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Abstract

This work is concerned with the multiscale prediction of the transport and sound absorption

properties associated with industrial glass wool samples. In the first step, an experimental charac-

terization is performed on various products using optical granulometry and porosity measurements.

A morphological analysis, based on scanning electron imaging, is further conducted to identify the

probability density functions associated with the fiber angular orientation. The key morphological

characterization parameters of the microstructure, which serve as input parameters of the model,

include the porosity, the weighted volume diameter accounting for both lengths and diameters of

the analyzed fibers (and therefore the specific surface area of the random fibrous material), and the

preferred out-of-plane fiber orientation generated by the manufacturing process. A computation-

al framework is subsequently proposed and allows for the reconstruction of an equivalent fibrous

network. A fully stochastic microstructural model, parameterized by the probability laws inferred

from the database, is also proposed herein. Multiscale simulations are carried out to estimate

transport properties and sound absorption. With no adjustable parameter, the results accounting

for ten different samples obtained with various processing parameters, are finally compared with

the experimental data and used to assess the relevance of the reconstruction procedures and the

multiscale computations.

PACS numbers: 43.55.Ev, 43.50.Gf
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I. INTRODUCTION

What are the microscopic bases of macroscopic properties in acoustic fibrous media? How

do macroscopic transport properties (e.g., static viscous and thermal permeabilities, viscous

characteristic length and high frequency tortuosity) depend on the microstructural parame-

ters of a fibrous material? These are two of the many questions that have dominated studies

of fluid flow and thermal diffusion through microscopically-disordered fibrous materials such

as glass wools. Such questions may be addressed in a variety of ways [1, 2]. Perhaps, the

most direct method is to conduct a series of laboratory measurements on samples of varying

sizes and types [3–8]. Alternatively, in the quest for theoretical understanding, one may seek

to better understand the mathematical or physical basis of the generalized Darcy-scale equa-

tions for macroscopic transports [9–14]. Lastly, one can consider studies based on numerical

simulations [15–17].

Each of these approaches has strengths and weaknesses. Laboratory measurements are

of undisputed value; however, their usefulness may be limited to a specific range of already

available manufactured materials. Moreover, laboratory measurements are subjected to

measurement noise and potential methodological errors. It is therefore not an absolute

reference either. Importantly, the attempts in the literature of fibrous materials where

transport properties have been related empirically to microstructural parameters – usually

through some kind of power law with fitted exponents – cannot reflect what the microphysical

origins are behind exponents modifications; suggesting that this approach is not appropriate

to understand transport processes in fibrous materials. Analytical studies, on the other hand,

are not necessarily limited to a specific kind of fiber materials, but they usually require

simplifying assumptions (e.g., periodic array of cylinders [18], specific fiber orientations

[19, 20], or negligible interaction between the shear stress fields of neighboring fibers [21])

that have only a partial relevance to reality. Numerical simulation usually attempts to

bridge the gap between theory and experiments. It is typically hampered, however, by

either the need to simplify geometry [16, 18] or physics [15, 22]. In recent years, however,

another approach to the numerical study of diffusion and fluid flow through fibrous media

has gained some popularity [17, 23, 24]. The idea is to numerically solve the asymptotic

behaviors of the linearized Navier-Stokes and heat equations in a realistic microscopically

disordered geometry, and then study how volume-averaged properties of the diffusion process

3



and the fluid flow depend on the details of the microstructures. Such studies offer the ability

to study the micro-physical basis of macroscopic transport without the need for simplified

geometries or physics; they are however limited to samples of small size.

Considering the difficulties that have been stated about empirical and analytical ap-

proaches, an attempt to relate fibrous structure to transport parameters should be based on

direct measurements of the microstructural parameters of a single fibrous sample. Examples

of such microstructural parameters include porosity, specific surface area, and some kind of

average or typical fiber diameter and fiber orientation. We could then proceed to numer-

ically solve the appropriate transport equations in a reconstructed fibrous microstructure.

A challenge is in choosing the appropriate microstructural parameters and in proposing a

reconstruction procedure as a way of predicting transport properties of the sample.

Here we are concerned with a better understanding of the transport processes through

fibrous acoustic materials in order to predict the acoustical properties of lightweight glass

wool samples. The other purpose of this paper is to relate fiber structure to transport and

sound absorption coefficients of such random fiber geometries by choosing the appropriate

microstructural parameters and formulating a suitable multiscale framework.

Tomadakis and Robertson [22] were probably the first to provide systematic computa-

tions of transport parameters over a wide range of porosities for three classes of random

fibrous media: the structures formed by cylindrical fibers distributed randomly in 1, 2,

or 3 directions were considered. One directional (1-d) random fiber structures have their

axes parallel to each other, with their traces randomly distributed on the normal plane.

Two-directional (2-d) random fiber structures have their axes on planes parallel to each

other, with their positions and orientations randomly distributed on these planes. Three-

directional (3-d) random fiber structures have their axes randomly positioned and oriented

in the three-dimensional space. Their results were however restricted to fiber models with

equal diameters and lengths, and to limited data points in their investigations of the fiber

orientation effect.

Using data on the microstructure of a non-woven acquired from two-dimensional reflected

light microscope images of microsections of the non-woven, Schladitz et al. [15] constructed

a model of a random fibrous media. The geometric model of a random fibrous media was

using fiber thicknesses, porosity, and anisotropy of the fiber system as input parameters.

The authors indicated that permeability simulations for the case where a radii distribution
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is used and in the other case where only the mean radius is considered (calculated in terms of

number of fibers) lead to significantly different results (Fig. 7) [15], but they did not consider

and describe the effect of fiber length. Moreoever, the permeability computations were not

compared with experimental data, which does not allow one to conclude on the importance

of fiber length for the quantitative modeling of permeability and sound absorption in random

fibrous media.

Jensen and Raspet [25] numerically determined the thermoacoustic properties of fibrous

materials from realizations of the geometric model pioneered by Schladitz et al. [15] using the

hybrid thermal Lattice Boltzmann model [26]. Their objective was to test some extensions

of the pore-based microstructural models of Attenborough [27] and Zwicker and Kosten [28]

and of the relaxation model proposed by Wilson [29] against numerical data. They noted

that both of these extended models yield a reliable prediction of thermoacoustic performance

provided that the parameters of the models (shape factors and relaxation times) are selected

to best fit the data. However, no correlations were given between the parameters of the fiber

geometry and the results of the simulation data (acoustic parameters).

Peyrega et al. [30] presented fibrous detailed morphological characterization of a material

made of wooden fibers by studying three-dimensional images acquired with an X-ray mi-

crotomograph with mathematical morphology. Because this mathematical characterization

highlights the transverse isotropy of fiber orientation, Peyrega and Jeulin [16] modeled the

studied sample by using a simple two-dimensional periodic array of circular cylinders. A

stochastic model composed of overlapping discs was also presented by these authors based

on a random Poisson point process. The porosity and the fiber radius of the models were

determined according to the morphological characterization, using the measured porosity

and a volume weighted average radius as input parameters. The fully coupled visco-thermal

equations were solved both in the deterministic and stochastic models, and the predicted

sound absorption found in quantitative agreement with measurements. In practice, the se-

lection of the aforementioned average radius yields satisfactory results whenever the wave

propagates perpendicularly to the plane to which all fibers belong.

This work follows a series of recent contributions by some of the authors [17, 23, 24], fo-

cusing on the determination of the acoustic properties of random fibrous materials from their

microstructures. In these papers, numerical simulations of fluid flow through fibrous media

were fed with microstructural descriptors of increased complexity, inferred from experiments.
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More precisely:

1. In [17], a reconstruction methodology of a random fibrous medium was proposed and

validated using macroscopic measurements on the permeability and sound absorption.

This first approach specifically accounts for the porosity of the material, as well as for

fiber diameters and orientations, but does not involve a description of the fiber length.

2. The second contribution [24] built on the model developed in (1) and focused on

numerically characterizing the sensitivity of the transport properties with respect to

the microstructural parameters under consideration (namely, the porosity and fiber

diameter and orientation).

3. In [23], the definition as to how “equivalent” microstructures (in terms of macroscopic

properties) can be defined was addressed in a computational setting. A fibrous medium

exhibiting a tight distribution of fiber diameters was purposely considered, and the

effect of fiber length distribution was not studied.

The present effort aims to extend the above framework by addressing the case of a random

network exhibiting high levels of statistical fluctuations for both the diameter and length of

the fibers (it should be noticed at this point that the determination of the elastic properties

of random fibrous media from their microstructural characteristics is out of the scope of

this paper). Here, glass wool is considered as a prototypical material combining unique

challenging features [31–33], such as wide distributions of fiber diameters, lengths, and

angular orientations.

This paper is organized as follows. Sec. II is devoted to the experimental characterization

of the acoustical fibrous materials under study, at both micro- and macro- scales. Sec. III

deals with the definition of two local geometry models (a deterministic one and a stochastic

one) that are fed into a multiscale framework to compute the transport properties and sound

absorption coefficients. An experimental validation is provided throughout Sec. IV.

II. EXPERIMENTAL CHARACTERIZATION OF THE RANDOM FIBROUS

NETWORK AND TRANSPORT PROPERTIES

This section is concerned with the statistical characterization of the fibrous network

associated with manufactured glass wools. The raw materials and the experimental setup
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are first described in Sec. IIA. The statistical results are then presented in Sec. II B.

A. Description of the raw materials and methodological aspects

In this study, we consider glass wools manufactured using sand, limestone and soda ash,

as well as recycled off-cuts as the basic raw materials. The raw materials are melted in a

furnace at very high temperatures, typically between 1,050 ◦C to 1,500 ◦C. The mixture is

drawn through tiny holes in rapidly rotating spinners. This process shapes it into fibers.

The structure and density of the product may be adapted according to its final usage. Small

quantities of binding agents are added to the fibers. The glass wool is then hardened in

a curing oven at around 200 ◦C, and is cut to the required size and shape. Ten products

corresponding to different surface densities and various processing parameters are considered

and labeled from 1 to 10. From a manufacturing perspective, the products 1–5 constitute a

first class of products (which will be referred to as Class 1 below) characterized by a given

surface density S1 (which is left undefined for industrial confidentiality reasons) yielding

a porosity of about 0.995. Similarly, the products 6–10 exhibit a surface density S2 ≫ S1

(with a porosity equal to 0.985 approximately), and represent a second class of raw materials

(which is denoted by Class 2). Samples of the material under consideration are shown at

both the microscopic and macroscopic scales in Fig. 1.

θ

φ

(a) (b)

FIG. 1. (Color online) Macroscopic and microscopic views of a glass wool. (a) A pannel of

fibrous material. The descendent arrow shows the airflow direction. Two angles θ and φ are

also defined in this coordinate system. (b) Associated microstructure obtained with a Scanning

Electron Microscope (SEM) for the surface density S1. The heterogeneity of fiber diameters can

easily be observed in the micrograph. The scale bar in the SEM image is 5×mD, where mD is the

mean diameter of the analyzed fibers (see Eq. (28) for a detailed definition of mD)
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In order to proceed with the multiscale analysis, the random fibrous network is charac-

terized by measuring key geometrical parameters, including the diameters and lengths of

the fibers, as well as their orientation angles in horizontal and vertical planes (the former

are planes parallel to (O, e1, e2), while the latter correspond to planes parallel to (O, e2, e3)

in the coordinate system depicted in Fig. 1). More specifically, the measures for the diam-

eters and lengths are automatically obtained by using a granulomorphometer. The fibers

are taken by coring with a syringe, the maximum length of the fibers being equal to or less

than 3.6 mm. Samples are blown up in order to ensure that the fibers are well separated.

Indeed, dispersion of fibers is required because superposed fibers and bundles of fibers are

not characterized. The fibers whose length is not more than three times the diameter are

excluded from the analysis as well as the fibers emerging from the observation window of 2

mm. It should be noticed that this 3 : 1 aspect ratio corresponds to the common definition

of a fiber, and that a compromise must be found between the resolution and the field of

view. Micrographs are then sequentially extracted and processed by an image recognition

algorithm. The number of fibers characterized by this approach can be found in Tab. I.

Product 1 2 3 4 5 6 7 8 9 10
Number of fibers 7377 9143 4662 3715 10451 6414 4719 6510 5981 17398

TABLE I. This table shows the number of fibers that were characterized using the granulomor-

phometer for each product.

The horizontal and vertical orientations of the fibers are directly measured, inside a

given plane, from SEM pictures. Here, it is assumed that the microstructure is reasonably

homogeneous over the macroscopic domain, so that the spatial sampling does not introduce

a bias. For each product, 40 pictures are extracted for each plane of interest at random

locations (note that the horizontal plane corresponds to the surface of the panel of the

fibrous material), as shown in Fig. 2.

On average, each product is characterized by 200 angular measurements in both the

horizontal and vertical planes, using the ImageJ software [34]. Below, it is assumed that the

thickness of the samples is small enough (typically less than 1 mm) to make the effect of

out-of-plane fibers negligible in the (two-dimensional) reconstruction of the microstructure.
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(a) (b)

FIG. 2. Examples of micrographs. The scale bar in the SEM images is 5×mD, where mD is the

mean diameter of the analyzed fibers (see Eq. (28) for a detailed definition of mD). (a) Horizontal

plane. Sample size is equal to 48.4mD × 32.5mD. (b) Vertical plane. Sample size is equal to

41.5mD × 27.8mD.

B. Statistical characterization of the random microstructure

From a statistical point of view, the probability density functions of interest are estimated

through the nonparametric kernel method. The probability density functions associated with

the fiber diameter and length, for product 7, are shown in Figs. 3 and 4, respectively. In

these figures, the closest fits obtained with the Gamma probability density function are

also reported. It should be noticed that the fiber lengths may be underestimated due to
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FIG. 3. (Color online) The estimated probability density function of fiber diameter is shown for

product 7.

the characterization strategy, as (i) the extraction process, which is done using a syringe

with a 3.6 mm catheter tip, breaks down over-lengthy fibers (beyond the 3.6 mm limit),
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FIG. 4. (Color online) The estimated probability density function of fiber length is shown for

product 7.

and (ii) objects that are not entirely contained in the field of view of the camera (during

granulomorphometry) are not counted (approx. 2 mm). For later use, we introduce the

mean weighted diameter Dw, derived from the volume weighted diameter distribution [30]

(in which each fiber has a weight equal to its volume) and defined as

Dw =
1∑Nf

i=1 Vi

Nf∑
i=1

ViDi (1)

where Vi and Di are the volume and diameter associated with the i-th fiber (for product

7, the mean value for the diameter estimated with the experimental data is equal to 5.52

µm and Dw = 10.24 µm). The probability density functions of the horizontal and vertical

orientation angles are shown in Fig. 5 and 6, respectively. By convention, the support of the

aforementioned probability density function is defined as [0, 180] (in [◦]).

Based on these figures, the following modeling assumptions are formulated:

• the horizontal angle φ follows a uniform distribution between 0 and 180 [◦];

• the probability density function of the vertical angle θ provides information that cor-

responds to a preferred out-of-plane orientation generated by the manufacturing tech-

nique (which will be characterized by γ hereinafter);

• the fiber diameter is distributed according to a Gamma distribution with shape param-

eter 1/δ2D and scale parameter mD δ2D, where mD and δD are the mean and coefficient
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FIG. 5. (Color online) The estimated probability density function of the horizontal orientation

angle φ is shown for (a) Class 1 and (b) Class 2 .
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FIG. 6. (Color online) The estimated probability density function of the vertical orientation angle

θ is shown for (a) Class 1 and (b) Class 2.

of variation of the diameter, respectively.

These assumptions, which are consistent with the results provided in [17], will be used in

Sec. III in order to define the geometry of the fibrous media within the multiscale framework.

C. Experimental characterization of transport properties

The macroscopic density ρ, the porosity ϕ and the through-thickness permeability K33

(along e3) are determined from direct measurements [35, 36]. Regarding porosity measure-

ments, we used a simple mass method to measure the open porosity, with large panels of

fibrous materials (600 mm × 600 mm) and a balance with a readability of 0.01 g. The
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length and width of each panel was measured with a graduated steel rule, and the thickness

was determined following EN823 standard method with a pin thickness gauge in five points

and a plate pressure of 50 Pa. The porosity ϕ was simply determined by ϕ = 1− ρ1/ρm, in

which ρ1 is the macroscopic density (bulk density) of the panel of fibrous material deduced

from its mass and dimensions and ρm is the known density of the raw material (2542 kg/m3

for the glass). This estimate assumes that the presence of the binder can be neglected,

whose mass represents typically 5-10 % of the product and whose density is not the one

of the glass. A geometrical estimate of the thermal characteristic length Λ′ can also be

obtained from the knowledge of the porosity ϕ and the specific surface area Sp, since Sp is

a direct output of the granulomorphometry analysis (see Eq. (7)). The through-thickness

permeability of each sample was measured for various static airflows with incremental reduc-

tion from 165 to 95 cubic centimeters/minute and determined for a linear airflow velocity

of 0.5 × 10−3 m/s by graphical averaging or extrapolation to this value (ISO 9053 [37]).

The tortuosity α∞, the viscous characteristic length Λ, the static thermal permeability k′,

and the thermal characteristic lengths Λ′ are determined using the indirect characterization

method proposed in [38, 39]. This requires, in particular, the measurement of both the

equivalent dynamic bulk modulus and dynamic density, which is performed here by using

the 3-microphone impedance tube method (see [40] for methodological aspects, as well as

[41] for an application to foams and fibrous materials). In this study, the tube used for

the measurements has a 40 mm inner diameter and the loudspeaker at one end generates a

broadband random signal in the frequency band 200-4,000 Hz. It should be mentioned that

the limp assumption [42] was used during the characterization process. The determination

of the aforementioned parameters is considered satisfactory when both the measured equiv-

alent dynamic bulk modulus and equivalent dynamic density of the materials are correctly

characterized [38, 39].

III. MULTI-SCALE ANALYSIS AND EXPERIMENTAL VALIDATION

A. Overview of the modeling methodology

Let Ω be the representative volume element (RVE) under consideration (with boundary

∂Ω), and let Ωf denote the part of Ω occupied by the fluid phase (the viscosity of which
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is denoted by η). Let ∂Ωf be the contact surface between the fluid and solid phases. We

further introduce the following notations.

Symbol Property
ϕ Porosity
[K] Static viscous permeability
k′ Static thermal permeability
α∞ High-frequency tortuosity
Λ′ Thermal characteristic length

TABLE II. List of symbols.

A four-step methodology is proposed as follows.

1. In the first step, a deterministic microstructure defined on a normalized domain Ω0

(with a unit characteristic length L0) and exhibiting some representative morpholog-

ical features of the random fibrous network (preferred out-of-plane orientation, mean

weighted diameter) is introduced. This equivalent microstructure allows, on the one

hand, to substantially reduce to computational cost associated with the multiscale

simulations (when compared to a fully stochastic microstructural model). On the

other hand, it enables the prediction of some transport properties, such as the static

viscous permeability, on larger domains defined through a homothetic transformation

of Ω0, at no additional cost. At this point, computational homogenization techniques

are subsequently used to construct a map between the key microstructural parameters

and the transport properties (see Secs. III B 1, III B 2 and III B 3).

2. In the second step (see Sec. III B 4) the above results are used to identify the length of

the physical domain Ω preserving the macroscopic porosity, at a given and constant

fiber diameter defined, for each product under consideration, by Dw (see Eq. (1)).

The transport properties of interest are then deduced either by appropriate scaling

rules (as discussed in [43], for instance), or through compensation rules involving, in

particular, some statistical properties estimated from the experimental database.

3. In the third step, detailed in Sec. III B 5, a fully stochastic microstructural model is

introduced to assess the relevance of the equivalent microstructure developed in Step

1. This model is constructed using the empirical distributions for the microstructural

parameters, and the impact of the modeling assumption for the fiber diameter is

specifically explored.
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4. In the fourth step (see Sec. III B 6), acoustical models are introduced to define the

acoustic properties of the fibrous media in terms of the macroscopic parameters deter-

mined from the computational homogenization framework.

These steps are detailed in the following sections.

B. Definition of the microstructure and multiscale simulations

1. Definition of the equivalent microstructure

Before setting up the multiscale framework, let us introduce the equivalent microstruc-

ture. The latter is a periodic model based on an ordered network of cylindrical fibers within

a cubical unit cell incorporating measured morphological characteristics of the real fibrous

material. Let Ω0 = ([0, 1])3 be the geometrical domain under consideration. Throughout

this section, the superscript “(0)” refers to quantities of interest that are associated with

Ω0. The fibrous network is then defined by inserting a set of N traverse fibers with constant

diameter D0 such that the configuration comprises all possible combinations of horizontal

and vertical angles defined by the probability mass functions

pφ(x) =
1

Nφ

Nφ∑
i=1

δ(x− φ(i)) (2)

and

pθ(x) =
1

Nθ

Nθ∑
j

δ(x− θ(j)) , (3)

where δ is the Dirac measure at the origin (with N = Nφ ×Nθ). In practice, the values of

Nφ and Nθ must be chosen to ensure both data consistency and macroscopic isotropy. Here,

we set Nφ = 4 and Nθ = 2, and the atoms defining the above probability mass functions

[44] are selected as

φ(i) = (i− 1)
π

4
, θ(j) =

π

2
+ (−1)j γ , (4)

where γ is the angle introduced in Sec. II B and defined by

γ = E
{∣∣∣θ − π

2

∣∣∣} . (5)
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The geometry hence obtained is schematically depicted in Fig. 7. It should be noticed that

FIG. 7. Illustration of the proposed equivalent microstructure, parameterized by D0 and γ.

the fibers are all interconnected at the center of the cell, and that the microstructure thus

defined is Ω-periodic.

2. Definition of the porosity and thermal characteristic length

The porosity ϕ and the thermal characteristic length Λ′ are purely geometrical quantities

that can be readily deduced from the definition of the microstructure. More precisely, the

porosity is defined as

ϕ =
Vf

VT

, (6)

where Vf = |Ωf | is the volume occupied by the fluid (air) and VT = |Ω| is the total volume

of the domain under consideration. The thermal characteristic length Λ′ is given by

Λ′ =
2ϕ

Sp

=
2Vf

Sfs

, (7)

in which Sfs is the contact area between the fluid and the solid, and Sp = Sfs/VT denotes

the specific surface area. The evolution of ϕ and Λ′ (for the normalized domain Ω0) as a

function of both the preferred out-of-plane orientation γ and the fiber diameter D0 is shown

in Fig. 8. As expected, it is seen that the porosity ϕ is monotonically decreasing with D0,

regardless of the angle γ. Note that the drop in porosity does depend on γ, and that a

decrease of 4% is observed for γ = 45◦ [see Fig. 8(a)]. We note that this effect is reduced for

smaller angles (which generate smaller fiber lengths, by construction). Moreover, increasing
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FIG. 8. (Color online) This figure shows the graphs of (a) the macroscopic porosity ϕ and (b) the

thermal characteristic length Λ′(0) associated with Ω0, as a function of D0 [–] and γ [◦].

γ for a given value of D0 results in both a decrease of the fluid volume Vf and an increase

of the contact area Sfs, hence implying a decrease of Λ′ in view of Eq. 7 [see Fig. 8(b)].

3. Computational homogenization

In this section, computational homogenization techniques are used to estimate the trans-

port properties as a function of the parameters D0 and γ (see [45] for a survey). First of

all, multiscale predictions of the static viscous permeability tensor are obtained. For this

purpose, recall that the velocity v and the pressure p of the (incompressible) fluid satisfy

the momentum equation

η∆v −∇p = −G (8)

and the mass conservation equation

∇ · v = 0 (9)

in Ωf , where G is a source term and the symbol “·” denotes the classical inner product in

R3. The above system of Stokes equations is supplemented with the boundary condition

v = 0 (10)
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on ∂Ωf , with (v, p) periodic on ∂Ω. The components of the static viscous permeability

tensor [K] can then be calculated as

[K]ij = ϕ ⟨[K∗]ij⟩ , 1 6 i 6 j 6 3 , (11)

where ⟨·⟩ denotes volume averaging in the fluid phase, viz.

⟨·⟩ = 1

|Ωf |

∫
Ωf

· dV , (12)

and [K∗] is such that

vi = − [K∗]ij
η

Gj . (13)

Another quantity of interest is the static viscous tortuosity tensor [α0] which reflects the

dispersion of microscopic velocities v around their macroscopic average ⟨v⟩,

[α0]ij =
ϕ⟨[K∗]pi[K

∗]pj⟩
⟨[K∗]ii⟩⟨[K∗]jj⟩

. (14)

In practice, three independent problems must be solved for defining the entries of [K∗],

each problem being defined by considering the source term G(i), 1 6 i 6 3, such that

G
(i)
j = δij, 1 6 j 6 3, with δij the Kronecker symbol (δij = 1 if i = j, 0 otherwise). In

this work, the Stokes equations are solved by the finite element method. More specifically,

5-node MINI tetrahedral elements are used for the velocity field, while 4-node tetrahedral

elements are used for the pressure field [46]. This P 1-bubble/P 1 formulation satisfies the

Babuška-Brezzi condition [47], and was implemented within in-house Matlab routines. The

code verification was carried out by addressing various benchmarks proposed elsewhere in

the literature (such as [48]). In order to ensure a proper refinement near the boundary

layers, the mesh generation was performed by using the commercial software COMSOL

Multiphysics. For D0 = 0.04L0 [–] and γ = 15 [◦], the finite element mesh contains 113887

elements (with a nonuniform density) and is shown in Fig. 9.

Since only through-thickness experiments are conducted, we restrict our attention below

to the through-thickness components of tensorial macroscopic properties. We then denote

by K
(0)
0 the effective scalar static permeability along e3, and the graph of the mapping

(D0, γ) 7→ K
(0)
0 is shown in Fig. 10. The static viscous permeability K

(0)
0 decreases as the
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FIG. 9. Meshed view of the equivalent microstructure.
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FIG. 10. (Color online) These figures show the graphs of the effective permeability K
(0)
0 associated

with Ω0, as a function of D0 [–] and γ [◦]. The range of angular values corresponds to (a) 15◦ ≤
γ ≤ 45◦, and to (b) 0◦ ≤ γ ≤ 90◦.

fiber diameter increases (which corresponds to an increase in the specific airflow resistance).

In the range of angles 15◦ 6 γ 6 45◦, the effect of the microstructural parameter γ on

K
(0)
0 is relatively small (as compared to the effect of diameter D0). This effect is, however,

more pronounced for larger values of γ, especially when γ tends to 90◦ – in which case the

fibers are aligned with the direction of the macroscopic flow [Fig. 10(b)]. These trends are

expected since γ corresponds to a preferred out-of-plane orientation of fibers: as a result,

drag forces controlling the amount of relative flow induced in the fluid-saturated porous

material increase as γ decreases.

The next step involves the estimation of the high-frequency tortuosity α∞ and viscous

characteristic length Λ. These quantities of interest can be obtained by solving the following
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potential equations

E = −∇Φ + e , ∇ ·E = 0 , (15)

in Ωf , where E is the electric field, Φ is an electric potential and e is a (given) input

macroscopic electric field. The associated boundary conditions write

E · n = 0 (16)

on ∂Ωf , with n the unit vector normal to the boundary ∂Ωf , and Φ periodic on ∂Ω. The

through-thickness high-frequency tortuosity is then defined by considering the microscopic

field e = e3 and by letting

α∞ =
⟨E ·E⟩
⟨E⟩ · ⟨E⟩

. (17)

The associated viscous characteristic length reads as

Λ = 2

(∫
Ωf

E ·E dV

)(∫
∂Ωf

E ·E dS

)−1

. (18)

Finally, the static thermal permeability k′(0) is estimated by solving the heat transfer equa-

tion, namely

∆u = −1 (19)

in Ωf , with

u = 0 (20)

on ∂Ωf and u periodic on ∂Ω. The transport parameter k′(0) is then obtained as

k′(0) = ⟨u⟩ . (21)

A thermal tortuosity parameter α′
0, that is a scalar analogous to the viscous tortuosity tensor

[α0]ij, can be defined as

α′
0 =

⟨u2⟩
⟨u⟩2

. (22)

The two boundary value problems that are respectively defined by Eqs. (15-16) and E-

qs. (19-20) are presently solved by using 4-node tetrahedral finite elements. The dependence

of the high-frequency tortuosity and viscous characteristic length on parameters D0 and γ
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is illustrated below in Fig. 11. It is observed that the high-frequency tortuosity α
(0)
∞ remains
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FIG. 11. This figure shows the graphs of (a) the high-frequency tortuosity α
(0)
∞ and (b) the viscous

characteristic length Λ(0) associated with Ω0, as a function of D0 [–] and γ [◦].

very close to 1, with a range of variation in the order of magnitude of typical measuremen-

t uncertainties, and that its values increase together with the values of the diameter D0.

Moreover, when the angle γ decreases, a small increase in α
(0)
∞ can be noticed. As illustrated

in Fig. 11(b), the values of Λ(0) follow the same trend as the values of Λ′(0), with Λ(0) 6 Λ′(0).

To compare the thermal Λ′(0) and viscous Λ(0) characteristic lengths further, we also present,

in Fig. 12, the evolution of the ratio Λ′(0)/Λ(0). For the angles under consideration, the above
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FIG. 12. (Color online) This figure shows the graph of the ratio Λ′(0)/Λ(0) associated with Ω0, as

a function of D0 [–] and γ [◦].

ratio decreases from 2.1 (which corresponds to the situation where the fibers are not entirely

perpendicular to the air velocity direction, with D0 = 0.06) to 1.2 (which corresponds to
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the angle γ = 45◦, with a smaller diameter D0 = 0.01). As expected, it is seen that the

ratio Λ′(0)/Λ(0) increases whenever the fibers are placed perpendicular to the air velocity

direction or when the fiber diameter is sufficiently large (the same conclusion holds when

these situations, which introduce constrictions in the fluid domain, are combined). Note

that this effect appears as being more prominent when the angle γ takes small values (in

particular, one has Λ′(0)/Λ(0) ≈ 5 for γ = 0◦ and D0 = 0.25). Finally, the graphs of the

static thermal permeability k′(0) and the ratio k′(0)/K
(0)
0 are displayed in Fig. 13. Obviously,
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FIG. 13. (Color online) This figure shows the graphs of (a) the static thermal permeability k′(0)

and (b) the ratio k′(0)/K
(0)
0 associated with Ω0, as a function of D0 [–] and γ [◦].

the static thermal permeability increases when the diameter D0 increases or when the an-

gle γ decreases. Because the thermal permeability k′(0) is independent of the angle γ at

constant porosity (see [17]), the ratio k′(0)/K
(0)
0 is seen to increase as K

(0)
0 decreases (which

corresponds to the case of decreasing angles).

4. Definition of scaling rules

In this section, we explore the definition of scaling rules. For a given quantity of interest

(transport parameter), a scaling rule is defined as the correction to apply to the estimate

obtained with the normalized unit cell Ω0 in order to deduce corresponding values for the

(real) porous medium.

First of all, the parameters α∞, α and α′ are independent of the domain size and are

therefore directly extracted from the simulations that were carried out in Sec. III B 3.

Next, the effective characteristic length L of domain Ω is determined, for each product,
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by imposing that

ϕ0(Dw/L, γ
exp) = ϕ0(D0/L0, γ

exp) = ϕexp , (23)

where Dw was defined in Eq. (1), L0 = 1 by construction and the superscript “exp” refers to

experimental values. When a laboratory measurement of the porosity ϕexp and the preferred

out-of-plane orientation γexp are available, the unit cell aspect ratio D0/L0 can be identified

using the second equality in Eq. (23). The first equation then yields an estimate of L,

provided that Dw is available through experiments, so that the equivalent microstructure of

the fibrous media is completely defined. In practice, this characteristic length ranges from

200 to 400 [µm] in the numerical experiments, and this range falls within the 95% confidence

interval estimated from the database. Moreover, it can be shown that static viscous and

thermal permeability scale with the square of the characteristic length [43], namely

[K]ij = L2 K
(0)
0 δij , k′ = L2 k′(0) . (24)

A first compensation rule for the viscous and thermal characteristic lengths may similarly

be obtained as

Λ = LΛ(0) , Λ′ = LΛ′(0) . (25)

The above definitions are unsatisfactory since these characteristic lengths Λ and Λ′ are re-

lated to the contact area Sfs between the fluid and the solid, and therefore to the fiber

diameters. In the proposed equivalent microstructure, all the fibers have the same value of

diameter D0. However, glass wools present a spread distribution of fiber diameters (Fig. 3).

This aspect has not yet been taken into account in the definition of the equivalent microstruc-

ture. Therefore, in order to further elaborate on the adaptation of these quantities, let us

consider the case of the thermal characteristic length Λ′, and denote by Λ′
c the value that

is obtained by taking into account the distributions for both the fiber length and diameter.

By definition (see Eq. (7)), one has
Λ′

c

Λ′ =
Sfs

Sc
fs

, (26)

where Sc
fs is the contact area between the fluid and the solid in the configuration with fiber-

dependent diameters. Upon using the preservation of the macroscopic porosity, it can then
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be shown that
Λ′

c

Λ′ =
E{D2}

Dw E{D}
. (27)

Since the fiber diameter is assumed to follow a Gamma distribution, it follows that

E{D} = mD (28)

and

E{D2} = m2
D

(
1 + δ2D

)
, (29)

where mD and δD are the mean and coefficient of variation of the diameter D (which can

be estimated from the experimental data). Hence, a more accurate value of the thermal

characteristic length can be obtained as

Λ′
c = Cf Λ

′ , (30)

where Cf is a compensation factor given by

Cf =
mD(1 + δ2D)

Dw

. (31)

It should be noticed that Cf = 1 when the diameter remains constant for all fibers, and that

no compensation factor was used to determine the viscous characteristic length Λ (given

that this quantity depends on the local field E).

5. Definition of a model for the random microstructure

We now introduce a standard model for the true random microstructure. The purpose of

this analysis is threefold: (i) to clearly demonstrate the effect of the fiber length distribution;

(ii) to verify whether or not retaining a mean value enables the simulation of polydisperse

fibrous media; (iii) to study the impact of sample-to-sample randomness.

The random microstructure is parametrized, in part, by the angles defining the orientation

of the fibers: these angles are sampled in accordance with the probability law inferred from

the database (this is in contrast with the equivalent microstructure introduced in Sec. III B 1,

for which fiber orientation remains deterministic). Regarding the definition of the diameters,
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three types of random microstructure are considered as follows:

• in the first random model, corresponding to Polydisperse Fibrous Media (PDFM), the

diameter is randomly sampled for each fiber, according to the Gamma law estimated

from the data (see Fig. 3 for instance);

• in the second model, corresponding to Polydisperse Fibrous Media with Weighted

Diameters (PDFM-WD), the diameter of each fiber is weighted by its volume and the

empirical distribution of the weighted diameters thus defined is sampled;

• in the third type of microstructure, the diameter is set equal to Dw (Monodisperse

Fibrous Media with Weighted Diameters (MDFM-WD)), regardless of the fiber under

consideration.

Once the number of fibers has been determined, the sampling of the fiber diameter and length

is performed iteratively to populate the RVE, using either a standard random generator (for

labeled distributions) or the inverse transform method with empirical distributions (for the

probability law involving weighted diameters). Similarly, the orientation angles are sampled

according to their empirical distributions, and the center of the fibers is sampled according to

a uniform distribution. Note that the fibers are allowed to intersect, since it does not affect

the prediction of transport properties. In order to ensure the periodicity of the medium,

fibers exiting the RVE are forced to re-enter the domain from the opposite side. The number

of fibers hence generated for each product, together with the associated number of finite

elements (FE) ensuring convergence, can be found in Tab. III .

Product Number of fibers Number of FE
1 200 319160
2 211 321900
3 231 374567
4 221 332850
5 349 469598
6 123 290172
7 122 281427
8 116 291316
9 109 270661
10 131 318144

TABLE III. List of parameters related to the computational model for each product.
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One realization of the random microstructure with fiber-dependent diameters and the

associated FE mesh are shown in Fig. 14 for product 1. The solution fields for one component

(a) (b)

FIG. 14. One realization of the random microstructure associated with product 1 and the associated

mesh view. (a) PDFM model of the random microstructure. (b) Corresponding mesh view.

of the velocity field and scaled concentration field are finally shown, for illustration purposes,

in Fig. 15. It can be observed that the fluid-flow paths are more localized and follow a more

tortuous path as compared to the heat diffusion field (α033 > α′
0).
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FIG. 15. (Color online) Solution fields associated with the realization of the random microstructure

shown in Fig. 14. (a) Velocity field x 7→ v3(x) [µm.s−1] associated with the source term G(3). (b)

Scaled concentration field x 7→ u(x) [µm2].
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6. Definition of the acoustic properties

The effective density ρeff(ω) and the effective bulk modulus Keff(ω) of the fluid phase can

be evaluated by simple analytic admissible functions [10–13] as follows:

ρeff(ω) = ρ0α∞

[
1 +

1

ω̃
f(ω̃)

]
,

1

Keff(ω)
=

1

Ka

{
γ − (γ − 1)

[
1 +

1

jω̃′f
′(ω̃′)

]−1
}

, (32)

where ρ0 is the air density at rest, Ka is the adiabatic bulk modulus of air and γ is its

specific heat ratio. The quantities ω̃ and ω̃′ are dimensionless viscous and thermal angular

frequencies given by the following expressions:

ω̃ =
ω

ν

K33α∞

ϕ
, ω̃′ =

ω

ν ′
k′

ϕ
, (33)

with ν ′ = ν/Pr, ν the kinematic viscosity and Pr the Prandtl number (Pr ≃ 0.71 for air).

Moreover, f and f ′ are shape functions defined by

f(ω̃) = 1− P + P

√
1 +

M

2P 2
jω̃ , f ′(ω̃′) = 1− P ′ + P ′

√
1 +

M ′

2P ′2 jω̃
′ . (34)

The quantities M , M ′, P and P ′ are referred to as dimensionless shape factors and are given

by

M =
8K33α∞

Λ2ϕ
, M ′ =

8k′

Λ′2ϕ
, P =

M

4
(

α033

α∞
− 1

) , P ′ =
M ′

4 (α′
0 − 1)

. (35)

. The complete model, corresponding to the refined “Johnson-Champoux-Allard-Pride-

Lafarge” (JCAPL) model [10–13], relies on 8 parameters, namely (ϕ, K33, k
′, α∞, Λ, Λ′,

α033, α
′
0). For P = P ′ = 1, the dynamic response functions reduce to a 6-parameter model

(ϕ, K33, k′, α∞, Λ, Λ′), known as the “Johnson-Champoux-Allard-Lafarge” (JCAL) or

“Johnson-Lafarge” model [10, 11, 13]. Below, it is assumed that the frame of the porous

material is limp (flexible), so that the effective density of the equivalent-fluid medium is

defined as [42]:

ρeq(ω) =
ρeff(ω)m− ϕρ20

ρeff(ω) + ϕ(m− 2ρ0)
(36)

where m = ρ1+ϕρ0 is the total apparent mass of the equivalent fluid limp medium, and ρ1 is

the in vacuo bulk density of the medium. Let Keq(ω) = Keff(ω)/ϕ denote the bulk modulus
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of the so-called rigid-frame equivalent-fluid medium. Assuming plane wave solutions varying

as exp [j(ωt− qeq(ω)x)], where qeq(ω) represents the wave number of the equivalent fluid

medium, ρeq(ω) and Keq(ω) can be used to calculate the wave number and the characteristic

impedance of the equivalent fluid medium as:

qeq(ω) = ω

√
ρeq(ω)

Keq(ω)
, Zeq(ω) =

√
ρeq(ω)Keq(ω) . (37)

The sound absorption coefficient at normal incidence of a porous material layer of thickness

Ls, backed by a rigid wall, is evaluated by

α = 1−
∣∣∣∣Zn − 1

Zn + 1

∣∣∣∣2 , (38)

where

Zn = −j
Zeq

Z0

cot(qeqLs) (39)

is the effective normal impedance on the free face of the excited material, and Z0 denotes

the characteristic impedance of ambient air.

IV. EXPERIMENTAL VALIDATION

In this section, the relevance of the framework is assessed by comparing the numerical

predictions with experimental results on selected transport parameters (see Sec. IVA) and

sound absorption coefficients (see Sec. IVB).

A. Experimental validation on transport parameters

The results are first presented for the static viscous permeability and viscous characteris-

tic length in Fig. 16. While the PDFM model yields an underestimation of the static viscous

permeability, it is seen that a quantitative appreciation of the latter can be obtained using

either the equivalent microstructure (see Sec. III B 1) or the random microstructure (see

Sec. III B 5) with weighted diameters (PDFM-WD and MDFM-WD); see Fig. 16(a). Fur-

thermore, the results obtained for the PDFM-WD and MDFM-WD models remain pretty

close to each other, suggesting that the MDFM-WD model may be more appealing from a
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FIG. 16. (Color online) Comparison between numerical simulations and experimental data for

the viscous characteristic dimensions. (a) Graph of the static viscous permeability. (b) Graph

of the viscous characteristic length. Colors and symbols: experimental data (◦, red); equivalent
microstructure (△, blue); random microstructure with diameters distributed according to a Gamma

law – PDFM (�, black); random microstructure with weighted diameters – PDFM-WD (▽, green);

random microstructure with constant fiber diameter (equal to Dw) – MDFM-WD (∗, magenta).

computational standpoint–since it does not require sampling the distribution for the diame-

ters. A few comments regarding the relevance of considering weighted diameters in complex

random fibrous webs are relevant at this point. If the distributions of the fiber parameters

(diameter, length) are sharply peaked, the behavior of the overall system is similar to that of

the individual elements. On the contrary, if these distributions are wide, the fibers with the

largest relative volume (with respect to both diameter and length) dominate: in this case,

the macroscopic permeability can be found by modeling a domain Ω of typical characteristic

length L, in which fibers with weighted diameters are inserted.

Focusing next on Fig. 16(b), it is observed that the simulations overestimate the val-

ues of the viscous characteristic length Λ. For the random microstructure with weighted

diameters (PDFM-WD), the ratio between the simulated and characterized data is, for

instance, equal to 5.54 ± 1.46. In addition, it is seen that the calculations correspond-

ing to the second class of products (Class 2), characterized by a higher surface density,

are in better agreement with the measurements. This difference in ratio between the two

groups of fibrous materials may be due to the high sensitivity of the numerical simulations

with respect the number of inserted fibers (at a limited reconstructed volume)–as the sol-

id volume fraction for the second class of fibrous material is three times higher than for

the first class of fibrous materials (1−ϕ ≈ 0.015 for Class 2, while 1−ϕ ≈ 0.005 for Class 1).
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Results related to the thermal characteristic length and the static thermal permeability

are shown in Fig. 17. First of all, it should be noticed that the characterized values of
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FIG. 17. (Color online) Comparison between numerical simulations and experimental data for the

thermal characteristic dimensions. (a) Graph of the thermal characteristic length. (b) Graph of the

static thermal permeability. Colors and symbols: experimental data with indirect characterization

performed according to Ref. [39] (◦, red); experimental data with direct geometrical characteri-

zation performed using the granulomorphometer (•, red) (see Eq. 7); equivalent microstructure

(△, blue); random microstructure with diameters distributed according to a Gamma law – PDFM

(�, black); random microstructure with weighted diameters – PDFM-WD (▽, green); random

microstructure with constant fiber diameter (equal to Dw) – MDFM-WD (∗, magenta).

the thermal characteristic length Λ′ obtained from the acoustical and granulomorphometry

method differ significantly (except for Reference 6), with a ratio of the properties measured

by the two methods equal to 3.50 ± 0.80 for the ten products analyzed. This discrepancy

can be explained by the aspect ratio limitation that was used in the granulomorphometry

analysis, which excludes “objects” of potentially very small diameters. These objects play

a significant role in decreasing Λ′ by increasing Sfs (see Eq. (7)), and this effect is expected

to be captured more accurately by the acoustical method. Note that the variability of the

results obtained by these two methods is quite significant for two products (References 7 and

10). Because we determined the thermal characteristic lengths from the granulomorphome-

try analysis, the values of this parameter are typically close to those obtained through the

direct geometrical characterization method.

The simulated values of the static thermal permeability obtained with the equivalent

microstructure are in good agreement with the experimental values, with a ratio between
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the simulated and experimental data equal to 0.75± 0.12 [see Fig. 17(b)]. While it can ex-

pected that the thermal interactions in the fiber webs (due to diffusion-controlled reactions)

are more accurately described by a random microstructure mimicking more faithfully the

geometrical data, the model PDFM-WD (random microstructure with weighted diameters)

yields an underestimation of the static thermal permeability. For this particular case, the

ratio between the experimental and simulated data is equal to 2.36± 0.37. Note that since

all the data corresponding to the tortuosity were very close to one (and fall within the

measurement uncertainty), they were not shown here.

It should be emphasized that most of the macroscopic parameters, while simulated with-

out any adjusted parameters, are in accordance with the experimental results. Moreover,

the models considered here all depend on the morphogranulometry that excludes long fibers

from the analysis. The averaging procedure defined by Eq. (18) and involving the field E

substantially favours smaller pores; in this discussion, the pore diameter at any point within

the pore space is defined as the diameter of the largest sphere which contains this pore and

remains wholly within the pore space [49]. The number of fibers that was characterized

is considerably smaller than that from the sample size in the experiments. A likely expla-

nation for our overestimate of the viscous characteristic length is that, in addition to the

electric field carried in the main large channels through the pore space, a significant part

of the electric field is being carried in parallel channels that are smaller than the simulated

ones in the reconstructed fibrous samples. The contribution of these smaller channels to the

electric field depends on their connectivity being properly described in the overall sample

of glass wool. Fluid flow, on the other hand, is controlled by the largest connected chan-

nels [50, 51]. Because our calculations were based on much smaller reconstructed volumes

than the samples used for the experimental results determination, the limiting factor of our

viscous characteristic length calculations appears to be the small sample sizes in the simu-

lations. The same remark can be drawn for the Λ′ parameter, whose determination is very

sensitive to ϕ since (1− ϕ) is very small at low densities.
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B. Experimental validation on sound absorption coefficients

The predicted and characterized sound absorption coefficients at normal incidence for the

geometrical models studied here are compared in Fig. 18. The characterization uses the

JCAL model, while the simulation results are based on the full JCAPL model (both applied

under the limp assumption). Tab. IV summarizes the sample thicknesses Ls corresponding

to each product. It is clear from these results that the experimental data are consistent with

the weighted random model over the whole frequency range. It is interesting to see that

the sound absorption of a glass wool can be predicted without adjustable parameters in the

model for ten different products.

Product 1 2 3 4 5 6 7 8 9 10
Ls (mm) 26.6 28.0 27.8 28.0 27.2 28.4 28.0 27.2 30.0 28.6

TABLE IV. This table shows the sample thickness that was used when measuring sound absorption

at normal incidence for each product.

Finally, it should be noticed that the above (samplewise) comparison is meaningful if

and only if the condition of scale separation reasonably holds for all products under consid-

eration. Here, the fulfilment of this condition was numerically checked through numerical

experiments. From a methodological standpoint, the estimation of the transport properties

was first carried out on a limited set of realizations of the random microstructure (for a

given product). Given the small number of virtual samples (which is typically equal to 10),

the coefficients of variation associated with the predicted properties were subsequently esti-

mated by using the maximum likelihood method with appropriate labelled distributions (see

Tab. V for the through-thickness permeability K33, which is assumed at this point to follow

a Gamma probability law; see [52] for a discussion). Except for product 10, the coefficient

Product 1 2 3 4 5 6 7 8 9 10
CV ([%]) 3.8 4.9 3.8 5.5 2.9 5.6 4.7 4.7 5.4 7.9

TABLE V. Estimated Coefficient of Variation (CV) associated with [K]33 for all products.

of variation is seen to be smaller or equal to 5 %, hence validating the assumption about

scale separation (which can only be satisfied approximately in simulations).
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FIG. 18. (Color online) Sound absorption coefficient (normal incidence). (a)-(e): Product 1 to

5 (from top to bottom). (f)-(j): Product 6 to 10 (from top to bottom). Colors and symbols:

measurements (gray zone); direct and inverse characterizations (dash-dot line, red); equivalent

microstructure (△, solid line, blue); random microstructure with diameters distributed according

to a Gamma law – PDFM (dashed line, black); random microstructure with weighted diameters –

PDFM-WD (thick line, green); random microstructure with constant fiber diameter – MDFM-WD

(dotted line, magenta).
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V. CONCLUSION

A recent approach has been to treat a polydisperse fibrous media as if it was equivalent

to a monodisperse fibrous media, i.e. by means of an average diameter of the corresponding

distribution [24]. Here, the effective fiber diameter is derived from optical granulomorphom-

etry and is a weighted fiber volume diameter accounting for the relative length and diameter

of each fiber. We have first addressed the definition of an equivalent microstructure com-

prising of a three-dimensional network of cylindrical elements, characterized by a weighted

fiber volume diameter and a preferred out-of-plane orientation. After rescaling the domain

characteristic lengths and surface areas to those of the real glass wool sample under study

with a preserved experimental porosity, the thermal and viscous characteristic lengths com-

puted from the reconstructed fiber webs are then multiplied by a compensation factor. This

factor accounts for the experimental distributions of both the fiber diameter and length, and

it should be noticed that there is no free parameter in such a procedure. Stochastic mod-

els for random microstructures were subsequently introduced in a classical manner. It was

shown that the models PDFM-WD and MDFM-WD provide an excellent estimate of the

through-thickness viscous permeability. The predictions of the viscous characteristic length

were found less reliable as compared with experiments, especially at low density (very high

porosity). The sound absorption was accurately simulated for all the glass wool products

under study, which correspond to various processing parameters. This range of applicability

makes the proposed multiscale framework attractive for the prediction of sound absorbing

properties for complex fibrous materials.
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