
HAL Id: hal-01818196
https://hal.science/hal-01818196

Submitted on 18 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CoolEmAll D2.4 First release of the simulation and
visualisation toolkit

Daniel Rathgeb, Eugen Volk, Yosandra Sandoval, Georges da Costa, Thomas
Zilio, Micha Vor Dem Berge, Wojciech Piatek

To cite this version:
Daniel Rathgeb, Eugen Volk, Yosandra Sandoval, Georges da Costa, Thomas Zilio, et al.. CoolEmAll
D2.4 First release of the simulation and visualisation toolkit. [Research Report] IRIT-Institut de
recherche en informatique de Toulouse. 2013. �hal-01818196�

https://hal.science/hal-01818196
https://hal.archives-ouvertes.fr

Project acronym: CoolEmAll
Project full title: Platform for optimising the design and

operation of modular configurable IT infrastructures and
facilities with resource-efficient cooling

D2.4 First release of the simulation and
visualisation toolkit

Authors: Daniel Rathgeb, Eugen Volk (HLRS)
Version: 1.0

Date: 29/03/2013

Collaborative project Grant agreement: 288701

 Version: 1.0

Authors: D. Rathgeb, E. Volk
Date: 29/03/2013 Page 2 / 50

Deliverable Number: D2.4
Contractual Date of
Delivery:

31/03/2013

Actual Date of
Delivery:

30/03/2013

Title of Deliverable: First release of the simulation and visualisation toolkit
Dissemination Level: Public
WP contributing to the
Deliverable:

WP 2

Authors: Daniel Rathgeb, Eugen Volk (HLRS)
Co-Authors: Yosandra Sandoval (HLRS)

Georges da Costa (IRIT)
Thomas Zilio (IRIT)
Micha vor dem Berge (Christmann)
Wojciech Piatek (PSNC)

History
Version Date Author Comments

0.1 17.02.13 Eugen Volk (HLRS) Template

0.2 01.03.13 Daniel Rathgeb (HLRS) Skeleton

0.3 04.03.13 Eugen Volk (HLRS) Update Skeleton

0.4 07.03.13 Georges da Costa (IRIT) Application Profiler

0.5 08.03.13 Micha vor dem Berge
(Christmann)

DEBB Configurator

0.6 08.03.13 Wojciech Piatek (PSNC) DCworms

0.7 11.03.13 Thomas Zilio (IRIT) Metric Calculator

0.8 12.03.13 Yosandra Sandoval (HLRS) CoolEmAll Database

0.9 13.3.13 Daniel Rathgeb, Eugen Volk
(HLRS)

Merging of contributions

091 14.03.13 Eugen Volk update

0.92 15.03.13 Review by Andrew Donogue
(451G)

review

Collaborative project Grant agreement: 288701

 Version: 1.0

Authors: D. Rathgeb, E. Volk
Date: 29/03/2013 Page 3 / 50

0.93 19.03.13 Laura Sisó (IREC) review

0.94 20.03.13 Daniel Rathgeb (HLRS) Adressing review
comments

0.95 25.03.13 Eugen Volk (HLRS) Adressing review
comments

0.96 26.3.2013 Daniel Rathgeb (HLRS) Adding partner
contributions

1.0 29.03.2013 Eugen Volk (HLRS) Final update

Collaborative project Grant agreement: 288701

 Version: 1.0

Authors: D. Rathgeb, E. Volk
Date: 29/03/2013 Page 4 / 50

Approval
Date Name Signature

15.03.13 Andrew Donogue Donogue

20.03.13 Laura Sisó Sisó

29.03.13 Eugen Volk Volk

Abstract

This deliverable describes the realisation of the first prototype of the simulation,
visualisation and decision support toolkit and the interaction of its components. It
further describes the usage and the tests of the components of the 1st Prototype of
the SVD toolkit. Another focus of this deliverable is describing the heterogeneous
deployment architecture of the SVD toolkit and the invoking of the different
components for performing an automatic simulation.
This deliverable is split into four major parts. Each part describes the different
properties of the individual components. Special focus is put on the distributed
deployment architecture, realization, usage and tests of this 1st prototype.

Keywords

First SVD toolkit prototype,OpenFOAM, CFD, Workload simulator, DCworms,
Database, deployment, Repository, Simulation

Collaborative project Grant agreement: 288701

 Version: 1.0

Authors: D. Rathgeb, E. Volk
Date: 29/03/2013 Page 5 / 50

Table of Contents
1	 Introduction .. 9	

2	 Realisation ... 9	

2.1	 Deployment architecture ... 9	
2.2	 Detailed description of components .. 12	

2.2.1	 Application Profiler ... 12	
2.2.2	 Repository .. 13	

2.2.2.1	 DEBBs repository folder .. 14	
2.2.2.2	 Experiments repository folder .. 14	

2.2.3	 Database .. 16	
2.2.4	 DCworms .. 18	
2.2.5	 CFD-Solver .. 22	

2.2.5.1	 Naming convention for PLMXML-file ... 24	
2.2.5.2	 Path to data stored in database ... 24	
2.2.5.3	 Orientation of velocity at inlet .. 25	

2.2.6	 Metric Calculator .. 26	
3	 Usage of SVD Toolkit components ... 28	

3.1	 Application Profiler .. 28	
3.2	 SVN Repository .. 28	
3.3	 Database .. 28	
3.4	 DCworms .. 29	
3.5	 CFD .. 33	
3.6	 Metric Calculator ... 34	

3.6.1	 Hardware level metrics: .. 35	
3.6.2	 Application level metrics ... 36	

4	 Test of SVD Toolkit components ... 36	

4.1	 Application Profiler .. 37	
4.2	 SVN Repository .. 39	
4.3	 Database .. 39	
4.4	 DCworms .. 41	

Collaborative project Grant agreement: 288701

 Version: 1.0

Authors: D. Rathgeb, E. Volk
Date: 29/03/2013 Page 6 / 50

4.5	 CFD .. 42	
4.5.1	 Flow through RECS ... 43	
4.5.2	 Flow through Compute Room .. 44	

4.6	 Metric Calculator ... 45	
5	 Summary ... 48	

6	 References .. 49	

Collaborative project Grant agreement: 288701

 Version: 1.0

Authors: D. Rathgeb, E. Volk
Date: 29/03/2013 Page 7 / 50

List of Figures
Figure 2-1: SVD Toolkit - Architecture overview ... 11	
Figure 2-2 Database Table Structure .. 17	
Figure 4-1: Power usage chart generated for the DCWoRMS simulation 42	
Figure 4-2: velocity and temperature distribution inside RECS 43	
Figure 4-3: velocity and temperature distribution inside a compute room 44	

List of Tables
Table 2-1: Components overview ... 11	
Table 2-2: Software dependency list for SVN ... 13	
Table 2-3: experiment-configuration ... 15	
Table 2-4: Trial configuration .. 16	
Table 2-5: Software dependency list for Python Wrapper 18	
Table 2-6: Software dependency list for DCWoRMS .. 20	
Table 2-7: Software dependency list for CFD ... 22	
Table 2-8: Software dependency list for CFD ... 25	
Table 2-9: Software dependency list for Metric Calculator 26	
Table 3-1: Workload and resource management plugins/policies available within
DCworms .. 31	
Table 3-2: Energy and thermal plugins available within DCworms 32	
Table 3-3: Application performance plugins available within DCWoRMS 33	
Table 4-1: Workload characteristics .. 41	

Collaborative project Grant agreement: 288701

 Version: 1.0

Authors: D. Rathgeb, E. Volk
Date: 29/03/2013 Page 8 / 50

List of abbreviations

API Application Programming Interface
CFD Computational Fluid Dynamics
COVISE Collaborative Visualisation and Simulation Environment
DCWoRMS Data Center Workload and Resource Management Simulator
DEBB Data Centre Efficiency Building Block
GPL General Public License
LGPL GNU Lesser General Public License
GSSIM Grid Scheduling Simulator
GUI Graphical User Interface
GWF Grid Workload Format
IP Internet Protocol
MOP Module Operation Platform
PLMXML eXtensible Markup Language for Product Lifecycle Management
SVD Simulation Visualisation and Decision support toolkit
SVN Apache Subversion software versioning and revision control system
SWF Standard Workload Format
STL Surface Tesselation Language
TIMaCS Tools for Intelligent System Management of Very Large Computing

Systems
URL Uniform Resource Locator
VRML Virtual Reality Modelling Language

Collaborative project Grant agreement: 288701

 Version: 1.0

Authors: D. Rathgeb, E. Volk
Date: 29/03/2013 Page 9 / 50

1 Introduction
This deliverable describes the realization of the first prototype of the Simulation,
Visualization and Decision Support Toolkit (SVD Toolkit). The SVD Toolkit is tool
to help design more energy efficient data centres and optimize existing data
centres to operate more energy efficient. This is done in several different
consecutive steps. First, different application profiles are calculated. These
application profiles resemble the requirements normal applications usually have.
With these application profiles synthetic workloads are generated and used to
determine a power usage of the individual hardware components. These results
are used as input for CFD (Computational Fluid Dynamics) calculation. All results
are stored in a central database. Additional results are obtained by conducting
several characteristic trials, so that all results can be verified.
Another aim of this deliverable is to point out the realization of the
interconnection points between different contributors and components. Special
focus of this deliverable is also put into describing the usage of the prototype for
conducting tests. The first prototype is supposed to deliver full productivity
capabilities with minor shortcuts in user interface requests and speed of
execution.
The SVD toolkit components described in this deliverable can be downloaded
from the project-website [SVD Toolkit].

2 Realisation
The 1st prototype consists of several different components. The development for
each component is done individually, although interaction between all
components and a seamless workflow is ensured. This approach grants the user
in this early step the possibility to use each of its components on its own. But
because of focusing on the interfaces between the individual components of the
first prototype these components work together seamlessly even in this early
stage. The realization of the CFD-part of the SVD-toolkit first prototype is done as
a command line interface. With the execution of a single command the user can
do all the simulation automatically. The software relies, even in this early stage,
fully on the Open Source Package OpenFOAM as a CFD solver.

2.1 Deployment architecture
For this first prototype, the database is the central interaction point where all of
the considered components meet. This is for now the point for storing and
retrieving data and communications between invoked components.
The deployment of SVD toolkit components and interaction between components
is shown in Figure 2-1. At the beginning of the experiment DEBB-files are

Collaborative project Grant agreement: 288701

 Version: 1.0

Authors: D. Rathgeb, E. Volk
Date: 29/03/2013 Page 10 / 50

created. In DEBBs (Data center Efficiency Building Blocks) all information which
is relevant for the individual simulation or trial is stored. This is especially true for
the underlying geometry.
The DEBBs are stored in apache subversion (SVN) repository [CoolEmAll-SVN],
along with the experiment description file specifying experiment setting,
containing reference to DEBB and workload (along with application-profile) used
within the experiment. Workload specified in experiment configuration file is used
by workload simulator DCworms to simulate workload, being executed on
hardware represented by power-profiles stored in DEBB. The results represented
by several workload cases with specific power consumption are then stored into
the database. The CFD-simulator then retrieves the data from the database to
perform its simulation on it and write the results again to the database where it is
the input for the metric calculator. The metric calculator writes, after the
calculation of metrics back into the database, where it can be retrieved by MOP
GUI. With this workflow the experiment conductor has the full feedback about his
conducted experiment.
For physical deployment of the individual components the following is
implemented for now: Repository, Data Center Workload and Resource
Management Simulator (DCworms), and Database are deployed at PSNC
location. The Application Profiler and Metric calculator are located at IRIT. The
CFD Solver is located at HLRS on a cluster environment. The detailed interaction
between SVD toolkit components is explained in D2.2.

Collaborative project Grant agreement: 288701

 Version: 1.0

Authors: D. Rathgeb, E. Volk
Date: 29/03/2013 Page 11 / 50

SVD – Toolkit
(Prototype 1)

DEBB

Airthroughput
Powerusage

CFD Solver
(OpenFOAM)

Data Center Workload
and Resource
Management

Simulator
DCWoRMS

Sample points
histogram

Data

(1)

(2) (3)

Airthroughput
Powerusage

(4) (4) (5)

(6)

(7)

Metrics Calculator(MOP) Database

- Components
- Power profile
- Air thr. profile

- geom
etry

- position

DEBB
Repository

Workload
Repository

Application
Profile

Repository

Application
(with Paremeters)

Application
Profiler

SVN
Repository

(1)

(1) (10)

IRIT

PSNC

C
oolEm

A
ll W

eb G
U

I

HLRS

PSNC

M
O

P G
U

I

(8)

PSNC

(0)

Figure 2-1: SVD Toolkit - Architecture overview

Table 2-1 summarizes components of the SVD Toolkit, specifying components’
license, description and functionality.

Table 2-1: Components overview

Component
name

License / Website Description Provided
functionality for

CoolEmAll

Database GPL License
LGPL License for RPC client
and RPC server
Download: [SVD Toolkit]

MySQL
Database for
storing
experimental
data and
outcome

Storing dynamic
data,
interconnection
point

CFD-
simulator

GNU General Public License
MPL2
The MIT License

Automated
CFD-
calculation
environment for
decision

Performing flow
and temperature
calcuations

Collaborative project Grant agreement: 288701

 Version: 1.0

Authors: D. Rathgeb, E. Volk
Date: 29/03/2013 Page 12 / 50

Download: [SVD Toolkit]

making in
thermal
management
questions

SVN-
Repository

http://subversion.apache.org/
Apache License 2.0

Repository for
DEBBs and
Profiles,
Workloads

Repository with
input parameters
required:
DEBBs, Profiles,
Workloads

DCworms OpenSource

Download: [SVD Toolkit]

Simulator for
artificial
workload

Creates
boundary and
initial values for
CFD-simulation

Metric
calculator

OpenSource

Download: [SVD Toolkit]

Correlates
energy
consumption to
work done

Evaluates
experiment for
energy efficiency

Application
profiler

OpenSource

Download: [SVD Toolkit]

Simulation
hardware
requirements of
different
applications

Creates
application
profiles

2.2 Detailed description of components
This chapter is supposed to give a description of the individual components of
SVD Toolkit.

2.2.1 Application Profiler
For simulations in CoolEmAll, the focus is on power-, energy- and thermal-impact
of decisions on the system. In order to have realistic simulations, a precise
evaluation of resource consumption is necessary. The Application Profiler is used
to create profiles of applications that can be read by DCworms for simulation
purpose. It uses data obtained during runtime and stored in TIMaCS by the
monitoring infrastructure. Using these data, it creates a description of
applications based on their phases. For instance, an application following two
phases (one CPU-intensive and one Network intensive) would have the following
description:
<resourceConsumptionProfile>
 <resourceConsumption>
 <referenceHardware>Intel_i7</referenceHardware>

Collaborative project Grant agreement: 288701

 Version: 1.0

Authors: D. Rathgeb, E. Volk
Date: 29/03/2013 Page 13 / 50

 <duration>PT4S</duration>
 <behaviour name="cpu">
 <value>98</value>
 </behaviour>
 <behaviour name="network">
 <value>2</value>
 </behaviour>
 </resourceConsumption>
 <resourceConsumption>
 <referenceHardware>Intel_i7</referenceHardware>
 <duration>PT93S</duration>
 <behaviour name="cpu">
 <value>77</value>
 </behaviour>
 <behaviour name="network">
 <value>96</value>
 </behaviour>
 </resourceConsumption>
</resourceConsumptionProfile>

A more detail explanation is available in D2.3 and D5.4.

2.2.2 Repository
The repository is the central point in the SVD system architecture. It allows
storing, editing and accessing of files used by SVD-toolkit components remotely,
while ensuring their consistency. The repository contains:

• Application-profiles, describing resource usage of applications at
different application phase

• DEBBs, describing data centre building blocks and models used by SVD-
Toolkit

• Workload-profiles, workload characteristics in terms of used application-
profiles and resource requirements used for workload simulation

• Experiments, specifying detailed configuration of the experiment, defined
in scope of scenario definitions.

For the realization of the repository we use Apache Subversion, short SVN
[SVN]. The project repository is located at [CoolEmAll-SVN].

Table 2-2: Software dependency list for SVN

Software name License /
Website

Description

Apache
Subversion

http://subversion.
apache.org/
Apache License

Subversion is an open source version
control system.

Collaborative project Grant agreement: 288701

 Version: 1.0

Authors: D. Rathgeb, E. Volk
Date: 29/03/2013 Page 14 / 50

The repository is structured in common and user spaces. Common space
contains well defined application-profiles, DEBBs, workload-profiles and
experiments, each stored in dedicated repository folder. User space contains
files changed/added by each user. Files (particularly PLMXML files of DEBB) in
user space can contain "links" to files in both spaces. Files in common space can
contain links only to files in common space. The structure of repository is shown
below:
repository

├── common

│ ├── applications

│ ├── workloads

│ ├── debbs

│ └── experiments

└── users

Detailed structure of “debbs” and “experiments” repository-folders is described in
the following sub-sections.

2.2.2.1 DEBBs repository folder
The structure of “debbs” repository-folder is defined as follow:
debbs

├── <location> (PSNC, HLRS, IRIT)

│ ├── [objects]

│ │ ├── <STL files>

│ │ ├── <VRML files>

│ ├── <mainPLMXML>.xml

│ ├── <DEBBBComponent_X>.xml

The “debbs“ top-folder contains for each testbed site dedicated folder <location>,
named according to location of the testbed: PSNC, HLRS, IRIT. The <location>
folder contains DEBBs that are characteristic for particular testbeds located at
PSNC, HLRS and IRIT. Within the <location folder>, there is “objects” folder
which contains geometrical objects of DEBB, in STL and VRML format. The main
PLMXML file and DEBBComponent.xml files are located within the location
folder.

2.2.2.2 Experiments repository folder
The “experiments” repository-folder contains configuration experiment to be
executed by SVD-Toolkit. This is reflected according to following structure:

Collaborative project Grant agreement: 288701

 Version: 1.0

Authors: D. Rathgeb, E. Volk
Date: 29/03/2013 Page 15 / 50

experiments

├── [<scenario-id>] (as defined in D6.1)

│ ├── [applications] (optionally)

│ ├── [workloads] (optionally)

│ ├── [debb] (optionally)

│ └── experiment-configuration

│ └── <trail-configuration>

<Scenario-id> specifies the folder name of scenario, specified by scenarios-id
defined in D6.1 [D6.1]. It contains experiment-configuration file describing
experiment by key-value pairs, presented in the table below. Within the
<scenario-id> folder might be located optionally sub-folders with application-
profile (applications), workload-profile (workloads) and DEBBs (debb), that might
be specific for particular scenario. The “experiment configuration file” contains
the general information describing the experiment. The file is text-based and its
every line contains information about the specific property in a key=value format.
Lines starting with # mark are treated as comments. The following set of keys is
defined:

Table 2-3: experiment-configuration

 key meaning type
 id experiment identifier required
 owner experiment owner required
 scenario identifier of the scenario required
 description description of the experiment containing its goal required
 start date of the experiment start required
 end date of the experiment end optional
 trials list of trials required

 result description of results of experiment or path the file
containing these results optional

The “trial configuration” file contains information about each single simulation
run as part of the experiment, which consists of many such runs for various
configurations. The file is text-based and its every line contains information about
the specific property in a key=value format. Lines starting with # mark are treated
as comments. The following set of keys is defined for definition of trial:

Collaborative project Grant agreement: 288701

 Version: 1.0

Authors: D. Rathgeb, E. Volk
Date: 29/03/2013 Page 16 / 50

Table 2-4: Trial configuration

 key meaning type
 id trial identifier required
 owner trial owner required
 description description of the trial required
 start date of the trial start required
 end date of the trial end optional

 result description of results of the trial or path the file containing
these results optional

 debb path to the debb file required
 workload path to the file with the workload optional

 dcworms path to the file containing configuration of the DCworms
simulation optional

 cfd path to the file containing configuration of CFD
simulation optional

 revision SVN revision for this trial required

2.2.3 Database
For saving simulations data it has been designed a MySQL database. In this first
version, the database contains the table “metric” with all collected information
related to experiments and trials. In Figure 2-2 we can observe the fields of the
table. For communication with the database we have created the following
component:

• Python Wrapper: to insert and access the data in the MySQL database.
We can execute the methods defined on the wrapper, both locally and
remotely. For remote executing we have to use the Stand alone RPC
client available.

Collaborative project Grant agreement: 288701

 Version: 1.0

Authors: D. Rathgeb, E. Volk
Date: 29/03/2013 Page 17 / 50

Figure 2-2 Database Table Structure

The following table provides an overview on software and libraries used for
implementation of the developed component.

Collaborative project Grant agreement: 288701

 Version: 1.0

Authors: D. Rathgeb, E. Volk
Date: 29/03/2013 Page 18 / 50

Table 2-5: Software dependency list for Python Wrapper

2.2.4 DCworms
Data Center Workload and Resource Management Simulator (DCworms)
supports studies of dynamic states of IT infrastructures, like power consumption
and air throughput distribution, with respect to the various workload and
application profiles, resource models and energy-aware resource management
policies. Details concerning DCworms can be found in [D2.2] and in
[DCworms2012].

As described in [D2.2], DCworms is the main component of workload simulation
phase, which refers to the specific workload and application characteristics as
well as to the detailed resource parameters. Based on these models and taking
into account applied resource management policy, DCworms is able to provide

Software name License /
Website

Description

Mysql 5.1 GPLv2
http://dev.mysql.c
om/

Used for creating the DB.

MySQLdb
module

GPLv2, CNRI
Python License,
Zope Public
License
http://mysql-
python.sourcefor
ge.net/

MySQLdb is an thread-compatible
interface to the MySQL database
server that provides the Python
database API.

Stand alone
RPC client

GNU Lesser
General Public
www.timacs.de
[MOP-package]

RPC based client allowing to insert and
to retrieve data in DB.

Python 2.6 http://www.python
.org/
Open Source ,
GPL kompatibe

Used by Python Wrapper

Collaborative project Grant agreement: 288701

 Version: 1.0

Authors: D. Rathgeb, E. Volk
Date: 29/03/2013 Page 19 / 50

data including a distribution of power usage and air throughput for the models
specified within the SVD Toolkit. The input data is supplied by the SVN repository
[CoolEmAll-SVN], while the output statistics are stored within the database.
These values may be then analyzed directly and/or provided as an input to the
CFD-solver.

Experiments performed using a workload simulator require a description of the
workload itself and applications that will be scheduled during the simulation. As a
basic description, DCworms uses files in the Standard Workload Format (SWF)
[SWF]. In addition to the SWF file, some more detailed description of an
application can be included in an additional XML file. This form of description
provides the scheduler with more detailed information about application profiles,
task requirements and user preferences, which are unavailable in SWF files.
More information concerning workload and application profiles is included in
[D2.3]. Moreover, the simulator includes an advanced workload generator tool
that allows creating synthetic workloads with respect to the distributions and
characteristics defined by users.
Apart from reading SWF files, DCworms enables handling traces from real
resource management systems like SLURM [SLURM] (used within the
CoolEmAll testbed) and Torque [TORQUE].

The second part of input data that must be delivered to workload simulation
phase is a description of the resources. Resource model adopted in CoolEmAll is
based on DEBB description that enables modelling a data centre at various
granularity levels. DCworms is able to handle DEBB description file format by
transforming it to the native one, which is supported by the simulator. Details
about DEBB specification can be found in [D3.2].

In order to perform comprehensive simulations, including evaluation of
workload/resource management policies as well as power and thermodynamic
models, DCworms provides dedicated interfaces to incorporate them within the
simulation.

Within the scope of energy-efficiency simulation, DCworms benefits from the
power and air-flow profiles defined within the DEBB component. Based on this
data, it is able to emulate the behaviour of the real computing resources. To this
end simulator contains a predefined models that include methods to calculate
power usage of resources and system air throughput values. These models are
realized in form of easy to use or exchange plugins that may be plugged into
each resource level defined within the DEBB component.

The main goal of the power consumption model is to simulate the energy usage
of the computing resources. Energy estimation plugin can calculate the energy
consumption based on current resource power state, resource utilization and
taking into account the differences in the amount of energy required for executing
various types of applications.

Collaborative project Grant agreement: 288701

 Version: 1.0

Authors: D. Rathgeb, E. Volk
Date: 29/03/2013 Page 20 / 50

Air throughput models allow describing the resulting air throughput of the
computing system components like cabinets or server fans. Default air flow
estimations are based on detailed information about the involved resources,
including changes in their air throughput states.

DCworms is delivered with a set of resource management policies that can be
easily used within the simulation environment. Review of available strategies can
be found in [D4.3]. Within the workload management plugin, DCworms provides
access to the profiles data, which allows acquiring detailed information
concerning current system state. Moreover, it is possible to perform various
operations on the given resources, including dynamically changing the frequency
level of a single processor, turning off unused resources and managing fan
working states.

In terms of applications behaviour modelling, DCworms provides means to
include complex and specific application performance models during simulations.
To this end, DCworms is supported with a dedicated module, which based on the
application profile is able to estimate its execution time. Moreover, this extension
is capable of performing the aforementioned calculations for different types of
hardware, running the given task. Using this functionality the impact of
architectures of the underlying systems, such as multi-core processors, or
virtualization overheads on the final performance of applications can be taken
into account.

The outcome of the workload simulation phase is a distribution of power usage
and air throughput for the hardware components specified within the DEBB.

Table 2-6: Software dependency list for DCworms

Software name License /
Website

Description

GridSim GNU GPL /
http://www.buyya.
com/gridsim/

Simulation Toolkit for Resource
Modelling and Application Scheduling
for Parallel and Distributed Computing

SimJava The University of
Edinburgh
Academic Non-
Commercial Lice
nse /
http://www.icsa.in
f.ed.ac.uk/researc
h/groups/hase/si
mjava/

Process based discrete event
simulation package.

Collaborative project Grant agreement: 288701

 Version: 1.0

Authors: D. Rathgeb, E. Volk
Date: 29/03/2013 Page 21 / 50

JFreeChart GNU LGPL /
http://www.jfree.o
rg/jfreechart/

Java chart library

Castor New Apache-
style license /
http://castor.code
haus.org/

Open Source data binding framework
for Java

Apache
Commons

Apache License,
Version 2.0 /
http://commons.a
pache.org/

Library focussing on all aspects of
reusable Java components

Apache log4j Apache License,
Version 2.0 /
http://logging.apa
che.org/log4j/1.2/

Logging library for Java

Apache Xerces Apache License,
Version 2.0 /
http://xerces.apac
he.org/

Library for parsing, validating and
manipulating XML documents.

Joda Time Apache License,
Version 2.0 /
http://joda-
time.sourceforge.
net/

Provides a quality replacement for the
Java date and time classes

JUnit Common Public
License /
http://junit.sourcef
orge.net/

Framework to write repeatable tests

Saxon Mozilla Public
License version
2.0,
http://saxon.sourc
eforge.net/

The XSLT and XQuery Processor

Collaborative project Grant agreement: 288701

 Version: 1.0

Authors: D. Rathgeb, E. Volk
Date: 29/03/2013 Page 22 / 50

2.2.5 CFD-Solver
The CFD-Solver does the CFD-simulation and creates the flow field and values
on which other components rely on. For its work it needs input from various other
components. First it needs the geometry input from the DEBB in .PLMXML-
format, retrieved from the DEBB repository. This is then transformed in a
simulation region. Additionally there are boundary conditions and initial
conditions needed. These values are supplied by the DCworms workload
simulator and automatically retrieved from the MOP database. With these
starting values the CFD-toolkit performs the flow and temperature simulation
automatically. Therefore it first reads the relevant geometry files. These files are
then meshed automatically and supplied to the CFD-calculation tool which
performs the CFD-calculation automatically. After the simulation has finished
links to the flow and temperature field are stored in the central database and
mean values for all relevant values, e.g. velocity and temperature for the
interesting geometry, which are especially inlet and outlet are created and stored
to the database.
To perform these calculations different tools of OpenFOAM and specifically
developed software is used. The following table summarizes software used by
CFD solver.

Table 2-7: Software dependency list for CFD

Software name License /
Website

Description

CFD-simulator GNU General
Public License
MLP2
The MIT License

Automated CFD-calculation
environment for decision making in
thermal management questions

OpenFOAM GNU General
Public Licence.

OpenFOAM is a free, open source
CFD software package

Database Project web-site Data interchange, correct path
specification

Eigen MPL2 Library for linear algebra operation
written in C++ programming language

RapidXML The MIT License Fast XML-Parser written in C++
programming language

Collaborative project Grant agreement: 288701

 Version: 1.0

Authors: D. Rathgeb, E. Volk
Date: 29/03/2013 Page 23 / 50

At the beginning the setup of the case is done by a script. Then the simulation
environment is set up for blockMesh. This is done by parsing a XML-file and the
rest of the setup for blockMesh is then done automatically. BlockMesh then
creates a rectangular mesh. This is the basis for the work of snappyHexMesh.
But before snappyHexMesh can start its work the .PLMXML-file needs to be
parsed and the necessary transformations for the .STL-files, which are the
mandatory geometry representations are made. These .STL-files have to be
supplied to the toolkit by the user and need to represent all used geometry,
especially inlets and outlets, individually. These geometry files are then used by
snappyHexMesh to create the computational mesh. After the geometry is
transformed into a computational mesh the boundary conditions are set up
automatically by invoking the governing scripts and specially developed
programs. For all different geometry representations this setup is performed
individually. After these introducing steps the decomposition of the mesh is done
and the actual calculation is performed in parallel mode to speed up the process.
The solver to perform the calculation is bouyantBoussinesqSimpleFoam. It is
capable of calculating incompressible flow for stationary conditions in conjunction
with heat transfer. After the parallel solver has finished the decomposed
computational mesh is reassembled and converted to EnSight and VTK format.
EnSight-format is the preferred format for COVISE and VTK is the preferred
format for Open Source applications such as ParaView. The next step is to
calculate the mean values for the relevant geometry and store the data directly to
the database. For the flow fields only links are stored to the database to safe
space inside the database. The utility to perform the final calculation is
swak4foam and it is invoked automatically by the governing script.
Dependencies exist especially on the input site of the CFD-Solver. Here are to
name the geometry files, which have to be .STL-files. These .STL-files need to
be references correctly by the .PLMXML-file which represents the DEBB. To
ensure consistency between all the invoked applications a naming convention
was made.
A second very important convention is set up to find the data stored in the
database. This is done by a convention for the data storage path in the database.
Another dependency is on the site of the boundary conditions. To create the
correct boundary conditions the CFD-solver needs the output of the DCworms
workload simulator in the units and for the correct values. The values monitored
for this stage power and airflow is used.
For the output only on dependency is obvious. The data which has to be stored
to the database needs to be put on the right place. Therefore the path where the
input data is located is reused and the according data is added.
As noted, each functional surface, e.g. inlet and outlet has their own .STL-files
and need to be referenced in .PLMXML-file. This is necessary for setting up the
boundary conditions for CFD-simulation. For this purpose next sections describe
naming conventions used in .PLMXML-file and path.

Collaborative project Grant agreement: 288701

 Version: 1.0

Authors: D. Rathgeb, E. Volk
Date: 29/03/2013 Page 24 / 50

2.2.5.1 Naming convention for PLMXML-file
For now this convention needs to be applied for the ProductInstances, as these
are the parts which matter for the CFD-simulation. This naming convention is
used for the name of the ProductInstance, e.g. the name specified in the first line
of the product instance.
As pointed out, the generation of the geometry data is extracted from the DEBB
(main PLMXLM file), containing references to geometric objects specified in .stl
files, as described in D3.2 ([D3.2]). The geometric objects are composed of
faces. There are four (4) significant faces for CFD, hat are handled in simulation
in different way:

• inlet (source of airflow)
• outlet (exhausting airflow)
• heatsink (source of heat)
• wall (surface reflecting the airflow)

For specification of the boundary patch, an inlet, name of ProductInstance-
Element within the PLMXML file should consist of the keyword, specifying face-
type (for inlet this keyword is “inlet”). Next there is a”§” as a separator followed by
the name of the corresponding geometry-object the according boundary patch
belongs to.
< face-type>§<object-name >

• <face-type> is element of {“inlet”, “outlet”, “heatsink”}, in case of absence
of face-type, “wall” face-type is presumed.

• <object-name> is the name of the geometry-object and might contain
“@”, that is converted to ‘/’ path-separator used to access object-path.

An example for this is: inlet§RackNECWC_01@inlet_01, specifying face-type
inlet, object RackNECWC_01 and its part inlet_01.

2.2.5.2 Path to data stored in database
The database stores different input parameters for CFD simulations (such as
power and airflow), that belongs to particular surfaces of objects, used within
simulation. In order to setup simulation with right parameters (boundary
conditions) belonging to corresponding geometry-object, such as airspeed at
“inlet” of a rack, these parameters are queried from the database using full
object-path to particular geometrical object. The full object-path is built as a
concatenation of all object-names in the hierarchy of PLMXML file:
<object-name of level1>/<object-name of level2>/<object-name of level3>/...

Collaborative project Grant agreement: 288701

 Version: 1.0

Authors: D. Rathgeb, E. Volk
Date: 29/03/2013 Page 25 / 50

We always start out with the configuration of whole setup. We start which the
name of the server room (level 1), followed by “/”. Next is the name of the rack
(level 2), etc. This makes up the path to the important data stored for the CFD.
Inside this path there is the necessary data stored:

• Pressure p
• Temperature T
• Velocity U

Example: HLRSServerroom/RackNECWC_01/inlet_1

2.2.5.3 Orientation of velocity at inlet
The .STL-files used to define the geometry for CFD-simulation input need the
following orientation convention.
The tessellation of .STL-file has to be done according to the right-hand-rule. The
face normal vector which results from this rule has to point in direction of flow for
the inlet.

Table 2-8: Software dependency list for CFD

Software name License /
Website

Description

CFD-simulator GNU General
Public License
MLP2
The MIT License

Automated CFD-calculation
environment for decision making in
thermal management questions

OpenFOAM GNU General
Public Licence.

OpenFOAM is a free, open source
CFD software package

Database Project web-site Data interchange, correct path
specification

Eigen MPL2 Library for linear algebra operation
written in C++ programming language

RapidXML The MIT License Fast XML-Parser written in C++
programming language

Collaborative project Grant agreement: 288701

 Version: 1.0

Authors: D. Rathgeb, E. Volk
Date: 29/03/2013 Page 26 / 50

2.2.6 Metric Calculator
As described in D2.2, the Metric Calculator is responsible for the assessment of
the simulation results. Based on metrics identified and defined in D5.1, it
assesses energy-efficiency and heat-efficiency of building blocks (DEBBs). The
calculation itself is based on data/metrics that are retrieved from the Database.
Results of the calculation are written back into the Database, to be retrieved and
visualized by MOP GUI.
The realisation of the Metric Calculator is done by the python command line
application that can be called with many different parameters depending of the
selected metric calculation.
The Metric Calculator is a python command line application that can be called
with many different parameters depending of the calculations performed. The
calculation is based on metrics retrieved from the database. The current
implementation of metric calculator for 1st prototype allows calculating following
metrics:
Hardware level metrics:

• thermal_imbalance
• power_usage (over time range)
• minimum power_usage (over time range)
• maximum_power (over time range)
• average_power (over time)
• energy

Application level metrics:

• process_energy (for particular task over time-range)
• process_temperature (for particular task over time-range)

Table 2-9: Software dependency list for Metric Calculator

Software
name

License / Website Description

Stand alone
RPC client

GNU Lesser General
Public
www.timacs.de
[MOP-package]

RPC based client allowing to insert and
retrieve data from TIMaCS database

Python 2.6 Open Source, GPL
compatible

All scripts are written in Python

Collaborative project Grant agreement: 288701

 Version: 1.0

Authors: D. Rathgeb, E. Volk
Date: 29/03/2013 Page 27 / 50

Collaborative project Grant agreement: 288701

 Version: 1.0

Authors: D. Rathgeb, E. Volk
Date: 29/03/2013 Page 28 / 50

3 Usage of SVD Toolkit components
In this section we describe how SVD Toolkit components are used to enable
execution of experiments (simulation).

3.1 Application Profiler
As previously stated, the Application Profiler is quite simple to use. Each time an
application is run on the test-bed, the application is run afterwards to produce its
profile using monitored information available in TIMaCS. The resulting XML file is
stored in the SVN hierarchy following the official CoolEmAll architecture. These
files can then be read by DCworms for simulation purpose.

3.2 SVN Repository
As previously state, SVN repository provides access to: application profiles,
workload-profiles, DEBBs, and experiment configurations, used by SVD-Toolkit
components for execution of experiments/simulations. In order to interact with
repository, on the client side, the user runs a Subversion client application -
typically a command line client, but possibly a GUI client as well. There exist a
number of SVN clients, capable to access SVN server (repository). The most
used command line options by SVN clients are:

• svn checkout - to checkout a working directory from the svn server

• svn add - to add a new file or directory to repository

• svn update/up – to update local copy with files from SVN server.

• svn commit/ci – to recursively sends local changes to the SVN server

• svn list – to display files in a directory for any given revision

• svn update – r <revision-number> - to check out specific revision

The usage of repository is done according to structure and conventions
described in section 2.2.2.

3.3 Database
The database comprises several methods via RPC that can be called to
insert and to retrieve data. To simplify query of the database, we implemented
script based API:

• coolemall_getExperimentsList
- Return a list of all the experiments saved on the database.

• coolemall_getLastMetricByMetricName object_path metric_name
[experiment_ID trial_ID]

Collaborative project Grant agreement: 288701

 Version: 1.0

Authors: D. Rathgeb, E. Volk
Date: 29/03/2013 Page 29 / 50

- Return the last metric specified by metric_name, object_path,
experiment_ID and trial_ID. Experiment_ID and trial_ID are optional. The
metric contains the last time and value recorded.

• coolemall_getLastMetricsByHostName object_path [experiment_ID
trial_ID]
- Return the last metrics of a specified object_path, for a given
experiment_ID and trial_ID. Experiment_ID and trial_ID are optional.

• coolemall_getMetricNames object_path [experiment_ID trial_ID]
- Return all the metrics saved for a particular object_path on a specified
experiment_ID and trial_ID. Experiment_ID and trial_ID are optional.

• coolemall_getHostNames [experiment_ID trial_ID]
- Return all object_path for which metrics are saved from a given
experiment_ID and trial_ID. Experiment_ID and trial_ID are optional.

• coolemall_getRecordsByMetricName object_path metric_name
[experiment_ID trial_ID start_time, end_time]
- Return a list of metrics that contains record objects. Each record has
three attributes: time, value and output. The arguments experiment_ID,
trial_ID, start_time and end_time are optional. The argument start_s in
seconds specifies the earliest record to be returned. No records newer
than end_s (in seconds) are returned.

• coolemall_getTrialsList experiment_ID
- Retrieve all trial_ids for a specified experiment_ID

• coolemall_putMetricDB “metric_attribute”
- Insert into database the parameters specified in the string by command
line. Each attribute is a set of tuples key:value separated by comma (,)
that represent the metric. For example:
“experiment_id:id_2,time:139893248,...”

3.4 DCworms
As stated in [D2.2] and presented in 2.1 the input to the workload simulation
phase consists of workload and application profiles as well as DEBB model. In
general, in DCworms all these information are included within the single
configuration file that is passed as an input parameter. This file has a typical, java
resource bundle format. List of all available parameters is presented below.

workload=workload.swf
resdesc=serverRoom.xml
debb2dcworms=plugins.xml
workload parameter specifies the path and name of the file containing the
workload profile. For the purposes of the workload description within the SVD
Toolkit we adopted Standard Workload Format (SWF) [SWF]. In addition to the
predefined labels in the header comments, we introduce support of new one that
is used to provide information about types of applications used within the given

Collaborative project Grant agreement: 288701

 Version: 1.0

Authors: D. Rathgeb, E. Volk
Date: 29/03/2013 Page 30 / 50

set of tasks. In this way, workload profile contains the references to the
corresponding application profiles that will be loaded and linked during the
simulation. More details of the workload and application profiles and the format of
the particular descriptions can be found in [D2.3].
resdesc parameter points the path and name of file with the DEBB description.
The format of this file was described in [D3.2].
debb2dcworms parameter defines additional XML file containing information
about scheduling policies, energy and application performance models, which
are unavailable in DEBB, but necessary from the perspective of DCworms. This
file is processed before the workload simulation and merged with DEBB file in
order to transform it to the native resource description format supported by the
simulator. Example XML file with the additional data is presented below.

It contains the name of the plugins that allow researcher to configure and adapt
the simulation framework to the experiment scenario starting from modeling

Collaborative project Grant agreement: 288701

 Version: 1.0

Authors: D. Rathgeb, E. Volk
Date: 29/03/2013 Page 31 / 50

application performance, through energy estimations up to implementation of
resource management and scheduling policies. With respect to the example
above, tasks that come to the system will be scheduled according to the policy
provided by the FCFSRB_EnOpt_NodePowMan file. Estimation of power
consumption will be based on the methods contained within the
CPU_Dynamic_EEP and Node_EEP plugin files for all types of nodes and
processors defined within the DEBB, respectively. To estimate the execution time
of task, the AppTimeEstimationPlugin plugin will be used.
From the above list, only the specification of workload management plugin is
required. In case of lack energy/thermodynamic plugins the default ones will be
used. They are based on static definitions of power and air flow states and follow
changes in the corresponding values. Default application performance model is
based on the linear dependency between execution time and resource speed.

The following tables contain the name of the plugins with their short description
that are provided within the first release of SVD Toolkit.

Table 3-1 presents workload and resource management plugins included in
DCworms. Their detailed characteristics are provided by [D4.3].

Table 3-1: Workload and resource management plugins/policies available within DCworms

Workload and
resource

management plugin

Scheduling
algorithm

Resource
allocation
algorithm

Resource
management

policy

FCFSRB_Random First Come First
Served + Relaxed
Backfilling

Random -

FCFSRB_Random_Node
PowMan

First Come First
Served + Relaxed
Backfilling

Random Switching nodes on/off

FCFSRB_Random_DFS First Come First
Served + Relaxed
Backfilling

Random Dynamic Frequency
Scaling

FCFSRB_EnOpt First Come First
Served + Relaxed
Backfilling

Energy usage
optimization

-

FCFSRB_EnOpt_NodeP
owMan

First Come First
Served + Relaxed
Backfilling

Energy usage
optimization

Switching nodes on/off

FCFSRB_EnOpt_DFS First Come First
Served + Relaxed
Backfilling

Energy usage
optimization

Dynamic Frequency
Scaling

Collaborative project Grant agreement: 288701

 Version: 1.0

Authors: D. Rathgeb, E. Volk
Date: 29/03/2013 Page 32 / 50

LJFRB_LoadBal Largest Job First +
Relaxed Backfilling

Load Balancing -

LJFRB_LoadBal_NodePo
wMan

Largest Job First +
Relaxed Backfilling

Load Balancing Switching nodes on/off

LJFRB_LoadBal_DFS Largest Job First +
Relaxed Backfilling

Load Balancing Dynamic Frequency
Scaling

LJFRB_Consolidation Largest Job First +
Relaxed Backfilling

Consolidation -

LJFRB_Consolidation_No
dePowMan

Largest Job First +
Relaxed Backfilling

Consolidation Switching nodes on/off

LJFRB_Consolidation_D
FS

Largest Job First +
Relaxed Backfilling

Consolidation Dynamic Frequency
Scaling

Table 3-2 shows plugins that are used to perform calculations related to power
consumption and air flow estimations. The general idea behind the plugins and
implemented models can be found in [D2.2].
Table 3-2: Energy and thermal plugins available within DCworms

Energy and
thermodynamic

plugin

Power estimation Air flow estimation

CPU_Static_EEP Based on changes of processor
power states

-

CPU_Dynamic_EEP Based on processor load -

CPU_App_EEP Based on power required for
executing various types of
applications

-

Node_EEP Based on power consumption of all
subcomponents

Based on changes of air flow
states defined within the DEBB

ComputeBox1_EEP Based on power consumption of all
subcomponents

-

Table 3-3 contains information about available application performance plugins.

Collaborative project Grant agreement: 288701

 Version: 1.0

Authors: D. Rathgeb, E. Volk
Date: 29/03/2013 Page 33 / 50

Table 3-3: Application performance plugins available within DCworms

Application
performance plugin

Characteristic

BasicTimeEstimationPlugin Calculations of time required to execute the task are based on
the assumption that processing time is a linear function of
number of allocated processors and their speed.

AppTimeEstimationPlugin Calculations of time required to execute the task are based on
the application profiles and their performance models. This
plugin follows detailed application characteristics and performs
calculations using transformation function between the
execution time on the reference hardware and the current one.

To perform experiments using DCworms user needs to execute the following
command, passing the path to the configuration file as a program argument:
sbatch --partition=aux runDCworms.sh
experiment1/RECSexperiment1.properties

The simulation is controlled by the testbed queuing system (SLURM) and it is
requested to be started on aux partition. The partition is designed for running
computations outside the main monitored part of the testbed to not influence the
measurements. It consists of two worker nodes that have their own dedicated
power lines and are physically separated from rest of the testbed.

3.5 CFD
For this first prototype the interaction with the CFD-solution is done via a
command line based script.
Before the invoking of the script can be done a simulation environment needs to
be set up. This consists foremost of a working installation of OpenFOAM and a
setup of OpenMPI. This is supposed to be done before you start with the setup of
the bespoke CFD-solution.
For setting up an automated simulation based on this first prototype it is most
convenient to do so in a dedicated directory. In our case this directory is called
“auto_OpenFOAM”. In this working directory it is supposed to have the following
subdirectories set up: One directory should be called “DEBB”. In this directory the
governing .PLMXML-file and the geometry representing .STL-files are stored.
Then there is another important directory which is called “control_files”. This
directory is particularly important when it is of interest to run several different
simulations. In this directory simulation independent solver parameter are stored.
These variables are editable but it is not necessary and not recommended to do
so. These variables are reused for each independent simulation and therefore
these variables are copied to the corresponding files of the simulation case.

Collaborative project Grant agreement: 288701

 Version: 1.0

Authors: D. Rathgeb, E. Volk
Date: 29/03/2013 Page 34 / 50

Another important directory is called “TIMaCS”. In this directory are the scripts for
invoking the database for automatic creation of boundary and initial conditions
stored, as well as the scripts for putting back the simulation results to the
database. Then there is directory called “SRC”. In this directory the source code
and the executables for the automated setup of the simulation case is stored. So
there should be no necessity for the user to interact with this directory.
Then there are some more .TXT and .XML-files. These files are described in the
order they are invoked by the setup script. First there is a file called
Definition_Quader.xml. In this file the definitions are made for invoking
blockMesh. blockMesh sets up the surrounding region in which the geometry to
simulate is meshed. Here it is necessary to make sure that the geometry fits into
the surrounding region created by blockMesh and therefore the size of this region
can be adjusted accordingly in this file called “Definition_Quader.xml. Next the
user finds a file called locationInMesh.txt. This file is important for
snappyHexMesh. To enable snappyHexMesh to automatically create a mesh
based on the region created by blockMesh and the .STL-files transformed by the
PLMXML-parser it is necessary to specify a point inside the mesh, in a region
where the mesh should be kept. The point inside the mesh region to keep is
stated in the file called “locationInMesh.txt”
In the file called temperature.txt temperature values for boundaries which are not
referenced in the database are stored. This is necessary as there are no
temperature sensors available on these boundaries, which are for example
sidewalls. These values should be submitted in degrees Celsius in the format
found in the file and are editable by the user.
After a simulation was done a new directory called “case1” appears. In this
directory the data for the whole simulation can be found. And this directory is
deleted and remade every time a simulation is started automatically. So if the
user desires to keep the whole simulation case it is best to move this directory to
a different location before another automatic simulation is started.
When all this setup is complete, the simulation can be started automatically just
by calling the script called Autorun with submitting the path to the location on the
.PLMXML-file and the name of the host for which the metrics are stored. The
retrieving of all relevant data and the calculation is then performed automatically.

3.6 Metric Calculator
The Metric Calculator is a python command line application that can be called
with many different parameters depending of the calculation.
Measurements and calculations can be done at two levels. The hardware level
where most data are measured, aggregated or calculated (calculations are based
on real measurements) and the application level where most of the data are
estimated and calculated (calculation are based on estimations)

Collaborative project Grant agreement: 288701

 Version: 1.0

Authors: D. Rathgeb, E. Volk
Date: 29/03/2013 Page 35 / 50

3.6.1 Hardware level metrics:
In this section we describe hardware level metrics.
./metricCalc.py imbalance_of_temperature <path> <start_s> <end_s>
Calculate the thermal imbalance of the hardware element “path” (CPU, recs,
rack, datacenter) between the given start and end time.
The resulting metric will be stored at “path” level with the timestamp end_s and
the name:

ImbalanceOfTemperature-From:start_s-To:end_s

. ./metricCalc.py power <path> <start_s> <end_s>
Calculate the power of the hardware element “path” (recs, rack, datacenter) for
each timestamp between the given start and end time.
The resulting metric will be stored at “path” level with the name:
 Power

./metricCalc.py minimum_power <path> <start_s> <end_s>
Calculate the minimum power of the hardware element “path” (recs, rack,
datacenter) over a period of time.
The resulting metric will be stored at “path” level with the timestamp end_s and
the name:

MinPower-From:start_s-To:end_s

./metricCalc.py maximum_power <path> <start_s> <end_s>
Calculate the maximum power of the hardware element “path” (recs, rack,
datacenter) over a period of time.
The resulting metric will be stored at “path” level with the timestamp end_s and
the name:

MaxPower-From:start_s-To:end_s

./metricCalc.py average_power <path> <start_s> <end_s>
Calculate the average power of the hardware element “path” (recs, rack,
datacenter) over a period of time.
The resulting metric will be stored at “path” level with the timestamp end_s and
the name:

AvgPower-From:start_s-To:end_s

Collaborative project Grant agreement: 288701

 Version: 1.0

Authors: D. Rathgeb, E. Volk
Date: 29/03/2013 Page 36 / 50

./metricCalc.py energy <path> <start_s> <end_s>
Calculate the energy consumption of the hardware element “path” (recs, rack,
datacenter) over a period of time.
The resulting metric will be stored at “path” level with the timestamp end_s and
the name:

Energy-From:start_s-To:end_s

3.6.2 Application level metrics
In this section we describe application level metrics.
./metricCalc.py process_energy <pid or Slurm task ID path> [<start_s>
<end_s>]
Calculate the energy consumption of the process (or each process of the task) at
the given path for each timestamp over the full process lifetime (or a defined
period of time).
The resulting metric will be stored at process level with the name:
 Energy (calculation over process lifetime)
Or Energy-From:start_s-To:end_s (calculation over a specific interval)

./metricCalc.py process_temperature <pid or Slurm task ID path> [<start_s>
<end_s>]
Calculate the temperature of the process (or each process of the task) at the
given path for each timestamp over the full process lifetime (or a defined period
of time).
The resulting metric will be stored at process level with the name:

Temperature (calculation over process lifetime),
Or Temperature-From:start_s-To:end_s (calculation over specific interval)

4 Test of SVD Toolkit components
In this section we describe tests of SVD Toolkit components, including
Application profiler, Repository, Database, Data Centre workload simulator, CFD
solver and metric calculator.

Collaborative project Grant agreement: 288701

 Version: 1.0

Authors: D. Rathgeb, E. Volk
Date: 29/03/2013 Page 37 / 50

4.1 Application Profiler
Test of the application profiler has been done by creating the profile of one the
HPC benchmark EP with different frequencies. The faster the processor, the
least number of phases are detected as some slight behaviour changes do not
have enough impact at faster speed to be detected as new phases.

Profile at fastest speed
<resourceConsumptionProfile>
 <resourceConsumption>
 <referenceHardware>Intel_i7</referenceHardware>
 <duration>PT4S</duration>
 <behaviour name="cpu">
 <value>99</value>
 </behaviour>
 <behaviour name="network">
 <value>29</value>
 </behaviour>
 </resourceConsumption>
 <resourceConsumption>
 <referenceHardware>Intel_i7</referenceHardware>
 <duration>PT67S</duration>
 <behaviour name="cpu">
 <value>98</value>
 </behaviour>
 <behaviour name="network">
 <value>88</value>
 </behaviour>
 </resourceConsumption>
 <resourceConsumption>
 <referenceHardware>Intel_i7</referenceHardware>
 <duration>PT8S</duration>
 <behaviour name="cpu">
 <value>98</value>
 </behaviour>
 <behaviour name="network">
 <value>29</value>
 </behaviour>
 </resourceConsumption>
 <resourceConsumption>
 <referenceHardware>Intel_i7</referenceHardware>
 <duration>PT63S</duration>
 <behaviour name="cpu">
 <value>98</value>
 </behaviour>
 <behaviour name="network">
 <value>85</value>
 </behaviour>
 </resourceConsumption>
 <resourceConsumption>
 <referenceHardware>Intel_i7</referenceHardware>
 <duration>PT69S</duration>
 <behaviour name="cpu">
 <value>98</value>
 </behaviour>
 <behaviour name="network">
 <value>85</value>
 </behaviour>
 </resourceConsumption>
 <resourceConsumption>
 <referenceHardware>Intel_i7</referenceHardware>
 <duration>PT61S</duration>
 <behaviour name="cpu">
 <value>98</value>
 </behaviour>
 <behaviour name="network">
 <value>80</value>
 </behaviour>
 </resourceConsumption>
 <resourceConsumption>
 <referenceHardware>Intel_i7</referenceHardware>
 <duration>PT72S</duration>
 <behaviour name="cpu">
 <value>98</value>
 </behaviour>
 <behaviour name="network">
 <value>76</value>
 </behaviour>
 </resourceConsumption>
</resourceConsumptionProfile>

Profile at slowest speed
<resourceConsumptionProfile>
 <resourceConsumption>
 <referenceHardware>Intel_i7</referenceHardware>
 <duration>PT4S</duration>
 <behaviour name="cpu">
 <value>99</value>
 </behaviour>
 <behaviour name="network">
 <value>28</value>
 </behaviour>
 </resourceConsumption>
 <resourceConsumption>
 <referenceHardware>Intel_i7</referenceHardware>
 <duration>PT46S</duration>
 <behaviour name="cpu">
 <value>98</value>
 </behaviour>
 <behaviour name="network">
 <value>92</value>
 </behaviour>
 </resourceConsumption>
 <resourceConsumption>
 <referenceHardware>Intel_i7</referenceHardware>
 <duration>PT18S</duration>
 <behaviour name="cpu">
 <value>98</value>
 </behaviour>
 <behaviour name="network">
 <value>38</value>
 </behaviour>
 </resourceConsumption>
 <resourceConsumption>
 <referenceHardware>Intel_i7</referenceHardware>
 <duration>PT72S</duration>
 <behaviour name="cpu">
 <value>98</value>
 </behaviour>
 <behaviour name="network">
 <value>90</value>
 </behaviour>
 </resourceConsumption>
 <resourceConsumption>
 <referenceHardware>Intel_i7</referenceHardware>
 <duration>PT12S</duration>
 <behaviour name="cpu">
 <value>98</value>
 </behaviour>
 <behaviour name="network">
 <value>40</value>
 </behaviour>
 </resourceConsumption>
 <resourceConsumption>
 <referenceHardware>Intel_i7</referenceHardware>
 <duration>PT72S</duration>
 <behaviour name="cpu">
 <value>98</value>
 </behaviour>
 <behaviour name="network">
 <value>90</value>
 </behaviour>
 </resourceConsumption>
 <resourceConsumption>
 <referenceHardware>Intel_i7</referenceHardware>
 <duration>PT4S</duration>
 <behaviour name="cpu">
 <value>98</value>
 </behaviour>
 <behaviour name="network">
 <value>44</value>
 </behaviour>
 </resourceConsumption>
 <resourceConsumption>
 <referenceHardware>Intel_i7</referenceHardware>

Collaborative project Grant agreement: 288701

 Version: 1.0

Authors: D. Rathgeb, E. Volk
Date: 29/03/2013 Page 38 / 50

 <duration>PT93S</duration>
 <behaviour name="cpu">
 <value>98</value>
 </behaviour>
 <behaviour name="network">
 <value>89</value>
 </behaviour>
 </resourceConsumption>
</resourceConsumptionProfile>

Collaborative project Grant agreement: 288701

Version: 1.0

Authors: D. Rathgeb, E.Volk
Date: 31/03/2013 Page 39 / 50

4.2 SVN Repository
As noted, the interaction with SVN repository is done via svn-client (svn
command). The following example shows interaction with the svn:

volk@timacs:~/coolemall-repository$ svn co https://svn.coolemall.eu/svn/repository

A repository/users

A repository/common

A repository/common/debbs

A repository/common/workloads

A repository/common/applications

Checked out revision 51.

volk@timacs:~/coolemall-repository$ cd common/

volk@timacs:~/coolemall-repository/repository/common$ ls

applications debbs workloads

volk@timacs:~/coolemall-repository/repository/common$ mkdir experiments

volk@timacs:~/coolemall-repository/repository/common$ ls

applications debbs experiments workloads

volk@timacs:~/coolemall-repository/repository/common$ svn ci

Adding common/experiments

Committed revision 52.

volk@timacs:~/coolemall-repository/repository/common$

4.3 Database
To execute the python wrapper it needed start the coolemalldb demon:

[timacs@recs1 coolemall] ./bin/coolemall
usage: coolemall <option>
 -h|--help This blurb.
 -k|--kill|--stop Stop coolemalldb.
 -s|--start Start coolemalldb.
 -i|--status Show status of coolemalldb.

Example invocation:

Collaborative project Grant agreement: 288701

Version: 1.0

Authors: D. Rathgeb, E.Volk
Date: 31/03/2013 Page 40 / 50

 coolemall --start
The test of the collemall DB using script based API (described in Section 3.3) are
show below:

[timacs@recs1 coolemall]$./coolemall_getRecordsByMetricName
testbed/hlrs/hpc/hw/rack1/recs1/i7_0_05 mem_usage
[(1361574545L, 42356.230000000003, 'ok-low')]

[timacs@recs1 coolemall]$./coolemall_getMetricNames
testbed/hlrs/hpc/hw/rack1/recs1/i7_0_05
[cpu_usage, mem_usage, usr_load]

[timacs@recs1 coolemall]$./coolemall_getHostNames
[testbed/hlrs/hpc/hw/rack1/recs1/i7_0_05, testbed/hlrs/hpc/hw/rack1/recs1,
testbed/hlrs/hpc/hw/rack1]

[timacs@recs1 coolemall]$./coolemall_getLastMetricsByHostName
testbed/hlrs/hpc/hw/rack1/recs1/i7_0_05
[Metric(name='cpu_usage', output='ok-low', value=6.21, source='nagios',
host='testbed/hlrs/hpc/hw/rack1/recs1/i7_0_05', time=1361574550L,
performance='ok-2.5'), Metric(name='mem_usage', output='ok-low',
value=42356.230000000003, source='nagios',
host='testbed/hlrs/hpc/hw/rack1/recs1/i7_0_05', time=1361574545L,
performance='ok-1.5'), Metric(name='usr_load', output='ok-low',
value=12.210000000000001, source='nagios',
host='testbed/hlrs/hpc/hw/rack1/recs1/i7_0_05', time=1361574525L,
performance='ok-2.5')]

[timacs@recs1 coolemall]$./coolemall_getLastMetricByMetricName
testbed/hlrs/hpc/hw/rack1/recs1/i7_0_05 cpu_usage
host = testbed/hlrs/hpc/hw/rack1/recs1/i7_0_05
name = cpu_usage
output = ok-low
performance = ok-2.5
source = nagios

Collaborative project Grant agreement: 288701

Version: 1.0

Authors: D. Rathgeb, E.Volk
Date: 31/03/2013 Page 41 / 50

time = 1361574550
value = 6.21

[timacs@recs1 coolemall]./coolemall_getExperimentsList
[exp_1, exp_2, exp_3]

[timacs@recs1 coolemall] ./coolemall_getTrialsList exp_1
[trial_1, trial_2, trial_3]

#Including data onto database
[timacs@recs1 coolemall]./coolemall_putMetricDB "experimentID: exp_1,
trialID:trial_1,name:cpu_usage,time:1361574539,value:12356.21,object_path:tes
tbed/hlrs/hpc/hw/rack1/recs1/i7_0_05,source:nagios,performance:ok-
2.5,output:ok-low"

4.4 DCworms
Apart from simulation of complex distributed computing systems, DCworms has
been also used to simulate execution of workloads on resources defined by
DEBBs for RECS. Results of this work have been presented in [DCworms2012]
and in [CoolEmAll_RECS].
In [CoolEmAll_RECS] the impact of resource allocation policies on power draw
and outlet temperatures of RECS system was studied. Based on DEBB a
description of RECS unit containing 18 Intel i7 nodes was built.
The evaluated workload had the given characteristics (Table 4-1):

Table 4-1: Workload characteristics

load intensity 70%
number of tasks 1000
tasks interval [s] 560
Application classes scalable CPU-intensive – 34%

single threaded – 33%
IO-intensive – 33%

As a workload management policy simple FCFS with Relaxed Backfilling
approach strategy assigning tasks to nodes in Random manner was used.
Power estimations were based on power measurements made for each
application type.
The following figure (Figure 4-1) shows the power consumption chart generated

Collaborative project Grant agreement: 288701

Version: 1.0

Authors: D. Rathgeb, E.Volk
Date: 31/03/2013 Page 42 / 50

based on the data gathered during the DCworms simulation.

Figure 4-1: Power usage chart generated for the DCworms simulation

4.5 CFD
For test purposes to main test cases are considered and in this stage executed.
First there is the flow through a compute node, in this case the RECS-design of
project partner Christmann is used for a reference case. Second the test was
done on a random compute room. These test cases were considered most viable
because these cases are most likely to be used by end users.

Collaborative project Grant agreement: 288701

Version: 1.0

Authors: D. Rathgeb, E.Volk
Date: 31/03/2013 Page 43 / 50

4.5.1 Flow through RECS

Figure 4-2: velocity and temperature distribution inside RECS

This figure shows the velocity and temperature distribution inside a compute
node of RECS type. The colour along the plane represents the temperature
distribution in conjunction with the heatsinks of the CPUs. The velocity
distribution is represented by the streamlines and the velocity vectors in
conjunction with their colour. Hot temperature is coloured in red and colder
temperature goes over green to blue. Velocity is coloured in a similar way and
red means high velocities.

Collaborative project Grant agreement: 288701

Version: 1.0

Authors: D. Rathgeb, E.Volk
Date: 31/03/2013 Page 44 / 50

4.5.2 Flow through Compute Room

Figure 4-3: velocity and temperature distribution inside a compute room

Figure 4-3 shows temperature and velocity distribution inside a randomly chosen
compute room. The 24 squares represent the inlets for the air inflow which are
also the top of the server racks inside this compute room. Temperature is again
represented by the colour of the cutting plane. Velocity magnitude and velocity
direction is shown by the colour and direction of the streamlines and the velocity
vectors.

Collaborative project Grant agreement: 288701

Version: 1.0

Authors: D. Rathgeb, E.Volk
Date: 31/03/2013 Page 45 / 50

4.6 Metric Calculator
In this section we present tests of the Metric Calculator, showing output for each
metric calculation. Tests have been done using every different possible
calculation on a specific chosen period of time.

Imbalance of temperature calculation:
[zilio@recs1 MetricCalc]$./metricCalc.py imbalance_of_temperature
testbed/psnc/hpc/hw/rack1/recs1 1362752604 1362755664

[zilio@recs1 MetricCalc]$ timacs_getLastMetricByMetricName testbed/psnc/hpc/hw/rack1/recs1/
ImbalanceOfTemperature -From:1362752604-To:1362755664

host = testbed/psnc/hpc/hw/rack1/recs1

name = ImbalanceOfTemperature -From:1362752604-To:1362755664

output = OK

performance =

source = metricCalc

time = 1362755664

value = 19.2183893608

Power calculation:
[zilio@recs1 MetricCalc]$./metricCalc.py power_usage testbed/psnc/hpc/hw/rack1/recs1
1362752604 1362755664

[zilio@recs1 MetricCalc]$ timacs_getRecordsByMetricName testbed/psnc/hpc/hw/rack1/recs1
Power 1362752604 1362755664

[NumRecord(1362752609000000000L, 252.0, 'OK'),
NumRecord(1362752621000000000L, 229.0, 'OK'),
NumRecord(1362752633000000000L, 250.0, 'OK'),
NumRecord(1362752645000000000L, 239.0, 'OK'),
NumRecord(1362752657000000000L, 224.0, 'OK'),
NumRecord(1362752669000000000L, 238.0, 'OK'),
NumRecord(1362752681000000000L, 224.0, 'OK'), …]

Minimum power calculation:
[zilio@recs1 MetricCalc]$./metricCalc.py minimum_power testbed/psnc/hpc/hw/rack1/recs1
1362752604 1362755664

[zilio@recs1 MetricCalc]$ timacs_getLastMetricByMetricName testbed/psnc/hpc/hw/rack1/recs1/
MinPower-From:1362752604-To:1362755664

host = testbed/psnc/hpc/hw/rack1/recs1

name = MinPower-From:1362752604-To:1362755664

output = OK

performance =

Collaborative project Grant agreement: 288701

Version: 1.0

Authors: D. Rathgeb, E.Volk
Date: 31/03/2013 Page 46 / 50

source = metricCalc

time = 1362755664

value = 215.0

Maximum power calculation:
[zilio@recs1 MetricCalc]$./metricCalc.py maximum_power testbed/psnc/hpc/hw/rack1/recs1
1362752604 1362755664

[zilio@recs1 MetricCalc]$ timacs_getLastMetricByMetricName testbed/psnc/hpc/hw/rack1/recs1/
MaxPower-From:1362752604-To:1362755664

host = testbed/psnc/hpc/hw/rack1/recs1

name = MaxPower-From:1362752604-To:1362755664

output = OK

performance =

source = metricCalc

time = 1362755664

value = 275.0

Average power calculation:
[zilio@recs1 MetricCalc]$./metricCalc.py average_power testbed/psnc/hpc/hw/rack1/recs1
1362752604 1362755664

[zilio@recs1 MetricCalc]$ timacs_getLastMetricByMetricName testbed/psnc/hpc/hw/rack1/recs1/
AvgPower-From:1362752604-To:1362755664

host = testbed/psnc/hpc/hw/rack1/recs1

name = AvgPower-From:1362752604-To:1362755664

output = OK

performance =

source = metricCalc

time = 1362755664

value = 236.233910486

Energy consumption calculation:
[zilio@recs1 MetricCalc]$./metricCalc.py energy testbed/psnc/hpc/hw/rack1/recs1 1362752604
1362755664

[zilio@recs1 MetricCalc]$ timacs_getLastMetricByMetricName testbed/psnc/hpc/hw/rack1/recs1/
Energy-From:1362752604-To:1362755664

host = testbed/psnc/hpc/hw/rack1/recs1

name = Energy-From:1362752604-To:1362755664

output = OK

Collaborative project Grant agreement: 288701

Version: 1.0

Authors: D. Rathgeb, E.Volk
Date: 31/03/2013 Page 47 / 50

performance =

source = metricCalc

time = 1362755664

value = 200.864444444

Process energy consumption calculation:
[zilio@recs1 MetricCalc]$./metricCalc.py process_energy testbed/psnc/hpc/tasks/461/10149

[zilio@recs1 ~]$ timacs_getRecordsByMetricName testbed/psnc/hpc/tasks/461/10149 Energy

[NumRecord(1362421131000000000L, 0.0, 'OK'),
NumRecord(1362421136000000000L, 0.000146547916667, 'OK'),
NumRecord(1362421141000000000L, 0.00031218611111100001, 'OK'),
NumRecord(1362421146000000000L, 0.00045681562500000001, 'OK'),
NumRecord(1362421151000000000L, 0.00062742444444399996, 'OK'),
NumRecord(1362421156000000000L, 0.00078047569444400001, 'OK'),
NumRecord(1362421161000000000L, 0.00150467619048, 'OK'), …]

Process temperature calculation:
[zilio@recs1 MetricCalc]$./metricCalc.py process_temperature
testbed/psnc/hpc/tasks/461/10149

[zilio@recs1 ~]$ timacs_getRecordsByMetricName testbed/psnc/hpc/tasks/461/10149
Temperature

[NumRecord(1362421131000000000L, 0.101382, 'OK'),
NumRecord(1362421136000000000L, 0.21102899999999999, 'OK'),
NumRecord(1362421141000000000L, 0.33716099999999999, 'OK'),
NumRecord(1362421146000000000L, 0.43854300000000002, 'OK'),
NumRecord(1362421151000000000L, 0.56468200000000002, 'OK'),
NumRecord(1362421156000000000L, 0.67433100000000001, 'OK'),
NumRecord(1362421161000000000L, 1.2639279999999999, 'OK'),

Collaborative project Grant agreement: 288701

Version: 1.0

Authors: D. Rathgeb, E.Volk
Date: 31/03/2013 Page 48 / 50

5 Summary
The development of the components is completed for the 1st prototype of the
SVD toolkit. The different components are fully functional and can be used for
execution of experiments. Even the interaction between the different components
works in this early development stage. Tests have been conducted for each
component and functionality has been demonstrated. The usage of the first
prototype requires in some cases the invoking of a command line interface, but
the usage of each individual component of the SVD toolkit is described in this
deliverable. The collaboration of the different components is ensured on
command line level interface. For the next release the invoking of the different
components of the SVD toolkit is planned to be realized by a Web Interface so
that every component can be called from a web based Graphical User Interface
and the parameters can be set interactively. The same applies for the Post
processing of CFD-simulation.
One of the unique features of the SVD-toolkit is its heuristic approach in the
design and operation of data centres. Because of this heuristic approach this tool
provides the possibility to design and operate data centres more energy efficient.
This is done by monitoring the behaviour of data centres both theoretically by
workload simulations and CFD calculations and comparison of these results with
the results of test on different data centres. These two aspects of data centre
operation can then be compared with the data centre of interest. This provides
the possibility to operate data centres in a whole new way. Data centres can then
be designed more energy efficient by using less cooling power, even in peak
loading conditions. With this empirical approach the power consumption can be
reduced even more in lower than peak loading by distributing jobs evenly
throughout the most sufficient hardware distributed evenly inside the compute
room. And with the a sophisticated job scheduling policy power consumption by
cooling can be reduced even more switching between compute intense jobs and
less requiring jobs.

Collaborative project Grant agreement: 288701

Version: 1.0

Authors: D. Rathgeb, E.Volk
Date: 31/03/2013 Page 49 / 50

6 References
[SVD Toolkit] download link for SVD Toolkit:

http://www.coolemall.eu/web/guest/download/-
/document_library_display/g2Kj/view/35865

[D2.2] CoolEmAll Deliverable D2.2 Design of the CoolEmAll simulation
and visualisation environment, 2012

[D2.3] CoolEmAll Deliverable D2.3 First definition of the hardware and

software models, 2013

[D3.2] CoolEmAll Deliverable D3.2 First definition of the modular

compute box with integrated cooling, 2013

[D4.3] CoolEmAll Deliverable D4.3 First set of resource management

and scheduling policies, 2013

[D6.1] CoolEmAll Deliverable D6.1 - Validation Scenarios,

Methodology and Metrics, 2012

[DCworms2012] Kurowski, K., Oleksiak, A., Piatek, W., Piontek, T.,

Przybyszewski, A., Weglarz, J. (2013) DCWoRMS - a tool for
simulation of energy efficiency in distributed computing
infrastructures, Simulation Modelling Practice and Theory, in
revision.

[CoolEmAll_RECS]
 Da Costa G., Jarus, M., Oleksiak, A., Piatek, W., Volk, E., vor

dem Berge, M., Modeling Data Center Building Blocks for
Energy-efficiency and Thermal Simulations, 2012

[CoolEmAll-SVN] CoolEmAll project subversion repository,

https://svn.coolemall.eu/svn/repository

[SWF] Parallel Workload Archive,

http://www.cs.huji.ac.il/labs/parallel/workload/

[SLURM] https://computing.llnl.gov/linux/slurm/

[SVN] Apache Subversion software versioning and revision control

system, http://subversion.apache.org

Collaborative project Grant agreement: 288701

Version: 1.0

Authors: D. Rathgeb, E.Volk
Date: 31/03/2013 Page 50 / 50

[TORQUE] TORQUE Resource Manager,
http://www.adaptivecomputing.com/products/open-
source/torque

[OpenFOAM] OpenFOAM User Guide Version 2.1.1,

http://www.openfoam.org/docs/user/
[GPL] GNU General Public License http://www.gnu.org

[LGPL] GNU Lesser General Public License http://www.gnu.org

[MPL2] Mozilla Public License Version 2.0
 http://www.mozilla.org/MPL/2.0

[MIT] The MIT License http://www.opensource.org/licenses/MIT

