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ABSTRACT

Weak-lensing peak counts provide a straightforward way to constrain cosmology by linking local maxima of the lensing signal to the
mass function. Recent applications to data have already been numerous and fruitful. However, the importance of understanding and
dealing with systematics increases as data quality reaches an unprecedented level. One of the sources of systematics is the convergence-
shear inversion. This effect, inevitable when carrying out a convergence field from observations, is usually neglected by theoretical
peak models. Thus, it could have an impact on cosmological results. In this paper, we study the bias from neglecting (mis-modeling) the
inversion. Our tests show a small but non-negligible bias. The cosmological dependence of this bias seems to be related to the parameter
Σ8 ≡ (Ωm/(1 − α))1−α(σ8/α)α, where α = 2/3. When this bias propagates to the parameter estimation, we discovered that constraint
contours involving the dark energy equation of state can differ by 2σ. Such an effect can be even larger for future high-precision surveys
and we argue that the inversion should be properly modeled for theoretical peak models.

Key words. gravitational lensing: weak – large-scale structure of Universe – methods: numerical

1. Introduction

The observation of background light sources results in distorted
images due to light deflection. This effect is called gravita-
tional lensing. The lensing signal tracks the matter distribution
of the Universe and provides evidence of cosmic history. In the
weak-lensing (WL) regime, the information about structure for-
mation is sensitive to both linear and nonlinear scales, providing
a crucial tool to constrain cosmology (see for example Kilbinger
2015 for a review). With upcoming large surveys such as Euclid
(Laureijs et al. 2011) and the Large Synoptic Survey Telescope
(LSST; LSST Science Collaboration 2017), WL has been con-
sidered as an important probe to find out, notably, the nature of
dark energy and the gravity law at cosmic scales.

Peak counts are powerful non-Gaussian statistics that allow
us to constrain cosmology from WL. Peaks of high signal-to-
noise ratio (S/N) are shown to be good tracers of massive halos
(Yang et al. 2011; Lin & Kilbinger 2015a, hereafter Paper I).
The more massive halos there are, the more likely it is to find
high S/N peals in a lensing map. While older studies (Kruse &
Schneider 1999, 2000; Reblinsky et al. 1999; Bartelmann et al.
2002; Hamana et al. 2004; Wang et al. 2004) seem to only
focus on reducing false positive and false negative detections,
recent studies (Jain & Van Waerbeke 2000; Dietrich & Hartlap
2010; Kratochvil et al. 2010; Fan et al. 2010; Paper I among oth-
ers) tend to model true and false detections together in order
to probe cosmology. Indeed, WL peak counts are sensitive to
changes of shape of the mass function. In the literature, it has
been shown that peak counts alone constrain cosmology more
strictly than two-point-correlation functions and the combination

of both statistics improves the constraints (Dietrich & Hartlap
2010; Liu et al. 2015a). Applications to observational data are
also multiple. The data of the Canada-France-Hawaii-Telescope
Lensing Survey (CFHTLenS) have been analyzed by Liu et al.
(2015a) and Liu et al. (2016), the CFHT Stripe-82 Survey by Liu
et al. (2015b), Dark Energy Survey Science Verification (DES-
SV) data by Kacprzak et al. (2016), and the Kilo-Degree Survey
(KiDS) by Martinet et al. (2018) and Shan et al. (2018).

For future large and deep lensing surveys, the importance of
dealing with systematics increases significantly. To cite a few,
potential sources of systematics are shape measurement errors
(Cardone et al. 2014), photometric redshift uncertainty (Cunha
et al. 2014; Bonnett et al. 2016; Choi et al. 2016; Gruen &
Brimioulle 2017), intrinsic alignment of galaxies (Chisari et al.
2014; Codis et al. 2015; Schaefer & Merkel 2015; Schrabback
et al. 2015; Krause et al. 2016), baryon physics (Mohammed et al.
2014; Harnois-Déraps et al. 2015), and instrumental responses
(Gurvich & Mandelbaum 2016; Okura et al. 2016; Kannawadi
et al. 2016; Plazas et al. 2016). Concerning WL peak counts,
studies of systematics have been done by Yang et al. (2013) and
Osato et al. (2015) for baryon physics, Liu et al. (2014) for mask-
ing, and Liu et al. (2014) for magnification bias (see also Lin
2016 for a review of WL-peak-related studies). These existing
studies are not sufficient for modeling the peak statistics at high
precision.

One of the systematics that has not been addressed is the
convergence-shear inversion. In WL, the (reduced) shear is
observable but the convergence field is not. In order to obtain
the convergence, one common way is to invert its relation to the
shear via the lensing potential. This is called the Kaiser-Squires
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inversion (Kaiser & Squires 1993). It assumes that the galaxy
shape noise could be modeled as a Gaussian random field, which
conserves the same properties before and after the inversion.
However, in practice, this hypothesis is rarely fulfilled for two
reasons. First, the field is probed only on irregular galaxy sam-
ples. Second, masks introduce missing data and border effects.
Because of these facts, the noise level is not spatially uniform.
It can even be far from uniform for the galaxy density and the
filter size used in realistic survey scenarios. In addition, inver-
sion methods does not account for the reduced shear without
nonlinear effects. As a result, the convergence-shear inversion
can lead to a systematic bias to WL observables. Alternatively,
Seitz & Schneider (1995) proposed a nonlinear method to prop-
erly take the reduced shear into account. However, this approach
still relies on the assumption of uniform noise, which needs to
be dealt with carefully.

Up to now, there exist three modeling approaches for predict-
ing WL peak counts. The first approach consists in generating
N-body runs to simulate structures that cause lensing (for exam-
ple, Kratochvil et al. 2010 and its series including Liu et al.
2015a). Then, peaks are counted from the derived lensing maps.
The second approach is a pure analytical calculation, which com-
putes the probability of different lensing signal levels given a line
of sight (for example, Fan et al. 2010 and its series including Liu
et al. 2015b). After that, the probability of identifying a peak
can be deduced with random field theory. The third approach
adopts a semi-analytical model (this work). Based on some sim-
ple assumptions, it generates simulations in a much faster way
than N-body runs and count peaks from the resulting lensing
maps.

In the literature, Fan et al. (2010) and Shirasaki (2017)
have proposed theoretical models for WL peaks. These models
directly predict peak counts on a convergence field from theory1.
Therefore, such approaches do not account for the inversion that
is required for establishing a convergence field from data. The
purpose of this paper is to quantify this modeling bias from the-
oretical WL peak models when neglecting the inversion. Two
algorithms, the Kaiser-Squire and Seitz-Schneider inversions,
are considered in this study. We use our stochastic model devel-
oped in Paper I, Lin & Kilbinger (2015b, Paper II), and Lin et al.
(2016, Paper III) to examine this effect. The stochasticity of the
model makes including different inversions and different map-
making methods straightforward. This makes our model an ideal
tool to achieve our objective.

After the introduction, the theoretical formalism of different
inversion methods is introduced in Sect. 2. Then, we explain the
methodology, including the construction of different comparison
cases and the choice of some detailed settings in Sect. 3. The
results are presented in Sect. 4. Then, we will summarize the
paper and conclude with a discussion in Sect. 5.

2. Inversion formalism

In this paper, we aim to test the impact of the convergence-shear
inversion on WL peak counts. The most commonly used tech-
nique is the Kaiser-Squires (KS) inversion (Kaiser & Squires
1993) in which the convergence κ is given by

κ̂ =
`2

1 − `
2
2 − 2i`1`2

`2
1 + `2

2

γ̂ for `1`2 > 0, (1)

1 The model of Fan et al. (2010) can estimate peaks directly from a
shear field, but it is computationally expensive.

where γ is the shear, ˆ the Fourier transform operator, and ` the
Fourier mode. The arguments of κ and γ are omitted. To recover
κ, the inverse transform leaves an undetermined constant term in
direct space, corresponding to `1 = `2 = 0. This global constant
is usually set to zero as the expected mean of the convergence
field is null. In the WL regime, the reduced shear g ≡ γ/(1 − κ),
which has an unbiased estimator using the observed galaxy ellip-
ticities (Seitz & Schneider 1997), is often approximated by the
shear, so that g ≈ γ and Eq. (1) is applied on g directly.

In order to account for the factor 1/(1 − κ) properly, Seitz &
Schneider (1995) proposed an alternative inversion method (SS
inversion). It follows the iterative process below:

κ(0) = 0,

γ(i) = (1 − κ(i−1))
1 − sign

(
detA(i−1)

) √
1 − |δ|2

δ∗
for i ≥ 1, and

κ̂(i) =
`2

1 − `
2
2 − 2i`1`2

`2
1 + `2

2

γ̂(i) for i ≥ 1, (2)

where the index (i) stands for the ith iterate, detA =
(1 − κ)2 − |γ|2 and δ = 2γ(1 − κ)/((1 − κ)2 + |γ|2) = 2g/(1 + |g|2).
In the case where detA is always positive (i.e., |g| < 1), the sec-
ond line of Eq. (2) is equivalent to γ(i) = (1 − κ(i−1))g. The KS
and SS inversions will be the two methods to study in this paper.

3. Methodology

We used the CAMELUS code (proposed in Paper I) to model
peak-count predictions. This semi-analytical model adopted a
halo approach, deriving peak number counts from a mass func-
tion. It first drew halos with mass and redshift with respect to
the input mass function. Then, it randomized the halos’ angular
positions. After that it assigned source galaxies and computed
their respective lensing signal. Finally, the model created a lens-
ing map and counted peaks by their S/N. In this way, massive
dark-matter halos were considered as the major source of WL
peaks.

Concerning how CAMELUS carried out halo sampling and
galaxy assignment in this study, readers are invited to read
Paper III for details. In the following, we explain how lensing
maps were made and how peaks were defined. In order to test
the impact from the convergence-shear inversion, we compared
peak counts in three cases:

– Case 1: κ is computed directly from ray-tracing simulations.
– Case 2: g is computed from ray-tracing simulations and κ is

given by the KS inversion.
– Case 3: g is computed from ray-tracing simulations and κ is

given by the SS inversion.
The κ and g could be given by a halo’s projected mass. Here,
κ was computed following Eqs. (26) and (27) of Takada &
Jain (2003a) and g by combining these previous equations with
Eqs. (16) and (17) of Takada & Jain (2003b). The convergence
fields of all three cases were generated from the same series of
CAMELUS simulations, so that there was no statistical fluctua-
tion caused by different halo or Galaxy samples. In this set-up,
Case 1 closely follows the logic of theoretical models from Fan
et al. (2010) and Shirasaki (2017) where the inversion is omit-
ted, whereas Cases 2 and 3 represented the real-world scenario.
If the inversion caused a misestimation of peak counts, then a
comparison of Case 1 to Case 2 or 3 should be able to separate
this contribution from other systematic sources.
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For this paper, we performed two sets of fast simulations.
The first was to quantify the bias from mis-modeling the inver-
sion using the following diagnostic: (Nκ

peak − Ng
peak)/Ng

peak, where
Nκ,g

peak was the number of peaks obtained directly from the con-
vergence or from the shear with inversion. The denominator was
the peaks from the inverted shear since this corresponded to
the observation. Therefore, this indicator showed the peak-count
deviation due to mis-modeling. The choice of the denominator
was due to the fact that the bias that this paper studies does not
refer to “the bias caused by the inversion” but “the bias of mis-
modeling which does not account for the inversion”. Hereafter,
we will use “mis-modeling bias” as a shortened term to refer to
the bias from mis-modeling of the inversion. For this test, 2000
independent realizations were carried out for nine cosmologies
varying Ωm and σ8. The dark energy equation of state was fixed
at wde

0 = −0.96. A realization was a 450 × 450 map with a pixel
width of 0.8 arcmin, such that the field area was 36 deg2. Three
Gaussian filters of widths 1.2, 2.4, and 4.8 arcmin were applied.
A characteristic mask taken from the W1 field of CFHTLenS
data was also applied.

The second set of fast simulations was to measure how
cosmological constraints could be affected. Here, we chose to
study cosmological constraints in a three-dimensional space
composed of Ωm, σ8, and wde

0 . We mimicked the observational
data vector by peaks from Case 2 under a reference cosmol-
ogy (Ωm, σ8, w

de
0 ) = (0.28, 0.82,−0.96), while the likelihood was

computed in both Cases 1 and 2. By doing so, the difference
between likelihoods could visualize how mis-modeling would
propagate to parameter constraints. This second set was the same
fast simulations that were used in Paper III, which consisted of
37 536 cosmologies with 500 independent realizations each. The
pixel size, field area, and smoothing filters were configured in
the same way as the first simulation set.

Weak-lensing peaks from Cases 2 and 3 were defined in the
same way as in Paper III: shape noise had been added for all
galaxies, which were binned later; after the inversion and the
filtering, the noise level for S/N was estimated locally based on
the effective number of neighboring galaxies covered under the
filter, in the same way as Eq. (19) of Paper III. However, for Case
1, the simulations have been done differently. For Case 1, we first
binned galaxies to generate a noise-free convergence map, then
added a constant pixel noise before filtering the map. The noise
variance σ2

pix is defined as

σ2
pix =

σ2
ε

2
1

ngalApix
, (3)

where σ2
ε was the sum of the variance of the intrinsic elliptic-

ity distribution, ngal the source galaxy number density, and Apix
the area of a pixel. The motivation for this setting, though differ-
ent from other cases, is that theoretical models are restricted to
such a configuration. Only if this configuration is respected do
we start to follow the same modeling logic as them. As a result,
the definition of S/N should also change. Since the noise was
constant for Case 1, the expected noise level in S/N was simply
defined as

σ2
noise =

σ2
ε

2
1

2πngalθG
, (4)

where θG was the smoothing size.
From our cosmological parameter space, we projected con-

straint contours on all of the two-dimensional plans to study

Fig. 1. Peak function from different studied cases. Blue circles, red
squares, and green diamonds respectively show the mean peak density
over 2000 realizations in Cases 1–3. The error bars are rescaled to corre-
spond to a survey of 1080 deg2. The filter size is 2.4 arcmin. The input
cosmology is (Ωm, σ8, w

de
0 ) = (0.28, 0.82,−0.96). We can see that the

impact of not modeling the inversion is small. Between two inversion
techniques, there is only a slight difference.

numerically the constraint diagnostic. To take into account
degeneracies, the constraint contours were fitted with three
indicators,

Σ8 =

(
Ωm + β

1 − α

)1−α (
σ8

α

)α
, (5)

I1 = Ωm − a1w
de
0 , and (6)

I2 = σ8 + a2w
de
0 , (7)

which were respectively degeneracy lines for the Ωm – σ8, σ8 –
wde

0 , and Ωm – wde
0 planes. This definition of Σ8 allowed a good

measurement of contour width independent from α. Concerning
wde

0 , Eqs. (6) and (7) assumed that wde
0 was connected to two

other considered parameters by an affine relation. An analysis
of these indicators, already used in Paper III, would allow us to
examine how degeneracy lines vary. Here, we set α = 2/3, β = 0,
a1 = 0.108, and a2 = 0.128 and computed the fitted Σ8, I1, and
I2 respectively in Cases 1 and 2. This choice of α and β made Σ8
a functional form similar to σ8Ω0.5

m ; and the choices of a1 and a2
were the best-fit results taken from Paper III.

4. Results

Figure 1 shows the peak function from the reference cosmology
(Ωm, σ8, w

de
0 ) = (0.28, 0.82,−0.96) with the filter of 2.4 arcmin,

using the first simulation set mentioned in Sect. 3. The error bars
are rescaled to correspond to a survey of 1080 deg2. We see that
the biases of the convergence case compared to both shear cases
are relatively small. They are globally contained within ±30% of
Cases 2 and 3. The difference between the KS and SS inversions
is even smaller, revealing that the inversion method has little
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Table 1. Inversion mis-modeling bias obtained under different cosmolo-
gies and different inversion methods.

Ωm σ8
KS inversion

G1.2 G2.4 G4.8

0.23 0.77 12.8% (0.9%) 27.0% (1.4%) 3.4% (1.8%)
0.28 0.77 16.4% (0.8%) 23.6% (1.2%) 6.4% (1.6%)
0.33 0.77 19.0% (0.8%) 24.0% (1.0%) 6.7% (1.4%)
0.23 0.82 15.4% (0.8%) 22.9% (1.2%) 5.5% (1.6%)
0.28 0.82 18.3% (0.7%) 23.9% (1.0%) 5.4% (1.3%)
0.33 0.82 18.2% (0.7%) 19.7% (0.9%) 3.1% (1.2%)
0.23 0.87 16.1% (0.8%) 19.6% (1.0%) 1.5% (1.3%)
0.28 0.87 18.1% (0.7%) 21.1% (0.9%) 4.8% (1.2%)
0.33 0.87 19.0% (0.6%) 17.7% (0.8%) 4.7% (1.1%)

Ωm σ8
SS inversion

G1.2 G2.4 G4.8
0.23 0.77 19.6% (1.0%) 24.8% (1.4%) –0.2% (1.7%)
0.28 0.77 23.1% (0.9%) 21.9% (1.2%) 3.4% (1.5%)
0.33 0.77 25.7% (0.8%) 22.7% (1.0%) 3.6% (1.4%)
0.23 0.82 22.6% (0.9%) 21.4% (1.2%) 2.4% (1.5%)
0.28 0.82 25.2% (0.8%) 21.8% (1.0%) 2.5% (1.3%)
0.33 0.82 24.5% (0.7%) 19.0% (0.9%) 0.9% (1.1%)
0.23 0.87 22.3% (0.8%) 18.5% (1.0%) –1.9% (1.3%)
0.28 0.87 24.7% (0.7%) 20.1% (0.9%) 2.7% (1.2%)
0.33 0.87 24.1% (0.7%) 16.4% (0.8%) 3.2% (1.1%)

Notes. The upper part is the mis-modeling bias for the KS inver-
sion and the lower part for the SS inversion. We recall that the bias
is defined as (Nκ

peak − Ng

peak)/Ng

peak. The values in the parentheses are
estimation errors given by the jackknife technique. The labels G1.2,
G2.4, and G4.8 respectively stand for Gaussian filters of 1.2, 2.4,
and 4.8 arcmin. This table only displays the results from the bin
ν ∈[4.0, 4.5.]

importance for peaks. This figure also shows that the inversion
decreases the peak counts under this configuration. However, we
find that this cannot be generalized for all cosmologies and all
filter sizes.

Interpreting the mechanism of this bias is challenging. One
may think that the bias is caused by using g = γ/(1 − κ) in the
calculation instead of the true shear γ. If we follow this reason-
ing, for high peaks, the reduced shear g should be larger than γ
since κ is positive. After a linear KS inversion, the deduced con-
vergence should also be larger than the true convergence, so the
peak function from Case 2 should be situated at the right-hand
side (which also means on top) of the one from Case 1. However,
this is exactly the opposite of what Fig. 1 indicates, meaning that
the reduced shear is not the origin of this bias. Actually, if we
compare Case 3 (where the factor 1/(1 − κ) has been taken into
account) to Case 1, we see that the difference between two peak
functions is still present. As a result, we suggest the irregularity
of galaxy distribution to be the major origin of this bias.

We observe that high and low peaks do not seem to have
the same variation. In Fig. 1, the convergence modeling under-
estimates the number of low peaks and overestimates high ones.
However, their amplitude depends on the applied filter. This is
shown more clearly in Table 1 where the peak-count bias in
a specific bin ν ∈ [4.0, 4.5] with all three filter sizes and both
inversion methods are presented. The values in the parentheses
are the uncertainties of the biases estimated using the jackknife
technique. We omitted one of the 2000 realizations at a time and
computed the variance over these new derived subsamples. The
jackknife errors confirm a bias of the order of 20% for the two

first filters. Neglecting the inversion effect does not affect the
bias in the same way for different filters, and we find the same
ambiguity for other S/N bins which are not shown.

Table 1 also shows an ambiguous dependence on cosmology.
It is not clear that high Ωm or high σ8 would yield a larger or
smaller bias. To visualize better the cosmological dependence
of the bias, we computed the bias for each cosmology from the
second fast simulation set (Sect. 3) and obtained a “bias map”
for the KS inversion (Case 1 compared to Case 2). For example,
the bias maps for the bin ν ∈ [4.0, 4.5] and the filter sizes of
1.2 and 2.4 arcmin are presented in Fig. 2. Here, we focus on
the Ωm – σ8 plane by fixing wde

0 at 0.96. Although noisy, the
contours of bias levels are visible, and within the studied range
of cosmologies, the bias can vary from –4% to 38%. The level of
noise in Fig. 2 is about two times larger than that of Table 1, since
the former possesses four times less realizations than the latter.
The figure shows the complex dependence of the peak-count bias
on cosmology. Moreover, when we draw the bias maps for other
bins and filter sizes, both contour shape and value range vary
a lot. This variation is difficult to explain. It seems as if these
contours still have a “banana” shape but are not centered on the
same region at all. Therefore, the reference cosmology can be
sometimes in the very biased region, sometimes very far from
the very biased region. We argue that cosmology affects the mis-
modeling bias in a very complex way that depends on the filter
size and the bin range.

Following the geometry of contours displayed in Fig. 2, we
explored the link between the mis-modeling bias and the reduced
parameter Σ8, defined by Eq. (5). Figure 3 shows the variation
of the bias for different Σ8 when three filters are applied. It has
the same S/N bin and the same inversion as the previous figure
such that the blue dots in Fig. 3 correspond to the left panel in
Fig. 2 and red pluses to the right panel. Despite a large scatter,
we observe a clear pattern of variations. The filter size and the
bin choice should have affected the amplitude of the bias and
the value of Σ8 where the bias reaches its maximum. The scatter
would have been reduced if α or β parameters had been cho-
sen differently. However, the optimal values for one case are not
necessarily the optimal ones for another. Therefore, we did not
look for a minimization of the scatter in Fig. 3. As a remark, the
artifact-like cut at Σ8 = 1.3 for all filters is due to the lack of
sample points in the parameter space (gray zone in Fig. 2).

How does the mis-modeling bias affect cosmological con-
straints? Figure 4 shows a comparison where solid and dashed
contours are obtained from the inverted shear of Case 2 and
shaded areas from Case 1. More precisely, contours correspond
to a case where the inversion has been properly considered,
while shaded areas are interpreted as coming from a simpli-
fied modeling that ignores the inversion effect. Although the
bias in individual bins is relatively small as shown in Fig. 1,
the impact on constraints is not negligible. While the Ωm – σ8
constraint shifts approximately along the degeneracy line, both
joint constraints with wde

0 are more affected, resulting in a biased
estimation of parameters. For example, the reference parame-
ter (Ωm, w

de
0 ) = (0.28,−0.96) has been excluded at 2σ on the

left-bottom panel in Fig. 4.
The shift of contours observed above are quantified by the

diagnostics mentioned in Sect. 3. The values of indicators are
shown in Table 2. On the plane Ωm – σ8, Table 2 shows that
both cases exclude each other mutually by 1.5–2σ , whereas
the top panel in Fig. 4 does not suggest such a result. This is
due to a bad fitting of Σ8 when the dragging parameter β is
not relaxed. For this family of degeneracy lines, which have
a hyperbolic form, there are at least two degrees of freedom.
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Fig. 2. Bias map under a wide range of cosmological parameters. For these two panels, the KS inversion is applied. The dark energy equation of
state is wde

0 = −0.96. The S/N bin is ν = [4.0, 4.5]. The filter size is 1.2 arcmin for the left panel and 2.4 arcmin for the right panel. Contours of
parameters sharing the same bias level can be clearly observed. However, they are not necessarily centered on the same parameters when the filter
changes. The bias levels are not similar either. These contours vary even more when we examine other choices of bins.

Fig. 3. Bias as a function of Σ8 for different filters. Blue dots, red pluses,
and green crosses are respectively the bias of a specific S/N bin [4.0,
4.5] under different cosmologies for a Gaussian filter of 1.2, 2.4, and
4.8 arcmin. Instead of visualizing on the Ωm – σ8 plane, here we chose
a one-dimensional representation by the reduced parameter Σ8. As a
result, blues dots contain exactly the same information as the left panel
in Fig. 2 and red pluses the same as the right panel.

We could have relaxed both α and β to make Eq. (5) loyally
describe the degeneracy lines. However, the optimal values of
(α, β) are not necessarily the optimal ones for other cases, and
these parameters have to be set to the same values, otherwise the
comparison between Σ8 from different cases or surveys would be
meaningless. Moreover, there is no physically-motivated choice.

Fig. 4. Impact of the inversion mis-modeling bias on Ωm – σ8 – wde
0

constraints. Solid and dashed lines represent contours derived from the
inverted shear, whereas shaded areas represent contours derived from
the convergence. Although the bias in individual bins is relatively small,
the shift of contours is not negligible.

Therefore, we were forced to fix α and β arbitrarily. Eventually,
α = 2/3 and β = 0 are coherent to most studies in the litera-
ture. We also tried the commonly used form σ8(Ωm/pivot)α for
characterizing Σ8 and the same difficulty occurred. This explains
why two-dimensional contours between two cases (Fig. 4) appear
more inconsistent with one-dimensional intervals (Table 2).

From the two lowers panels in Fig. 4, we find that not consid-
ering the mis-modeling bias does yield a 2σ tension compared
to the realistic case, which justifies our finding that wde

0 is more
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Table 2. Diagnostics of cosmological constraints.

Constraints Ωm – σ8 Ωm – wde
0 σ8 – wde

0
indicator Σ8 I1 I2

Case 1 (convergence) 1.03+0.03
−0.04 0.22+0.07

−0.04 0.90+0.04
−0.15

Case 2 (inverted shear) 1.09+0.02
−0.03 0.37+0.15

−0.07 0.64+0.14
−0.11

Notes. The indicators Σ8, I1, and I2 are respectively defined by
Eqs. (5)–(7) for each of the two-dimensional projections of the original
Ωm – σ8 – wde

0 space.

affected. Knowing that the bias depends on the S/N bin and the
filter size in a non-trivial way, readers should keep in mind that
another choice of the data vector might yield a contour shift dif-
ferent from what we have observed. In the end, the mis-modeling
bias is not completely negligible in cosmological constraints.

5. Summary and discussion
In this paper, we performed fast simulations with CAMELUS to
quantify the effect of neglecting the convergence-shear inver-
sion in WL peak-count modeling. We called it “inversion mis-
modeling bias” since it is introduced when theoretical models
fail to include a bias caused by the inversion while it is present
in real data. To quantify this effect, on the one hand, we sim-
ulated the shear signal as from observations and applied two
inversion methods; on the other hand, we simulated directly the
convergence signal to count the number of peaks as analytical
models do. The comparison of the two yielded an estimation of
how theoretical peak models would deviate from the truth.

We have found that not accounting for the inversion has a
relatively weak effect on WL peak counts, and that the differ-
ence between the KS and SS inversion methods is also small.
For the reference cosmology (Ωm, σ8, w

de
0 ) = (0.28, 0.82,−0.96),

the bias from neglecting the inversion is contained within about
30%. Modeling this bias could be challenging. Its dependency
on the S/N value and the filter size is not trivial. Its dependency
on cosmology seems to have a link to the reduced parameter Σ8,
but this link cannot be summarized as a large scatter caused by
the choice of the slope α of Σ8.

By comparing cosmological constraints obtained from
two different cases, we examined the propagation of the mis-
modeling bias during the process of estimating cosmological
parameters. We have found that the Ωm – σ8 contours are
less affected. The change is mainly along the degeneracy line.
However, for the dark energy equation of state wde

0 , we have seen
that both on the Ωm – wde

0 and σ8 – wde
0 planes, contours can

exclude each other by 2σ. The dark energy parameter seems to
be more affected.

For the future WL surveys aimed at constraining cosmo-
logical parameters with high precision, modeling any possible
systematic sources, including the inversion, will be indispens-
able. For cosmic shear, the inversion can be bypassed since
linking the two-point-correlation functions of the shear to the-
ory is straightforward. For peaks, unless we only focus on the
very high S/N regime, the link is less trivial. A possible option
to bypass the inversion would be the aperture mass (Kaiser et al.
1994; Schneider 1996), which allows us to identify tangential
shear peaks. However, we should remember that the aperture
mass does not account for the nonlinearity of the reduced shear.
Either using the aperture mass or the inversion, modeling the
correction should be a common goal for future studies.
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