H,-equivariant maps

e the one to one map 7, := —ad(p)ad(0(p)) : [g, u*] — [g, 7],
e the complex structure J,+ = ad(u*)(—ad(pt)?)~Y2 on [g, ut].
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The map T}, restricts to a one to one map T, : [q,u"] — [q,u"] and J,+ defines a
complex structure on [q, 7] (still denoted by J,+).

Let S, := (Tﬁ)*l/ZTz. The map Jy, := J,+ o S, defines a H,-invariant complex
structure on [q, .

Lemma 2.9. The H,-symplectic space (Vy,Qy,) is isomorphic to [q, u*] equipped with
the symplectic form Q) (v, w) = (Jy,v, w).

Proof. We know already that (V,,Qyv,) =~ ([q,px7],Q,). If one takes L =
T, o (—ad(u*)?) Y4 o (T2)~Y4, we check easily that Q,(L(v), L(w)) = (Jy,v,w). O

3. PROOF OF THE MAIN THEOREM
We start with the following lemma.

Lemma 3.1. The quantity RRy(F, Ly, @7 Hx) does not depend on the choice of
the reqular element r in the Weyl chamber. In the following we will denote it by

Qu.(\) € R(H).

Proof. Let 19,71 be two regular elements of the Weyl chamber. For t € [0,1], we
consider the regular element r(t) = try +(1—t)ry: the Kirwan vector field &, ;) vanishes
exactly on Zy for any t € [0,1]. If U/ is an invariant neighbourhood of Hz so that
UNZy = Hz, then t € [0,1] = 0,4 (F) @ Li]y defines an homotopy of transversally
elliptic symbols. Accordingly, the equivariant index of o, (F)® L[y and o,, (F) @ L |y
are equal. O

3.1. Computation of Qp,(\). The computation of Qg,(A) is done in three steps.

3.1.1. Step 1: holomorphic induction. Let H,+ C H be the stabilizer subgroup of
put = ®H(z). By Corollary 2.8, a symplectic H-equivariant model of a neighborhoood
of Hx in F is the manifold H x H,. Y, where

Yo = Hyr X, (Dt /)" X Va) -

The symplectic two form on Y, is built from the canonical symplectic structure on
H,+ xu, (by+/bs)* ~ T*(H,+/H,;) and the symplectic structure on V;. The moment
map relative to the action of H,+ on Y, is

Dy, ([h;n,v]) = h(n + p* + @y, (v)) € by,

for [hyn,v] € Hy+ Xp, ((Bu+/b2)" X Va).

Let Ky, the Kirwan vector field on Y,. It is immediate to check that [h;n,v] € {ky, =
0} if and only if n = 0 and (u™ + Py, (v)) v =0. Themap v € V, — ut-v € V, is
bijective and v — Py, (v) - v is homogeneous of degree equal to 3. Then there exists
€ > 0 such that

(W + @y, (v) - v=0 and |v]|<e = v=0.

In Y,, we still denote by x the point [e,0,0]. We equip Y, with an invariant almost
complex structure that is compatible with the symplectic structure, and we denote
by RRHH (Y, Lyly,, Py,, H,+x) the Riemann-Roch character on Y, localized on the

component H,+x C {ky, = 0}.
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The quotient b/b,+, which is equipped with the invariant complex structure .J,+
= ad(p")(—ad(p)?)71/2, is a complex H,+-module.
In [10][Theorem 7.5], we proved that Qp.()\) = RRy(F, Ly, ®H, Hx) is equal to

(3.5) Indjj (RRH#+ (Ye, Laly,, @y, Hyex) @ [\ b/ bw) :

3.1.2. Step 2: cotangent induction. The map ®,(v) := u™ + ®y, (v) is a moment map
for the Hamiltonian action of H, on V,. The moment map on the H,,+-manifold

Yo = Hyw X, (hu+/b2)" X Vi)

is @y, ([h; 1, 0]) = h(n + o (v)) € by

Let ky,(v) = —®,(v) - v be the Kirwan vector field on V,. We are interested in
the connected component {0} of {xy, = 0}. We choose a compatible almost complex
structure on the symplectic vector space V, and we denote by RRy, (V,, @, {0}) €

R(H,) the Riemann-Roch character localized on {0} C {ry, = 0}.
In Section 3.3 of [11] we have proved that

(3.6) RRy . (Ve Laly,. @y, Hyew) = Indy”" (RRyy, (Va, @4, {0}) ® La).

3.1.3. Step 3: linear case. We write q/q,+ for the vector space [q, #*] equipped with
the complex structure J,+. So q/q,+ is a H,+-module and we denote by Sym(q/q,+)
the corresponding symmetric algebra.

We need to compare the virtual H,-modules A v V, and A _ T V.. The weight

d(z) ::% Z a

aeRFnomt)

0(a)#a
defines a character Cs(,) of the abelian group H,. Recall that m, € N corresponds to
the quantity R} NO(RY) N {0(e) # a}| + dim E2.
The following lemma will be proved in Section 3.2.

Lemma 3.2. The following identity holds :
A\ Ve = (=1)™ Cs() ® det(B2Y) @ /\ V.
Jv,

On the vector space V., we can work with two localized Riemann-Roch characters:
e RRy, (V,, P, {0}) is defined with the complex structure Jy,,
° ﬁ\l/%HL(Vm, ®,,{0}) is defined with the complex structure —J,+.
Thanks to the previous Lemma we know that RRy, (V;, ®,, {0}) is equal to (—1)™* Cy(,)®
det(E™) @ RRyy, (Vy, ®s, {0}).

Proposition 3.3. We have
(3.7) RRu, (Vz, @4, {0}) = (—1)"Cs(p) ® det(EX) ® Sym(q/q,+).

Proof. For s € [0,1], we consider the H,-equivariant map ®* : V, — b% defined by
the relation ®*(v) = u™ + s®Py, (v). The corresponding Kirwan vector field on V,
is kK°(v) = —P*(v) - v. It is not difficult to see that there exists ¢ > 0 such that
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{r* =0} N {||v]| < e} = {0} for any s € [0,1]. Then a simple deformation argument
gives that RRy, (V,, ®*,{0}) does not depend on s € [0, 1]. We have proved that

RRu, (Vi, ., {0}) = RRug, (Vs ™, {0})

where u* denotes the constant map ®°. Standard computations give P/{\P/{Hz (Ve ut, {0})
= Sym(q/q,+) (see [10][Proposition 5.4]). Our proof is completed. O

3.1.4. Conclusion. If we use the formulas (3.5), (3.6) and (3.7) we obtain the following
expression

QH.Z‘()\) = (_1>mLInd1{IIw (C)\z+5(x) ® det(EECi) ® Sym(q/q;ﬁ) ® /\ h/bu*)
C

in .f{(H ). Here C,, is the character of G, associated to the weight A\, = g\.

The previous formula depends on a choice of a regular element r in the Weyl chamber.
In the next section we will propose another expression for Q. () that does not depend
on this choice.

3.2. Another expression for Qp.(\). Let R, C g be the roots for the action of
the torus G, on g ® C. The involution 6 : t* — t* leaves the set R, invariant and a
root a € R, is called imaginary if (a) = a. We denote respectively by RS and by
PRI the subsets of compact imaginary and non-compact imaginary roots.

We choose a generic element r € t such that p* = (g - r)" satisfies the following
relation : for any o € R,, we have

(a,ut) =0+ 0(a) = —a.
Notice that an imaginary roots « is positive if and only if (c, u™) > 0.
Definition 3.4. We consider the subset A, C R, defined by the following relations:
a€ed, < au’)>0 and (o) #a.

The involution 6 defines a free action of Zy on the set 2,. We denote by 2, /Zs
its quotient. For any a € ‘R,, we denote by C, the corresponding 1-dimensional
representation of G, and C, |y, its restriction to the subgroup H,. We have a natural
map [a] € A, /Zs — C,lm, € R(H,).

For any a € R, we define

a = ta
where =+ is the sign of a(u)a(0(n)).
We consider the H,-modules b/b,+ := ([b, u*], J+), q/qu+ = (Va, J,+) and (V, Jy,).

Lemma 3.5. We have the following isomorphisms of H,-modules

b/br =~ P Cau® @ Caln [A],

[a]€Ae/Z2 aeRCNRF
q/du+ =~ @ Calu, © @ Calu, [B],
[Oé] €Uy /72 aemgci ﬂﬁ"t;

Vev,) ~ P Cilw® € Caln, C].

[o]es /Zo aemgci 0%y
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Proof. Thanks to Lemma 2.9, we know that the H,-module (V,, Jy,) is isomorphic to
the vector space [q, u*] equipped with the complex structure Jy, = J,+ o S,. We
consider the vector spaces [q, "] and [g, 4] equipped with the complex structure
J+. The projection (taking the real part) r : g ® C — g induces an isomorphism of
G ,-modules

r P @00 — [g.ut].
a(pt)>0

The orthogonal projections p; : [g, u"] — [q, ut] and ps : [g, ut] — [h, ut] commute
with the H,-action, so the maps

pior: @ (g®C), — [qhqu]?

a(ut)>0
peor: P (89Cla — (b4t
a(pt)>0
are surjective morphisms of H,-modules.
Let V(o) = p1or((g ® C),). We notice that dimc V() € {0,1}: V}'(a) = {0}

xT

only if av is a non-compact imaginary root and V! (a) ~ C,|y, when V!(a) # {0}. We
notice also that V!(a) = Vl(Q(oz)) hence

a/q = (0.0, 1)~ P Vime & Vie.
[a]€z /Zo aenCinnR

The identity [B] is proved.

Similarly we consider V2(«) = paor((g®C),). We notice that dim¢ V2(«) € {0, 1}:
V2(a) = {0} only if a is a compact imaginary root and V,?(a) =~ C,|y, when V?(«a) #
{0}. We notice also that Vz(a) = V2(9(a)) hence

b/ = (0.1 )= @D Ve @ Vi
(o] /Zo aeRGNRT

The identity [A] is proved.
Finally we check that the complex structures J,+ and Jy, preserve each V!(a) and
that (V.(«), Jv,) ~ Cs|g, when (a, ut) > 0. The identity [C] follows. O

We consider the Hy,-module V, := 37 o Caln,, and the G;-modules Enci .=
Za encingrt C, and Egi = Za encipt C,. In the previous lemma we have proved that

H,-modules b/b,+ and q/q,+ are respectively isomorphic to V, & ES and V, & EL¢.
If we use the fact that Sym(V,) ® AV, =1, we get the following corollary.

Corollary 3.6. We have the following identity of virtual H,-modules:
Sym(q/q,+) @ N\ b/b =~ Sym(E}) @ \ES.

Proof of Lemma 8.2. Let B := A,/Z;|J(R2 N RF). We see that Ny, Vi
[T.,es5(1 — t*) whereas /\‘Ju+ Ve = [laes(l = t7%). Accordingly we get A; Vi ~
(-DFlC, ® /\*J;ﬁ V, where B' = {a € B,a = a} and n = ) .z . Now it is easy
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to check that an element o € B belongs to B’ if and only if a and §(a) both belong to
M. In other words

B ={a e R NIR]), 0(a) #a} /Z| R NN
We have proved that
J\ Ve = (=1)™ Cy() @ det(E}) @ /\ V..

Jv,

O

Finally, thanks to Lemma 3.2 and Corollary 3.6, we obtain the final formula for
Qu:(\) (that does not depend on the choice of r):

Qrmr(N) = (=)™ Ind (CAM(@ ® det(E2) @ Sym(E}) @ A\ E;;i) .

3.3. Computation of the virtual module M, ()). According to Theorem 1.1, we
have the decomposition V& | = >~ Qz()) where Qz(\) = Indj; (A,(\)), and A, () €
R(H,) has the following description

A\ = H| D (=1 Cy,, rsew) @ det(BRG) @ Sym(EX) @ A\ ES,.

weWw

The aim of this section is to simplify the expression of the virtual H,-module A, ().
We start by comparing the G,-modules EI' and EX®'. We use the decomposition
Enel — (E?Cl)z @ (E2)  where

(Ex) = Y Ca. and (EM), = > Ca.
aeRICinRvt N, a€RNCiNRF N9,
We have the following basic lemma (see Lemma 3.10).
Lemma 3.7. The G,-module |E2|, := (EECI)Z ® (Enct) s isomorphic to ERSL.

Let p = 5> co+ @ We denote by we X = w(A+ p) — p the affine action of the Weyl
group on the lattice A.
The main result of this section is the following proposition.

Proposition 3.8. Let x € Zy. We have
A, () = M, (V) ® Csry @ \ES

where M, (\) € ﬁ(Hz) is defined by the following expression

(_1>nz neci) T nci
M, (\) = T Z(_l)kw Cluwen), @ det((E}Y) ) @ Sym(|EL,,),
T weWw

and

o ke = R R, N{0(a) # +aj| + Ry NRT, MR,
o n, = [O(RF) N R o) N’ N {8(a ) £ a)|.
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Remark 3.9. We can describe Qz(\) differently by taking {ws,--- ,w,} C W such
that WH\W ~ {iy, -+ ,,}. We have Q;()) = Ind!_ <Ax()\)) with

A,(N) = ML(\) ® Csy @ \ ES

and where My(\) € R(H,) is defined by the following expression
p

n$ xT,w i + i
M. (A) = (=1) (1) Clupen), ® det((Ex), ) ® Sym(|EZw,)-
k=1
We need to introduce some notations. To x € Zy, we associate :

e The polarized roots : to a € R, and w € W, we associate |a, € R, defined
as follows

o = a if o€ Ry,
Y —a if a¢ R .

e The following G,-weights :

c . nci ,__ .
Vo = g QO Vo = g Oy Vew = E o.

aenrGnot aeRrBClnnT aent

lafw#a |afw#a lalw e

The proof of Proposition 3.8 is based on the following Lemma.

Lemma 3.10. Let x € Zg and w € W. Let dgw be the cardinal of the set
a € RINRY, |al, # o). We have the following relations
xT x g
(1) E5o ~ aERDCing Cla, and EZ, ~ aeRcinn Clafu
nciy __ nci)t

(2) det(EL) = €y © et ( (L)),

(3) AES, = (-1)%+ C_g @ AES.

(4) The H,-weight §(zw) —b(z) is equal to the restriction of Gy-weight v2% +~<, —

z,w

Vzw t0 Hy.

Proof. We remark that R, = R, R = g(RT) and R}, = g(wRT). The first point
follows and points (ii) and (iii) derive from the first.
Let us check the last point. The term p, := %Zaeiﬁ;{a is the image of p :=

% Y e+ @ through the map p — pi,. We see that

pr+0(p) = Y a=20(x)+202 +2p
aeRTNIRT)
where pi¢l = 5 D aeomncingt @ and P = 5 D aemcinoyt @ Similarly we have

Pow + O(prw) = 20(zw) + 2prxlzcui + ngiw'
Thus the H,-weight é(xw) — d(x) is equal to the restriction to H, of the G, -weight

5(%“’) = Prw — Pz T <p;1ci - pgful) + (pgi - pglw)
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We notice that pyy, — pr = (wp — p)o = —Yzw. Furthermore, small computations
nci nci nci i

give that pi¢h — pith = 2 and p — po = 79 . We have proved that f(z,w) =

nci

Vo + ’ygfw — Yaw- The last point follows. 0

Now, we can finish the proof of the Proposition 3.8. We must check that the virtual
H,-module

A = (1) Cy,, poaw) © det(BRD) @ A\ ES,
is equal to the virtual H,-module
B = (=1)" " Clyary, o) © det((E;lCi):) ® /\ES.
If we use Lemma 3.10, we get
A = (=) B0 Cyrgp) oot © det((BRY) ) @ A\ ES.

Thus the equality A = B follows from the following lemma.
Lemma 3.11. For any x € Zy and w € W, we have ng + kg = Mgy + d;i’w mod 2.
Proof. In order to simplify our notations, we write a = b for a = b mod 2.

We have dim E}* = dim EIS and dim EY' = dim ES} | then

Tw?
1

Maw — Mg = 5 (|95, NORL,) N{0(a) # o} — R NORT) N{0(e) # a}])

— o

= 5 (%5, MO, = 1RT NORT)]).
We remark now that
fﬁ;w N 9(%;”) - A++ U A__ U A+_ U A_+
with Ay = R NORT) NRY, NORL,), A = —RI N —6(RT) NRY, NO(RY,),
AL =RINO(—RHNRE, NORE,) and A, = —RI NOR) NRE, NO(RL,).
Similarly we have
%;_ N 0(%;) - B++ U B__ U B+_ U B_+
with By = R NOR]) N R, NOR],), B = R NORT) N —RE, NO(-RT,),
B, =RINOR)NRL, NO(—R},) and B_, =R NOR) N —RE, NO(RE,).
We have the obvious relations : Ay, = By, A = —B__, §(A,_) = A_,,
0(By_)=B_; and Ay, = By,. So we get my, —m, = |Ay_|+ |Bi_|.
Let consider A := R} "R}, and B := R N —R;,. We have
My — Mz = [ANOB)| + AN —6(B)]
= |Al+|ANOA)| +|AN—=6(A)].
Now we remark that
ANGO(A)| = [ANO(A)N{0(a) = a}
= R NR. N{0(a)=a}l
Similarly
AN —60(A) AN —=0(A)N{0(a) = —a}|
8T NG, N{0(a) = —a}].
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At this stage we have proved that
Mow —Me = Ry DAL |+ R DR, N {0(a) = o} + R N R, N{0(e) = —a}|
9 1%, N {0(a) £ —al] + R/ N RE, N {B(a) = ).
As dZ, = |RT N —R”], NRY|, we have |R] NR, N{0(a) = a}| + dS, is equal to

T, W

dimES + R NRY, NRL|. This implies that my,, + dS, is equal, modulo 2, to
m, +dimES + R N RE, NR| R NS, N {0(a) # —al
=m, + dimES + R nRL, NRE| + 1R KL N {0(a) # +a}l.
By definition m, = $|R7 NG(R}) N {0(a) # a}| + dim E2 and then
m, + dimES = %mg NOERY) N {0(a) £ a}| + []F 1 {0(a) = a)
= n,.

Finally we have proved that mg, + d;{w is equal, modulo 2, to n, + k; .

4. EXAMPLES

In this section we will study in details some examples of our formula
Vil = ) QM)
T € H\Zg/W

where Qz(\) = Indgw (Mm(/\) ® Csz) ® /\Eg) and

—1)" neiy + nci
M, () = <|W1)q‘ S (=1 Crpay, © det((ER) ) @ Sym([E],).
z weW

Here the integers k, ,, and n, are defined as follows:

o k= [BY AR, N {0(a) # £a}] + R N9RE, N 9]
o n, = [0(RE) N9F| — 10(RF) NRE N {B(a) # o).

4.1. K C K x K. Let K be a connected compact Lie group. Here we work with the
Lie group G = K x K and the involution 0(k;, ko) = (kz, k1). The subgroup H = G’
is the group K embedded diagonally in G.

Let T be a maximal torus of K and let Wy = Ng(T')/T be the Weyl group of K.
We denote by Ry the set of roots for (K, T), and we make the choice of a set R} of
positive roots.

In the next lemma we describe the critical set Zy in the flag manifold F = K/Tx K/T
of G.

Lemma 4.1. We have Zp = |, ey, Zw with Z, = K - (wT,T). In other words, the
set H\Zy/W is a singleton.

Proof. The element = = (aT,bT) € F belongs to Z, if and only if = (a7'b,b7'a) €
W xW. If b'a=w e W then (aT,0T) € Z,,. O
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We take x = (T,T) € Zy. For each w € Wk, we write zw = (wT,T). We take
A= (a,b) € AL x A} =G.

Our data are as follows:

e the group G, is the maximal torus T'x T' C K,

e the group H, is the maximal torus T' C K,

® Clwer),+(z) = Cu(atp)+b+p as a character of T,

® Ny = ’%}’a

e k.. is equal to [wRE NRE| + |RL], so (=1)k=w = (—1)v,

e the vector spaces ES B¢ are reduced to {0}.

In this context we obtain the following relation
(48) V:IK ® VE)K _ (_1)dim(K/T)/2 Z (_1)w Indjff (Cw(a+p)+b+p) )
weWK

This type of generalized Clebsch-Gordan formula what first noticed by Steinberg [15]
(see Section 5).

Example 4.2. The irreducible representation SU(2) are parametrized by N. If n >0,
the irreducible representation V,, of SU(2) satisfies
SU(2
Vn = IndU(l() )((CO - (CQ) & Cn)
If we take m > n > 0, then (4.8) gives

S S
Vo ® Vi = Indy(Coumn) — Indy ¥ (Cprina)

= Z Indg((]l()2)(<c0 - CQ) ® Cm+n72k>
k=0

n
= § Vm+n72k .
k=0

We recognize here the classical Clebsch-Gordan relations.

42. Ulp) xU(q) CU(p+4q). Let p > g > 1and n = p+ q. We take G = U(n)
with maximal torus 7"~ U(1)" the subgroup formed by the diagonal matrices. We use
the canonical map 7 from the symmetric group &,, into G. It induces an isomorphism
between &,, and the Weyl group W of G.

We work with the involution 6(g) = AgA~! where A := diag(I,, —1,): the subgroup
fixed by 0 is H = U(p) x U(q).

In the next section we describe the critical set Zy C F. For another type of
parametrization of Hc\F, see Section 5 of [13].

4.2.1. The critical set. We consider the following elements of O(2):

1 1
(g n) =) =)
N 10 1 0

The element R is of order 8, R? = —J and R~! ( é _01 > R=S.

To any j € {0,...,q} we associate :
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o g; :=diag(l,...,1,R,...,R,1,...,1) € G,
——— N e’ N —
p—j times  j times q—J times
e the permutation w; € &, that fixes the elements of [1,---,p — j]

Up+j+1,---,n| and such that
wilp—Jj+2k=1) =p—j+k wip—j+2k)=p+k, for 1<k<y,

) kj = Tjg] I~ G, Whel"e 7—] — T(w]) € N(T)7

The adjoint map Ad(7;) : G — G sends the matrix diag(aq, ..., ap—j, b1, ..., baj,C1,. .., Cq—j)

to the matrix diag(al, ey Ap—j, b17 bg, R ,bgj_l, bg, b4, ey bgj, Ciy... ,Cq_j).
We see then that
0; = k;'Ak; = diag(1,...,1,5,...,5,—1,...,—1)
—— ——— ———

p—j times j times q—j times
and k; '0(k;) = 0;A belong to N(T'). Thus the elements o, ..., z, belongs to Zp.

Lemma 4.3. In the flag manifold F the set Zy has the following description:

Zy = U U Hzjw

0<j<q weWa,\W
So we have H\Zy/W = {Z¢, ..., T4}

Proof. If 1 < a < b < n, we denote by 7,, € N(T') the permutation matrix associated
to the transposition (a,b).

Let gT € Zy. Then k := g~'0(g)A = g~ 'Ag is an element of order two in N(T). The
Weyl group element k € W is of order two, then there exists 0 < I < n/2, and a family
(a1 < by),...,(a; < by) of disjoint couples in {1,...,n} such that kT = 74,4, ... Ta0, T

Now, if we use the fact that the characteristic polynomial of k& € G is equal to
(X —1)P(X + 1)? with p > ¢ > 1, we see that

ol <y,
e there exists n € N(T) such that nkn=! = o, = k; ' Ak;.
If we take w = n € W, the previous identity says that g € HkwT. O

4.2.2. Localized indices. We work with the groups T'C H = U(p) x U(q) C G =U(n)
and the corresponding Lie algebras t C h C g. Let R = {e, — &5} be the set of
non-zero roots for the action of 7' on g ® C. We choose the Weyl chamber so that
Rt ={e, —e5, 1 <r<s<n}

Let j € {0,...,q}. The aim of this section is to compute the localized index Qz,()\) €

fi(H ). In order to have a fairly simple expression we will rewrite the terms of the form
ndfj (C @ \ES)

Let {1,...,n} = [}LJI?LJ[?LJ[;1 where Ijl ={1<k<p—j}, 1]2 ={p—j+1 <k <p},
F={p+1<k<p+j}and [} = {p+j+1<k<n}
For the maximal torus 7' C G we have a decomposition

~ 1 2 3 4
T_Tj ><Tj ><Tj ><Tj
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where T} = {(tx)f_y,te € U(1),t; = 1 unless k € IV} Let T; C T7 x T} be the
subtorus defined by the relations: an element ((tx)i_;, (sx)i—;) € T} x T} belongs to

T; if and only if ¢, = spqp forall 1 < k < 5.

The elements of order two o; € G induce involutions on G (by conjugation) that we
still denote by o;. We start with a basic lemma whose proof is left to the reader.

Lemma 4.4. Let x; = k;jT € F.

e The adjoint map Ad(k;) : g — g realizes an isomorphism between the vector space
t equipped with the involution induced by o; and the vector space g.; equipped with the
inwvolution 6.

e The group N(T)% /T is isomorphic with &,_; X &,_; x &; x {£}.

o The adjoint map Ad(k;) : G — G induces an isomorphism N(T)% /T ~ W, .

o The stabilizer subgroup H,, is equal to le x T x Tj4 cT.

o [fC, 1s a character of T, then Cy,q is a character of G, and C.,, is a character
of T'. We have the relation

ija‘ij - CTja|ij‘

e The set of roots 9%;‘] 15 equal to
kj'{gr—gs,lST<8§p—j}Ukj'{€7~_6s,p+j+1§T<S§n}
and%?fi:kj-{er—as,lgrgp—j&p—i—j+1§s§n}.

We denote by M the T-module C?~/ ® (C%7)* where the subgroup 77 x T? acts
trivially and the le X Tf—action is the canonical one. Thanks to Lemma 4.4, we have
the following isomorphisms of H, -modules: IE;,IJC1 ~ M;. Following Lemma 3.7, one can
associate the modules (M;)Z and |M;|, to each w € W.

We consider the Lie group

K;j:=U(p—j)xUlg—3j)
that we view as a subgroup of H in such a way that le X Tf is a maximal torus of
K;. A set of positive roots for (K, T} x T}) is &, — e, for 1 <7 < s < p—j and
p+j+1<r<s<n. Weequip &/ [tj X t}] with a complex structure such that

E@:@M@xﬂ

is an isomorphism of T} x T}'-modules.

. R(T! x T} — R(K;) is defined as

The holomorphic induction map Hol?{ J

XTIy
follows:

K; o K; 1 4
Ifa=(a>->a,;) €27 and b= (by > -+ > b,_;) € Z977, then C(,p) defines a
character of le X T;‘ and

K]' —q U(q—j
Ho}leijl ((C( ’b)) — VaU(p N v (a—3)

is the irreducible representation of K; with highest weight (a,b).



20 PAUL-EMILE PARADAN

A character Cy of the torus T' can be written Cg = Cprs ® Cpes where Cpia is a
character of T} x T} and Cgos is a character of T7 x T?. Note that C,,g] H,, = Cpa®@Cy

where 8 = 7;4% defines a character of T; C T} x T7.
Lemma 4.5. Let Cg be a character of T'. Then Indgx,((cﬁmxj ® /\Eglj) is equal to

Indgijjngjg <H01T1><T4 (Clgm) (059 CI323 X L2([T]2 X TJS] /TJ)) ,

T2 ><T3

where L2([T? x T?] /T;) = Indy? "7 (1) € R(T? x T?).

Remark 4.6. To gain some space in our formulas, we will write Hol” Cg) instead

Of HOleXT‘.l ((CBIAL) X (CB23

T1 ><T4 (

We need to fix some notations.

Definition 4.7. e Let x : H — C be the character (A, B) — det(A) det(B)™!
e Let 1) be the character” of T associated to the weight

> (a—p+2+2j — 4k)ep .

1<k<j
e For any (j,w) € [0,q] x W, we define the integer d;,, by the relation
djo = dim(M;); + {1 <k <j, w(p—j+2k—1) <w '(p—j+2k)}.
A small computation gives the following lemma.

Lemma 4.8. o The H,,-character Cs(,,) is equal to ¥ ® 1/1j|sz.
o For any (j,w) € [0,q] x W, we have (—1)" Feiw = (=1)J(n+D(_1)w(—1)diw,

The main result of this section is the following proposition.

Proposition 4.9.
V |U(p xU(q Z QCCJ

where Qz,(A\) € }AB(U(p) x U(q)) is determined by the relation

(=17 . PXU@
Qs (V) = = XV ® D (F1)" (1) Indy B (AFN) @ 45)
zj weW

Here the elements AY(\) € R(K; x T? x T}) are defined as follows:
AY(N) = HolTle4 (er(w.A) ® det((M;);) ® Sym(|M;l,)) ® LQ([Tj2 X T]3] /T;).
We finish this section by considering particular situations.

2Remark that ; is trivial le X Tf’ X T;-L.
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4.2.3. The extreme cases : j = 0 or j = q. When j = 0, the torus T} and T3 are
trivial and Ky = U(p) x U(q) = H. Moreover My = C? ® (C9)* and dy,, = dim(M).
Thanks to Lemma 4.4, we know also that W,, ~ &, x G,.

So we get the formula

q' D () Holff (Cyer @ det((Mo),h) @ Sym(|Mol.,))

wew
where (), = (—1)®(—1)dm®o)s
Remark 4.10. An useful exercise is to consider the term
Ay, = (&), Holf (Cyper ® det((Mp)}) ® Sym(|Mol,))
and verify that Ay, = A, when w' € W,,.

When j = ¢, the torus T, is trivial, K, = U(p — ¢) and M, = {0}. Moreover
Wa, > 6,_q x & x {£}9. In this case we obtain

(_1)q(n+1)

= g X8 2 (DD Qr

weW
with

w U(p—
QN = Y0, (HOll™ (Coyumn) @4, © L(T2 % T2 /T,).
424. Un—-1)xU(1) C U(n) Here we are in the case where ¢ = 1, and so

’U(n 1)xU(1 on( )+Q531()‘)

To simplify the expression of Qz, (A ) we use the fact that the quotient W, \W is
represented by the class of the elements 73, € G associated to the transposition (k,n)
for 1 <k <n. Wewrite T =T"xU(1) where 7" is a maximal torus of U(n—1). The T"-

module C"~! can be decomposed as Vi, &V} where V), = Zk ! C., and V) = Z?;,i C,,.
The T-module M is equal to C" '@ C* =V, @C_,, GBV’ ® (C,En and the polarized
T-module [My|, , is equal to V;, ® C_., @V@ C.,. We have dim(Mo)j_;m =k—1 and
det(Mo)7, = C,, ® CEI7F with py, = Y " Je;.
So we obtain

Qfo</\) =
S (E) Holfl "™ (T, ari, ® Sym® (Vi) @ Sym(V)) @ CE+ob,

a,b>0
1<k<n
where (), = (=1)¥ if k < n and (&), = (=1)" 1.

We consider now the term Qz, (\). When j = ¢ = 1, the torus T} is trivial, K; =
U(n —2) and M; = {0}. Moreover W, ~ &,,_o x {£}, i = Id and ¢y = (2 —n)e,_1.
Here the quotient W, \W is represented by the class of the elements 7,7 ,-1 for
1 <k <1< n. Wedenote by Ay the term 77,7 ,—1 ® \.
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In this case we obtain

@ﬁ@):(—l)"x@(QZ;L”M)— PN ECEY Qizf(A))

1<k<n—1 1<k<i<n-—1
with
—2)XTEXT}

= S a7y . <H01T11”_2) (Cx,) B CE2,) @ CE2me,

a€Z

I%,ll()\) I dU(n 1)xT? (H 1Y (n—2) (CAM)®¢1®L2([T2 XTS} /Tl))

Let us finish this section by considering the simplest example: U(1) x U(1) C U(2).
Take A = (A > Ap) € U(2). We have V' |y0yw0) = Qay(A) + Qa, (A) where

—A1—1

Qio( :_(C)\® Z Csl —e2 CA@ZCQ —&2

k>1

and Qz, () = C, ® 3, , C2F . We recover the basic relation

k=X2—

4.2.5. Un — 1) € U(n). If we restrict the representation V/\U(n) to the subgroup
U(n—1), we get

(4.9) o = Qo(N) + @iV,
where the characters Qq(A), Q1(\) € R(U(n — 1)) are given by the relations

n

Qo(N) =D () Holy" ™V (T, arsp, @ Sym(Vy) @ Sym(V}))

k=1

and

(A = (= )"det®< YD DI C R ’f’l(/\)),

1<k<n—1 1<k<i<n-—1

: kel U(n—1 U(n—2
with QF'(V) = Indg(n3) (Holy " (C,,)).
Let’s detail expression (4.9) when n = 3.
Small calculations give Qo(A) = By () + Ba(A) + Bs(A\) with

Bl()\) - HOlg(z) ((CT1,30>\+M1) ® Sym(@) = Z V([a],gf))a
Ao—1>a>A3—1>b
Ba(\) = Hol7® (Cryyerip, @ Sym(Ce) @ Sym(T,,)) = > Vo),
a>A1+1,A3—1>b
Bo(A) = Holl® (Cpyoriu) ®@Sym(C:) = Y VI,

azA1+1>b>Xa+1
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For the other term, we obtain Q1(\) = Aj(A) — Ay(N\) — Az(\) with
AN = det@QI*(\) =det@Indy () (Crr) = > Voo,

a>X2>b
Ar(N) = det@QiP(N) =det@Ind) () (Cr) = Y. Vi,
a>A1+1>b
As(\) = det@@iﬂ@):det@lnd (CA3 )= > Vab .
a>X3—1>b

Finally one checks that the decomposition
VPl = A1(\) = As(A) = Ag(N) +Bi(A) + Ba()) + By(M)

permits to recover the classical relation VAU(3)| U@ = D x >a>re>b>As V(ZE,Q)) (see [4]).

Domain A :
Domain A2 :
Domain A® :

LN

.l

Domain B :
Domain B :
Domain B :

Domain C :

FIGURE 1. Restriction from U(3) to U(2)

In Figure 1, we can visualise the supports of the differents characters: we have

=) VIO A= Y VIR A= > VPO

pneAL neAUB; neEA3UBY
=2 WO B =3 VIO By =) W,
neEB HEB2 HEBs

so that V)\U(3)|U(2) — Zuec V#U(Z)

5. KOSTANT MULTIPLICITY FORMULA

The aim of this section is first to recall the Kostant multiplicity formula : we follow
the line of [4], Section 8.2. Then, we rewrite it in a form similar to the one we use in
this article (see Proposition 5.4). Finally, we detail Kostant’s multiplicity formula for
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the restriction of U(n) to U(n — 1), in order to compare it with the calculations done
in Section 4.2.5.

Let G’ C G be two connected compact Lie groups with maximal tori 77 C T. The
corresponding Lie algebras are t C g and t' C g'. In this section, we make the following
regularity assumption:

(R)  The centralizer Z;(t') of ¥ in g is abelian.

We recall the following well-known fact.

Lemma 5.1. The assumption (R) is valid when G' is the connected component of a
fized-point subgroup of an involution.

Proof : Suppose that G' = (G7) for some involution 7. Then, we have a decomposi-
tion g = g’ & q where q = {X € g,7(X) = —X}. The centralizer Z,(t') is stable under
the involution 7 and under the adjoint action of 7. Thus t C Z;(t') =t @ Z4(t): in
particular the torus 7T is invariant under 7.

If Zy(t') is not abelian, there exits a roots a € R such that (gc)a C Z;(Y)c =
c®Z;(t')c. Then we obtain a contradiction: on one hand (gc)a C Z4(t')c implies that
aly = 0 and on the other hand since (gc)a C qc, we must have o(a) = a. The two
conditions aly = 0 and o(«) = « implies that o = 0. O.

Let SR and R’ and be the set of roots for the pairs 7' C G and 7" C G’. Note that
assumption (R) is equivalent to :

(R')  There exists X, € t' such that («, X,) # 0 for all a € A.

If ¢ € t* we write & for the restriction of ¢ to ()*. Because of our assumption, @ # 0
for all a € fR.

The positive roots are R, := {a € R, (o, Xo) > 0} and R, := {f € R, (B, X,) > 0}
We write R, = {@,a € R} for the set of positive restricted roots: we keep track of
the multiplicity n, = #{a € R,,a@ = a} of each element a € R,.

Since R/, is contained in MR, we may consider the set of roots ¥ := R, — R’ : the
multiplicity of 8 € R, in ¥ is equal to

ng if §¢ R,
mp = . ,
ng — 1 if pe %+.

Let A" C (t')* be the lattice of weights for the torus 7". Let (t')%. be the Weyl chamber
associated to the system 9R/,. The irreducible representations of G’ are parameterized
by All = AN (V)5
Definition 5.2. We denote by Ps : N — N the partition function associated to the
set X3, For all & € N, Ps(') is the number of way of writing &' = s 5 wp3, where
zg € N and each B that occurs is counted with multiplicity mg.

For dominant weights A\ € Ay and p € A/, we denote by my(u) the multiplicity
of the irreducible G’-representation VMG/ with highest weight p in the irreducible G-

representation V\& with highest weight ).
If we W, we note w e X := w(A+ p) — p where p is the half sum of the positive
roots.
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Theorem 5.3. The branching multiplicities are

(5.10) ma(p) = Z (=) Py(w e X — p).

weW

We briefly recall how to obtain (5.10). Let x§ be the character of V.¢. The Weyl

relation gives
Sl [ (=) =D (=1 e

aENRL weW
When we restrict this identity to 7" C T', the relations

[[Ta-er=Jla-e?)][a-e

aER, BER, veES

and
[[a-e (ZPE ):1

permit to obtain

Sl [L-e?) = (D . ) (ZPZ _§,>

BER!, weWw geN

= > N(€)ef

e

with N(§') :== > e (1) Pe(w e X = ¢&').
On the other hand, we have the decomposition x§|y = Z“GA; ma(u)xC and then®

Gl [T - = 3 ma& I (1—¢)

BER!, peEN!, BER!,
_ w’ w'ep
= > D ma(uye
peEA, w'eWw’

Finally, we obtain the identity
D M) =3 D (D) maw e,
gen peN, wew’

that shows two things:

. N,\(,u) my(p) if 3 is dominant,
o Ny(w' o €) = (~1)* Ny(€"), for every (uf, ) € W' x A"

At this stage, we have proved Kostant’s multiplicity formula. In the following we
rewrite this formula in another form. Let’s consider the following T’-module

Ny = @ C_ﬁ.

Bex

SHere w’ o ¢’ 1= w/'(A + p') — p/ where p' = % Z/ﬂem; B
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Proposition 5.4. For any A € A, we have the following restriction formula
1
#W’

Proof: Since Sym(ns) = 3 o p Px(§)Cog we have

Y (1) Chx®@Symng) = Y Y (=1)"Ps(¢) Caare

weW weW €'eN’

= Z NA(£) Cer.

5’6/\'

(5.11) Ve = > (=) Hol{/ (Cyax ® Sym(ny)) .

weW

Hence the right hand side of (5.11) is equal to W D e Ny(£)Hol%, (Ce). We use
now the following facts:

— Ny(w' o &)Hol$, (Cureer) = Ny (&)Hol$s (Cer) for every (w',€') € W’ x A,

~ Ny(&)Hol§ (Ce) =0if & ¢ W e A,

— Na(w)Hol§ (C,) = ma(n)VE" if p € A,
We have completed the proof of (5.11). O

We conclude this section with a few examples.

5.1. K C K x K. Let K be a connected compact Lie group. Here we work with the
Lie group G = K x K containg K diagonally. Here ¥ C t* is equal to the set R, of
positive roots for K. We denote by P : A — N the partition function associated to the
set R,.

If A, pi,v are three dominant weights, we denote by ¢ , the multiplicity of VE in

V¥ ® VK. The branching formula (5.10) becomes
szu = Z (—1)w1w2 'p(wl o)\ +wye w— ,/)'
wy,weeW

This formula was first observed by Steinberg [15].
Let’s take a closer look at the branching formula (5.11). The T-module ny, is equal
ton:=> _,C_,. By definition of the holomorphic induction map Hol% | we have

Holf (6 ® Sym(n)) = (—1)*Indf (© ® Cy,)
for any © € R(T), with d = 1 dim K/T. Finally, (5.11) becomes

(=17 wiws
VAK@VMK‘K = #—W Z (_1) Indil“( (Cw1(>\+p)+w2(ﬂ+p))

wi, w2 €W

= (—1)d Z (—1)w1nd¥ (CW(A+P)+H+P) .
weW

The latter formula is also obtained in (4.8).



SYMMETRIC PAIRS AND BRANCHING LAWS 27

5.2. U(p) x U(q) € U(n). In this example the torus T' of diagonal matrices is the
maximal torus for both U(n) and the subgroup U(p) x U(q). Here the T-module ny,
is the T-restriction of the U(p) x U(g)-module (CP)* ® C?, and the quotient W'\W
is isomorphic to the subset Shuffle(p, ¢) formed by the elements w € &,, satisfying
w(l) <--- <w(p) and w(p+1) < --- < w(p+ q). Here, the branching formula (5.11)
gives

(5.12) VY ymwu@ = > (1) Holp Y9 (C,y) | @ Sym((CP)* & C).
weShuffle(p,q)

Let’s consider the case ¢ = 1. From (5.12), we derive the following branching formula
for the restriction to the subgroup U(n — 1):

VAU(n)|U(n—1) - (Z(_l)n_k fo:ff_l)> ® Sym((C")"),

k=1

with A[n] = ()\1, ce ,/\n_l) and )\[k} = ()\1,. . '7)\k—17)\k+1 — 1, R ,)\n — 1) for 1 S k S

n— 1.

Supportof A1(\)

support of Ag(\) :///

Supportof Ag(A) -

Support of VA|U(2): \\\ N\ )

/f
FiGURE 2. Kostant decomposition

Let’s consider the case n = 3. For any A = (A\; > A2 > A3) we obtain the following
formula

U3 U(2 U(2 U2 *
WOl = (Vi = Vil + V) @ Sym((€)").
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Hence V') = A1(A) — A5(N) + A3()) with

A0\ = Vi esym(c)) = S viw,

A1>a>X 2>b
A0\ = vpPesm(@)) = > vIY,
A1>a>A3—1>b
A = viesm(@)) = > Vi

Ao—1>a>A3—1>b
U(2)

We recover the classical branching formula VAU(3)| UQ) = D onsasrasbzrs Vian) (56€ [4],
section 8.1). In Figure 2, one can visualize the support of each characters Ay (\).

i
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