
HAL Id: hal-01818210
https://hal.science/hal-01818210

Submitted on 18 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CoolEmAll D5.4 Energy and Heat-aware classification of
application

Juan Luis Prieto, Georges da Costa, Ariel Oleksiak, Mateusz Jarus

To cite this version:
Juan Luis Prieto, Georges da Costa, Ariel Oleksiak, Mateusz Jarus. CoolEmAll D5.4 Energy and Heat-
aware classification of application. [Research Report] IRIT-Institut de recherche en informatique de
Toulouse. 2013. �hal-01818210�

https://hal.science/hal-01818210
https://hal.archives-ouvertes.fr

Project acronym: CoolEmAll
Project full title: Platform for optimising the design and

operation of modular configurable IT infrastructures and
facilities with resource-efficient cooling

D5.4 Energy and Heat-aware classification of
application

Author: Juan Luis Prieto (Atos), Georges Da Costa (IRIT)

Version: 1.0

Date: 29/03/2013

Collaborative project Grant agreement: 288701

Version: 1.0

Author: Georges Da Costa
Date: 29/03/2013 Page 2 / 50

Deliverable Number: D5.4
Contractual Date of
Delivery:

31/03/2013

Actual Date of
Delivery:

30/03/2013

Title of Deliverable: Energy and Heat-aware classification of applications
Dissemination Level: Public
WP contributing to the
Deliverable:

WP 5

Author: Juan Luis Prieto (ATOS), Georges Da Costa (IRIT)
Co-Authors: Ariel Oleksiak (PSNC), Mateusz Jarus (PSNC)

History

Version Date Author Comments

0.0 19/09/2012 Juan Luis Prieto
(ATOS)

Initial version: state of the art, what
and how to measure

0.1 04/02/2013 Georges Da Costa
(IRIT)

Application characterization

0.2 01/03/2013 Mateusz Jarus
(PSNC), Ariel
Oleksiak (PSNC)

Application and phase classification

0.3 05/03/2013 Georges Da Costa
(IRIT)

Application and phase classification
and Conclusion

0.5 26/03/2013 Georges Da Costa
(IRIT), Mateusz Jarus
(PSNC)

Update from reviews

1.0 29/03/2013 Mateusz Jarus
(PSNC), Ariel
Oleksiak (PSNC)

Last updates of results, final version

Approval
Date Name Signature
29/03/2013 Ariel Oleksiak

Collaborative project Grant agreement: 288701

Version: 1.0

Author: Georges Da Costa
Date: 29/03/2013 Page 3 / 50

Abstract
CoolEmAll project aims at evaluating the impact of applications from a thermal and energy
point of view. This deliverable provides the application classification and characterisation
techniques needed to achieve this goal. Evaluating the impact of all existing applications is
impossible. Thus classification allows to select particular application that will serve as
reference. Characterisation allows to evaluate the different possible behaviour of
applications and thus to be able to evaluate which characteristics of applications are
important from the CoolEmAll point of view and will have an impact.

Keywords

Application classification, application characterisation

Collaborative project Grant agreement: 288701

Version: 1.0

Author: Georges Da Costa
Date: 29/03/2013 Page 4 / 50

Table of Contents
1	 Introduction .. 7	

2	 State of the art ... 8	

3	 What to measure ... 9	

3.1	 CPU .. 10	
3.2	 Memory ... 11	
3.3	 I/O operations ... 12	
3.4	 Network ... 13	
3.5	 Power and Energy .. 14	

4	 How to measure .. 14	

4.1	 Static program modification .. 15	
4.1.1	 Gprof .. 15	
4.1.2	 ATOM ... 16	
4.1.3	 Etch .. 16	
4.1.4	 Java profiling .. 16	

4.2	 Hardware counters ... 18	
4.2.1	 PAPI ... 19	

4.3	 Kernel Profiling ... 20	
4.3.1	 Oprofile ... 21	
4.3.2	 DTrace ... 22	

4.4	 Virtual Images ... 23	
4.4.1	 XenoProf .. 23	
4.4.2	 Virtualized performance counters .. 23	

4.5	 Parallel systems .. 24	
4.5.1	 ZM4/SIMPLE .. 24	

5	 Application characterization .. 25	

5.1	 Behaviour characterization ... 25	
5.2	 Phase identification ... 26	
5.3	 DNA-like System Modelling .. 27	

Collaborative project Grant agreement: 288701

Version: 1.0

Author: Georges Da Costa
Date: 29/03/2013 Page 5 / 50

6	 Application and phase classification .. 28	

6.1	 Methodology for classification of applications ... 29	
6.2	 Experiments .. 31	

6.2.1	 Experimental setup .. 31	
6.2.2	 Results ... 32	
6.2.3	 Analysis of the models ... 38	
6.2.4	 Impact of application execution on the CPU temperature 41	

7	 Power-, Energy-, and Thermal-aware classification 45	

BIBLIOGRAPHY ... 47	

Table of Tables
Table 1 CPU Metrics ... 11	
Table 2 Monitoring Metrics .. 12	
Table 3 I/O Metrics .. 13	
Table 4 Network Metrics ... 14	
Table 5 Gprof flat profile report ... 15	
Table 6 PAPI supported processors ... 20	
Table 7 Oprofile output report ... 21	
Table 8 DTrace output report .. 22	
Table 9 TLB miss distribution in Xen Dom0 .. 23	

Table of Figures
Figure 1 Java profiling tool report ... 18	
Figure 2: Example of the monitoring of an application where two phases are
alternating. The red line is an evaluation of the change in resource consumption
between one second and the next. Peaks in the red line area good indicator of
phase change. .. 26	
Figure 3: Phase detection and identification with partial recognition 27	
Figure 4: Several Nas Parallel Benchmark. X axis is the mean power consumed,
Y axis is the mean number of cache misses per second 29	

Collaborative project Grant agreement: 288701

Version: 1.0

Author: Georges Da Costa
Date: 29/03/2013 Page 6 / 50

Figure 5 Arrangement of clusters of applications on AMD Opteron 275 33	
Figure 6 Classification Tree for AMD Opteron 275 ... 34	
Figure 7 Arrangement of clusters of applications on Intel Xeon E5345 35	
Figure 8 Classification tree for Intel Xeon E5345 .. 36	
Figure 9 Classification tree for Intel Xeon 5160 .. 37	
Figure 10: Example runs of abinit (a), burn (b) and namd (c) applications 40	
Figure 11: Runs of c-ray (a), hmmer (b) and mencoder (c) applications 40	
Figure 12: Example run of cavity application .. 41	
Figure 13 Dependency between instructions per cycle and temperature of the
processor on Intel Xeon 5160 ... 42	
Figure 14 Dependency between instructions per cycle and temperature of the
processor on Actina Solar 410 S2 .. 43	
Figure 15 Dependency between instructions per second and temperature of the
processor on Actina Solar 410 S2 .. 43	
Figure 16 Changes over time of server power and CPU temperature on Actina
Solar 410 S2 ... 44	
Figure 17: Spatial and temporal locality are not correlated for different
application. Power and load are also not totally correlated 45	

Collaborative project Grant agreement: 288701

Version: 1.0

Author: Georges Da Costa
Date: 29/03/2013 Page 7 / 50

1 Introduction

CoolEmAll project aims at evaluating the impact of applications from a thermal
and energy point of view. This deliverable provides the application classification
and characterisation techniques needed to achieve this goal. Evaluating the
impact of all existing applications is impossible. Thus classification allows to
select particular application that will serve as reference. Characterisation allows
to evaluate the different possible behaviour of applications and thus to be able to
evaluate which characteristics of applications are important from the CoolEmAll
point of view and will have an impact on raw performance, power and energy
consumption, and heat production, Using these information of the resources
consumed, simulation can evaluate the impact of this application on the system,
using models to translate these resources into power and energy. Then, it is
possible to evaluate the thermal impact using energy dissipation models.
The profile of an application is a set of technical attributes that characterize and
delivers details of a given application. The application profile purpose is enable
finding of the “best” match; it means to get the best performance of the
application on the different computing building blocks. Performance is taken here
from the point of view of the CoolEmAll project, i.e. taking into account speed, but
also power, energy and heat metrics.
Generally application profiling is used for applications that require long
executions and a high amount of resources to run. Hence, it is true that
application profiling is mostly applied to HPC applications or cloud services that
run on data centres. Profiling techniques at development and testing time will
allow the developer to optimize and identify different bottlenecks during the
software execution.
Having a better understanding of a running application is a key feature for both
application developers and hosting platform administrators. While the former
have access to the source codes of their application, the latter have usually no a-
priori clue on the actual behaviour of an application.
Having such information allows for a better and more transparent evaluation of
the resource usage per application when several customers share the same
physical infrastructure. Platform providers (and the underlying management
middleware) can better consolidate applications on a smaller number of actual
nodes. Platform provider can provide token-free license where the observation of
the system permits to determine the usage of a commercial application without
bothering users with the token management.
Classifying applications using a limited number of parameters allows for a fast
response on their characterization, suitable for real-time usage. The impact of the
monitoring infrastructure is an important characteristic in order not to disturb the

Collaborative project Grant agreement: 288701

Version: 1.0

Author: Georges Da Costa
Date: 29/03/2013 Page 8 / 50

production applications.
This document will describe:

• What to profile, where will be defined the main aspects on how an
application can be profiled and different metrics can be computed;

• How to profile, where different profiling tools will be presented and
explained;

• How to compare the resource consumption of different applications;
• How to aggregate different applications in function of their power-, energy-

and thermal-impact

2 State of the art
Many authors propose offline analysis of applications. In [11] authors introduce
metrics to characterize parallel applications. Their motivation is to be able to
chose the right platform for a given application from the classification based on
static code analysis. Not taking into account the actual machines where the
applications run is presented as a benefit but does not allow for online and direct
classification and class detections. In [8] an approach based on a similarity-
based taxonomy is proposed, but nothing is said about the differentiation of the
applications in the different classes (and the number of classes). Both
approaches show the possibility of classifying the parallel applications in a limited
number of classes.
In [10], authors manually analyse the communication patterns of 27 applications
from different HPC benchmarks based on MPI communication library. Their
purpose was to study the possible deterministic communication patterns in order
to exploit them in fault tolerance algorithms. This code analysis is time
consuming and does not allow for runtime analysis. However it proves the
potential and the value of communication pattern discovery. The authors of [17]
proposes a tool for assessing the code quality of HPC applications which turns to
static pattern analysis while for instance [9] proposes MAQAO to tune
performance of OpenMP codes.
In [11], authors present the Integrated Performance Monitor (IPM). This tool
allows for MPI application profiling and workload characterization. It allows for
post-mortem analysis of the application behaviour to understand the computation
and communication phases. Vampir [16], Tau [19], Sun Studio [14] areother
examples of such performance analysis tools. In [13] authors use Periscope to
automatically detect memory access patterns, after the program ends. Similarly,
Scalasca [12] searches for particular characteristic event sequences in event
traces automatically. From low-level event traces, it classifies the behaviour and
quantifies the significance of the events by searching for patterns of inefficient
behaviours. It relies on a number of layers to create an instrumented code, to
collect and measure via measurement libraries linked with the application, to

Collaborative project Grant agreement: 288701

Version: 1.0

Author: Georges Da Costa
Date: 29/03/2013 Page 9 / 50

trace the running application to finally analyze a report produced after the run.
Authors of [18] use an I/O stress test benchmark, namely IOR, to reproduce and
predict I/O access patterns. Analysis of the results shows that a simple testbed
can be used for the characterization of more complex applications, but a manual
tuning of the benchmark parameters has to be operated, which leads to
impractical usage. In [15] authors examined and compared two input/output
access pattern classification methods based on learning algorithms. The first
approach used a feed-forward neural network previously trained on benchmarks
to generate qualitative classifications. The second approach used Markov
models trained from previous executions to create a probabilistic model of
input/output accesses.
Works done in [22], [21] use on-line techniques to detect applications execution
phases, characterize them and accordingly set the appropriate CPU frequency.
They rely on hardware monitoring counters to compute runtime statistics such as
cache hit/miss ration memory access counts, retired instructions counts, etc.
which are then used for phase detection and characterization. Policies developed
in [22], [21] tend to be designed for single task environment. In the CoolEmAll
project this assumption is too limiting. To overcome this, the monitoring
infrastructure gathers information at the process/application/virtual machine level,
and not only at the host level. The flexibility provided by this assumption enables
CoolEmAll infrastructure to track not only nodes execution phases, but also
applications/workloads execution phases. On-line recognition of communication
phases in MPI application was investigated by Lim et al. in [23]. Once a
communication phase is recognized, authors apply the CPU DVFS to save
energy. They intercept and record the sequence of MPI calls during the
execution of the program and consider a segment of program code to be
reducible if there are high concentrated MPI calls or if an MPI call is long enough.
The CPU is then set to run at the appropriate frequency when the reducible
region is recognized again.
The requirements for our application profiling technique are:

• Light- or no-impact on the resources

• Fast detection of application or phases of application for fast reactivity

• Ease of profile manipulation to include in DC-Worms simulator

3 What to measure
Application profiling is generally based on a few parameters of the application
and as said before the main concept behind an application profiling is the
optimization of the execution of the application and the identification of problems
at runtime.
In multilayer applications that run on data centres, there are 4 main aspects to

Collaborative project Grant agreement: 288701

Version: 1.0

Author: Georges Da Costa
Date: 29/03/2013 Page 10 / 50

monitor and get performance profiles. These aspects are:

• CPU

• Memory

• I/O operations

• Network
Those aspects are common for the majority of the applications used for scientific
or engineering purposes. They can be applied to the two computing paradigms
studied in CoolEmAll, HPC and Cloud. However, since resource consumption
and hence performance are not the only concern, this document will present also
energy profiles – essential for studies of energy efficiency envisioned within
CoolEmAll.

3.1 CPU
The CPU profiles are mainly used to generate computational performance
profiles and CPU activity. CPU profiles are very interesting on the testing and
development stages of the software. While developing, the developer does not
have a clear view of how long a task will take, despite of the complexity
calculated for a method.
CPU profiling is normally executed at testing time and the information retrieved is
passed to the development team to trigger actions after bottlenecks are
identified. At this point in time the best option to monitor and execute CPU
monitoring is applying profiling flags to the compiler, that will later execute
specific monitoring subtasks in order to count and measure time for each
method.

CPU profiling metrics Metric

Current Usage of CPU %

System Usage of CPU %

Idle Usage of CPU %

Total number of Threads Number of threads

MIPS Number of instructions
per second

Floating point Instructions per seconds FLOPS

Collaborative project Grant agreement: 288701

Version: 1.0

Author: Georges Da Costa
Date: 29/03/2013 Page 11 / 50

HW floating point rate HW Flop / WCT

Total load and store operations Number of memory
accesses

L2 Traffic GB/s

L2 Bandwidth per processor GB/s

Instruction TLB (Translation Lookaside Buffer) Number of TLB per
second

Data TLB misses Number of TLB misses

Table 1 CPU Metrics

3.2 Memory
The memory used during the execution of an application is another of the
hotspots of each application. An overload memory usage can, later on produce
failures or can slow down a process.
Modern memories are fast even if compared to the CPU internal memory (e.g.
level 1 cache) the external memory “RAM” is still some factors slower. They
provide a big amount of space that our applications can use. However, when this
memory finishes the OS uses a SWAP memory that is allocated in the hard drive
where the accessing operations are much slower than in the RAM memory.
Memory profiles though are studied on the heap memory in order to avoid the
use of other types of memories.
The following list shows three of the main issues that happen when having
memory problems and that can easily be identified when performing an analysis
of memory profile.

• Memory Leak
o Memory usage slowly increases over time
o Performance degrades
o Application will freeze/crash requiring a restart
o After restart its ok again, and the cycle repeats

• Excessive Memory Footprint
o Application is slow to load
o After load, other application runs slower than expected

• Inefficient allocation
o Application performance suddenly degrades and then

recovers quickly
Nowadays SDK and development toolkits allow the developers to solve some of

Collaborative project Grant agreement: 288701

Version: 1.0

Author: Georges Da Costa
Date: 29/03/2013 Page 12 / 50

this issues by offering different tools to clean the memory when an object is not
used any more, this is the case of the garbage collector that are running in the
virtual machines like java, python, ruby or .Net. Later the document will present
different tools that would allow us to define memory profiles.

Memory profiling metrics Metric

Current Usage of Memory %

Memory latency ms

Number of memory access Number of bus access
per second

Number of objects in memory Debug-level maximum
number of objects at
regular time interval

Current number of instances in
memory

Debug-level number of
objects at regular time
interval

Memory bandwidth GB/s

Type of memory access Direct, Indirect, Random

Table 2 Monitoring Metrics

3.3 I/O operations
I/O operations are one of the kinds of operations that take more time to run.
When applications run big amount of I/O operations the execution time is
affected, slowing down the final solution and creating, normally, other
performance issues like memory issues.
Understanding the IO profile or IO behaviour of your application is almost non-
existent yet it is one of the most important things needed when designing a
storage system. If we understand how our applications are performing IO then
you can determine the performance requirements of your storage.

• How much capacity?

• How much throughput?

• How many IOPS?

Collaborative project Grant agreement: 288701

Version: 1.0

Author: Georges Da Costa
Date: 29/03/2013 Page 13 / 50

• What is the latency to access the first element of a dataset?

• How much time is spent performing IO?

I/O profiling metrics Metric

Amount of I/O operations during the execution %

Amount of data read Byte

Amount of data stored Byte

Read KB ratio %

Write KB ratio %

IOPS Number of I/O operations per
second

Table 3 I/O Metrics

3.4 Network
Network is a basic brick on distributed systems as its name has implicit the use
of a network connection in order to interact with parts of the system that are not
running in the same server.
Monitoring the network usage of our application will allow us to realize the
following actions:

• Develop of traffic profiles for specific network segments

• Diagnose bandwidth-capacity issues for links that do not meet user
expectations

• Analyze possible capacity issues that contribute to performance delay

I/O profiling metrics Metric

Number of messages interchanged Packet sent/received per seconds

Bandwidth KB

Network Speed KB/s

Collaborative project Grant agreement: 288701

Version: 1.0

Author: Georges Da Costa
Date: 29/03/2013 Page 14 / 50

Table 4 Network Metrics

3.5 Power and Energy
To improve the energy efficiency of high-performance systems and applications,
it is critical to profile the power consumption of real systems and applications at
fine granularity. Combined with time (application length), this profile is used to
compute the total energy consumed by applications.
Power consumption, and hence power profiling, can be seen as a profile
combination of the sections before. Multiple sub-systems of a computer consume
power: CPU, memory hierarchy, network interfaces,... Usually all sub-systems
are connected by a shared bus. During the lifetime of an application, as the bus
is shared, there is a balance of usage between CPU, memory and I/O. Thus, as
power consumption follows mainly usage, usually:

• CPU power decreases as memory power consumptions goes up

• CPU and memory power decrease with message communication among
different nodes

• For most parallel codes, the average power consumption goes down as
the number of nodes increase

• Communication distance and message size affects the power profile
pattern.

In some cases those general remarks are not valid when there is communication
and computation overlap for example.

4 How to measure
In this section we will present a set of tools used for monitoring and profiling
applications. The tools presented here will cover different aspects and different
places where to take the information from. We will see how to use the compilers,
taking information from the source code, directly using specific hardware
monitoring at the CPU, using the Operating System in order to measure the
interactions with the OS and diving also into the virtualized paradigm gathering
information from such systems. Please not that it is currently impossible to
directly measure power, energy and heat produced by a single application.
Indirect measurement tools are described in the deliverable D5.3 and more
generally in the task T5.2. The measurement tools provided in this section are
the one used to compute power at the application level. Otherwise, to obtain
power it is necessary to use the dedicated watt-meter available on the CoolEmAll
platform. Its usage is described in the deliverable D2.4.

Collaborative project Grant agreement: 288701

Version: 1.0

Author: Georges Da Costa
Date: 29/03/2013 Page 15 / 50

4.1 Static program modification
This category of profiling tools tackles directly the source code on one hand
when this is available and the binaries on the other hand. The idea behind this
technique is to record desire events at run time.
When the source code is available, it is possible to set the compiler to instrument
the source code, inserting tags that would leave execution trace for symbolic and
syntactical information of the source code. When the source code is not available
the information retrieved would not have similar accuracy as the one available
with the source code, but with the following tools we can instrument almost every
binary.

4.1.1 Gprof
Gprof1 is an open source call graph execution profiler that creates a call graph
detailing which functions in a program call which other functions and records the
amount of time spent in each. To use gprof we must compile our source code
with support for this profiling application monitor. With this support, gprof will
insert desired monitoring routines in the source code in order to gather
information.
The accuracy of this information is higher if we compile the whole application with
this support, meaning that if we use external libraries that are not compiled with
gprof we won’t get any information from them.
Flat profile:

Each sample counts as 0.01 seconds.
 % cumulative self self total
 time seconds seconds calls ms/call ms/call name
 33.34 0.02 0.02 7208 0.00 0.00 open
 16.67 0.03 0.01 244 0.04 0.12 offtime
 16.67 0.04 0.01 8 1.25 1.25 memccpy
 16.67 0.05 0.01 7 1.43 1.43 write
 16.67 0.06 0.01 mcount
 0.00 0.06 0.00 236 0.00 0.00 tzset
 0.00 0.06 0.00 192 0.00 0.00 tolower
 0.00 0.06 0.00 47 0.00 0.00 strlen
 0.00 0.06 0.00 45 0.00 0.00 strchr
 0.00 0.06 0.00 1 0.00 50.00 main
 0.00 0.06 0.00 1 0.00 0.00 memcpy
 0.00 0.06 0.00 1 0.00 10.11 print
 0.00 0.06 0.00 1 0.00 0.00 profil
 0.00 0.06 0.00 1 0.00 50.00 report

Table 5 Gprof flat profile report

1 http://www.gnu.org/software/binutils/

2 http://netbeans.org/

Collaborative project Grant agreement: 288701

Version: 1.0

Author: Georges Da Costa
Date: 29/03/2013 Page 16 / 50

4.1.2 ATOM
Analysis Tools with OM (ATOM)[36] is a framework to develop application
monitoring routines written for the Alpha AXP processor which is similar to the
Etch (described below) framework on x86. The framework provides with tools to
the user for to specify instrumentation point and actions. Such instrumentation
routines will work on the object files at compilation time.
Developers must tell atom where to insert the routines using a special
programming language that later on will be used to break the source code in
small procedures allowing the framework to time each fragment separately.
The following example shows how to create a routine using atom:	

Instrument(int	 iargc,	 char**iargv)	
{	
Proc*	 p;	
Block	 *b;	
Inst	 *inst;	
AddCallProto("OpenRecord()");	
AddCallProto("CloseRecord()");	
AddCallProto("Load(VALUE)");	
for(p=GetFirstProc();p!=NULL;p=GetNextProc(p)){	

for(b=GetFirstBlock(p);b!=NULL;b=GetNextBlock(b)){	
for	 (inst	 =	 GetFirstInst(block);	 inst	 !=	 NULL;	 inst	 =	 GetNextInst(inst)){	
if(IsInstType(inst,	 InstTypeLoad){	
AddCallInst(inst,	 InstBefore,	 "Load",	 EffAddrValue);	
}	
}	

}	
}	
AddCallProgram(ProgramBefore,	 "OpenRecord");	
AddCallProgram(ProgramAfter,	 "CloseRecord");	

}

4.1.3 Etch
Etch[37] is a similar framework as ATOM but created for X86 processors that
would let us profile Windows applications. Despite of ATOM Etch works also on
binary executable files, meaning that it is not needed to have the source code in
order to generate a profile with Etch.
After an Etch profiling it is possible to ask Etch to modify the binary. This
modification rearranges instructions in the binary file and increase a specific
performance on one of the aspects of the application. The available operations of
Etch are limited as the results of the modified binary must be the same as of the
original.

4.1.4 Java profiling
Modern programing languages also provide with different frameworks that allow
developers to perform profiling analysis of their applications. Nowadays these
frameworks are also integrated in editors like eclipse or NetBeans2.

2 http://netbeans.org/

Collaborative project Grant agreement: 288701

Version: 1.0

Author: Georges Da Costa
Date: 29/03/2013 Page 17 / 50

The Eclipse Java Profiler3 is both a tool for profiling and an extensible framework.
It consists of the Profiling and Logging Perspective and a number of views. It
enables you to profile your applications, to work with profiling resources, to
interact with the applications you are profiling, and to examine your applications
for performance, memory usage and threading problems.
Java profiler allows you to profile aspects like:

• Memory

• CPU

• Thread

• Pattern extraction

• Distributed monitoring
The java profiling tool integrated in eclipse provides a graphical user interface
and specific views providing the developer to select the class or method to
profile. The specific view will run the profiling test directly from the editor,
showing after the execution a graphical report with the relevant information. The
following figure shows a report run on a class, showing information about the
timing needed to execute a certain task

3 http://www.eclipse.org/tptp/

Collaborative project Grant agreement: 288701

Version: 1.0

Author: Georges Da Costa
Date: 29/03/2013 Page 18 / 50

Figure 1 Java profiling tool report

4.2 Hardware counters
Hardware counters are monitoring tools for profiling applications that are inserted
directly in the CPU, these tools provide a very fine grain information about the
software execution. This type of application monitoring is very dependent of the
architecture and manufacturer of the processor. Generally this information is
retrieved in using the OS Kernel of tools for such porpoise.
The counters can generally be configured to gather information of different
components of the CPU like the cache or the main memory. Running the
application different times with a different monitor enabled would give us a
perfect profile of the CPU consumption of our application

Collaborative project Grant agreement: 288701

Version: 1.0

Author: Georges Da Costa
Date: 29/03/2013 Page 19 / 50

4.2.1 PAPI
Performance API (PAPI)4 is an application that implements access to most of the
hardware performance counters available on modern processors. PAPI can be
used as a simple application to extract general information from the processor
counters or can be used as a programming framework to extract and manipulate
metrics to obtain rich information. This API is an extraction layer for the specific
API implemented on a specific architecture. This feature allows developers to
program the same monitoring script for the software and run it on different
platforms to find the best performance profile for their application.
PAPI currently supports the most common processors available in the market, in
the following table we can find the supported processors in the last version of the
API.

Operating System Processor Driver Notes

AIX 5.x IBM POWER5, POWER6 bos.pmapi xlc 6+

AIX 6.x IBM POWER7 bos.pmapi under
development

Cray Linux
Environment 2.x,
3.x

Cray XT{3 - 6}, XE{5, 6} none

Compute Node
Kernel

IBM Blue Gene P none

FreeBSD x86, x86_64 (Intel, AMD) HWPMC
driver

Linux x86, x86_64 (Intel, AMD) PerfCtr 2.6.x kernel 2.6.x

Linux x86, x86_64 (Intel, AMD) Perfmon2 kernel 2.6.30
and below

Linux x86, x86_64 (Intel, AMD),
ARM, MIPS

perf_events kernel 2.6.32
and above

Linux Intel Itanium II, Montecito,
Montvale

Perfmon2 Linux 2.6.30
and below

4 http://icl.cs.utk.edu/papi/

Collaborative project Grant agreement: 288701

Version: 1.0

Author: Georges Da Costa
Date: 29/03/2013 Page 20 / 50

Linux IBM POWER4, 5, 6, 7 PerfCtr 2.7.x

Linux IBM POWER4, 5, 6, 7 perf_events kernel 2.6.32
and above

Linux IBM PowerPC970,
970MP

PerfCtr 2.7.x

Solaris 8, 9 UltraSparc I, II & III none

Solaris 10 Niagara 2 none

Table 6 PAPI supported processors

The following output shows PAPI information of the available events occurring
currently in the processor, providing valuable and specific information about the
type of processor where the software is running:

4.3 Kernel Profiling
Kernel profiling is very useful to understand and tune the OS execution that
would reflect on the execution of the software running at that time. This type of
profiling is interesting as all the system calls will go through the OS Kernel to
reach the hardware components. Understanding the kernel0s effect on hardware
event such as cache misses or clock ticks consumed may be inadequate; a more
comprehensive framework that captures the relevant state of the kernel’s data
structure is important, and cannot be achieved using only hardware counters.

%> papi_avail
Available events and hardware information.

Vendor string and code : AuthenticAMD (2)
Model string and code : AMD K8 Revision C (15)
CPU Revision : 2.000000
CPU Megahertz : 2592.695068
CPU's in this Node : 4
Nodes in this System : 1
Total CPU's : 4
Number Hardware Counters : 4
Max Multiplex Counters : 32

The following correspond to fields in the PAPI_event_info_t structure.

Collaborative project Grant agreement: 288701

Version: 1.0

Author: Georges Da Costa
Date: 29/03/2013 Page 21 / 50

4.3.1 Oprofile
Oprofile5 is a system profiler of the Linux Kernel. Since the release of the 2.6
version of the Linux kenrel, Oprofile is natively supported as a module, being
needed to compile the software as a separated module for previous releases.
Oprofile provides information about the system calls to the OS and the routines
associated. It makes use of the hardware counters explained above and internal
information of the kernel. This last feature allows the profiler to obtain memory
failure statistics or predict failures of the TLB (Translation Lookaside Buffer).
As we are talking about a low level monitoring (remember that the kernel is the
first software layer in the OS stack) the information obtained is close linked to the
hardware. This can be an impediment when executing the application on different
architectures as some of them provide with more information than others.
To use Oprofile we have to have activated this feature in the kernel, the module
blelow is the one in charge of enable this feature:
[*] Profiling support (EXPERIMENTAL)

<M> Oprofile system profiling (EXPERIMENTAL)

The following example shows the profile information available after an execution
of a single program including external libraries needed:

$ opreport --demangle=smart --symbols `which lyx`

CPU: PIII, speed 863.195 MHz (estimated)

Counted CPU_CLK_UNHALTED events (clocks processor is not halted) with a unit mask of 0x00 (No unit mask)
count 50000

vma samples % image name symbol name

081ec974 5016 3.1034 lyx _Rb_tree<unsigned short, pair<unsigned short const, int>,
unsigned short const>::find(unsigned short const&)

00009f30 4154 2.5701 libpthread-0.10.so __pthread_alt_unlock

0810c4ec 3323 2.0559 lyx Paragraph::getFontSettings(BufferParams const&, int) const

081319d8 3220 1.9922 lyx LyXText::getFont(Buffer const*, Paragraph*, int) const

080e45d8 3011 1.8629 lyx LyXFont::realize(LyXFont const&)

0000a120 2853 1.7652 libpthread-0.10.so __pthread_alt_lock

080e3d78 2623 1.6229 lyx LyXFont::LyXFont()

00069a10 2467 1.5263 libstdc++.so.5.0.1 string::find(char const*, unsigned, unsigned) const

0006a430 2274 1.4069 libstdc++.so.5.0.1 string::compare(char const*) const

4201e850 2169 1.3420 libc-2.3.2.so __GI_setlocale

4207d870 1982 1.2263 libc-2.3.2.so memcpy

Table 7 Oprofile output report

5 http://oprofile.sourceforge.net/

Collaborative project Grant agreement: 288701

Version: 1.0

Author: Georges Da Costa
Date: 29/03/2013 Page 22 / 50

4.3.2 DTrace
DTrace6 is another Kernel profiling tool as Oprofile, but in this case is specific for
Solaris OS, developed by sun to profile and obtain a better performance of their
Spark servers, DTrace is still in use nowadays as part of the OpenSolaris OS
and it has been ported to support other OS like FreeBSD and Max OX.
DTrace can execute profiling at runtime, only executing monitoring tasks when
the user starts a profiling job, this way DTrace will not generate unnecessary
calls to the Kernel and processor counters to delay the execution of an
application. Despite of Oprofile, DTrace allows developers or advance users,
generally administrators, to choose which kernel modules (denominated
providers) to monitor on each execution. Hence, the output report will be specific
for a profile rather than giving a general output of the execution if this is not the
purpose.
Dtraces executions are called proves and in order to improve performance and
cut down on the amount of data that the system has to deal with, the proves can
be associated with a predicate that lays out the conditions under which the probe
will be fired.
The following example shows an output of DTrace

cinnamon-freebsd# dtrace -s d.d
 function | nanoseconds per second
 kernel`ipport_tick 19215
 kernel`nd6_timer 21521
 kernel`lance_watchdog 31848
 kernel`kbdmux_kbd_intr_timo 34418
 kernel`logtimeout 106167
 kernel`pffasttimo 149003
 kernel`scrn_timer 157988
 kernel`tcp_isn_tick 161720
 kernel`pfslowtimo 201723
 kernel`dcons_timeout 309218
 0xc42deeb0 443589
 kernel`lim_cb 584293
 kernel`atkbd_timeout 789599
 0xc42d34f0 807851
 kernel`sleepq_timeout 4198977

Table 8 DTrace output report

6 http://dtrace.org/

Collaborative project Grant agreement: 288701

Version: 1.0

Author: Georges Da Costa
Date: 29/03/2013 Page 23 / 50

4.4 Virtual Images
Virtualization is a common used technology that day by day is generating more
expectation and business. With the popularity of cloud computing in almost all
the aspects of the modern computing these systems have to be profiled to
optimize the execution of the software installed in the virtual images.
While the software installed in the virtual image can be treated in the same way
as if it was installed in the host, hence we can apply the techniques and tools
described above.

4.4.1 XenoProf
This utility allows administrators and developers of virtual services to collect
information from virtualized infrastructures running on XEN. XenoProf7
instruments the hypervisor and the gest OS to use the underlying hardware
performance counters as if they were used by Oprofile. This feature limits the use
of XenoProf to instrument only open source operating systems, as in the case of
Oprofile, it is needed to modify the kernel of the instrumented systems.
The Xenoprof supports system-wide coordinated profiling in a Xen environment
to obtain the distribution of hardware events such as clock cycles, instruction
execution, TLB and cache misses, etc. Xenoprof allows profiling of concurrently
executing virtual machines (which includes the operating system and applications
running in each virtual machine) and the Xen VMM itself.

% D-TLB miss Function Module
9.48 e1000 intr network driver
7.69 e1000 clean rx irq network driver
5.81 alloc skb from cache XenoLinux
4.45 ip rcv XenoLinux
3.66 free block XenoLinux
3.49 kfree XenoLinux
3.32 tcp preque process XenoLinux
3.01 tcp rcv established XenoLinux

Table 9 TLB miss distribution in Xen Dom0

4.4.2 Virtualized performance counters
XenoProf, described on section 4.4.1, makes use of the OS kernel because of
the paravirtualization executed on XEN. However, on pure virtualized systems
this information cannot be used and hence, VMWare is working on another
approach: Virtualize hardware performance counters.

7 http://xenoprof.sourceforge.net/

Collaborative project Grant agreement: 288701

Version: 1.0

Author: Georges Da Costa
Date: 29/03/2013 Page 24 / 50

Virtualization of hardware performance counters are not such a trivial work as the
Virtual CPU (VCPU) does not use the Physical 100% CPU when executing
instructions as some of them are caught for the hypervisor, resetting the counter
to 0.
The result is to use a combination and synchronization of emulated and native
performance counters, finding the following 3 approaches:

• one approach is to allow the counters to run during execution of the inner
portions of the emulation code, and to pause the counters only on context
switches away from the current VCPU

• Another approach pauses all counters at the boundary between
hypervisor and hardware execution of guest code

• The last approach emulates the hardware counters to attempt to represent
the microarchitecture's counts for a small subset of events

Finally the common approach used in VMWare makes the hypervisor to handle
guest performance counters proxying the flow of information from the guest to
the physical counter. This work of proxy the information allows the hypervisor to
synchronize the counters when an interruption in the execution of a function is
intercepted and resuming the counting at the same time as the execution
resumes.

4.5 Parallel systems
This type of profiling presents extra challenges as in the case of the virtualization
profiling. This is caused because the computational logic is distributed among
different nodes. And monitored events raise on different levels.

4.5.1 ZM4/SIMPLE
This hybrid combination of hardware and software combined monitoring system
uses event driven monitoring. By using this event driven monitoring, different
nodes do not have to be simultaneously monitored, but when an event is raised
this is caught.
ZM4 is the hardware component of the system, it consist of a control and
evaluation computer (CEC) that control the actions of multiple monitor agents
distributed among the cluster. The monitor agents are a set of nodes with special
hardware integrated with the specific functionality of timestamping and recoding
events in the distributed system. This hardware distributed monitored agent uses
the Ethernet connection to send the information back to the central node, the
CEC where the distributed application profile information is later sorted using a
synchronized global system clock.

Collaborative project Grant agreement: 288701

Version: 1.0

Author: Georges Da Costa
Date: 29/03/2013 Page 25 / 50

5 Application characterization

5.1 Behaviour characterization
Classification can be based on information provided by the tools and techniques
described in the previous sections or based on the application behaviour.
Classification will be used in order to tune systems parameters (network speed,
processor frequency,...). Several applications impact the system in the same
manner, depending only on their behaviour. Even if being more complex than
simply asking the user the category of its application, in CoolEmAll behaviour
detection is used: It reduces user burden: Indeed users don’t have to specify
which type of application they run. It also remove the possibility to cheat the
system (and the system administrator),
Without a-priori information (such as application name) it is necessary to obtain
information on the application behaviour. Several possibilities are available:
Process information (performance counters, system resources used), Subsystem
information (network, disks) and Host information (power consumption).
We will see in the following that using all those information for one particular
application allows for deriving in which category it fits. It enables also to
understand in which phase this application is (computing, communicating, ...).
Efforts to model applications power/energy consumption via performance
monitoring counters have shown that performance monitoring counters relevant
to power consumption estimation depend on the application itself. Thus
performance counters relevant to power consumption estimation of a CPU
intensive application may differ from those relevant to power consumption
estimation of a memory intensive application.
As performance monitoring counters relevant to power consumption estimation
depends on the computational state of the application, any change in the set of
performance counters relevant to power consumption estimation of an
application over a time period T reflects a change in the application
computational state over the same time period T.
 Figure 2 illustrates this change in application state. It shows how, by using
performance counters, it is possible to detect two alternating phases.
The behaviour of an application will then be defined according to the
consumption of resources it induces. This consumption will be monitored using
real-time monitoring capabilities described in the previous section. Each second
a vector of monitored data will define the behaviour of an application during this
second. This vector will be called « Execution Vector ». As storing and
aggregating all those vectors (one per second per application per host) would
have to much impact on the infrastructure and on the applications, this vector is
aggregated (averaged) for the duration of an application or a phase in order to
obtain a « Signature vector ». This signature vector represents the resource
consumption of the application or phase and can be used as input to simulation

Collaborative project Grant agreement: 288701

Version: 1.0

Author: Georges Da Costa
Date: 29/03/2013 Page 26 / 50

or comparison between applications of phases.

Figure 2: Example of the monitoring of an application where two phases are alternating.
The red line is an evaluation of the change in resource consumption between one second
and the next. Peaks in the red line area good indicator of phase change.

Then, to evaluate if an application changed phase it is possible to evaluate the
difference between consecutive EV (Execution Vector). If this difference goes
over a threshold, it can be considered as a change of phase. Global behaviour is
illustrated in figure 3.

5.2 Phase identification
If current signature vector is within a threshold distance of a past signature
vectors, these two phases are considered as identical. Otherwise a new phase is
added by adding the signature vector to the reference vector list.
This identification can only be done once the detection of a phase is finished. It
can be useful to identify earlier a phase without waiting for its end. It is possible
using partial recognition.
To improve reactivity partial recognition technique is used to identify phases
before their completion. Once a phase is completed, its reference is stored along

Collaborative project Grant agreement: 288701

Version: 1.0

Author: Georges Da Costa
Date: 29/03/2013 Page 27 / 50

with its length and its characteristics. Thus, an ongoing phase (a phase started
but not yet completed) is recognized as an existing phase if the Manhattan
distance (the Manhattan distance defines the degree of similarity between two
execution vectors, one may chose another metric) between each execution
vector of the already executed part and any reference vector is within the a given
threshold defining the percentage of dissimilarity between them. We speak of an
X% recognition threshold if the already executed part of the ongoing execution is
equals to X% of the length of any existing stored phase.

5.3 DNA-like System Modelling
The application profiles repository contains description of applications required
by simulations. In classical simulation, application are usually described by their
submission time and length. In our context, it is insufficient to evaluate the power
and thermal impact of the application.

Figure 3: Phase detection and identification with partial recognition

We will use the DNA-inspired[24] formalism to describe applications. The goal of
this formalism is to obtain a profile of resource consumption of applications.
Using these information of the resources consumed, simulation can evaluate the
impact of this application on the system, using models[25] to translate these
resources into power and energy. Then, it is possible to evaluate the thermal
impact using energy dissipation models.

Collaborative project Grant agreement: 288701

Version: 1.0

Author: Georges Da Costa
Date: 29/03/2013 Page 28 / 50

In this formalism, an application is considered to have phases. An application can
start using disk, then do some communication and finally use disk again. This
application is modelled as having three phases. The DNA-inspired approach
assigns a letter (like AGTC for human DNA) to each phase. A letter describe the
resource consumption of a phase as described bellow. If two phases have the
same resource consumption profile, they will be assigned the same letter. The
application description is then a chromosome, a sequence of such letters. A
distributed application is described as a set of chromosome. An example is
shown on figure 1, an application has two types of phases, repeted several
times, which can be detected as the values of the hardware performance
counters cache references, branch instructions and branch misses have different
behaviours. In our formalism, this sequence would be encoded as
A{106}B{11}A{106}B{11}...A{106}B{11} for the chromosome part, as the first
phase lasts 106 seconds and the other phase lasts 11. It is associated with a
profile of resource consumption for A and B.
A letter itself is modelled as a column vector of hardware monitoring counters
including performance counters, system values, disk read/write and network
bytes (respectively packets) sent/received counts to capture non memory- or
CPU-intensive behaviour and length.
In the application profile repository, each application chromosomes will be stored
along with the hardware description on which it has been obtained. A translation
tool is used to translate letters from the original monitored hardware to the one
aimed during the simulation. For instance, if the letter describes a full CPU
application, the translation will use the ratio of frequencies between the original
and the destination.

6 Application and phase classification
Certain applications share similar characteristics, making them comparable to
each other. This is the same for phases. Two different applications can have a
particular phase in common, like an I/O phase where results are saved for
instance. In the following we will assimilate phases and applications and use only
the term application. The question arises how to compare them and to
differentiate their impact on the system from different point of view: Power,
energy and heat.

Collaborative project Grant agreement: 288701

Version: 1.0

Author: Georges Da Costa
Date: 29/03/2013 Page 29 / 50

Figure 4: Several Nas Parallel Benchmark. X axis is the mean power consumed, Y axis is

the mean number of cache misses per second

To be precise, having more than simple load is necessary. For instance, in
Figure 4, all the benchmarks have a 100% load. However their power profiles are
different. In fact, even having the load profile and the memory access profile is in
this case insufficient and would lead to 7% of error in the evaluation of power by
an application: IS and FT have the same resource consumption profile for CPU
and memory but have a power consumption that differs of 16W on the same
hardware. IS and FT are two benchmarks of the Nas Parallel Benchark8 suite
that have different patterns of access to the memory and network.

6.1 Methodology for classification of applications
The methodology of the application classification is the following. Initially different
performance counters are monitored during application execution, such as
cycles_persec, instructions_persec, minor.faults_persec. Their values are
collected throughout application run. It is later necessary to remove correlated
performance counters, as it is undesirable to have multiple variables carrying the

8 http://www.nas.nasa.gov/publications/npb.html

Collaborative project Grant agreement: 288701

Version: 1.0

Author: Georges Da Costa
Date: 29/03/2013 Page 30 / 50

same information. An array with the values representing correlations between all
performance counters is created. In case the correlation between two variables is
higher or equal to 90%, the script needs to choose one to remove. To do that it
calculates the correlation between these two performance counters and power
usage. Variable with lower correlation is discarded.
After this phase the application is represented as a d-dimensional vector, each
dimension being one performance counter. To create the groups of applications
sharing similar characteristics, the hierarchical clustering with the Ward’s method
is used, where the objective function is the error sum of squares. It minimizes the
total within-cluster variance. At each step, the pair of clusters that leads to the
minimum increase in total within-cluster variance after merging is selected. The
result of this method is a dendrogram, a special tree structure that shows the
relationships between clusters [27].
It is important to note that only applications utilizing the same number of cores
and running on the same CPU frequency (it is best to use the highest value)
should be used in the clustering method. This results from the fact that restricting
application to a lower number of CPU cores or changing clock rate to a smaller
value can significantly change application characteristic. As a result, the same
program executed in different environments could be assigned to different
clusters of applications.
To automate the process of group selection at runtime, a decision tree is created.
It is a tree-shaped diagram that determines a course of action. Each branch of
the decision tree represents a possible decision or occurrence. The tree structure
shows how one choice leads to the next. The decision tree can be produced by
multiple algorithms that identify various ways of splitting a data set into classes.
Their representation of acquired knowledge in a tree form is intuitive and easy to
understand by humans. What is more, the learning and classification steps of
decision tree induction are simple and fast.
The algorithm for decision tree induction follows a greedy top-down approach,
where the tree is constructed in a top-down recursive divide-and-conquer
manner. It starts with a training set of tuples and their associated class labels.
The training set is recursively partitioned into smaller subsets as the tree is being
built. The attribute selection method specifies a heuristic procedure for selecting
the attribute that ”best” discriminates the given tuples according to class. This
procedure employs an attribute selection measure.
The tree starts as a single node, N, initially representing the complete set of
training tuples and their associated class labels. If the tuples are all of the same
class, the node N becomes a leaf and is labeled with that class. Otherwise, the
attribute selection method is used to determine the splitting criterion. It specifies
the attribute to test at node N by determining the ”best” way to separate or
partition the tuples into individual classes. The splitting criterion is determined so
that, ideally, the resulting partitions at each branch are as ”pure” as possible. A
partition is ”pure” if all of the tuples in it belong to the same class.

Collaborative project Grant agreement: 288701

Version: 1.0

Author: Georges Da Costa
Date: 29/03/2013 Page 31 / 50

Then the node N is labelled with the splitting criterion, which serves as a test at
the node. A branch is grown from the node N for each of the outcomes of the
splitting criterion. The tuples are partitioned accordingly. There are two possible
scenarios – the splitting attribute may be discrete-valued or continuous-valued. In
case of performance counters the latter situation always takes place, as they
have numerical values. The test at node N has two possible outcomes,
corresponding to the conditions A ≤ split_point and A > split_point, where
split_point is the split-point returned by the attribute selection method.
The algorithm uses the same process recursively to form a decision tree for the
tuples at each resulting partition. The recursive partitioning stops when all of the
tuples belong to the same class, or there are no remaining attributes on which
the tuples may be further partitioned, or there are no tuples for a given branch.

6.2 Experiments

6.2.1 Experimental setup
The above presented methodology was used to perform experiments. Three
servers were used to validate the results:

• Sun Fire V20z with 4 x 2GB DDR RAM modules and 2 x dual-core AMD
Opteron 275 “Italy” with 64KB L1 cache per core, 1MB L2 cache per core,
68W TDP, 1GHz HyperTransport bus and four P-States: 1.0GHz, 1.8GHz,
2.0GHz and 2.2GHz,

• Actina Solar 410 S2 with 4x 2GB DDR2 PC2-5300 RAM ECC-enabled
RAM modules and 2x quad-core Intel Xeon E5345 „Clovertown” with
16KB L1 per core, 8MB shared L2 cache, 80W TDP, 1333MT/s FSB and
two P-States: 2.0GHz and 2.33GHz,

• Actina Solar 212 X2 with 4x 2GB DDR2 PC2-5300 RAM ECC-enabled
RAM modules and 2x 2 core Intel Xeon 5160 „Woodcrest” with 64KB
Level 1 cache per core, 4MB shared Level 2 (L2) cache, 80W Thermal
Design Power (TDP), 1333MT/s Front-side Bus (FSB) and four P-States:
2.0GHz, 2.33GHz, 2.66GHz and 3.00GHz.

The applications executed in the experiments were the following:

• Abinit – it is a software for materials science, computing electronic density
and derived properties of materials ranging from molecules to surfaces to
solids [28]. It can be deployed as a parallel workload using MPI. In the
given tests, Abinit was used to calculate one of the example inputs
shipped with the source package,

• Cavity – the lid-driven cavity is a CFD problem for testing new CFD
algorithms and has long been used as a test or validation case for new
codes or new solution methods [29, 30]. In the given tests the problem

Collaborative project Grant agreement: 288701

Version: 1.0

Author: Georges Da Costa
Date: 29/03/2013 Page 32 / 50

was solved with the Lattice Boltzmann methods (using Palabos, an open-
source CFD library),

• C-Ray – it is a simple ray-tracing benchmark, usually involving only a
small amount of data [31]. This software measures floating point CPU
performance, often even not accessing main RAM. The test is configured
with a significantly big scene, requiring about 60s of computation but the
resulting image is written to /dev/null to avoid the disk overhead,

• CPU Burn – it is a stability testing tool for overclockers. The program
heats up the CPU to the maximum possible operating temperature that is
achievable by using ordinary software. In these tests burnK7 is used on
the AMD machine and burnMMX on the Intel CPUs [32],

• HMMER – it is a software for sequence analysis. Its general usage is to
identify homologous protein or nucleotide sequences. This type of
problem was chosen because it requires a relatively big input size
(hundreds of MB) and requires specific types of operations related to
sequences [33],

• NAMD – it is a molecular dynamics simulation package written using the
Charm++ parallel programming model, noted for its parallel efficiency and
often used to simulate large systems of atoms. The software is mainly
written in C++ and can be deployed as an MPI workload. One of the
examples shipped with the source package was used as input [34],

• MEncoder – it is a command line video decoding, encoding and filtering
tool, able to convert multiple formats into a variety of compressed and
uncompressed formats using different codecs [35]. The test consists of
encoding a raw 1080p video stream into H.264. The content is a 20s part
of Big Buck Bunny video, a free content video licensed under the
Creative-Commons license.

In the experiments, the Perf Tool [26] was used. It makes access to the
performance counters very easy, as it presents a simple command line interface
by abstracting away CPU hardware differences in Linux performance
measurements. It is based on the perf_events interface, available since Linux
Kernel 2.6.31. The Perf tool offers a rich set of commands to collect and analyze
performance and trace data.

6.2.2 Results
Using hierarchical clustering on AMD Opteron 275 to group applications results
in a dendrogram, which is presented in Figure 5. Three clusters can be easily
distinguished, represented in this Figure as three red boxes. The distances
between them are quite high, as opposed to the distances between applications
inside clusters, which suggests that the groups were selected properly. It is also
very conforming that no instance of any application (in other words – no

Collaborative project Grant agreement: 288701

Version: 1.0

Author: Georges Da Costa
Date: 29/03/2013 Page 33 / 50

application execution) was assigned to more than one group. It confirms the
suggestion that the groups have their own characteristics, not shared with other
clusters.
The extracted groups were the following:

• Ist group: abinit, burn and namd,

• IInd group: cavity,

• IIIrd group: c-ray, hmmer, mencoder.

Figure 5 Arrangement of clusters of applications on AMD Opteron 275

Moreover, it is necessary to distinguish fourth group – idle. It contains the periods
without any application execution.
The decision tree created for these four groups is presented in Figure 6. Two
paths in the tree lead to class I, another two to class III and there are three other
paths, one for each of the other classes. Only three variables were used to

Collaborative project Grant agreement: 288701

Version: 1.0

Author: Georges Da Costa
Date: 29/03/2013 Page 34 / 50

differentiate between classes of applications: perf.instructions_persec,
perf.cache.misses_persec and perf.DRAM.access.1_persec. Those values
represent respectively their mean number of instruction per second, mean cache
misses per seconds and mean DRAM access per second. It is important to note
that the tree correctly classifies all of the training data points.

Figure 6 Classification Tree for AMD Opteron 275

The accuracy of the tree was examined by another software. All of the
applications in the tree were executed by this program, at the same time the
values of selected performance counters were compared to the ones appearing
in the tree and the appropriate model was selected. The class resulting from the
use of the tree was compared to the actual class of currently running application.
In turned out that the tree correctly classified 95.79% of cases. Moments of
misclassification appeared either at the beginning or end of application run,
where the values of performance counters were not stabilized.
Similar experiments were performed for processor Intel Xeon E5345. Just like in
the previous CPU, the hierarchical clustering was used to create clusters of
applications. Because the characteristics of application changes when running on

Collaborative project Grant agreement: 288701

Version: 1.0

Author: Georges Da Costa
Date: 29/03/2013 Page 35 / 50

different number of cores or CPU frequency, the highest frequency and number
of cores (eight in this case) were used to execute the programs. The resulting
dendrogram is presented in Figure 7.

Figure 7 Arrangement of clusters of applications on Intel Xeon E5345

The cut-off value of 15 was selected, creating three clusters of applications – the
same as in case of AMD processor.
Similarly, to make it possible to choose an appropriate model at runtime, a
decision tree was created for this processor. It is presented in Figure 8. As it
turned out, only two variables were used to create the tree –
perf.instructions_persec and perf.LLC.loads_persec. The tree is very simple, yet
accurate – just as in the previous experiments, every application was correctly
classified.
The experiments proved the tree to be very accurate – it correctly chose the
correct group for 95-97% of the time. The incorrect choice of the model usually

Collaborative project Grant agreement: 288701

Version: 1.0

Author: Georges Da Costa
Date: 29/03/2013 Page 36 / 50

took place during application launch or shutdown.

Figure 8 Classification tree for Intel Xeon E5345

The last set of experiments was performed on Intel Xeon 5160. The methodology
of work was the same. The hierarchical clustering created dendrogram presented
in Figure 8. Again, the same classes of applications were distinguished, as in the
case of previous processors:

• Ist group: abinit, burn and namd,

• IInd group: cavity,

• IIIrd group: c-ray, hmmer, mencoder.
Idle periods should be treated as an additional class.
The classification tree created for Intel Xeon 5160 is presented in Figure 9. It it
very simple, created with just three variables – perf.instructions_persec,
perf.bus.trans.mem_persec and temp.cpu_avg.

Collaborative project Grant agreement: 288701

Version: 1.0

Author: Georges Da Costa
Date: 29/03/2013 Page 37 / 50

Figure 9 Classification tree for Intel Xeon 5160

The tree was converted to a set of rules and in every second the model selected
by the software assessing the tree accuracy was compared to the model
appropriate for currently running application. As it turns out, the accuracy of the
tree is 91,67%. Misclassification appeared mostly in two cases: when the
application was started or when it finished calculations. In the first case wrong
class was usually selected for about 1-2 seconds, the time needed for the
performance counters to show stabilized values. However, when the application
finished execution, wrong model (usually mencoder, c-ray hmmer instead of idle)
was sometimes chosen for up to 1 minute. The reason behind this is the
temperature variable. An analysis of the tree leads to the conclusion that idle
class should be chosen only when the temperature reaches a value lower than
44.63 degrees Celsius. It always takes some time (between 5-60 seconds,
depending on the starting temperature) for the processor to cool down.

Collaborative project Grant agreement: 288701

Version: 1.0

Author: Georges Da Costa
Date: 29/03/2013 Page 38 / 50

This drawback can be easily corrected. By removing the temperature variable
from the input set, another tree is created. perf.cycles_persec is used instead of
temp.cpu_avg and the tree has more branches. The accuracy of this tree
reaches 96,57%. Correct model is selected much faster than previously when the
application finishes (about 1-5 seconds).

6.2.3 Analysis of the models
Different clusters of applications suggest some similarities occurring within the
groups, differentiating them from other applications. The method of applications
clustering distinguishes groups of programs based on the analysis of the values
of performance counters. Therefore, it leads to the conclusion that models
created for these groups should contain different variables (performance
counters). It could also mean that the power consumption of applications should
be similar within the same cluster, but different between programs from two
groups. However, it does not necessarily need to be true.
Table 10, Table 11 and Table 12 present models for three groups of applications
on AMD Opteron 275. It is clearly visible that beside the intercept each of them
shares only the temperature. The rest of variables appear only in one or two
models. The differences between the models are also visible in the number of
variables used to create them – only two in case of cavity application and five in
case of abinit, burn and namd. Similar differences appear also in case of the
other two processors (Intel Xeon 5160 and Intel Xeon E5345).

Table 10 for applications abinit, burn and namd on AMD Opteron 275

Variable βi

(Intercept) -6.584e+02

sqrt(perf.cache.misses_persec) -4.031e-03

perf.DRAM.access.1_persec 1.064e-06

perf.instructions_persec 1.992e-09

temp.cpu_avg 3.918e-01

log(perf.cycles_persec) 3.723e+01

Table 11 for application cavity on AMD Opteron 275

Variable βi

Collaborative project Grant agreement: 288701

Version: 1.0

Author: Georges Da Costa
Date: 29/03/2013 Page 39 / 50

(Intercept) 3.267e+01

temp.cpu_avg 4.076e+00

perf.LLC.load.misses_persec 1.958e-06

Table 12 for applications mencoder, c-ray, hmmer on AMD Opteron 275

Variable βi

(Intercept) 4.015e+00

temp.cpu_avg 4.168e+00

log(perf.LLC.load.misses_persec) 1.207e+00

perf.instructions_persec 1.773e-09

The analysis of the energy consumption of these applications also shows some
differences. The first group (abinit, burn and namd) is characterized by the
highest power usage, around 250W. Example runs of these three applications
are presented in Figure 10. In the second group (c-ray, hmmer and mencoder)
two of the applications (hmmer and mencoder) have noticeably lower power
consumption (below 200W), while c-ray’s power usage is variable, although
always slightly lower than the programs in the first group (see Figure 11). The
third group, consisting of just cavity application, is very diverse – it consists of
periods of high power consumption divided by short declines – an example run is
presented in Figure 12.

Collaborative project Grant agreement: 288701

Version: 1.0

Author: Georges Da Costa
Date: 29/03/2013 Page 40 / 50

Figure 10: Example runs of abinit (a), burn (b) and namd (c) applications

Figure 11: Runs of c-ray (a), hmmer (b) and mencoder (c) applications

Collaborative project Grant agreement: 288701

Version: 1.0

Author: Georges Da Costa
Date: 29/03/2013 Page 41 / 50

Figure 12: Example run of cavity application

6.2.4 Impact of application execution on the CPU temperature
In the previous subsections the applications clustering based on values of
performance counters were presented. Models for specific application classes
were built to estimate their power usage. In this subsection the impact of
application execution on the CPU temperature is presented as the thermal output
of particular applications may differ even if load or power usage are similar. As a
result the thermal differences between programs are underlined, which can be
applied to identify classes of applications with respect to their thermal
characteristics.

Collaborative project Grant agreement: 288701

Version: 1.0

Author: Georges Da Costa
Date: 29/03/2013 Page 42 / 50

Figure 13 Dependency between instructions per cycle and temperature of the processor

on Intel Xeon 5160

Figure 13 presents dependency between the value of instructions per second
divided by cycles per second (it results in a value of instructions per cycle) and
the temperature of the CPU on Intel Xeon 5160. Multiple values for each
application are caused by their execution with various CPU frequencies. For
most of applications a number of instructions per cycle is constant or its increase
is correlated with the increase of CPU temperature. However, there are
applications for which a number of instructions per cycle decrease at higher CPU
frequencies. Generally, execution of various applications affect CPU temperature
to a diverse extent and these differences can be partially explained by a number
of instructions per cycle.
Similarly, Figure 14 illustrates dependency between instructions per cycle and
the temperature of the CPU on Actina Solar 410 S2. Groups of applications
having different thermal characteristics are clearly visible.

Collaborative project Grant agreement: 288701

Version: 1.0

Author: Georges Da Costa
Date: 29/03/2013 Page 43 / 50

Figure 14 Dependency between instructions per cycle and temperature of the processor

on Actina Solar 410 S2

In Figure 15 dependency between absolute values of instructions per second
performance counter and the temperature of the CPU are shown. The visible
stripes from left bottom to right up reflect various CPU frequencies. It can be
seen that for the lowest frequency there is a significant differences in
temperature compared to higher frequencies.

Figure 15 Dependency between instructions per second and temperature of the processor

on Actina Solar 410 S2

Obviously power usage and heat dissipation are correlated. However, this
correlation depends on application and hardware characteristics (e.g. to which
extent CPU is stressed). Figure 16 describes changes in the CPU temperature

Collaborative project Grant agreement: 288701

Version: 1.0

Author: Georges Da Costa
Date: 29/03/2013 Page 44 / 50

and whole server power usage (Actina Solar 410 S2) over time. Related changes
of temperature and power can be easily seen, however their intensity differ for
various applications.

Figure 16 Changes over time of server power and CPU temperature on Actina Solar 410 S2

The observations made above will be a basis of heat-aware classification of
applications. The same methodology as for classification of applications with
respect to power usage can be applied. The concrete specification of classes will
be performed for applications defined in trials (in deliverable D6.2 due on month
20) and presented in deliverables related to heat-aware benchmarks (D5.5 in
month 21 and final benchmarks D5.6 in month 30).

Collaborative project Grant agreement: 288701

Version: 1.0

Author: Georges Da Costa
Date: 29/03/2013 Page 45 / 50

7 Power-, Energy-, and Thermal-aware classification
The goal of this deliverable is to provide the methodology that will be applied on
the CoolEmAll RECS platform. Previous classifications produce classes of
applications that share the same resource consumption profiles. The next step is
to take also into account the power impact of applications during classification.
Using the proposed classification method, we will be able to obtain classes of
applications that consume a particular resource to certain extent, and which have
a high or a low power impact. Using metrics provided by D5.1 and models by
D5.3 the impact can be evaluated at the power-, energy- and thermal-level. The
situation will be similar as the one obtained for spatial and temporal locality

Figure 17: Spatial and temporal locality are not correlated for different application. Power
and load are also not totally correlated

explored by HPCC benchmarks (Figure 17). In our case it will be resource and
power- or energy- or heat- levels.
Indeed Figure 4 in Section 6.1 already shows that even being at 100% load, the
profile of power consumption can change between applications. In the presented
case, the difference reaches 15W on a base consumption of 240W. Application
power-impact depends on the exact sequence of instructions. 100% load can be
achieved using only integer operations, but also floating-point operations,
memory operations and I/O operations. Having several elements of these types
of operations leads to have a 100% load, but using at the same time several sub-
systems actives leads to a higher power-consumption.
Taking into account time in addition to power enables evaluating energy
consumed by an application. Having an application that consume power at a

Collaborative project Grant agreement: 288701

Version: 1.0

Author: Georges Da Costa
Date: 29/03/2013 Page 46 / 50

steady state has a different impact compared to an application that consume
power in a random way, even if the two applications have the same total energy
and the same length. Their different way to consume energy lead to different
starting time of fans, and to different final temperature of elements.
As the resource usage of applications have a large impact on the power-
consumption of nodes, classification in the CoolEmAll project takes into account
direct measurement values such as load, I/O, memory accesses, but also more
complex metrics, such as application power consumption (provided by CoolEmAll
task 5.1) and time.
Using this classification (using the proposed methodology presented in this
document and the monitoring system provided by task 5.1), the CoolEmAll
project will categorize applications from HPC field (HPCC, Nas Parallel
benchmark, phoronix benchmarks) and from Cloud field (three-tiers applications,
complex services). From this classification, the Benchmarking task will build a
selection of representative tasks that will serve as benchmark to evaluate
different elements of the CoolEmAll project.
The first classification of application will be delivered in D5.5 (month 21) using
the methodology described in this deliverable (D5.4).

Collaborative project Grant agreement: 288701

Version: 1.0

Author: Georges Da Costa
Date: 29/03/2013 Page 47 / 50

BIBLIOGRAPHY
1. Francois Corrandino. KTH Computer Science and Communication,

Sweeden. "Application Profile”, Characterization and Profiling of Scientific
Computing Applications

2. Chis Farrell, The fast guide to Application profiling
3. Aman Kansa, Feng Zhao. Microsoft. Fine-Grained Energy Profiling for

Power-Aware Application Design
4. Ron Ge, Xizhou Feng, Marquette University. Shuaiwen Song, Hung-Ching

Chang, Dong Li, Virginia Polytechnic Institute and State University. Power
Pack: Energy Profiling and Analysis of High performance Systems and
Applications

5. Xizhou Feng, Rong Ge, Kirt W. Cameron. Scalable performance
Laboratory, Department of Computer Science and Engineering University
of South Carolina. Power and Energy Profiling of Scientific Applications on
Distributed Systems

6. Benjamin Serebrin, Daniel Hecht. VMWare. Virtualizing Performance
Counters

7. Aravind Menon, Jose Renato Santos, Yoshio Turner, G. (John)
Janakiraman, Willy Zwaenepoel. HP. Diagnosing Performance Overheads
in the Xen Virtual Machine Environment

8. Krste Asanovic, Rastislav Bodik, James Demmel, Tony Keaveny, Kurt
Keutzer, John Kubiatowicz, Nelson Morgan, David Patterson, Koushik
Sen, John Wawrzynek, David Wessel, and Katherine Yelick. A view of the
parallel computing landscape. ACM, 52:56–67, October 2009.

9. Denis Barthou, Andres Charif Rubial, William Jalby, Souad Koliai, and
Cedric Valensi. Performance tuning of x86 openmp codes with maqao. In
Parallel Tools Workshop, pages 95—113, Dresden, Germany, September
2009. Springer-Verlag.

10. Franck Cappello, Amina Guermouche, and Marc Snir. On communication
determinism in parallel hpc applications. In Computer Communications
and Networks (ICCCN), 2010 Proceedings of 19th International
Conference on, pages 1–8, August 2010.

11. Karl Furlinger, Nicholas J. Wright, and David Skinner. Performance
analysis and workload characterization with ipm. In Matthias S. Mller,
Michael M. Resch, Alexander Schulz, and Wolfgang E. Nagel, editors,
Tools for High Performance Computing 2009, pages 31–38. Springer
Berlin Heidelberg, 2010.

12. Markus Geimer, Felix Wolf, Brian J. N. Wylie, Daniel Becker, David

Collaborative project Grant agreement: 288701

Version: 1.0

Author: Georges Da Costa
Date: 29/03/2013 Page 48 / 50

Bohme, Wolfgang Frings, Marc-Andre Hermanns, Bernd Mohr, and Zoltan
Szebenyi. Recent developments in the scalasca toolset. In Tools for High
Performance Computing 2009, Proc. of the 3rd Parallel Tools Workshop,
Dresden, Germany, chapter 4, pages 39–51. Springer, 2010.

13. Michael Gerndt and Edmond Kereku. Automatic memory access analysis
with periscope. In Proceedings of the 7th international conference on
Computational Science, Part II, ICCS ’07, pages 847–854, Berlin,
Heidelberg, 2007. Springer-Verlag.

14. Marty Itzkowitz and Yukon Maruyama. Hpc profiling with the sun studio
performance tools. In Parallel Tools Workshop, Dresden, Germany,
September 2009. Springer-Verlag.

15. T.M. Madhyastha and D.A. Reed. Learning to classify parallel input/output
access patterns. Parallel and Distributed Systems, IEEE Transactions on,
13(8):802 – 813, August 2002.

16. W. E. Nagel, A. Arnold, M. Weber, H.-Ch. Hoppe, and K. Solchenbach.
Vampir: Visualization and analysis of mpi resources. Supercomputer,
12:69–80, 1996.

17. Thomas Panas, Dan Quinlan, and Richard Vuduc. Tool support for
inspecting the code quality of hpc applications. In Proceedings of the 29th
International Conference on Software Engineering Workshops, pages
182–, Washington, DC, USA, 2007. IEEE Computer Society.

18. Hongzhang Shan, Katie Antypas, and John Shalf. Characterizing and
predicting the i/o performance of hpc applications using a parameterized
synthetic benchmark. In Proceedings of the 2008 ACM/IEEE conference
on Supercomputing, SC’08, pages 42:1–42:12, USA, 2008. IEEE Press.

19. Sameer S. Shende and Allen D. Malony. The tau parallel performance
system. Int. J. High Perform. Comput. Appl., 20:287–311, May 2006.

20. Alexander S. van Amesfoort, Ana Lucia Varbanescu, and Henk J. Sips.
Towards parallel application classification using quantitative metrics. In
ASCI 2010, 2010.

21. K. Choi, R. Soma, and M. Pedram. Fine-grained dynamic voltage and
frequency scaling for precise energy and performance tradeoff based on
the ratio of off-chip access to on-chip computation times. IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 24, no. 1, pp. 1828, Jan.
2005.

22. C. Isci, G. Contreras, and M. Martonosi, Live, runtime phase monitoring
and prediction on real systems with application to dynamic power
management. in Proc. MICRO, 2006, pp. 359370.

23. Lim M, Freeh V, Lowenthal D. Adaptive, transparent frequency and
voltage scaling of communication phases in mpi programs. Proceedings of
the 20th ACM/IEEE Conference on Supercomputing (SC06). Tampa,

Collaborative project Grant agreement: 288701

Version: 1.0

Author: Georges Da Costa
Date: 29/03/2013 Page 49 / 50

Florida, USA. 11-17 Nov., 2006; 14-27.
24. Ghislain Landry Tsafack Chetsa, Laurent Lefevre, Jean-Marc Pierson,

Patricia Stolf, Georges Da Costa. DNA-Inspired Scheme for Building the
Energy Profile of HPC Systems. International Workshop on Energy-
Efficient Data Centres, Springer, 2012.

25. Da Costa Georges, Hlavacs Helmut, Hummel Karin and Pierson Jean-
Marc. Modeling the Energy Consumption of Distributed Applications. In
Handbook of Energy-Aware and Green Computing, Chapman & Hall, CRC
Press., 2012

26. Perf Tool – Linux profiling tool.
https://perf.wiki.kernel.org/index.php/Main_Page, 2011.

27. Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to Data
Mining. Addison Wesley, 2005.

28. X. Gonze, J.M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.M.
Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet, and et al. First-
principles computation of material properties: the ABINIT software project.
Computational Materials Science, 25(3):478–492, 2002.

29. E. Erturk, T.C. Corke, and C. Gokcol. Numerical Solutions of 2-D Steady
Incompressible Driven Cavity Flow at High Reynolds Numbers.
International Journal for Numerical Methods in Fluids, 48:747–774, 2005.

30. Ercan Erturk. Numerical Solutions of 2-D Steady Incompressible Driven
Cavity Flow at High Reynolds Numbers. International Journal for
Numerical Methods in Fluids, 60:275–294, 2005.

31. C-ray – ray-tracing benchmark. http://code.google.com/p/cray/, 2012.
32. CPU Burn – stability testing tool for over-clockers.

http://www.cpuburnin.com/, 2012.
33. Robert D. Finn, Jody Clements, and Sean R. Eddy. HMMER web server:

interactive sequence similarity searching. Nucleic Acids Research, 2011.
34. J.C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C.

Chipot, R.D. Skeel, L. Kale, , and K. Schulten. Scalable molecular
dynamics with NAMD. Journal of Computational Chemistry, 26(16):1781–
1802, 2005.

35. Comprehensive MEncoder guide – Encoding with MEncoder.
http://www.mplayerhq.hu/DOCS/HTML/en/encoding-guide.html.

36. Amitabh Srivastava, Alan Eustace. "ATOM: a system for building
customized program analysis tools." Proceedings of the ACM SIGPLAN
1994 conference on Programming language design and implementation,
1994

37. Ted Romer et. al. "Instrumentation and Optimization of Win32/Intel

Collaborative project Grant agreement: 288701

Version: 1.0

Author: Georges Da Costa
Date: 29/03/2013 Page 50 / 50

Executables Using Etch." Proceedings of the USENIX Windows NT
Workshop, August 1997.

