
HAL Id: hal-01818161
https://hal.science/hal-01818161

Submitted on 18 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Coolemall D2.6 Final release of the simulation and
visualisation toolkit

Eugen Volk, Yosandra Sandoval, Nico Eichhorn, Georges da Costa, Thomas
Zilio, Micha Vor Dem Berge, Dirk Michels, Wojciech Piatek, Piotr Grabowski,

Enric Pages

To cite this version:
Eugen Volk, Yosandra Sandoval, Nico Eichhorn, Georges da Costa, Thomas Zilio, et al.. Coolemall
D2.6 Final release of the simulation and visualisation toolkit. [Research Report] IRIT-Institut de
recherche en informatique de Toulouse. 2014. �hal-01818161�

https://hal.science/hal-01818161
https://hal.archives-ouvertes.fr

Project acronym: CoolEmAll
Project full title: Platform for optimising the design and

operation of modular configurable IT infrastructures and
facilities with resource-efficient cooling

D2.6 Final release of the simulation and
visualisation toolkit

Author: Eugen Volk (HLRS)
Version: 1.11

Date: 31/03/2014

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 2 /123

Deliverable Number: D2.6
Contractual Date of
Delivery:

31/03/2014

Actual Date of
Delivery:

31/03/2014

Title of Deliverable: Final release of the simulation and visualisation toolkit
Dissemination Level: Public
WP contributing to the
Deliverable:

WP 2

Authors: Eugen Volk (HLRS)
Co-Authors: Yosandra Sandoval (HLRS)

Nico Eichhorn (HLRS)
Georges da Costa (IRIT)
Thomas Zilio (IRIT)
Micha vor dem Berge (Christmann)
Dirk Michels (Christmann)
Wojciech Piatek (PSNC)
Piotr Grabowski (PSNC)
Enric Pages (ATOS)

History
Version Date Author Comments

1.0 03.03.14 Eugen Volk (HLRS) Structure and content
update based on D2.5

1.1 06.03.14 Yosandra Sandoval
(HLRS)

Update of Sections 3.2.3,
4.2.3 and 2.3

1.2 06.03.14 Thomas Zilio (IRIT)

Update of Sections 2.2.7,
2.3.6,3.1.7 and 4.1.6

1.3 11.03.14 Micha vor dem Berge
(Christmann)

Update of Section 2.4

1.4 12.03.14 Thomas Zilio (IRIT) Update

1.5 13.03.14 Wojciech Piatek
(PSNC)

Updating DCworms-related
sections.

1.6 17.03.2014 Yosandra Sandoval
(HLRS)

Merging contributions of the
partners (PSNC, ATOS,

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 3 /123

Christmann and IRIT)

1.7 26.03.2014 Enric Pages Update Annex A

1.8 26.03.2014 Piotr Grabowski
(PSNC)

UpdateSections

1.9 26.03.2014 Wojciech Piatek
(PSNC)

Updating DCworms-related
sections.

1.10 27.03.2014 Nico Eichhorn (HLRS) Updating COVISE-related
sections.

1.11 27.03.2014 Yosandra Sandoval
(HLRS)

Merging contributions of the
partners (PSNC, HLRS,
ATOS, Christmann and
IRIT)

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 4 /123

Approval
Date Name Signature

31/03/2014 Andrew Donoghue (451G)

31/03/2014 Lara López (ATOS)

Abstract

This deliverable describes the realisation of the final prototype of the Simulation,
Visualisation and Decision (SVD) support toolkit and the interaction of its
components. It further describes the usage and the tests of the components of the
final prototype of the SVD-Toolkit, via the CoolEmAll-Web-GUI interface. Another
focus of this deliverable is describing the heterogeneous deployment architecture of
the SVD-Toolkit and the use of the different components for performing an
automatic simulation.
Special focus is put on the distributed deployment architecture, realization, usage
and tests of this final prototype of SVD-Toolkit via the CoolEmAll-Web-GUI
interface.

Keywords

SVD-Toolkit, CFD, Workload simulator, DCworms, database, deployment,
Repository, Simulation, Visualization, COVISE, OpenFOAM

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 5 /123

Table of Contents
1	 Introduction .. 12	

2	 Realisation of the final Prototype of SVD-Toolkit ... 14	

2.1	 Deployment architecture .. 14	
2.2	 Detailed description of the components ... 21	

2.2.1	 Application Profiler .. 21	
2.2.2	 Repository ... 21	
2.2.3	 Database ... 23	
2.2.4	 DCworms ... 24	
2.2.5	 Open-FOAM based CFD-Solver ... 26	

2.2.5.1	 Naming convention for PLMXML-file .. 28	
2.2.5.2	 Path to data stored in database .. 29	
2.2.5.3	 Orientation of velocity at inlet ... 29	

2.2.6	 COVISE and CFX based CFD Solver ... 30	
2.2.7	 Metric Calculator ... 31	

2.3	 Detailed description of the CoolEmAll-Web-GUI 32	
2.3.1	 ExperimentConfigurator GUI ... 34	
2.3.2	 DEBBConfigurator GUI ... 38	
2.3.3	 DCworms GUI ... 49	
2.3.4	 COVISE GUI ... 52	
2.3.5	 MOP GUI ... 53	
2.3.6	 Metric Calculator and report-GUI .. 54	
2.3.7	 User interface .. 57	

2.4	 Addressing the EcoDesign Directive ... 59	
3	 Usage of the CoolEmAll-Web-GUI and SVD-Toolkit 61	

3.1	 Usage of the CoolEmAll-Web-GUI .. 61	
3.1.1	 General Flow ... 61	
3.1.2	 ExperimentConfigurator selection dialogue 62	
3.1.3	 DEBBConfigurator GUI ... 64	
3.1.4	 DCworms GUI ... 65	
3.1.5	 COVISE GUI ... 68	

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 6 /123

3.1.6	 MOP GUI ... 69	
3.1.7	 Metric Calculator and Report-GUI ... 70	

3.2	 Expert usage of SVD-Toolkit components ... 71	
3.2.1	 Application Profiler .. 71	
3.2.2	 SVN Repository ... 71	
3.2.3	 Database ... 72	
3.2.4	 DCworms ... 73	
3.2.5	 CFD using OpenFOAM ... 74	
3.2.6	 CFD using COVISE with Ansys CFX .. 75	
3.2.7	 Metric Calculator ... 76	

4	 Test of the CoolEmAll-Web-GUI and SVD-Toolkit 80	

4.1	 Test of the CoolEmAll-Web-GUI .. 80	
4.1.1	 ExperimentConfigurator GUI ... 80	
4.1.2	 DEBBConfigurator GUI ... 84	
4.1.3	 DCworms GUI ... 88	
4.1.4	 MOP-GUI ... 91	
4.1.5	 COVISE-GUI ... 93	
4.1.6	 Metric Calculator and Report-GUI ... 93	

4.2	 Test of the SVD-Toolkit components ... 96	
4.2.1	 Application Profiler .. 96	
4.2.2	 SVN Repository ... 98	
4.2.3	 Database ... 99	
4.2.4	 DCworms ... 101	
4.2.5	 CFD simulation using OpenFOAM .. 102	

4.2.5.1	 Flow through RECS .. 103	
4.2.5.2	 Flow through Compute Room ... 104	

4.2.6	 CFD simulation using COVISE with Ansys CFX 105	
4.2.7	 Metric Calculator ... 105	

5	 Summary .. 109	

6	 Annex A. Description of test implemented to assess CoolEmAll methodology

 111	

7	 References... 121	

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 7 /123

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 8 /123

List of Figures
Figure 2-1: SVD-Toolkit Architecture overview – 1st Prototype 15	
Figure 2-2: SVD-Toolkit final prototype ... 17	
Figure 2-3: Database Table Structure ... 23	
Figure 2-4: Login page .. 33	
Figure 2-5: Welcome page .. 33	
Figure 2-6: ExperimentConfigurator–GUI Menu ... 35	
Figure 2-7: Experiment configuration GUI .. 35	
Figure 2-8: New experiment interface ... 36	
Figure 2-9: Trial information .. 37	
Figure 2-10: DEBB-menu .. 39	
Figure 2-11: DEBBConfigurator GUI – Processor tab (components level) 40	
Figure 2-12: DEBBConfigurator GUI – Node creation .. 43	
Figure 2-13: DEBB configuration GUI – Node group creation 45	
Figure 2-14: DEBBConfigurator GUI – Rack view with costs 46	
Figure 2-15: DEBB configuration GUI – server room .. 47	
Figure 2-16: DCworms GUI ... 51	
Figure 2-17: Covise-GUI parameters and visualisation 52	
Figure 2-18: MOP GUI Visualization ... 54	
Figure 2-19: Simulation Report from Metric Calculator report GUI 57	
Figure 2-20: User menu .. 58	
Figure 2-21: Register interface ... 58	
Figure 2-22: Register interface ... 59	
Figure 3-1: Sequence diagram of ExperimentConfigurator GUI. 63	
Figure 3-2: Sequence diagram of DEBBConfigurator GUI. 65	
Figure 3-3: Sequence diagram of DCworms GUI ... 67	
Figure 3-4: Sequence diagram of COVISE GUI. .. 69	
Figure 3-5: Sequence diagram of MOP GUI. .. 70	
Figure 3-6: COVISE visualisation environment and outcome of the heat-flow
simulation .. 75	
Figure 4-1: Overview of Experiments .. 80	
Figure 4-2: Experiment with two trials. .. 82	

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 9 /123

Figure 4-3: List of trials of a particular experiment. ... 83	
Figure 4-4: Trail on the context. .. 83	
Figure 4-5: node group creation tab with adopted node 85	
Figure 4-6: Exported room as ZIP file ... 86	
Figure 4-7: Positioned heatsink in the chassis .. 88	
Figure 4-8: Preview of application profile within DCworms GUI 89	
Figure 4-9: DCworms GUI – load specification window 90	
Figure 4-10: DCworms GUI - energy efficiency metrics 91	
Figure 4-11: MOP-GUI - Standard mode view .. 92	
Figure 4-12: MOP-GUI - Comparison mode view ... 92	
Figure 4-13: COVISE GUI ... 93	
Figure 4-14: Report-GUI experiment selection error ... 94	
Figure 4-15: Report-GUI missing report error ... 94	
Figure 4-16: Report-GUI currently computing error .. 94	
Figure 4-17: Report-GUI normal report ... 95	
Figure 4-18: Power usage chart generated for the DCworms simulation 102	
Figure 4-19: velocity and temperature distribution inside RECS 103	
Figure 4-20: velocity and temperature distribution inside a compute room 104	
Figure 4-21: Visualisation of the heat-flow distribution within a room using
COVISE renderer .. 105	
Figure 22: DEEB configurator menu ... 111	
Figure 23: SVN upload path .. 112	
Figure 24: Node Group break-down menu ... 114	
Figure 25: Room graph window .. 115	
Figure 26: Adding data series to MOP .. 117	
Figure 27: MOP - setting time for CFD simulation .. 119	
Figure 28: CFD heat and air flow simulations ... 120	

List of Tables
Table 2-1: Components overview 1st Prototype .. 15	
Table 2-2: Components of the final prototype of SVD Toolkit 18	
Table 2-3: Software dependency list for SVN ... 22	

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 10 /123

Table 2-4: Software dependency list for Python Wrapper 24	
Table 2-5: Software dependency list for DCworms ... 25	
Table 2-6: Software dependency list for OpenFOAM based CFD 26	
Table 2-7: Software dependency list for Metric Calculator 32	
Table 2-8: Workload and resource management policies available within
DCworms .. 49	
Table 2-9: Frameworks, libraries and licenses used for implementation of the
COVISE-GUI ... 53	
Table 4-1: Workload characteristics .. 101	
Table 6-1: Node Groups parameters .. 111	
Table 6-2: RACK parameters .. 113	
Table 6-3: Room parameters .. 114	
Table 6-4: Experiment parameters ... 116	
Table 6-5: Room parameters .. 116	
Table 6-6: DCWorms result comparison ... 118	

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 11 /123

List of abbreviations

API Application Programming Interface
CFD Computational Fluid Dynamics
COVISE Collaborative Visualisation and Simulation Environment
DCworms Data Center Workload and Resource Management Simulator
DEBB Data Centre Efficiency Building Block
GPL General Public License
LGPL GNU Lesser General Public License
GSSIM Grid Scheduling Simulator
GUI Graphical User Interface
GWF Grid Workload Format
IP Internet Protocol
MOP Module Operation Platform
PLMXML eXtensible Markup Language for Product Lifecycle Management
RPC Remote Procedure Call
SVD Simulation Visualisation and Decision support toolkit
SVN Apache Subversion software versioning and revision control system
SWF Standard Workload Format
STL Surface Tesselation Language
TDP Thermal Design Power
TIMaCS Tools for Intelligent System Management of Very Large Computing

Systems
URL Uniform Resource Locator
VRML Virtual Reality Modelling Language

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 12 /123

1 Introduction
In scope of “D2.5 Second Release of the SVD-Toolkit” [D2.5] the realization of
the 2nd prototype of the Visualization and Decision Support Toolkit (SVD-Toolkit)
was described and delivered in PM 28. Within the last two project months, the
focus within the WP2 was on the refinement of the implementation of the SVD-
Toolkit, removing bugs to make it more stable and simplifying usage of the SVD-
Toolkit. In this deliverable the realization of the final prototype of SVD-Toolkit is
described, updating D2.5 final description and interaction of its components and
CoolEmAll-Web-GUI interfaces. Another focus of this deliverable is to describe
the heterogeneous deployment architecture of the SVD-Toolkit and the use of the
different components for performing an automatic simulation with and without
web based interfaces. It further describes the usage and the tests of the
components of the final Prototype of the SVD-Toolkit via CoolEmAll-Web-GUI
interfaces.
As noted in D2.4, the SVD-Toolkit is a tool to help design more energy efficient
data centres and optimize existing data centres to operate in a more energy
efficient manner. It allows assessment of energy- & cooling efficiency and
facilitates optimization of data centre building blocks, reflecting various
configurations of a data centre and its components on various scale levels, by
means of coupled workload and thermal-airflow simulation. This is done in
several different consecutive steps. First, different application profiles are
calculated. These application profiles resemble the requirements normal
applications usually have. With these application profiles synthetic workloads are
generated and used by the workload simulator to evaluate various scheduling
policies and determine power usage of the individual hardware components
reflected in configuration of the data centre. These results are used as inputs for
CFD (Computational Fluid Dynamics) simulation to calculate thermal-airflow
distribution within compute-room, in order to identify hot spots and assess
cooling efficiency. Furthermore, thermal-heat provided by CFD simulation is used
to calculate power-usage of the cooling-devices. All results are stored in a central
database to be used for calculation of the assessment metrics. Additional results
are obtained by conducting several characteristic trials, so that all results can be
verified.
In order to simplify the usage of the SVD-Toolkit, in scope of the final prototype a
web based GUI interface was developed, allowing users to interact with each
component of the SVD-Toolkit to execute and evaluate trials with various
configurations in a single web based environment guided by corresponding
WEB-GUI pages. Using CoolEmAll-Web-GUI users are capable easily of: (i)
defining experiment configuration parameters, (ii) designing data centre
efficiency building blocks (reflecting design of data centre components and
layout), (iii) selecting application-profiles, workload-profiles and simulating
various scheduling policies, (iv) getting visualisation of the workload simulation
results and compare these against real measurements, (v) evaluating
interactively various data-centre layouts and visualizing heat-flow distribution

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 13 /123

within the server-room for various arrangements, and (vi) getting report
assessing energy-efficiency and cooling-efficiency of experiment-trials.
Furthermore, all components of the SVD-Toolkit have been improved and
refined, adding: (i) new scheduling policies on room level, (ii) integrating DEBBs
with COVISE and CFD simulation enabling interactive arrangement, and, (iii)
adding new assessment metrics on room level. Overview of new components
and extended functionality is presented in section 2.
The SVD-Toolkit components along with the CoolEmAll-Web-GUI described in
this deliverable can be downloaded from the project-website [SVD-Toolkit].
This deliverable is split into five major parts. Special focus is put on the
distributed deployment architecture, realization, usage and tests of this final
prototype of SVD-Toolkit via CoolEmAll-Web-GUI interfaces. After the short
introduction presented in this section, this deliverable describes the architecture
and properties of the individual components of the final prototype of SVD-Toolkit
presented in section 2, usage of these components in section 3, and their tests in
section 4. Finally, section 5 summarizes this deliverable.

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 14 /123

2 Realisation of the final Prototype of SVD-Toolkit
The final prototype of SVD-Toolkit consists of several different components
including the web based GUI, called CoolEmAll-Web-GUI, allowing the
interaction with the SVD-Toolkit and its components. The development of each
component was done individually, while the interaction between all components
in a seamless workflow is controlled via scripts and web based GUIs, integrated
into a single environment – a portal solution based on Symfony2™ [SF2]. This
approach grants the user the possibility of: (i) using each of the components of
SVD-Toolkit on its own in expert mode using command line interfaces, and (ii)
interacting seamlessly with all components integrated in the SVD-Toolkit via the
web based GUI interfaces, allowing changing interactively simulation parameters,
executing workload- and CFD- simulations, and visualising simulation results and
assessment metrics.
This section is structured as follows: in Section 2.1 we describe the deployment
architecture of the SVD-Toolkit, Section 2.2 provides detailed description of the
core components of the SVD-Toolkit and Section 2.3 provides detailed
description of the CoolEmAll-Web-GUI, consisting of several GUIs enabling
interaction with the components.

2.1 Deployment architecture
In this section we describe deployment architecture of the 1st prototype of SVD-
Toolkit, based on D2.4, and present architecture of the final prototype of SVD-
Toolkit, extending the 1st prototype by integrating CFD simulation with COVISE
and development of the CoolEmAll-Web-GUI.
The deployment of the SVD-Toolkit components and interaction between
components of the 1st prototype is shown in Figure 2-1, presented in D2.4. At the
beginning of the experiment DEBB-files are created. In DEBBs (Data centre
Efficiency Building Blocks) all information, which is relevant for the individual
simulation or trial, is stored. This is especially true for the underlying geometry.
The DEBBs are stored in Apache Subversion™ (SVN) [ApSu] repository
[CoolEmAll-SVN], along with the experiment description file specifying
experiment setting, containing references to DEBB and workload (along with
application-profile) used within the experiment. Workload specified in the
experiment configuration file is used by the workload simulator DCworms, being
executed on hardware represented by power-profiles stored in DEBB. The
results, represented by several workload cases with specific power consumption,
are then stored into the database. The CFD-simulator then retrieves the data
from the database to perform its simulation on it and write the results again to the
database where it is the input for the metric calculator. The metric calculator
writes back into the database, after the calculation of metrics, where the MOP
GUI can retrieve it. With this workflow the experiment conductor has the full
feedback about his conducted experiment [D2.4].

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 15 /123

For the physical deployment of the individual components the following was
implemented in scope of the 1st prototype: Repository, Data Center Workload
and Resource Management Simulator (DCworms), and Database are deployed
at PSNC location. The Application Profiler and Metric calculator are located at
IRIT. The CFD Solver is located at HLRS on a cluster environment. The detailed
interaction between SVD-Toolkit components was explained in D2.2.

Figure 2-1: SVD-Toolkit Architecture overview – 1st Prototype

Table 2-1 summarizes components of the SVD-Toolkit, specifying components’
license, description and functionality.

Table 2-1: Components overview 1st Prototype

Component
name

License / Website Description Provided
functionality for

CoolEmAll

Database GPL License. Version 2
LGPL License for RPC client
and RPC server

MySQL
Database for
storing
experimental

Storing dynamic
data,
interconnection

SVD – Toolkit
(Prototype 1)

DEBB

Airthroughput
Powerusage

CFD Solver
(OpenFOAM)

Data Center Workload
and Resource
Management

Simulator
DCWoRMS

Sample points
histogram

Data

(1)

(2) (3)

Airthroughput
Powerusage

(4) (4) (5)

(6)

(7)

Metrics Calculator(MOP) Database

- Components
- Power profile
- Air thr. profile

- geom
etry

- position
DEBB

Repository

Workload
Repository

Application
Profile

Repository

Application
(with Paremeters)

Application
Profiler

SVN
Repository

(1)

(1) (10)

IRIT

PSNC

C
oolEm

A
ll W

eb G
U

I

HLRS

PSNC

M
O

P G
U

I

(8)

PSNC

(0)

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 16 /123

Download: [SVD Toolkit]

data and
outcome

point

CFD-
simulator

GNU General Public License
Version 3
MPL2
The MIT License

Download: [SVD Toolkit]

Automated
CFD-
calculation
environment for
decision
making in
thermal
management
questions

Performing flow
and temperature
calculations

SVN-
Repository

http://subversion.apache.org/
Apache License 2.0

Software
versioning and
revision control
system

Repository with
input parameters
required:
DEBBs, Profiles,
Workloads

DCworms GPL License

Download: [SVD Toolkit]

Simulator for
workload and
resource
management
policies

Creates
boundary and
initial values for
CFD-simulation

Metric
calculator

Open Source

Download: [SVD Toolkit]

Correlates
energy
consumption to
work done

Evaluates
experiment for
energy efficiency

Application
profiler

Open Source

Download: [SVD Toolkit]

Simulation
hardware
requirements of
different
applications

Creates
application
profiles

Figure 2-2 provides an overview of the architecture of the final SVD-Toolkit
prototype, extending 1st Prototype by integrating CFD with COVISE and
especially implementing CoolEmAll-WEB-GUI, allowing easy interaction with the
SVD-Toolkit and its components.

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 17 /123

Figure 2-2: SVD-Toolkit final prototype

As noted in D2.2 Design of the CoolEmAll simulation and visualisation
environment [D2.2], the Simulation Workflow COVISE (COllaborative
Visualization and Simulation Environment) is an extensible distributed software
environment capable to integrate simulations, post-processing and visualisation
functionalities in a seamless manner. The CFD Solver performing CFD
simulation is directly integrated into the COVISE workflow, including all
necessary pre- and post-processing tasks. The interaction with the CFD solver in
the second prototype is done via COVISE. Both COVISE and CFD solver are
deployed at HLRS.
The CoolEmAll-Web-GUI provides a web based GUI environment allowing
interaction with the SVD-Toolkit and visualising its results. As noted, in D2.2
[D2.2] it comprises several GUIs integrated into a common web based GUI
environment and consists of:

• Experiment configuration GUI enabling users to configure required
experiment and trial parameters,

• DEBB configuration GUI allowing users to define DEBBs on various
granularity level

• DCworms GUI allowing selection of workloads, applications and

SVD - Toolkit

COVISE	 /	 SimulationWorkflow

CO
VI
SE Simulation

Post-‐
Processing

W
eb

Se
rv
ice Visualisation

Pipeline

•Modules
•Parameters
•Links

•Events

Ev
en
t	

Q
ue
ue
s

•Web	
Server

DEBB

Airthroughput
Powerusage

C
FD

 S
ol

ve
r

(O
pe

nF
oa

m
/

A
ns

ys
 C

FX
)

Data Center Workload
and Resource
Management

Simulator

Sample points
histogram

Data

(1)

(2) (3)

Airthroughput
Powerusage(4) (4)

(5)

(6)

Simulation
parameters

Simulation
results

(8)

Interaction

(9)

(10)

(11)

(7)

Metrics Calculator

M
O

P G
U

I

CoolEmAll Web GUI
Simulation

Interaction &
Visualisation
(COVISE-GUI)

(MOP) Database

Simulation Workflow (COVISE)

- Components
- Power profile
- Air thr. profile

- geom
etry

- position

DEBB
Repository

Workload
Repository

Application
Profile

Repository

Application
(with Paremeters)

Application
Profiler

Repository

(1)

(1)

(0)

(10)

(8)
(12)

DC-‐W
O
RM

S	 GU
I

Experim
ent C

onfigurator

D
EB

B
 C

onfigurator

R
eport-G

U
I

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 18 /123

scheduling policies and showing the results of workload execution
• COVISE GUI presenting entire simulation results of the heat-flow (CFD)

simulation and allowing interaction with the simulation by changing
position of objects (racks) within the simulated server-room

• MOP-GUI allowing retrieving, visualizing and comparing test bed (real
measurements) and simulation based results to validate models

• Report page providing assessment metrics evaluating energy- and cooling
efficiency on various granularity levels of the simulation results.

Table 2-2 provides overview of the components developed and integrated within
the final SVD-Toolkit prototype. As noted, all components of the 1st prototype
have been refined, and new components were added, highlighted by bold/italic
font style.

Table 2-2: Components of the final prototype of SVD Toolkit

Component
name

License / Website Description Provided
functionality for

CoolEmAll

Database GPL License Version
2.0
LGPL License for RPC
client and RPC server
Download: [SVD Toolkit]

MySQL Database
for storing
experimental data
and outcome

Storing dynamic
data,
interconnection
point

CFD-simulator
(OpenFOAM)

GNU General Public
License Version 2.0
MPL2
The MIT License

Download: [SVD Toolkit]

Automated CFD-
calculation
environment for
decision making
in thermal
management
questions

Performing flow
and temperature
calculations

COVISE Dual license:

- Academic license
- Commercial license

Scientific
Simulation and
Visualisation
program

Steering of CFD
simulation and
visualisation of
results

CFD solver

(Ansys CFX)

Commercial Licence of
ANSYS
(www.ansys.com)

CFD solver for
calculating heat-
flow distribution
field

Calculating heat-
flow distribution to
identify hot-spots

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 19 /123

SVN-
Repository

http://subversion.apache
.org/
Apache License 2.0

Software
versioning and
revision control
system

Repository with
input parameters
required: DEBBs,
Profiles,
Workloads

DCworms GPL License

Download: [SVD Toolkit]

Simulator for
workload and
resource
management
policies

Creates boundary
and initial values
for CFD-
simulation, delivers
data for Metric
Calculator and
MOP-GUI

Metric
calculator

Open Source

Download: [SVD Toolkit]

Correlates energy
consumption to
work done

Evaluates
experiment for
energy efficiency

Application
profiler

Open Source

Download: [SVD Toolkit]

Simulation
hardware
requirements of
different
applications

Creates application
profiles

CoolEmAll-
Web-GUI

Symfony2 Open Source
PHP Web application

MIT license
http://symfony.com/

Web based php
framework for
integration of
GUIs of SVD-
Toolkit
components

Web based GUI to
SVD Toolkit

Experiment
Configurator
GUI

Symfony2 Open Source
PHP Web application
MIT license

http://symfony.com/

GUI for
ExperimentConfig
urator

Configuration of
Experiments and
Trials for the
simulation process

DEBB
Configurator
GUI

Open source license
MIT license

GUI for selection,
definition and
design of DEBBs

GUI Definition of
DEBBs

DCworms-GUI Open source license,
MIT license

GUI for DCworms GUI for selecting
workloads,
workload and
resource

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 20 /123

management
policies and
running DCworms
simulations

MOP-GUI Apache License 2.0 for
MOP-GUI website and
Chart Generator, GNU
GPL v3 for Vitrall 3D
Visualisation component

Web site
presenting
metrics in form of
3D visualisation
and 2D line
charts.

Metrics data
visualisation

COVISE-GUI Misc licenses:

- Apache CXF
JavaScript Clients
(v2.6.1) - Apache
license

- bootstrap (v2.3.2)
Apache license

- Jquery (v2.0.3)
MIT license

- log4Javascript
(v1.4.6)
Apache License

- fabric (v1.2.0)
http://fabricjs.com

- bootstrap-slider
(v2.0)
Apache License

Web based GUI
to COVISE
renderer,
enabling
interaction with
CFD simulation
and visualisation
of results

Interaction and
visualisation

Modules for
COVISE

LGPL

http://www.gnu.org/licen
ses/lgpl.html

Special COVISE
modules enabling
extraction of data
from CFD solver
results

Extracting and
storing CFD data
into database

Report GUI Symfony2 Open Source
PHP Web application

MIT license
http://symfony.com/

Web site
presenting a
summary of
calculated
metrics for a
selected
experiment

GUI for Metric-
Calculator reports

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 21 /123

2.2 Detailed description of the components
This chapter gives a description of the individual components of SVD-Toolkit,
based on the description provided in D2.2 [D2.2] and D2.4 [D2.4].

2.2.1 Application Profiler
For simulations in CoolEmAll, the focus is on power-, energy- and thermal-impact
of decisions on the system. In order to have realistic simulations, a precise
evaluation of resource consumption is necessary. The Application Profiler is used
to create profiles of applications that can be read by DCworms for simulation
purpose. It uses data obtained during runtime and stored in TIMaCS by the
monitoring infrastructure. Using these data, it creates a description of
applications based on their phases. For instance, an application following two
phases (one CPU-intensive and one Network intensive) would have the following
description:
<resourceConsumptionProfile>
 <resourceConsumption>
 <referenceHardware>Intel_i7</referenceHardware>
 <duration>PT4S</duration>
 <behaviour name="cpu">
 <value>98</value>
 </behaviour>
 <behaviour name="network">
 <value>2</value>
 </behaviour>
 </resourceConsumption>
 <resourceConsumption>
 <referenceHardware>Intel_i7</referenceHardware>
 <duration>PT93S</duration>
 <behaviour name="cpu">
 <value>77</value>
 </behaviour>
 <behaviour name="network">
 <value>96</value>
 </behaviour>
 </resourceConsumption>
</resourceConsumptionProfile>

A more detail explanation is available in D2.3 [D2.3] and D5.4 [D5.4].

2.2.2 Repository
The repository is the central point in the SVD system architecture. It allows
storing, editing and accessing files used by SVD-Toolkit components remotely,
while ensuring their consistency. The repository contains:

• Application-profiles, describing resource usage of applications at
different application phase

• DEBBs, describing data centre building blocks and models used by SVD-
Toolkit

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 22 /123

• Workload-profiles, workload characteristics in terms of used application-
profiles and resource requirements used for workload simulation

For the realization of the repository we use Apache Subversion, short SVN
[SVN]. The project repository is located at [CoolEmAll-SVN].

Table 2-3: Software dependency list for SVN

The repository is structured in common and user spaces. Common space
contains well-defined application-profiles, DEBBs and workload-profiles, each of
them stored in a dedicated repository folder. User space contains files
changed/added by each user. Files (particularly PLMXML files of DEBB) in user
space can contain "links" to files in both spaces. Files in common space can
contain links only to files in common space. The structure of repository is shown
below:
repository

├── common

│ ├── applications

│ ├── workloads

│ └── debbs

└── users

The structure of DEBBS repository-folder is defined as follow:
debbs

├── <location> (PSNC, HLRS, IRIT)

│ ├── [objects]

│ │ ├── <STL files>

│ │ ├── <VRML files>

│ ├── <mainPLMXML>.xml

│ ├── <DEBBBComponent_X>.xml

Software name License /
Website

Description

Apache
Subversion

http://subversion.
apache.org/
Apache License.
Version 2.0

Subversion is an open source version
control system.

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 23 /123

The DEBBS top-folder contains for each test bed site dedicated folder
<location>, named according to location of the test bed: PSNC, HLRS, IRIT. The
<location> folder contains DEBBs that are characteristic for particular test beds
located at PSNC, HLRS and IRIT. Within the <location folder>, there is “objects”
folder which contains geometrical objects of DEBB, in STL and VRML format.
The main PLMXML file and DEBBComponent.xml files are located within the
location folder.

2.2.3 Database
For saving simulations data a MySQL database has been designed. In this first
version, the database contains the table “metric” with all collected information
related to experiments and trials. In Figure 2-3 we can observe the fields of the
table. For communication with the database we have created the following
component:

• Python Wrapper: to insert and access the data in the MySQL database.
Methods defined on the wrapper can be executed, both locally and
remotely. For remote executing we have to use the stand-alone Remote
Procedure Call (RPC) client available.

Figure 2-3: Database Table Structure

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 24 /123

The following table provides an overview on software and libraries used for
implementation of the developed component.

Table 2-4: Software dependency list for Python Wrapper

2.2.4 DCworms
Data Center Workload and Resource Management Simulator (DCworms)
supports studies of dynamic states of IT infrastructures, like power consumption
and air throughput distribution, with respect to the various workload and
application profiles, resource models and energy-aware resource management
policies. Details concerning DCworms can be found in D2.2 [D2.2] and in
[DCworms2012].

As described in D2.2 and in D2.4 [D2.4], DCworms is the main component of
workload simulation phase, which refers to the specific workload and application

Software name License /
Website

Description

Mysql 5.1 GPLv2
http://dev.mysql.c
om/

Used for creating the DB.

MySQLdb
module

GPLv2, CNRI
Python License,
Zope Public
License
http://mysql-
python.sourcefor
ge.net/

MySQLdb is a thread-compatible
interface to the MySQL database
server that provides the Python
database API.

Stand-alone
RPC client

GNU Lesser
General Public
License
www.timacs.de
[MOP-package]

RPC based client allowing to insert and
to retrieve data in DB.

Python 2.6 http://www.python
.org/
Open Source,
GPL compatible

Used by Python Wrapper

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 25 /123

characteristics as well as to the detailed resource parameters. Based on these
models and taking into account applied resource management policy, DCworms
is able to provide data including a distribution of power usage and air throughput
for the models specified within the SVD-Toolkit. These values may be then
analysed directly (using MOP-GUI) and/or provided as an input to the CFD-
solver.

Referring to the functionality and characteristics presented in the aforementioned
papers and reports ([D2.2], [D2.4] and [DCworms2012]), DCworms has been
extended with several new features. They aim is to support the user performing
more comprehensive studies on energy-usage optimization.

Firstly, resource description can now be extended with load calendars that
describe general load distribution for particular resources. For each resource,
user can specify its utilisation levels within different periods of time. This
information is then passed to DCworms and can be used by the user to estimate
power consumption of the system. By these means, real-world
statistics/measurements defining, for instance, background or initial load levels
can be easily applied.

Moreover, resource description schema was modified in order to support
definition of other, non-IT resources. In this way devices, like fans, cooling
system, power supplies, etc. can be described. For each of them, the user can
specify their detailed characteristics, including power profiles and power
consumption models. These data can be then easily accessed by the user within
the DCworms plugins and used, for instance in a scheduling process. DCworms
provides also the implementation of power consumption models for cooling
equipment following the ones presented in D2.3.1 [D2.3.1].

Finally, the outcome of the workload simulation phase was extended. Apart from
a set of performance stats and a distribution of power usage and air throughput,
a collection of energy efficiency metrics including PUE, productivity and energy
waste level is calculated at the end of each simulation.
With respect to the information provided by D2.4, some new software
dependencies come with the recent update of DCworms. Table 2-5 presents
dependencies added since the ones specified in D2.4.

Table 2-5: Software dependency list for DCworms

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 26 /123

2.2.5 Open-FOAM based CFD-Solver
In this section we describe Open-FOAM based CFD-Solver, used to simulate
heat-flow simulation within the servers (RECS). The description provided here is
originated from D2.4 [D2.4].
The CFD-Solver does the CFD-simulation and creates the flow field and values
on which other components rely on. For its work it needs input from various other
components. First it needs the geometry input from the DEBB in .PLMXML-
format, retrieved from the DEBB repository. This is then transformed in a
simulation region. Additionally there are boundary conditions and initial
conditions needed. These values are supplied by the DCworms workload
simulator and automatically retrieved from the MOP database. With these
starting values the CFD-toolkit performs the flow and temperature simulation
automatically. Therefore it first reads the relevant geometry files. These files are
then meshed automatically and supplied to the CFD-calculation tool, which
performs the CFD-calculation automatically. After the simulation has finished
links to the flow and temperature field are stored in the central database and
mean values for all relevant values, e.g. velocity and temperature for the
interesting geometry, which are especially inlet and outlet are created and stored
to the database.
To perform these calculations different tools of OpenFOAM and specifically
developed software is used. The following table summarizes software used by
CFD solver.

Table 2-6: Software dependency list for OpenFOAM based CFD

Software name License /
Website

Description

Apache Xalan Apache License,
Version 2.0 /
http://xml.apache.
org/xalan-j/

An XSLT processor for transforming
XML documents into HTML, text, or
other XML document types

Guava Apache License,
Version 2.0 /
http://code.google
.com/p/guava-
libraries/

Google's core libraries related to:
collections, caching, primitives support,
concurrency libraries, common
annotations, string processing, I/O, etc.

Software name License Description

CFD-simulator GNU General
Public License

Automated CFD-calculation
environment for decision making in

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 27 /123

At the beginning, the setup of the case is done by a script. Then the simulation
environment is set up for “blockMesh”. This is done by parsing a XML-file and the
rest of the setup for blockMesh is then done automatically. BlockMesh then
creates a rectangular mesh. This is the basis for the work of “snappyHexMesh”.
But before snappyHexMesh can start its work the .PLMXML-file needs to be
parsed and the necessary transformations for the .STL-files, which are the
mandatory geometry representations are made. These .STL-files have to be
supplied to the toolkit by the user and need to represent all used geometry,
especially inlets and outlets, individually. These geometry files are then used by
snappyHexMesh to create the computational mesh. After the geometry is
transformed into a computational mesh the boundary conditions are set up
automatically by invoking the governing scripts and specially developed
programs. For all different geometry representations this setup is performed
individually. After these introducing steps the decomposition of the mesh is done
and the actual calculation is performed in parallel mode to speed up the process.
The solver to perform the calculation is “bouyantBoussinesqSimpleFoam”. It is
capable of calculating incompressible flow for stationary conditions in conjunction
with heat transfer. After the parallel solver has finished the decomposed
computational mesh is reassembled and converted to EnSight and VTK format.
EnSight-format is the preferred format for COVISE and VTK is the preferred
format for Open Source applications such as ParaView [PaVi]. The next step is to
calculate the mean values for the relevant geometry and store the data directly to
the database. For the flow fields, only links are stored to the database to save

Version 2.0
MLP2
The MIT License

thermal management questions

OpenFOAM GNU General
Public Licence
Version 2.0.

OpenFOAM is a free, open source
CFD software package

Database MySQL based
implementation
GNU Public
License (GPL).
Version 2

Data interchange, correct path
specification

Eigen MPL2 Library for linear algebra operation
written in C++ programming language

RapidXML The MIT License Fast XML-Parser written in C++
programming language

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 28 /123

space inside the database. The utility to perform the final calculation is
“swak4foam” and the governing script invokes it automatically.
Dependencies exist especially on the input site of the CFD-Solver. Here are to
name the geometry files, which have to be .STL-files. These .STL-files need to
be referenced correctly by the .PLMXML-file which represents the DEBB. To
ensure consistency between all the invoked applications a naming convention
was made.
A second very important convention is set up to find the data stored in the
database. This is done by a convention for the data storage path in the database.
Another dependency is on the site of the boundary conditions. To create the
correct boundary conditions the CFD-solver needs the output of the DCworms
workload simulator in the units and for the correct values. The values monitored
for this stage power and airflow is used.
For the output only one dependency is obvious. The data, which has to be stored
in the database, needs to be put on the right place. Therefore the path where the
input data is located is reused and the according data is added.
As noted, each functional surface, e.g. inlet and outlet has their own .STL-files
and need to be referenced in .PLMXML-file. This is necessary for setting up the
boundary conditions for CFD-simulation. For this purpose the next sections
describe naming conventions used in .PLMXML-file and path.

2.2.5.1 Naming convention for PLMXML-file
For now this convention needs to be applied for the “ProductInstances”, as these
are the parts, which matter for the CFD-simulation. This naming convention is
used for the name of the ProductInstance, e.g. the name specified in the first line
of the product instance.
As pointed out, the generation of the geometry data is extracted from the DEBB
(main PLMXLM file), containing references to geometric objects specified in .stl
files, as described in D3.2 ([D3.2]). The geometric objects are composed of
faces1. There are four (4) significant faces for CFD, hat are handled in simulation
in different way:

• inlet (source of airflow)
• outlet (exhausting airflow)
• heatsink (source of heat)
• wall (surface reflecting the airflow)

1 Sides of a geometric object are called faces.

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 29 /123

For specification of the boundary patch, an inlet, name of ProductInstance-
Element within the PLMXML file should consist of the keyword, specifying face-
type (for inlet this keyword is “inlet”). Next there is a”§” as a separator followed by
the name of the corresponding geometry-object the according boundary patch
belongs to.
< face-type>§<object-name >

• <face-type> is element of {“inlet”, “outlet”, “heatsink”}, in case of absence
of face-type, “wall” face-type is presumed.

• <object-name> is the name of the geometry-object and might contain
“@”, that is converted to ‘/’ path-separator used to access object-path.

An example for this is: inlet§RackNECWC_01@inlet_01, specifying face-type
inlet, object RackNECWC_01 and its part inlet_01.

2.2.5.2 Path to data stored in database
The database stores different input parameters for CFD simulations (such as
power and airflow), that belongs to particular surfaces of objects, used within
simulation. In order to setup simulation with right parameters (boundary
conditions) belonging to corresponding geometry-object, such as airspeed at
“inlet” of a rack, these parameters are queried from the database using full
object-path to particular geometrical object. The full object-path is built as a
concatenation of all object-names in the hierarchy of PLMXML file:
<object-name of level1>/<object-name of level2>/<object-name of level3>/...

We always start out with the configuration of whole setup. We start which the
name of the server room (level 1), followed by “/”. Next is the name of the rack
(level 2), etc. This makes up the path to the important data stored for the CFD.
Inside this path there is the necessary data stored:

• Pressure p
• Temperature T
• Velocity U

Example: HLRSServerroom/RackNECWC_01/inlet_1

2.2.5.3 Orientation of velocity at inlet
The .STL-files used to define the geometry for CFD-simulation input need the
following orientation convention.
The tessellation of .STL-file has to be done according to the right-hand-rule. The
face normal vector, which results from this rule, has to point in direction of flow
for the inlet.

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 30 /123

2.2.6 COVISE and CFX based CFD Solver
For simulation of the heat-flow on room level, COVISE and Ansys CFX have
been selected, as OpenFOAM based CFD calculation required too long time,
making interactive usage of the CFD simulation impossible – a key-feature of the
SVD-Toolkit.
As noted in D2.2 [D2.2], the Simulation Workflow COVISE (Collaborative
Visualisation and Simulation Environment) is an extensible distributed software
environment capable to integrate simulations, post-processing and visualization
functionalities in a seamless manner. The CFD Solver performing CFD
simulation is directly integrated into the COVISE workflow, including all
necessary pre- and post-processing tasks. COVISE offers a networked SOAP
based API and is accessible by all components that can make use of Web
Service based components. In CoolEmAll, COVISE firstly retrieves simulation
relevant data (step 4 presented in Figure 2-2) from the DEBB repository
(containing geometry data and position of objects) and from the Database
(containing results from DCworms, i.e., power usage and air throughput), passes
over these data to the CFD Solver, receives results from the CFD Solver, post
processes and visualizes simulation results allowing at the same time
modification of certain parameters such as the arrangement of objects. Results of
the simulation are written back into the Database (step 8), while modified
geometrical parameters and arrangement of objects are used to update DEBBs
(step 8), to be stored in the DEBB repository (step 12). Using COVISE, users can
analyse their datasets intuitively and interactively in a fully immersive
environment through state of the art visualization techniques, including volume
and fast sphere rendering.
The Computational Fluid Dynamics (CFD) Solver is directly integrated into the
COVISE workflow and enables to simulate and analyse complex heat flow and
dissipation processes, and their consequences on flow guiding structures, such
as compute-building blocks (DEBBs) in data centres. For this purpose a heat flow
model defined by partial differential equations is defined. CFD solvers are using
this model to calculate and simulate the interaction of liquids and gases with
surfaces defined by boundary conditions of DEBB’s geometry and other
parameters. The results of a simulation, a heat-flow distribution map, are passed
over to Simulation Workflow/COVISE and can be visualised using COVISE GUI
integrated into CoolEmAll-Web-GUI. In addition, the temperature and airflow on
inlet/outlets of the building blocks are extracted from the heat-flow distribution
map and stored in the Database, ready to be used by metrics calculator to
calculate assessment metrics.
The COVISE licence and its modules are described on the corresponding web-
page http://www.hlrs.de/organization/av/vis/covise/ and can be downloaded from
http://www.hlrs.de/covise/support/download. COVISE is available for various
platforms including: Linux (Fedora, SUSE; Red Hat, Ubuntu), Mac OS, and
Windows (ia 32 and x64). Since version 4.5 COVISE will not run without a
license anymore. To get a permanent license please contact your project partner

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 31 /123

or Uwe Wössner (woessner@hlrs.de). COVISE with a demo license can be
downloaded also from the CoolEmAll web-site [SVD-Toolkit].
ANSYS CFX software is a product of ANSYS and is a high-performance,
general-purpose fluid dynamics program solver capable to solve CFD problems
very fast. The ANSYS CFX solver can be obtained from the
http://www.ansys.com product page.

2.2.7 Metric Calculator
As described in D2.2, the Metric Calculator is responsible for the assessment of
the simulation results. Based on metrics identified and defined in D5.1, it
assesses energy-efficiency and heat-efficiency of building blocks (DEBBs). The
calculation itself is based on data/metrics that are retrieved from the Database.
Results of the calculation are written back into the Database, to be retrieved and
visualized by MOP GUI and the Report GUI.
The Metric Calculator is a Python command line application that can be called
with many different parameters depending of the calculations performed. The
calculation is based on metrics retrieved from the database.
The focus here is on hardware metrics available at node, node-group, rack and
room level.
While the first prototype was able to calculate 6 metrics, the current
implementation of the metric calculator for the final prototype allows us to
calculate these 22 following metrics:
Hardware level metrics:

• CPU usage (minimum, maximum, average)
• Server usage (minimum, maximum, average)
• Memory usage (minimum, maximum, average)
• Power usage (minimum, maximum, average)
• Power consumption (minimum, maximum, average)
• Power IT consumption (minimum, maximum, average)
• Temperature (minimum, maximum, average)
• CPU Temperature (minimum, maximum, average)
• Energy consumption
• Productivity
• SWAP
• Cooling index low and high (minimum, maximum, average)
• Heat generation (minimum, maximum, average)
• DH-UR
• Imbalance of temperature (minimum, maximum, average)
• Imbalance of heat generation (minimum, maximum, average)
• Power Usage Effectiveness (3 and 4)
• Data Centre Infrastructure Efficiency

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 32 /123

• Electricity cost
• Carbon emissions
• CAPEX
• Energy Wasted Ratio

Depending of the situation, the Metric Calculator will use one of the following
databases:

• When calculating metrics for a real world experiment, data will be read
from and stored into the TIMaCS database.

• When calculating metrics for a simulation, data will be read from and
stored into the SVD database.

• When generating a report, previously calculated metrics will be read from
the TIMaCS or SVD database depending of the type of experiment and
transferred into the Web-GUI database.

Table 2-7: Software dependency list for Metric Calculator

2.3 Detailed description of the CoolEmAll-Web-GUI
The CoolEmAll-WEB-GUI provides integrated web based graphical user interface
allowing interacting with the SVD-Toolkit and visualizing its results. It comprises
several GUIs integrated into common web based GUI environment each of them
capable of interacting with the corresponding SVD-Toolkit components through
the tab-page.
After entering user-name and password via login page (as shown in Figure 2-4
below) user is redirected to the welcome-page Figure 2-5, which shortly
describes the components of the SVD-Toolkit.

Software
name

License / Website Description

Stand-alone
RPC client

GNU Lesser General Public
License
www.timacs.de
[MOP-package]

RPC based client allowing to
insert and retrieve data from
TIMaCS database

Python 2.6 Open Source, GPL compatible,
Python Software Foundation
License Version 2

All scripts are written in
Python

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 33 /123

Figure 2-4: Login page

Figure 2-5: Welcome page

The interaction with the SVD-Toolkit is done via this CoolEmAll-Web-GUI that
provides a web based user interface allowing interacting with the SVD-Toolkit

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 34 /123

and visualizing its results. It comprises several GUIs integrated into the common
web based GUI environment.

• Experiment configuration GUI guiding users in specifying parameters
required for simulations.

• The DEBB configuration GUI allows defining, selecting and configuring
data centre building blocks (DEBBs) on various granularity levels (node,
node-group, rack and room level). DEBBs reflect components of the data
centre and contain models necessary for workload and heat-flow
simulation.

• DCworms (Data Center Workload and Resource Management Simulator)
GUI is used for experimental studies of various resource management and
scheduling policies. DCworms GUI allows selecting applications,
workloads and scheduling policies, and presenting the results of the
workload scheduling in a GUI.

• COVISE GUI presents entire simulation results of the heat-flow (CFD)
simulation, visualizing air and heat flow across all building blocks
(DEBBs). It allows interacting with the CFD-Simulation and change
particular parameters such as the position of racks within the room, and
visualizing CFD simulation results using one of the COVISE Renderers.
Such an approach allows interactive evaluation of various room layout
configurations to find the optimal one preventing hot spots.

• MOP GUI allows retrieving, visualising and comparing testbed (real
measurements) and simulation-based results (from CFD and DCworms)
against each other to validate models. Both real data obtained from
measurements (e.g. temperatures, system load) and simulated data from
CFD and Workload Simulation are stored in the database, both of them
will be displayed in the MOP GUI to compare results and validate models.

• Report page provides assessment metrics that evaluate energy- and
cooling efficiency on various granularity levels of the simulation results,
applying metrics calculated by the metric calculator to assess efficiency of
various configurations.

• User: additionally to the SVD-Toolkit GUIs there is also the menu User
interface where there are options to register users on the CoolEmAll-Web-
GUI, edit the profile of a particular user and the option to logout of the
system when the user is logged in.

These are explained in the following sub-sections.

2.3.1 ExperimentConfigurator GUI
This is the main entry page for definition and selection of the experiment that will
be executed on the SVD-Toolkit, controlled by the GUIs of the CoolEmAll-Web-
GUI. On the CoolEmAll-Web-GUI the user has to select the option “Experiments”
on the top menu where he/she can choose the list of all the experiments or
create a new experiment, as we can see on Figure 2-6. The

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 35 /123

ExperimentConfigurator allows the user to specify parameters required to
execute the simulation through the definition of experiments and trials. The
others GUIs can access the information saved on the ExperimentConfigurator via
session variable.

Figure 2-6: ExperimentConfigurator–GUI Menu

Once the user chooses the option “List” the Experiment configuration GUI-page
will be presented (as shown on Figure 2-7) in which the user can select different
options related with the experiment and have an overview of all the experiments
saved on the database.

Figure 2-7: Experiment configuration GUI

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 36 /123

When the user is creating a new experiment the information that he/she must
provide on the interface presented on Figure 2-8, as required, is:

- Experiment ID: identifier of the experiment.
- Type: type of experiment, which can be DCworms, CFD, Testbed or All.
- Start: the timestamp when the experiment starts.

Additionally, as optional information, the user can provide:
- Description: short description for the experiment.
- End: the timestamp when the experiment finishes.

Figure 2-8: New experiment interface

In the same interface the user should define the trials to the experiment. The
user has to select the option “Add Trial” whereby a new interface will be shown,
see Figure 2-9, and fills the required fields. The required information for the trial
is:

- Trial name: name of the trial.
- Start: the timestamp when the trial starts on the format (d/m/y h:m:s).
- DEBB level: level on the DEBB in which the experiment is performed.

Additional fields that can be filled are:

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 37 /123

- Timestamp Selected: this is a timestamp selected for CFD simulation on
the format (d/m/y h:m:s).

Figure 2-9: Trial information

- Timestamp End: the timestamp when the trial finishes on the format (d/m/y

h:m:s).
- DEBB URL: URL to the svn repository where the DEBB files are saved.
- Application Profile URL: URL to the svn repository where the Application

profile files are saved.
- Workload Profile URL: URL to the svn repository where the Workload

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 38 /123

profile files are saved.
- Path PLMXML: Path on the svn repository where the PLMXML file is

saved.
- Path WRL: Path on the svn repository where the WRL file is saved.
- Path STL: Path on the svn repository where the STL file is saved.
- Object Path: Path of the metrics that are saved on the database, for the

CFD simulation.
- Testbed Instance: instance on the test bed in which the trial is performed.
- Alpha: alpha defines the factor for calculations of power usage.
- Baseline Temperature: operating temperature of the data centre /

temperature with which air is supplied.
- Ambient Temperature: temperature outside the data centre.
- CO2 Emission Factor: CO2 emission factor measured in g/kWh.
- Datacentre Massflow: datacentre massflow of the server room.

All the optional fields, both for experiment and trial, can be updated for the other
GUIs or as result of the simulation process.

2.3.2 DEBBConfigurator GUI
The DEBBConfigurator GUI makes it possible for the hardware vendor and the
end-user to easily create a valid DEBB without using complex XML Editors. The
DEBB can then be exported to the SVN repository for other CoolEmAll-tools to
be used, or downloaded as a ZIP File that contains different files:

- DEBB description file (.plmxml)
- DEBB component file (.xml)I
- Pictures (.jpg, etc.)
- 3D models (.stl, .wrl)

In the CoolEmAll-Web-GUI the DEBBConfigurator is integrated as a Symfony2
“plugin”.
With the DEBBConfigurator the hardware vendor can define the hardware that is
available for purchase. The process has a hierarchy-like structure. Meaning you
first define the components, then build nodes with these components. And put
these nodes in node groups, which are then put in racks, which are placed in a
room in the end of the process. This can be done by adding the components
(baseboard, processor, memory, heatsink, chassis, etc.) on the component level
of the process. Infrastructure components such as cooling devices, power
profiles, networks and flow pumps can also be defined on this level by the
vendor. Several boundary conditions for the hardware can be set. This is
important for later simulation processes or to determine the overall power usage.
Furthermore sensors can be specified to give input during simulation, or
afterwards. These Sensors can capture several data values like temperature,
voltage, throughput, etc.

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 39 /123

Therefore the vendor just clicks on the plus symbol next to the processors menu
for example, fills the form with a product name, manufacture, clock speed, power
usage, costs and other information and saves the component part. In addition it
is possible to set several power usages for different workloads of the CPU for
heat dissipation over the heatsink with a defined transfer rate (as set in the
heatsink part) in a simulation.

Figure 2-10: DEBB-menu

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 40 /123

Figure 2-11: DEBBConfigurator GUI – Processor tab (components level)

General information in every components-creation-menu:

- Component id
- Manufacturer (mandatory)
- Product (mandatory)
- Label
- Costs [EUR]
- Costs (emission of CO2 during the production and transportation of the

part) [kg CO2]
- Hostname
- Maximum power usage [W]
- Power usage profile (can be defined in the profiles tab)
- XML name
- Type
- Instance name

There are some special attributes that can be set for some parts:
Memory

- Capacity (mandatory) [MB]
- Interface

Processor

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 41 /123

- Maximum clock speed (mandatory) [MHz]
- Cores [number]
- Virtual cores per core [number]
- TDP (Thermal Design Power) [W]
- PStates (diverse states can be created. e.g. 1000MHz, 800MHz))

o Frequency [Mhz]
o Voltage[V]
o Load power usages (diverse states can be created. e.g. 25%, 50%)

 Load [%]
 Power usage [W]

- CStates (diverse states can be created)
o State [number]
o Name
o Power usage [W]

Heatsink
- Transform (parameter for simulation)
- Transfer rate [NTU] (efficiency of energy transfer)
- Upload model files (for simulation an visual presentation)

Cooling device
- Class (fan, heatpipe, refrigeration, ILC, LCU, CRAH, HVAC)
- Maximum cooling capacity
- Cooling capacity rated
- Energy efficiency ratio

o LWT (water temperature entering the chiller)
o CWT (air temperature entering the condenser)
o Capacity
o Power usage [W]
o EER

Power supply
- Class (PSU, UPS, PDU, MVLVTransformer)
- Total output power (mandatory) [W]
- Typical efficiency (mandatory) [%]
- Power profile (can be defined in the profiles tab)

Network
- Interface (Physical Interface description like fibre, twisted pair, etc.)
- Technology
- Max bandwidth [bit/s]

Chassis
- Height [RU]
- View (top, front)
- Chassis image upload (shown as background-image when creating a

node group with that chassis)

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 42 /123

- Model file upload
- The option to add flow pumps
- The option to add nodes
- An area where nodes and flow pumps can be dragged into place, and

where the size of the chassis is determined
Sensor

- Class (temperature, voltage, power, humidity, throughput, velocity)
- Unit (for the class like: °C, V, mW, kW, etc.)
- Min value
- Max value
- Factor (multiplier between the current unit and basic unit)
- Accuracy
- Input or not (Input is a flag describing that a sensors is a input value for

the simulation or not. For example heat sources can be seen as sources
without any output afterwards. Other sensors might be added for
extracting results at the end of the simulation)

Flow pump
- Width [m]
- Height [m]
- Depth [m]
- Max rpm
- Typical efficiency [%]
- Mode (outlet, inlet)
- Transform (parameter for simulation)
- Upload model files (for simulation an visual presentation)

Profiles can be chosen in every components creation tab as power usage profile.
They can have several states with different energy consumptions. So the profiles
can be used for many hardware items, but must only be created once. They only
have the following input boxes:

- Name (mandatory)
- Type
- Flow state (diverse states can be defined. e.g. off and 100% on)

o State (at least one is mandatory)
o Flow
o Power usage [W]
o Description
o Typical efficiency [%]

On the node level the vendor assigns the specific hardware to a node that will be
choose able for the user. During the node creation the vendor can choose which
CPU, baseboard, memory and other hardware should be part of a node. And for

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 43 /123

a 3D visual presentation Model files (max 128MB per file) of the components are
uploaded via the DEBB-GUI.

Figure 2-12: DEBBConfigurator GUI – Node creation

During the node generation these fields can be filled:

- Upload image
- Upload model files
- Component id
- Manufacturer (mandatory)
- Product (mandatory)
- Label
- Costs [EUR]
- Costs (emission of CO2 during the production and transportation of the

part) [kg CO2]
- Hostname
- Maximum power usage [W]
- Power usage profile (components level profile)
- Instance name
- Width [m]
- Height [m]
- Depth [m]
- Mesh resolution (parameter for simulation)
- Location in mesh (parameter for simulation)
- Type (used to tell if that part can later be built into a chassis with a specific

interface like: CXP2, PS)
- Networks (more than one can be chosen)

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 44 /123

- Costs of components are displayed in [EUR] and [kg CO2]
- Hardware component parts

o Processor
o Baseboard
o Memory
o Cooling device
o Heatsink

Power supply
From node groups creation over racks to rooms, the end-user can then choose
from a variety of hardware, chassis and racks he wants to have in his/her server
room. At the end the costs are displayed, and the configuration can then be
downloaded as a ZIP file or can be directly exported to SVN repository to be
used for simulation or a visual impression of the server room.
Fist the user can select a chassis in the node groups tab (node group level) and
set which and where the nodes should be located in the chassis. This is done by
selecting a predefined node-slot and then adopting a proper node to that slot.
This information can be entered in the node creation tab:

- Component id
- Manufacturer (mandatory)
- Product (mandatory)
- Label
- Hostname
- Instance name
- Chassis (dropdown menu with the created chassis)
- Type
- Maximum power usage [W]
- Power usage profile (dropdown menu with the created power profiles)
- Mesh resolution (parameter for simulation)
- Location in mesh (parameter for simulation)
- XML name
- Costs [EUR]
- Costs (emission of CO2 during the production and transportation of the

part) [kg CO2]
- Networks (more than one can be chosen)
- Select node

In the node selection only the proper type for the selected node can be chosen,
e.g. only COM Express modules for a CXP2 type node. The unavailable options
are disabled (see below).

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 45 /123

Figure 2-13: DEBB configuration GUI – Node group creation

After that the user can choose his/her preferred rack (rack level) and place the
created node groups in the cabinet by clicking an appropriate rack-unit and
picking a node group.

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 46 /123

Figure 2-14: DEBBConfigurator GUI – Rack view with costs

Rack configuration fields:

- Component id
- Manufacturer (mandatory)
- Product (mandatory)
- Label
- Costs [EUR]
- Costs (emission of CO2 during the production and transportation of the

part) [kg CO2]
- Hostname
- XML name
- Power usage profile (dropdown menu with the created power profiles)
- Type
- Instance name
- Width [m]
- Height [m]
- Depth [m]
- Gap bottom [m] (used for the XML file to position the chassis in the rack)
- Gap left (used for the XML file to position the chassis in the rack)
- Gap front (used for the XML file to position the chassis in the rack)

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 47 /123

- Rack size [RU] (number of height-units the rack can hold)
- Mesh resolution (parameter for simulation)
- Location in mesh (parameter for simulation)
- Upload model files
- Node Group

The Node Group dropdown menu is used to select the node group that will be in
the selected rack unit. It also shows the remaining free rack units.
With the DEBB-GUI it is possible to create a unique server room (room level)
with a user-defined combination of nodes in a chassis, different chassis with
different node configurations in a rack, and with different racks in a room. Racks
or flow pumps can be added by clicking on the corresponding button. The user
can determine how a rack is orientated and positioned in the room, just via
drag’n’drop. Scaling the blueprint of the room with the mouse can change the
room size. For customization any room layout can be uploaded as 3D model file.

Figure 2-15: DEBB configuration GUI – server room

Room organization fields:

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 48 /123

- Component id
- Name (mandatory)
- Building (mandatory)
- Height [m]
- XML name
- Mesh resolution (parameter for simulation)
- Location in mesh (parameter for simulation)
- Costs [EUR]
- Costs (emission of CO2 during the production and transportation of the

part) [kg CO2]
- Upload model files
- Cooling devices (more than one can be chosen)
- Add rack / Add flow pump (all previously created racks and flow pumps

can be used and positioned in the room)
- Costs of components (the cumulated costs of all components is shown in

[EUR] and [kg CO2])
- Blueprint of the server room (for easy positioning of components in the

room)

With the import button in the bottom of the navigation menu it is possible to
import a saved ZIP file. This file should have the same structure as the
downloadable ones as shown below.

The downloadable ZIP holds the following files:
ZIP archive
| CoolingDevice_name_20
| Costs.xml
| FlowPump_name_8
| Heatsink_name_5
| Node _name_1.xml
| NodeGroup _name_1.xml
| PMLXML_roomname.xml
| rack_ name_1.xml
| room_roomname_1.xml
|
+---objects
| | X***_node1.stl
| | X***_node1.wrl
| \ X***_node2.stl
|
\---pics
 | node1_3.jpeg
 \ node2_8.jpeg

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 49 /123

In the main folder the validated XML files are stored. The Costs.xml contains a
list of the cost of every component in the room. In the PLMXML file in the main
folder, the coordinates for the 3D models in the room are stored for assembling
the whole room with all components. The component XML files holds information
that was supplied by the hardware vendor and which STL and WRL models
belong to the node.
The STL files stored in the “objects” folder are used for CFD simulation in the
room. While the WRL files are used to display the objects in the room with colors
in COVISE or any other capable program. Reference to these files is given in the
PLMXML and the components XML file in the main folder.
When uploaded during the node-creation the pictures showing the nodes are
saved in the “pic” folder by their node name.
The exported ZIP file and its content can also be used by other tools described in
this deliverable. Hence it is possible for the user to optimize a room by just
dragging the racks to another position in the room and simulate the new array to
see what has improved.
A more detailed description of the features of the DEBBConfigurator can be
found in the deliverable 3.5.

2.3.3 DCworms GUI
DCworms is provided as a part of SVD-Toolkit. For this reason it accepts and
generates files in appropriate formats understood by other SVD-Toolkit
components. In general, performing experiments with the DCworms requires
establishing the simulation environment properties first. They include
specification of input files, such as resource and workload/application models as
well as a definition of workload and resource management policy. DCworms
offers an intuitive GUI, which guides user through this stage. It provides means to
navigate through workload and application profiles repositories and to choose the
ones that will be used during the simulation phase. Moreover, DCworms GUI
allows browsing a list of available workload and resource management policies
that can easily be exchanged between different experiments. The following
policies can be applied:

Table 2-8: Workload and resource management policies available within DCworms

Name Level Description

Rack_FCFS_LoadBal
ancing

Rack Tasks are scheduled in FCFS order and
assigned to Nodes in the way that balance
the load

Rack_FCFS_Consolid
ationHighPerf

Rack Tasks are scheduled in FCFS order and
assigned to Nodes, starting from high
performance CPUs, to consolidate the load
on the Nodes

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 50 /123

Rack_FCFS_Consolid
ationHighPerf_NodeP
owMan

Rack Tasks are scheduled in FCFS order and
assigned to Nodes, starting from high
performance CPUs, to consolidate the load
on the Nodes. Unused nodes are switched
off and turn on if needed

Rack_FCFS_Consolid
ationLowPower

Rack Tasks are scheduled in FCFS order and
assigned to Nodes, starting from low power
CPUs, to consolidate the load on the Nodes.

Rack_FCFS_Consolid
ationLowPower_Node
PowMan

Rack Tasks are scheduled in FCFS order and
assigned to Nodes, starting from low power
CPUs, to consolidate the load on the Nodes.
Unused nodes are switched off and turned on
if needed

Room_FCFS_LoadBal
ancing

Room Tasks are scheduled in FCFS order and
assigned to Rack and then to Nodes in the
way that balances the load

Room_FCFS_
ConsolidationHighPerf

Room Tasks are scheduled in FCFS order and
assigned to Nodes, starting from high
performance CPUs, to consolidate the load
on Racks and then on Nodes

Room_FCFS_Consoli
dationHighPerf_Node
PowMan

Room Tasks are scheduled in FCFS order and
assigned to Nodes, starting from high
performance CPUs, to consolidate the load
on Racks and then on Nodes. Unused nodes
are switched off and turned on if needed

Room_ConsolidationL
owPower

Room Tasks are scheduled in FCFS order and
assigned to Nodes, starting from low power
CPUs, to consolidate the load on the Racks
and then on Nodes.

Room_ConsolidationL
owPower_NodePowM
an

Room Tasks are scheduled in FCFS order and
assigned to Nodes, starting from low power
CPUs, to consolidate the load on the Racks
and then on Nodes. Unused nodes are
switched off and turned on if needed

Room_FCFS_LoadBal
ancing_PowerCapping

Room Tasks are scheduled in FCFS order and
assigned to Rack and then to Nodes in the
way that balances the load. For racks

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 51 /123

exceeding the power limit, a power capping
strategy is applied.

Room_FCFS_
ConsolidationHighPerf
_ PowerCapping

Room Tasks are scheduled in FCFS order and
assigned to Nodes, starting from high
performance CPUs, to consolidate the load
on Racks and then on Nodes. For racks
exceeding the power limit, a power capping
strategy is applied.

Room_ConsolidationL
owPower_
PowerCapping

Room Tasks are scheduled in FCFS order and
assigned to Nodes, starting from low power
CPUs, to consolidate the load on the Racks
and then on Nodes. For racks exceeding the
power limit, a power capping strategy is
applied.

More details concerning available policies can be found in [D4.3] and [D4.6].

Each selection panel is supplemented by a short characteristic of the selected
model. Figure 2-16 shows the main window of DCworms GUI.

Figure 2-16: DCworms GUI

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 52 /123

Additionally, DCworms GUI supports definition of load calendars (described also
in Section 2.2.4) that determine the initial utilization of resources. For the given
DEBB level, the user is able to specify the load distribution according to various
statistical parameters.
The output of each simulation consists of a set of statistics that are written into
the database and can be later viewed using the MOP GUI (where they can be
seen in a graphical way), processed by the Metric Calculator or used for the
purpose of CFD analysis. Moreover, in order to enable quick insight into an
effectiveness of the selected policy, DCworms GUI also displays a set of energy
efficiency metrics.

2.3.4 COVISE GUI
As noted, the COVISE GUI provides user web based access to COVISE,
allowing interacting with the simulation by changing parameters such as
rearranging positions of racks represented by shapes within the room and
visualizing results of the simulation. Figure 2-17 provides overview of the web
based GUI to COVISE.

Figure 2-17: Covise-GUI parameters and visualisation

For the implementation of the web based GUI to COVISE, the following libraries
and frameworks were used:

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 53 /123

Table 2-9: Frameworks, libraries and licenses used for implementation of the COVISE-GUI

2.3.5 MOP GUI
MOP GUI is used in the SVD-Toolkit to visualize 3D textured geometries from
DEBB models along with data from the MOP Database. As both, real data
obtained from measurements (e.g. temperatures, system load) and simulated
data from CFD and Workload Simulation, are stored in the database, both of

Software name License /
Website

Description

Apache CXF
JavaScript
Clients (v2.6.1)

Apache license.
Version 2.0.
http://cxf.apache.
org/docs/javascri
pt-clients.html

Apache CFX JabaScript Client

bootstrap
(v2.3.2)

Apache license.
Version 2.0.

http://getbootstra
p.com/

Front-end framework for faster and
easier web development

Jquery(v2.0.3) MIT license

http://jquery.com/

JavaScript based query library

Log4Javascript
(1.4.6)

Apache License.
Version 2.0.
http://log4javascri
pt.org/

JavaScript based library for logging

fabric (v1.2.0) Open source.
MIT license.
https://github.com
/kangax/fabric.js/
blob/master/LICE
NSE

JavaScript HTML5 canvas library

bootstrap-slider
(v2.0)

Apache License.
Version 2.0.
http://www.eyeco
n.ro/bootstrap-
slider

Slider for Bootstrap

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 54 /123

them are displayed in the MOP GUI, which is integrated in the CoolEmAll Web
GUI. The available data stored in the database is visualized in MOP GUI in two
forms: colour maps on top of 3D models and 2D charts.
MOP GUI involves following parameters.

• Selection of the DEBB to be visualized

Figure 2-18: MOP GUI Visualization

2.3.6 Metric Calculator and report-GUI
The Metric calculator GUI is in charge of assessing experiments by calculating a
selection of efficiency metrics. As an outcome, it generates an assessment report
of the experiment.
In order to obtain such a report, the Metric Calculator requires an access to the
monitoring infrastructure database (when calculating metrics for an experiment
made on a real data-centre) or the SVD database (for a simulated experiment) to
retrieve the measurements data necessary to calculate metrics, which will then
be stored back into their respective databases. Finally these data will be
transferred to the web-GUI database in order for the metric calculator GUI to be
able to access them.
The Report-GUI will then display a summary table of metrics calculated for each
components at different level.
Each of the metric named in the following lists are described in the deliverable
D5.1 ([D5.1]).
For a simulation experiment the report will contain the following metrics:

• Key Metrics
o Electricity cost
o Carbon emissions
o Power usage efficiency 3

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 55 /123

o Power usage efficiency 4
o Total energy consumption
o Energy wasted ratio
o Productivity
o CAPEX

• Room level
o Deployed hardware utilisation ratio
o Load (minimum, average, maximum)
o Power usage efficiency 3
o Power usage efficiency 4
o Energy wasted ratio
o Data-centre infrastructure efficiency
o Power used (minimum, average, maximum)
o Energy
o Productivity

• Rack level
o Deployed hardware utilisation ratio
o Load (minimum, average, maximum)
o Power used (minimum, average, maximum)
o Energy
o Productivity

• Node-group level
o Deployed hardware utilisation ratio
o Load (minimum, average, maximum)
o Power used (minimum, average, maximum)
o Space, Watts And Performance (SWAP)
o Energy
o Productivity

• Node level
o Load (minimum, average, maximum)
o Power used (minimum, average, maximum)
o Energy
o Productivity

For a real world experiment the report will contain the following metrics:

• Data-centre level
o Due to missing measurements at this level no metrics are

calculated
• Room level

o Due to missing measurements at this level no metrics are
calculated

• Rack level
o Energy
o Productivity
o Cooling index low (minimum, average, maximum)
o Cooling index high (minimum, average, maximum)

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 56 /123

o Imbalance of CPU temperatures (minimum, average, maximum)
• Node-group level

o Deployed hardware utilisation ratio
o Space, Watts And Performance (SWAP)
o Energy
o Cooling index low (minimum, average, maximum)
o Cooling index high (minimum, average, maximum)
o Imbalance of CPU temperatures (minimum, average, maximum)

• Node level
o CPU temperature (minimum, average, maximum)
o Inlet temperature (minimum, average, maximum)
o Outlet temperature (minimum, average, maximum)
o CPU usage (minimum, average, maximum)
o Server usage (minimum, average, maximum)
o Network usage (minimum, average, maximum)
o Memory usage (minimum, average, maximum)
o Power used (minimum, average, maximum)
o Power usage (minimum, average, maximum)
o Productivity
o Cooling index low (minimum, average, maximum)
o Cooling index high (minimum, average, maximum)

The Metric-Calculator itself is able to generate the same metrics for simulated
and real world experiments, but missing measurements, sensor and simulated
data make it necessary to have different reports while inputs for the calculator
are not similar for both environments.

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 57 /123

Figure 2-19: Simulation Report from Metric Calculator report GUI

2.3.7 User interface
This is the interface where the user account can be created. The user can also
edit his/her profile, as we can see on Figure 2-20. On the CoolEmAll-Web-GUI
the user has to select the option “User” on the top menu where he/she can
choose from the options “Register”, “Edit Profile” or “Logout”.

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 58 /123

Figure 2-20: User menu

Once the user chooses the option “Register” a new interface will be presented
(as shown on Figure 2-21) in which the user has to provide the necessary
information to create the account.

Figure 2-21: Register interface

 When the user is creating a new account the information that he/she must
provide on the interface presented on Figure 2-21, as required, is:

- Email: user email.

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 59 /123

- User name: desired name of user.
- Password: password to access to the CoolEmAll-Web-GUI.

Additionally, as optional information, the user can provide:
Role: there are two roles on the system: (i) Designer who has access to the GUIs
ExperimentConfigurator, DEBBConfigurator, COVISE and ReportGUI; and (ii)
Operator who has access to all the components GUIs of the SVD-Toolkit. The
user can have none, one or both roles.
The second option is “Edit Profile” where the user can change the information
saved during the registration process and additional information needed to
execute the COVISE-GUI. These fields, as presented on Figure 2-22, are:

- Covise Server: server name in which Covise is running.
- Covise Port: port that is using Covise on the server name.

Figure 2-22: Register interface

Finally, the option “Logout” closes the session and returns the user to the login
page presented on Figure 2-4.

2.4 Addressing the EcoDesign Directive
As described in [D3.6] in the year 2009 the European Union has released a
directive regarding the energy efficient production and operation of energy
consumption relevant products [EurPar]. The main goal is to improve the

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 60 /123

efficiency of those products and to form a fair platform for trading these products
within the EU without any disadvantages in competing countries. The following
section gives an insight of how the concept of the EcoDesign Directive is
reflected in the SVD-Toolkit.

When designing a product or a facility with the SVD-Toolkit, there are several
metrics that can be processed, calculated and finally analysed. The most
important metric in the scope of the EcoDesign directive is surely CO2, thus the
costs in CO2 can be entered into the DEBBconfigurator, from a single component
up to the CO2 costs to provide a modelled facility. These CO2 costs contain an
estimation of the produced CO2 in tons that will be emitted into the air, water and
ground in case of the production of the specific component. The following factors
could be included in this calculation:

• CO2 equivalent to the energy needed to produce the component taking
into account the respective environmental impact of various used
materials

• CO2 emitted through transportation
• CO2 equivalent to the used electric power over the estimated lifetime
• CO2 equivalent to the expected environmental stress trough noise,

electromagnetic radiation, etc. over the estimated lifetime
• CO2 equivalent to the amount of created waste after the lifetime
• CO2 savings when recycling or reusing the component

At higher levels of the DEBBconfigurator, these CO2 costs get automatically
summed up and displayed to the user so that he is easy able to compare the
“greenness” of his specific configuration.
Analogue the CO2 costs, the maximum power usage of each component can be
entered, summed up and compared.
With these indicators it is easy for a user to see which components and
configurations fit best into its company philosophy – e.g. to have a very green
configuration with a low CO2 footprint which on the other side might cost a little
more.

When using the SVD-Toolkit to generate a report and calculate metrics related to
an experiment, these metrics, defined by the DEBBconfigurator, will be extracted
and integrated into the metric report.
In this way the end-user is able to visualize all the metrics in one place and can
easily take decisions by taking all these costs data into consideration.

In the trial interface of the ExperimentConfigurator the CO2 Emission Factor was
also included. So, this factor can be updated for the other components of the
SVDtoolkit during the execution of the experiments.

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 61 /123

3 Usage of the CoolEmAll-Web-GUI and SVD-Toolkit
In this section we describe usage of the CoolEmAll-Web-GUI, new in version 2 of
the Toolkit, presented in section 3.1, and of the SVD-Toolkit components, using
command-line options by advanced users, in section 3.2.

3.1 Usage of the CoolEmAll-Web-GUI
In this section we present usage of the CoolEmAll-Web-GUI by explaining
interaction of user with each of the GUIs of the CoolEmAll-Web-GUI, along with
the interaction of the GUIs with other SVD-Toolkit components.

3.1.1 General Flow
The purpose of the CoolEmAll-Web-GUI is to provide a graphical user interface
to SVD-Toolkit, which simplifies for users the interaction with the toolkit and
between the components. In this section we briefly describe how to work with the
CoolEmAll-Web-GUI. The general flow is as follows:
There are three options when you access the GUI:

1. Create and execute a new Experiment:
a. The user selects the ExperimentConfigurator GUI, inserts the

information related to the experiment and trial. If the user doesn’t
provide the DEBB-URL he/she will be redirected to the
DEBBConfigurator GUI in order to configure a DEBB specification.

b. Depending on the type of experiment that the user provides he/she
will be redirected to the respective GUI:

i. If the experiment type is “DCworms” then the DCworms GUI
is active.

ii. If the experiment type is “CFD”, then the next GUI will be
COVISE-GUI.

iii. If the experiment type is “Testbed”, then the next GUI will be
MOP-GUI.

iv. In the case that experiment type is “All”, the user will be
redirect first to the DCworms GUI, then to the COVISE-GUI
and finally to the MOP-GUI in order to supply the necessary
information for the execution of the component.

2. Go direct to a particular GUI component, in order to get the current status
and/or continue with the execution of a given experiment. In this case the
user has to select an experiment and a started trial.

3. View reports. In this option the user is able to select either the MOP-GUI
or the Metric-Calculator GUI.

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 62 /123

3.1.2 ExperimentConfigurator selection dialogue
To start an experiment the user must select the TAB of the
ExperimentConfigurator GUI and execute the following steps, see Figure 3-1:

1. Create a new experiment. The user must select the type of experiment
to be executed (DCworms, CFD, Testbed or All).

2. The user provides the Experiment Id.
3. The user has to select the option “create a new trial” and provide both

the timestamp and the DEBB level in which the experiment is
performed. The trial status is updated.

4. The user receives a message that the operation was successful.
5. The user provides additional information (optional), such as SVN

version, DEBB URL, application profile URL and workload Profile URL.
This information is saved on the database.

6. It shows to the user a message about the result of the trial
configuration.

7. When the user selects the option “Next”, a query is done on the
database in order to know what is the next component that the user
can access is. The GUI of the next component is activated.

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 63 /123

Figure 3-1: Sequence diagram of ExperimentConfigurator GUI.

In case the user has already created an experiment and trial in the past, then
after logging into the Symfony2, all trials, which are not finished, will be shown.
The user selects then the trial that he/she wants to check / modify / execute:

• User log ins into the Symfony2
• A request is send to the database DB to get for particular User-Name

o All the trials that are “active” or last modified
o User selects the appropriate trial.
o Context belonging to this trial is loaded from the DB and passed to

the server (and its variables)
o User is now able to check the status of the experiment (when

simulation is finished, a corresponding flag is stored in DB for
particular trial)

o Based on the status, the corresponding tab is automatically marked
as active – i.e. view results of the simulation.

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 64 /123

3.1.3 DEBBConfigurator GUI
To start a DEBB specification the user must select the TAB of the DEBB
configuration GUI and execute the following steps, see Figure 3-2:

1. Create a DEBB specification. The DEBBConfigurator GUI must get the
value of the necessary variables to execute the DEBB configuration
GUI.

2. The user has to provide the information to create the DEBB model (as
described in section 2.3.2 of this deliverable). The output of the
process is saved on the SVN repository when the corresponding
button in the node groups, racks or rooms TAB is clicked. The
necessary variables, such as the SVN path to the DEBB files, are
saved in the database. A default SVN path is suggested and can be
changed to store the same DEBB under different names for different
experiments.

3. When the exportation to the SVN repository is finished the user will be
prompted a “Next” button. When the user selects the option “Next”, a
query is done on the session variable “context” in order to know which
the next component that the user can access is. This depends on the
type of experiment (DCworms, CFD, Testbed or all) the user has
chosen while creating the experiment. The GUI of the next component
is called. If no experiment is selected the “Next” button will not show
up.

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 65 /123

Figure 3-2: Sequence diagram of DEBBConfigurator GUI.

3.1.4 DCworms GUI
To start a DCworms simulation the user must select the TAB of the DCworms
GUI and execute the following steps, see Figure 3-3:

1. Create DCworms simulation. The DCworms GUI must get the value of
the necessary variables to execute it.

2. The user has to provide additional information to execute the
DCworms component: 1) workload with workload and resource
management policy; or 2) utilization levels of resources; or 3) workload
with workload and resource management policy and utilization levels of
resources.

3. The user starts the execution of the simulation, when all the
requirements are reached.

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 66 /123

4. The output of the process is saved on the SVN repository. The
necessary variables are saved on the database.

5. When the user selects the option “Next”, a query is done on the
database in order to know which the next component that the user can
access is. The GUI of the next component is activated.

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 67 /123

Figure 3-3: Sequence diagram of DCworms GUI

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 68 /123

3.1.5 COVISE GUI
COVISE GUI presents the entire simulation results of the CFD-simulation,
visualizing airflow across all building blocks (DEBBs) and enabling interaction
with the simulation, allowing the user to interactively change the simulation
parameters that affects the position (arrangement) of objects.
To start a COVISE simulation the user must select the TAB of the COVISE GUI
and execute the following steps, see Figure 3-4:

1. Create COVISE simulation. The COVISE GUI must get the value of the
necessary variables to execute it.

2. The user could provide additional information to execute the COVISE
component – including arrangement of racks within the room.

3. The user starts the execution of the simulation, when all the
requirements are reached.

4. The output of the process is visualised in the GUI, while essential
metrics as extracted from the simulation results and are saved to the
database.

5. When the user selects the option “Next”, a query is done on the
database in order to know which the next component that the user can
access is. The GUI of the next component is activated.

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 69 /123

Figure 3-4: Sequence diagram of COVISE GUI.

3.1.6 MOP GUI
To start MOP GUI the user must select the TAB of the MOP-GUI and execute the
following steps, see Figure 3-4:

1. View metrics in 3D view and 2D line charts. The MOP-GUI must get
the value of the necessary variables to present the appropriate model
and metrics.

2. When the user selects the option “Next”, a query is done on the
database in order to know which the next component that the user can
access is. The GUI of the next component is activated.

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 70 /123

Figure 3-5: Sequence diagram of MOP GUI.

3.1.7 Metric Calculator and Report-GUI
The report-GUI provides access to report created by the metrics calculator.
In order to use the metric calculator report-GUI, the user must execute the
following steps:

1. Select an already existing experiment and trial using the “List” sub
menu from the “Experiments” TAB.

2. Select the “Reports” TAB and the “Metric Calculator” sub-menu.
3. If the report is not yet generated the user has to follow on-screen

instructions to start the calculation.
4. The output of the process is stored in the web-GUI database.
5. If the report has already been generated the user will be able to

navigate through all the data-centre levels (from the data-centre itself
to the node) and see resulting metrics.

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 71 /123

Once the user is on a report page she/he is able to navigate through the metrics
using the links included in the Reports level table.
Lists of the following elements will progressively appear when clicking elements
containing them:

• Key metrics (default selected level)
o Rooms

 Racks
• Nodes-groups

o Nodes
Each of these elements is a link to the corresponding report.

3.2 Expert usage of SVD-Toolkit components
In this section we describe how SVD-Toolkit components are used to enable
execution of experiments (simulation) by advanced users, applying command
line options. The description in this section is mostly originated from [D2.4].

3.2.1 Application Profiler
As stated in D2.4, the Application Profiler is quite simple to use. Each time an
application is run on the test-bed, the application is run afterwards to produce its
profile using monitored information available in TIMaCS. The resulting XML file is
stored in the SVN hierarchy following the official CoolEmAll architecture.
DCworms can then read these files for simulation purposes.

3.2.2 SVN Repository
As stated in D2.4, the SVN repository provides access to: application profiles,
workload-profiles, DEBBs, and experiment configurations, used by SVD-Toolkit
components for execution of experiments/simulations. In order to interact with the
repository, on the client side, the user runs an Apache Subversion client
application - typically a command line client, but possibly a GUI client as well.
There exist a number of SVN clients, capable to access SVN server (repository).
The most used command line options by SVN clients are:

• svn checkout - to checkout a working directory from the svn server

• svn add - to add a new file or directory to repository

• svn update/up – to update local copy with files from SVN server.

• svn commit/ci – to recursively sends local changes to the SVN server

• svn list – to display files in a directory for any given revision

• svn update – r <revision-number> - to check out specific revision

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 72 /123

The usage of repository is done according to structure and conventions
described in section 2.2.2.

3.2.3 Database
As stated in D2.4, the database includes several methods via RPC that can be
called to insert and to retrieve data. To simplify query of the database, we
implemented a script based API:

• coolemall_getExperimentsList
- Return a list of all the experiments saved on the database.

• coolemall_getLastMetricByMetricName object_path metric_name
[experiment_ID trial_ID]
- Return the last metric specified by metric_name, object_path,
experiment_ID and trial_ID. Experiment_ID and trial_ID are optional. The
metric contains the last time and value recorded.

• coolemall_getLastMetricsByHostName object_path [experiment_ID
trial_ID]
- Return the last metrics of a specified object_path, for a given
experiment_ID and trial_ID. Experiment_ID and trial_ID are optional.

• coolemall_getMetricNames object_path [experiment_ID trial_ID]
- Return all the metrics saved for a particular object_path on a specified
experiment_ID and trial_ID. Experiment_ID and trial_ID are optional.

• coolemall_getHostNames [experiment_ID trial_ID]
- Return all object_path for which metrics are saved from a given
experiment_ID and trial_ID. Experiment_ID and trial_ID are optional.

• coolemall_getRecordsByMetricName object_path metric_name
[experiment_ID trial_ID start_time, end_time]
- Return a list of metrics that contains record objects. Each record has
three attributes: time, value and output. The arguments experiment_ID,
trial_ID, start_time and end_time are optional. The argument start_s in
seconds specifies the earliest record to be returned. No records newer
than end_s (in seconds) are returned.

• coolemall_getSelectedMetric object_path metric_name t_start
t_selected
- Return the value of the metric_name given the timestamp start and the
timestamp selected.

• coolemall_getTrialsList experiment_ID
- Retrieve all trial_ids for a specified experiment_ID

• coolemall_putMetricDB “metric_attribute” [,metric attribute ...]
- Insert into the database the parameters specified in the string by
command line. Each attribute is a set of tuples key:value separated by
comma (,) that represent the metric. For example:
“experiment_id:id_2,time:139893248,...”

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 73 /123

3.2.4 DCworms
As stated in [D2.2] and presented in 2.1 the input to the workload simulation
phase consists of workload and application profiles as well as DEBB model. In
general, in DCworms all of this information is included within the single
configuration file that is passed as an input parameter. This file has a typical,
Java resource bundle format. List of all available parameters is presented below.

workload=workload.swf
resdesc=serverRoom.xml
workload parameter specifies the path and name of the file containing the
workload profile. For the purposes of the workload description within the SVD-
Toolkit we adopted Standard Workload Format (SWF) [SWF]. In addition to the
predefined labels in the header comments, we introduce support of a new one
that is used to provide information about types of applications used within the
given set of tasks. In this way, a workload profile contains the references to the
corresponding application profiles that will be loaded and linked during the
simulation. More details of the workload and application profiles and the format of
the particular descriptions can be found in [D2.3].
resdesc parameter points to the path and name of file with the resource
characteristics. DCworms is also able to read DEBB files (the format of such files
was described in [D3.2]) by translating them to its own resource description file.
This file also contains reference to workload and resource management policy
used for particular experiment (within the SVD-Toolkit this information is provided
by DCworms GUI).
There are a number of management policies provided with DCworms and
available from the DCworms GUI perspective. They include various approaches
starting from load balancing strategy, through consolidation methodology up to
energy usage optimization one, that take into account both application and
resource profiles. Moreover, most of them come in a version with node power
management approach for both ComputeBox levels or with power capping
strategy on the room level. More details concerning the policies can be found in
[D4.3] and [D4.6].
To perform experiments using DCworms, the user needs to execute the following
command, passing the path to the configuration file as a program argument:
sbatch --partition=aux runDCworms.sh
experiment1/RECSexperiment1.properties

The simulation is controlled by the testbed queuing system (SLURM) and it is
requested to be started on aux partition. The partition is designed for running
computations outside the main monitored part of the testbed to not influence the
measurements. It consists of two worker nodes that have their own dedicated
power lines and are physically separated from rest of the testbed.

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 74 /123

3.2.5 CFD using OpenFOAM
As stated in D2.4, the interaction with the CFD-solution within 1st prototype was
done via a command line based script.
Before the invoking of the script can be done a simulation environment needs to
be set up. This consists foremost of a working installation of OpenFOAM and a
setup of OpenMPI [OpMPI]. This is supposed to be done before you start with
the setup of the bespoke CFD-solution.
For setting up an automated simulation based on this first prototype it is most
convenient to do so in a dedicated directory. In our case this directory is called
“auto_OpenFOAM”. In this working directory it is supposed to have the following
subdirectories set up: One directory should be called “DEBB”. In this directory the
governing .PLMXML-file and the geometry representing .STL-files are stored.
Then there is another important directory, which is called “control_files”. This
directory is particularly important when it is of interest to run several different
simulations. In this directory simulation independent solver parameter are stored.
These variables are editable but it is not necessary and not recommended to do
so. These variables are reused for each independent simulation and therefore
these variables are copied to the corresponding files of the simulation case.
Another important directory is called “TIMaCS”. In this directory are the scripts for
invoking the database for automatic creation of boundary and initial conditions
stored, as well as the scripts for putting back the simulation results to the
database. Then there is directory called “SRC”. In this directory the source code
and the executables for the automated setup of the simulation case is stored. So
there should be no necessity for the user to interact with this directory.
Then there are some more .TXT and .XML-files. These files are described in the
order the setup script invokes them. First there is a file called
Definition_Quader.xml. In this file the definitions are made for invoking
blockMesh. blockMesh sets up the surrounding region in which the geometry to
simulate is meshed. Here it is necessary to make sure that the geometry fits into
the surrounding region created by blockMesh and therefore the size of this region
can be adjusted accordingly in this file called “Definition_Quader.xml. Next the
user finds a file called locationInMesh.txt. This file is important for
snappyHexMesh. To enable snappyHexMesh to automatically create a mesh
based on the region created by blockMesh and the .STL-files transformed by the
PLMXML-parser it is necessary to specify a point inside the mesh, in a region
where the mesh should be kept. The point inside the mesh region to keep is
stated in the file called “locationInMesh.txt”
In the file called temperature.txt temperature values for boundaries, which are not
referenced in the database, are stored. This is necessary as there are no
temperature sensors available on these boundaries, which are for example
sidewalls. These values should be submitted in degrees Celsius in the format
found in the file and are editable by the user.

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 75 /123

After a simulation was done a new directory called “case1” appears. In this
directory the data for the whole simulation can be found. And this directory is
deleted and remade every time a simulation is started automatically. So if the
user desires to keep the whole simulation case it is best to move this directory to
a different location before another automatic simulation is started.
When all this setup is complete, the simulation can be started automatically just
by calling the script called Autorun with submitting the path to the location on the
.PLMXML-file and the name of the host for which the metrics are stored. The
retrieving of all relevant data and the calculation is then performed automatically.

3.2.6 CFD using COVISE with Ansys CFX
In version 2 of the Toolkit, simulation of the server-room is done using COVISE
with Ansys CFX. As noted, the Simulation Workflow COVISE (Collaborative
Visualisation and Simulation Environment) is an extensible distributed software
environment capable to integrate simulations, post-processing and visualization
functionalities in a seamless manner. The CFD Solver performing CFD
simulation is directly integrated into the COVISE workflow, including all
necessary pre- and post-processing tasks. Figure 3-6 visualizes workflow
(presented in the figure on the left) within the COVISE used (i) to integrate input
parameters coming from various sources necessary to setup simulation, (ii)
execute simulation remotely using corresponding (CFX) solver, (iii) post-process
and visualize results using renderer (presented in the figure on the right).

Figure 3-6: COVISE visualisation environment and outcome of the heat-flow simulation

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 76 /123

3.2.7 Metric Calculator
The Metric Calculator is a Python command line application that can be called
with many different parameters depending of the calculation.
Measurements and calculations can be done at each level of the data-centre.
Starting at the data-centre level itself, the room level, the rack level, the node-
group level and finally the node level.
In order to be able to compare simulation and real world experiments the Metric
Calculator can be executed on both environments.
Each metric can be calculated individually (as shown in the following listing) at
the desired level. Depending of the provided parameters the Metric Calculator is
able to determine if the calculation has to be done on real or simulated data and
adapt the calculation.

 Listing of available commands:
./metricCalc.py cpu_usage[_min, _avg, _max, _mma] <path> <start_s> <end_s>

Calculate the minimum, average and maximum cpu usage of the hardware
element identified by its path between two timestamps.

./metricCalc.py server_usage[_min, _avg, _max, _mma] <path> <start_s> <end_s>

Calculate the minimum, average and maximum server usage of the hardware
element identified by its path between two timestamps.

./metricCalc.py network_usage[_min, _avg, _max, _mma] <path> <start_s> <end_s>

Calculate the minimum, average and maximum network usage of the hardware
element identified by its path between two timestamps.

./metricCalc.py memory_usage[_min, _avg, _max, _mma] <path> <start_s> <end_s>

Calculate the minimum, average and maximum memory usage of the hardware
element identified by its path between two timestamps.

./metricCalc.py power_usage[_min, _avg, _max, _mma] <path> <start_s> <end_s>

Calculate the minimum, average and maximum power usage of the hardware
element identified by its path between two timestamps.

./metricCalc.py power[_min, _avg, _max, _mma] <path> <start_s> <end_s>

Calculate the minimum, average and maximum power consumption of the
hardware element identified by its path between two timestamps.

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 77 /123

./metricCalc.py temperature[_min, _avg, _max, _mma] <path> <start_s> <end_s>

Calculate the minimum, average and maximum temperature of the hardware
element identified by its path between two timestamps.

./metricCalc.py cpu_temperature[_min, _avg, _max, _mma] <path> <start_s> <end_s>

Calculate the minimum, average and maximum cpu temperature of the hardware
element identified by its path between two timestamps.

./metricCalc.py energy <path> <start_s> <end_s>

Calculate the energy consumed of the hardware element identified by its path
between two timestamps.

./metricCalc.py productivity <path> <start_s> <end_s> <useful work>

Calculate the productivity of the hardware element identified by its path between
two timestamps.

./metricCalc.py swap <path> <start_s> <end_s> <useful work>

Calculate the space, watts and performance metric (SWaP) of the hardware
element identified by its path between two timestamps.

./metricCalc.py cooling_index_low <path> <start_s> <end_s>

Calculate the cooling index low of the hardware element identified by its path
between two timestamps.

./metricCalc.py cooling_index_low_ts[_min, _avg, _max, _mma] <path> <start_s> <end_s>

Calculate the minimum, average and maximum cooling index low of the
hardware element identified by its path between two timestamps.

./metricCalc.py cooling_index_high <path> <start_s> <end_s>

Calculate the cooling index high of the hardware element identified by its path
between two timestamps.

./metricCalc.py cooling_index_high_ts[_min, _avg, _max, _mma] <path> <start_s> <end_s>

Calculate the minimum, average and maximum cooling index high of the
hardware element identified by its path between two timestamps.

./metricCalc.py heat_generation[_min, _avg, _max, _mma, _tot] <path> <start_s> <end_s>

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 78 /123

Calculate the minimum, average and maximum heat generation of the hardware
element identified by its path between two timestamps.

./metricCalc.py dh-ur <path> <start_s> <end_s>

Calculate the deployed hardware utilisation ratio (DH-UR) of the hardware
element identified by its path between two timestamps.

./metricCalc.py dh-ur(cpu) <path> <start_s> <end_s>

Calculate the deployment hardware utilisation ratio considering CPU (DH-URCPU)
of the hardware element identified by its path between two timestamps.

./metricCalc.py imbalance_of_temperature <path> <start_s> <end_s> [usedNodes]

Calculate the imbalance of temperature of the hardware element identified by its
path between two timestamps (the calculation can optionally be done only
considering a set of used nodes).

./metricCalc.py imbalance_of_temperature_ts[_min, _avg, _max, _mma] <path> <start_s> <end_s>
[usedNodes]

Calculate the minimum, average and maximum imbalance of temperature of the
hardware element identified by its path between two timestamps (the calculation
can optionally be done only considering a set of used nodes).

./metricCalc.py imbalance_of_temperature_of_cpu <path> <start_s> <end_s> [usedNodes]

Calculate the imbalance of temperature of CPU of the hardware element
identified by its path between two timestamps (the calculation can optionally be
done only considering a set of used nodes).

./metricCalc.py imbalance_of_temperature_of_cpu_ts[_min, _avg, _max, _mma] <path> <start_s> <end_s>
[usedNodes]

Calculate the minimum, average and maximum imbalance of temperature of
CPU of the hardware element identified by its path between two timestamps (the
calculation can optionally be done only considering a set of used nodes).

./metricCalc.py imbalance_of_heat_generation <path> <start_s> <end_s> [usedNodes]

Calculate the imbalance of heat generation of the hardware element identified by
its path between two timestamps (the calculation can optionally be done only
considering a set of used nodes).

./metricCalc.py imbalance_of_heat_generation_ts[_min, _avg, _max, _mma] <path> <start_s> <end_s>
[usedNodes]

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 79 /123

Calculate the minimum, average and maximum imbalance of heat generation of
the hardware element identified by its path between two timestamps (the
calculation can optionally be done only considering a set of used nodes).

./metricCalc.py pue <path> <start_s> <end_s>

Calculate the power usage effectiveness of the hardware element identified by its
path between two timestamps.

./metricCalc.py dcie <path> <start_s> <end_s>

Calculate the data centre infrastructure efficiency (dcie) of the hardware element
identified by its path between two timestamps.

./metricCalc.py electricity_cost <path> <start_s> <end_s>

Calculate the electricity cost of the hardware element identified by its path
between two timestamps.

./metricCalc.py carbon_emissions <path> <start_s> <end_s>

Calculate the carbon emission of the hardware element identified by its path
between two timestamps.
Some of the metrics can be calculated in two different ways. They are
differentiated in the previous listing by the _ts suffix meaning that the metric can
be calculated for each timestamp of the defined interval (with the _ts suffix) or
over the whole interval (without the suffix). In order to simplify the usage of this
tool, the Metric Calculator also includes some scripts that automatically calculate
a predefined set of metrics. Theses scripts are used by the Report-GUI to start
the calculation for a selected experiment and trial and store the results in the
simulation or real world experiments database and finally transfer them into the
web-GUI database in order to be able to access these data. In addition to the
previously seen parameters these scripts accept an additional one, a link to the
DEBB’s files describing the specifications of the hardware used for the simulation
or the real world experiment.
Computing and storing metrics for a simulation experiment is done using the
following command:
./simulationMetrics.py <exp> <trial> <start> <end> [debb url]

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 80 /123

4 Test of the CoolEmAll-Web-GUI and SVD-Toolkit
In this section we describe tests of the CoolEmAll-Web-GUI and its interaction
with the SVD-Toolkit components in section 4.1 (new in final release of SVD-
Toolkit. In Annex A we present the execution of the complete flow), and
command line based tests of the SVD-Toolkit components described in section
4.2.

4.1 Test of the CoolEmAll-Web-GUI
In this section we describe test of the CoolEmAll-Web-GUIs.

4.1.1 ExperimentConfigurator GUI
In section 2.3.1 we described the experiment configurator GUI, capable of
reading parameters, entered by the users, necessary to configure and setup the
SVD-Toolkit and its components to perform experiments. The overview of the
experiments is shown in the figure below and allows definition and selection of
experiments. In the Experiment Configurator section the user can list all the
experiments saved, choosing the option “Experiments” and then “List” on the top
menu. Then the listing of the experiments will be shown, as we can see on
Figure 4-1.

Figure 4-1: Overview of Experiments

In this interface the user can select the options:

- “Show” () to see more information of the experiment;

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 81 /123

- “Edit” () to change parameters of the experiment;
- “Delete” () the experiment or
- “Trials” () to list all the trials of a particular experiment.

For creating new Experiments the user has two options:
1. Select the option “New” on the top menu section “Experiments”.
2. Click on the “CREATE EXPERIMENT” button at the bottom of the page.

Both options will present the interface to configure a new experiment, as shown
on Figure 2-8, whereby the user has to input all the parameters required defined
on Section 2.3.1, both for experiment and trials. At the end of the process we
have the view as presented on Figure 4-2.

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 82 /123

Figure 4-2: Experiment with two trials.

In order to have the information available of a particular trial for the other GUIs,
the user has to set the trial information on the session. In this way all
components can read/update the information of a particular trial. The user
chooses an experiment (on the options Experiments -> List) and then he/she
selects the option trials. A list with the trials of the experiment will be shown, see
Figure 4-3. In this interface the user has to select the last option “Set Context” (

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 83 /123

). In this interface we have also the options to “Show” (), “Edit” () and
“Delete” () a trial of the list.

Figure 4-3: List of trials of a particular experiment.

Each GUI-Component can use/change the session variable during execution of
the trial/experiment. The ExperimentConfigurator provides the option to update
the value of this variable. Once the variable is set on the context two new buttons
are shown on the interface, as presented on Figure 4-4.

Figure 4-4: Trail on the context.

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 84 /123

The First one, “Update Context” (), allows the user to change the value of the
variable on the session and the other, “Save Context” (), saves the value of
the session variable on the database.

4.1.2 DEBBConfigurator GUI
In this test a predefined node (Kontron COMe-bSC2 - 3615QE + Kontron COM
Express Passive Heatsink i7) was put into a node group (test_D2.5), and into a
rack (test_D2.5), which was placed in a room. The resulting room was exported
as a ZIP file, which was named with the current time stamp.
This ZIP must then contain the following files:

- Node_KontronCOMebSC23615Q_*.xml
- Heatsink_KontronCOMExpressPassiveHeatsinki7_*.xml
- NodeGroup_ test_D25_*.xml
- FlowPump_AVCDB04028B12U_*.xml (chassis fan)
- Rack_ test_D25_*.xml
- Room_ test_D25_*.xml
- PLMXML_ test_D25_*.xml
- Costs.xml
- pics - > the a picture of the board
- objects -> the board, heatsink, chassis, fan and rack STL and WRL files

The transform coordinates for the heatsink included the following gaps:

- The rack stands at x: 1,5m; y: 1,5m; z: 0m
- It has a gap of x: 0,037m; y: 0m; z: 0,2m
- The chassis is at RU 10 in the rack. 1RU = 0,04445m
- The node in the chassis is at this position: x: 0.25634m; y: 0.29995m; z:

0.01739m
- The node is 0,01m high

These offsets are listed in the exported PMLXML file.

This results in the following position for the heatsink:

X = 1,5m + 0,037m + 0.25634m = 1,79334m
Y = 1,5m + 0m + 0,29995m = 1,79995m
Z = 0m + 0,2m + (10 * 0,04445m) + 0,01739m + 0,01m = 0.67189m

The following steps have been done to create the ZIP archive:

1. Create a new node group with the “Christmann RECS | Box Compute
Unit”

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 85 /123

2. The product name is “test_D2.5”
3. Adopt a the “Kontron COMe-bSC2 – 3615QE” node in column 2, row 7

counted beginning from left and at the top of the page (back of the
chassis)

Figure 4-5: node group creation tab with adopted node

4. Save the node group
5. Create a new rack
6. The gaps, size and the STL and WRL model files were taken from the

“Christmann Testbed_Rack”
7. Save the rack
8. Create a new room named “test_D2.5”
9. Place the “test_D2.5” rack into the room
10. Drag the rack to the position at x=1,5m; y=1,5m
11. Save the room
12. Download the archive file

Result:

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 86 /123

Figure 4-6: Exported room as ZIP file

All expected files are in the archive. The numbers at the end of the names were
assigned by the DEBBConfigurator. The X*** numbers in front of the model
names were assigned during the upload process.
As seen below the “Transform id” in line 30 shows the correct distances (X; Y; Z)
in [m] for the Intel node in relation to the chassis. The last four numbers in a
“Transform id” line give the X, Y, Z, coordinates followed by a 1 at the end of the

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 87 /123

transformation, which is a scale factor for the whole object. These
transformations are given for every part in the PMLXML and are added as shown
at the beginning of the test by the software that uses them. The heatpipe for
example is listed with a 1cm Z-axis offset (line 15 below) in relation to the node it
belongs to. This 1cm gap is listed as 0.01, because the standard scale unit for
the DEBBconfigurator is in Meter.

1 <ProductRevisionView id="iview14_1" name="Heatsink_1">
2 <UserData id="iview14_1_1">
3 <UserValue value="Heatsink" title="DEBBLevel"></UserValue>
4 <UserValue value="KontronCOMExpressPassiveHeatsinki7_14"

 title="DEBBComponentId"></UserValue>
5 <UserValue value="Heatsink_KontronCOMExpressPassiveHeatsinki7_14.xml"

 title="DEBBComponentFile"></UserValue>
6 </UserData>
7 <Representation id="iview14_1_objects_X142_Intel_I7_heatsink_00_stl" format="STL"

location="./objects/X142_Intel_I7_heatsink_00.stl"></Representation>
8 <Representation id="iview14_1_objects_X184_Intel_I7_heatsink_00_m_90_wrl"

format="VRML" location="./objects/X184_Intel_I7_heatsink_00_[m]-
90.wrl"></Representation>

9 </ProductRevisionView>
10 <ProductInstance id="inst14_1" name="Heatsink_1" partRef="iview14_1">
11 <UserData id="inst14_1_1">
12 <UserValue title="power-sensor" value="power"></UserValue>
13 <UserValue value="Heatsink_inst14_1" title="label"></UserValue>
14 </UserData>
15 <Transform id="id14_01">1 0 0 0 0 1 0 0 0 0 1 0 0 0 0.01 1</Transform>
16 </ProductInstance>
17 <ProductRevisionView id="iview06_2" name="i7_0_01" instanceRefs="inst14_1">
18 <UserData id="iview06_2_1">
19 <UserValue value="Node" title="DEBBLevel"></UserValue>
20 <UserValue value="KontronCOMebSC23615QE_6" title="DEBBComponentId"></UserValue>
21 <UserValue value="Node_KontronCOMebSC23615QE_6.xml"

 title="DEBBComponentFile"></UserValue>
22 </UserData>
23 <Representation id="iview06_2_objects_X128_Intel_I7_00_stl" format="STL"

location="./objects/X128_Intel_I7_00.stl"></Representation>
24 <Representation id="iview06_2_objects_X190_Intel_I7_00_m_90_wrl" format="VRML"

location="./objects/X190_Intel_I7_00_[m]-90.wrl"></Representation>
25 </ProductRevisionView>
26 <ProductInstance id="inst06_2" name="i7_0_01" partRef="iview06_2">
27 <UserData id="inst06_2_1">
28 <UserValue value="i7_0__inst06_1" title="label"></UserValue>
29 </UserData>
30 <Transform id="id06_02">-1 0 0 0 -0 -1 0 0 0 0 1 0 0.25634 0.29995 0.01739 1

</Transform>
31 </ProductInstance>

In Figure 4-7 the summed up results can be seen in COVISE as a correct
positioned node, heatsink and chassis in the rack.

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 88 /123

Figure 4-7: Positioned heatsink in the chassis

4.1.3 DCworms GUI
After setting up the simulation parameters with the experiment configurator, the
user can proceed to the DCworms GUI window that provides the means to
complete the workload simulation process. As mentioned in Section 2.3.3,
DCworms GUI allows users to update DCworms with workload specification and
information about management policy. Left panel allows users to browse the list
of all the workloads uploaded to the repository, with respect to the hierarchy of
created directories. Each selected workload is complemented with brief
description of its main characteristics. They include number of jobs, their average
runtime, arrival rate, etc. Furthermore, selection of workload results in displaying
a list of application that constitutes the workload. Browsing that list allows users
to view the details of their profiles (as presented in Figure 4-8).

Y

Z

X

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 89 /123

Figure 4-8: Preview of application profile within DCworms GUI

Finally, the upper right panel delivers information about the workload and
resource management policy to be applied during the simulation. Sample
configuration of the experiment was presented in Figure 2-16 in Section 2.3.3.
The second tab of DCworms GUI allows the specification of load calendars. For
the given resource level, chosen from the list of defined levels for the analysed
DEBB, the user can provide load distribution according to mean and standard
deviation values. View of this panel can be seen in the following figure (Figure
4-9).

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 90 /123

Figure 4-9: DCworms GUI – load specification window

The “Start Simulation” button placed on the “Run Simulation” tab in DCworms
GUI invokes simulation process. It also triggers the update of database with the
information coming from DCworms GUI. Available console allows the user to
follow the progress of the simulation. After the simulation is completed, all the
gathered and calculated data are written into the database. Later on they can be
analysed by Metric calculator or viewed in MOP GUI. Apart from that, an
overview of energy efficiency metrics is also presented by DCworms GUI, in
additional dialog window (as shown in Figure 4-10).

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 91 /123

Figure 4-10: DCworms GUI - energy efficiency metrics

4.1.4 MOP-GUI
There are two available modes of displaying MOP-GUI:

• Standard mode, which presents one 3D view and three charts. In this
mode the user can view results of one experiment. The standard mode is
presented in Figure 4-11

• Comparison mode, which presents two 3D views and three charts, each
chart can be assigned to show metrics for first or second 3D window. 3D
windows can present different experiments/trials/models. In this mode the
user can compare results of two experiments regardless of whether it is a
simulation result or real testbed measurements. The comparison mode is
presented in Figure 4-12

In this document there are described only basic MOP-GUI test; for further
information please check the D4.7 - Second prototype of Module Operation
Platform GUI
Both modes are accessible from the main portal menu as subtabs of the MOP
tab. In each case MOP-GUI presents the model and results that are assigned to
those chosen by the user experiment and trial. Experiment and trial can be also

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 92 /123

set inside MOP-GUI. In this case the user can easily choose experiments to
compare and quickly change the presented case.

Figure 4-11: MOP-GUI - Standard mode view

Figure 4-12: MOP-GUI - Comparison mode view

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 93 /123

4.1.5 COVISE-GUI
As noted, COVISE GUI offers web-based graphical interfaces presenting entire
simulation results of the CFD-simulation, visualizing air flow across all building
blocks (DEBBs) and enabling interaction with the simulation, allowing the user to
change interactively the simulation parameters that affect position (arrangement)
of objects. The figure below visualizes COVISE-GUI capable of rearranging
positions of racks (left) represented by shapes and visualizes results of CFD
simulation (right). After rearranging the positions of racks in the room and
pressing simulation button, the visualisation of the simulation is updated
according the new positions, as presented in Figure 4-13.

Figure 4-13: COVISE GUI

4.1.6 Metric Calculator and Report-GUI
Once an experiment and trial have been selected, we can access the Reports
TAB and go to the Metrical Calculator sub-menu allowing us to interact with the
Metric Calculator component.
In order to test the Report-GUI and its interaction with the Metric Calculator we
tried many different usage scenarios.
When a trial has not been correctly selected the following error will be displayed:

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 94 /123

Figure 4-14: Report-GUI experiment selection error

When a report has not yet been calculated the following error will be displayed:

Figure 4-15: Report-GUI missing report error

When a report is currently being generated the following error will be displayed:

Figure 4-16: Report-GUI currently computing error

When everything is set and computed, the Report-GUI component will display
the resulting metrics:

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 95 /123

Figure 4-17: Report-GUI normal report

In addition to these basic scenarios we tried the Report-GUI with every different
scenario stored in the experiment database of the Web-GUI.

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 96 /123

4.2 Test of the SVD-Toolkit components
In this section we describe tests of SVD-Toolkit components that are accessed
by the command line and are similar to v1 of the Toolkit, including Application
profiler, Repository, Database, Data Centre workload simulator, CFD solver,
COVISE and metric calculator. The content in this section is originated mostly
from D2.4, extended by section 4.2.6.

4.2.1 Application Profiler
The application profiler was tested by creating the profile of one the HPC
benchmark EP with different frequencies. The faster the processor, the lower the
number of phases that are detected because some slight behaviour changes do
not have enough impact at faster speed to be detected as new phases.

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 97 /123

Profile at fastest speed
<resourceConsumptionProfile>
 <resourceConsumption>
 <referenceHardware>Intel_i7</referenceHardware>
 <duration>PT4S</duration>
 <behaviour name="cpu">
 <value>99</value>
 </behaviour>
 <behaviour name="network">
 <value>29</value>
 </behaviour>
 </resourceConsumption>
 <resourceConsumption>
 <referenceHardware>Intel_i7</referenceHardware>
 <duration>PT67S</duration>
 <behaviour name="cpu">
 <value>98</value>
 </behaviour>
 <behaviour name="network">
 <value>88</value>
 </behaviour>
 </resourceConsumption>
 <resourceConsumption>
 <referenceHardware>Intel_i7</referenceHardware>
 <duration>PT8S</duration>
 <behaviour name="cpu">
 <value>98</value>
 </behaviour>
 <behaviour name="network">
 <value>29</value>
 </behaviour>
 </resourceConsumption>
 <resourceConsumption>
 <referenceHardware>Intel_i7</referenceHardware>
 <duration>PT63S</duration>
 <behaviour name="cpu">
 <value>98</value>
 </behaviour>
 <behaviour name="network">
 <value>85</value>
 </behaviour>
 </resourceConsumption>
 <resourceConsumption>
 <referenceHardware>Intel_i7</referenceHardware>
 <duration>PT69S</duration>
 <behaviour name="cpu">
 <value>98</value>
 </behaviour>
 <behaviour name="network">
 <value>85</value>
 </behaviour>
 </resourceConsumption>
 <resourceConsumption>
 <referenceHardware>Intel_i7</referenceHardware>
 <duration>PT61S</duration>
 <behaviour name="cpu">
 <value>98</value>
 </behaviour>
 <behaviour name="network">
 <value>80</value>
 </behaviour>
 </resourceConsumption>
 <resourceConsumption>
 <referenceHardware>Intel_i7</referenceHardware>
 <duration>PT72S</duration>
 <behaviour name="cpu">
 <value>98</value>
 </behaviour>
 <behaviour name="network">
 <value>76</value>
 </behaviour>
 </resourceConsumption>
</resourceConsumptionProfile>

Profile at slowest speed
<resourceConsumptionProfile>
 <resourceConsumption>
 <referenceHardware>Intel_i7</referenceHardware>
 <duration>PT4S</duration>
 <behaviour name="cpu">
 <value>99</value>
 </behaviour>
 <behaviour name="network">
 <value>28</value>
 </behaviour>

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 98 /123

 </resourceConsumption>
 <resourceConsumption>
 <referenceHardware>Intel_i7</referenceHardware>
 <duration>PT46S</duration>
 <behaviour name="cpu">
 <value>98</value>
 </behaviour>
 <behaviour name="network">
 <value>92</value>
 </behaviour>
 </resourceConsumption>
 <resourceConsumption>
 <referenceHardware>Intel_i7</referenceHardware>
 <duration>PT18S</duration>
 <behaviour name="cpu">
 <value>98</value>
 </behaviour>
 <behaviour name="network">
 <value>38</value>
 </behaviour>
 </resourceConsumption>
 <resourceConsumption>
 <referenceHardware>Intel_i7</referenceHardware>
 <duration>PT72S</duration>
 <behaviour name="cpu">
 <value>98</value>
 </behaviour>
 <behaviour name="network">
 <value>90</value>
 </behaviour>
 </resourceConsumption>
 <resourceConsumption>
 <referenceHardware>Intel_i7</referenceHardware>
 <duration>PT12S</duration>
 <behaviour name="cpu">
 <value>98</value>
 </behaviour>
 <behaviour name="network">
 <value>40</value>
 </behaviour>
 </resourceConsumption>
 <resourceConsumption>
 <referenceHardware>Intel_i7</referenceHardware>
 <duration>PT72S</duration>
 <behaviour name="cpu">
 <value>98</value>
 </behaviour>
 <behaviour name="network">
 <value>90</value>
 </behaviour>
 </resourceConsumption>
 <resourceConsumption>
 <referenceHardware>Intel_i7</referenceHardware>
 <duration>PT4S</duration>
 <behaviour name="cpu">
 <value>98</value>
 </behaviour>
 <behaviour name="network">
 <value>44</value>
 </behaviour>
 </resourceConsumption>
 <resourceConsumption>
 <referenceHardware>Intel_i7</referenceHardware>
 <duration>PT93S</duration>
 <behaviour name="cpu">
 <value>98</value>
 </behaviour>
 <behaviour name="network">
 <value>89</value>
 </behaviour>
 </resourceConsumption>
</resourceConsumptionProfile>

4.2.2 SVN Repository
As noted, the interaction with SVN repository is done via svn-client (svn
command). The following example shows interaction with the svn:

volk@timacs:~/coolemall-repository$ svn co https://svn.coolemall.eu/svn/repository

A repository/users

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 99 /123

A repository/common

A repository/common/debbs

A repository/common/workloads

A repository/common/applications

Checked out revision 51.

volk@timacs:~/coolemall-repository$ cd common/

volk@timacs:~/coolemall-repository/repository/common$ ls

applications debbs workloads

volk@timacs:~/coolemall-repository/repository/common$ mkdir experiments

volk@timacs:~/coolemall-repository/repository/common$ ls

applications debbs experiments workloads

volk@timacs:~/coolemall-repository/repository/common$ svn ci

Adding common/experiments

Committed revision 52.

volk@timacs:~/coolemall-repository/repository/common$

4.2.3 Database
To execute the Python wrapper it is necessary to start the coolemalldb demon:

[timacs@recs1 coolemall] ./bin/coolemall
usage: coolemall <option>
 -h|--help This blurb.
 -k|--kill|--stop Stop coolemalldb.
 -s|--start Start coolemalldb.
 -i|--status Show status of coolemalldb.

Example invocation:
 coolemall --start
The test of the collemall DB using script based API (described in Section 3.3 in
D2.4) are show below:

[timacs@recs1 coolemall]$./coolemall_getRecordsByMetricName
testbed/hlrs/hpc/hw/rack1/recs1/i7_0_05 mem_usage
[(1361574545L, 42356.230000000003, 'ok-low')]

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 100 /123

[timacs@recs1 coolemall]$./coolemall_getMetricNames
testbed/hlrs/hpc/hw/rack1/recs1/i7_0_05
[cpu_usage, mem_usage, usr_load]

[timacs@recs1 coolemall]$./coolemall_getHostNames
[testbed/hlrs/hpc/hw/rack1/recs1/i7_0_05, testbed/hlrs/hpc/hw/rack1/recs1,
testbed/hlrs/hpc/hw/rack1]

[timacs@recs1 coolemall]$./coolemall_getLastMetricsByHostName
testbed/hlrs/hpc/hw/rack1/recs1/i7_0_05
[Metric(name='cpu_usage', output='ok-low', value=6.21, source='nagios',
host='testbed/hlrs/hpc/hw/rack1/recs1/i7_0_05', time=1361574550L,
performance='ok-2.5'), Metric(name='mem_usage', output='ok-low',
value=42356.230000000003, source='nagios',
host='testbed/hlrs/hpc/hw/rack1/recs1/i7_0_05', time=1361574545L,
performance='ok-1.5'), Metric(name='usr_load', output='ok-low',
value=12.210000000000001, source='nagios',
host='testbed/hlrs/hpc/hw/rack1/recs1/i7_0_05', time=1361574525L,
performance='ok-2.5')]

[timacs@recs1 coolemall]$./coolemall_getLastMetricByMetricName
testbed/hlrs/hpc/hw/rack1/recs1/i7_0_05 cpu_usage
host = testbed/hlrs/hpc/hw/rack1/recs1/i7_0_05
name = cpu_usage
output = ok-low
performance = ok-2.5
source = nagios
time = 1361574550
value = 6.21

[timacs@recs1 coolemall]./coolemall_getExperimentsList
[exp_1, exp_2, exp_3]

[timacs@recs1 coolemall] ./coolemall_getTrialsList exp_1
[trial_1, trial_2, trial_3]

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 101 /123

#Including data onto database
[timacs@recs1 coolemall]./coolemall_putMetricDB "experimentID: exp_1,
trialID:trial_1,name:cpu_usage,time:1361574539,value:12356.21,object_path:tes
tbed/hlrs/hpc/hw/rack1/recs1/i7_0_05,source:nagios,performance:ok-
2.5,output:ok-low"

[timacs@recs1~]$ coolemall_getSelectedMetric
sim/expSelected/tSelected/cfd/hw/hlrs/rack1/recs1/inlet_01 test_selected
1393842120 1393843981
('499.683',)

4.2.4 DCworms
Apart from simulation of complex distributed computing systems, DCworms has
been also used to simulate execution of workloads on resources defined by
DEBBs for RECS. Results of this work have been presented in [DCworms2012]
and in [CoolEmAll_RECS].
In [CoolEmAll_RECS] the impact of resource allocation policies on power draw
and outlet temperatures of RECS system was studied. Based on DEBB a
description of RECS unit containing 18 Intel i7 nodes was built.
The evaluated workload had the given characteristics (Table 4-1):

Table 4-1: Workload characteristics

load intensity 70%
number of tasks 1000
tasks interval [s] 560
Application classes scalable CPU-intensive – 34%

single threaded – 33%
IO-intensive – 33%

As a workload management policy simple FCFS with Relaxed Backfilling
approach strategy assigning tasks to nodes in Random manner was used.
Power estimations were based on power measurements made for each
application type.
The following figure (Figure 4-18) shows the power consumption chart generated
based on the data gathered during the DCworms simulation.

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 102 /123

Figure 4-18: Power usage chart generated for the DCworms simulation

4.2.5 CFD simulation using OpenFOAM
For test purposes to main test cases on RECS level are considered and in this
stage executed. First there is the flow through a compute node, in this case the
RECS-design of project partner Christmann is used for a reference case. Second
the test was done on a random compute room. These test cases were
considered most viable because these cases are most likely to be used by end
users.

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 103 /123

4.2.5.1 Flow through RECS

Figure 4-19: velocity and temperature distribution inside RECS

This figure shows the velocity and temperature distribution inside a compute
node of RECS type. The colour along the plane represents the temperature
distribution in conjunction with the heatsinks of the CPUs. The streamlines and
the velocity vectors in conjunction with their colour represent the velocity
distribution. Hot temperature is coloured in red and colder temperature goes over
green to blue. Velocity is coloured in a similar way and red means high velocities.

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 104 /123

4.2.5.2 Flow through Compute Room

Figure 4-20: velocity and temperature distribution inside a compute room

Figure 4-20 shows temperature and velocity distribution inside a randomly
chosen compute room. The 24 squares represent the inlets for the air inflow,
which are also the top of the server racks inside this compute room. Temperature
is again represented by the colour of the cutting plane. Velocity magnitude and
velocity direction is shown by the colour and direction of the streamlines and the
velocity vectors.

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 105 /123

4.2.6 CFD simulation using COVISE with Ansys CFX
As described in scope of section 3.2.6, the simulation of heat-flow in server-room
was done using COVISE with Ansys CFX solver. Figure 3-6 presented in section
3.2.6 visualized configuration of the workflow within the COVISE environment
used (i) to integrate input parameters coming from various sources necessary to
setup simulation, (ii) execute simulation remotely using corresponding (CFX)
solver, (iii) post-process and visualize results using renderer (presented in the
Figure 3-6 on the right).
Another configuration of the server-room and visualisation of the simulation
results using COVISE and its render is presented in Figure 4-21.

Figure 4-21: Visualisation of the heat-flow distribution within a room using COVISE

renderer

4.2.7 Metric Calculator
In this section we present tests of the Metric Calculator. The Metric Calculator
has been used to calculate metrics on a wide variety of experiments made both
in a real and simulated environment. The output has been compared to results

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 106 /123

obtain by calculating metrics using some other tools (including Excel sheets) in
order to check their validity.

Some examples of calculations are shown in the following lines. Timestamps are
based on seconds since standard epoch of 1/1/1970.

Imbalance of temperature calculation (testbed):
Calculation of the imbalance of temperature between the nodes of the node-
group recs1
[user@recs1 MetricCalc]$./metricCalc.py imbalance_of_temperature
testbed/psnc/hpc/hw/rack1/recs1 1362752604 1362755664

[user@recs1 MetricCalc]$ coolemall_getLastMetricByMetricName
testbed/psnc/hpc/hw/rack1/recs1/ ImbalanceOfTemperature -From:1362752604-To:1362755664

host = testbed/psnc/hpc/hw/rack1/recs1

name = ImbalanceOfTemperature -From:1362752604-To:1362755664

output = OK

performance =

source = metricCalc

time = 1362755664

value = 19.2183893608

Power calculation (testbed):
Calculation of the power consumption of the node-group recs1.
[user@recs1 MetricCalc]$./metricCalc.py power_usage testbed/psnc/hpc/hw/rack1/recs1
1362752604 1362755664

[user@recs1 MetricCalc]$ coolemall_getRecordsByMetricName testbed/psnc/hpc/hw/rack1/recs1
Power 1362752604 1362755664

[NumRecord(1362752609000000000L, 252.0, 'OK'),
NumRecord(1362752621000000000L, 229.0, 'OK'),
NumRecord(1362752633000000000L, 250.0, 'OK'),
NumRecord(1362752645000000000L, 239.0, 'OK'),
NumRecord(1362752657000000000L, 224.0, 'OK'),
NumRecord(1362752669000000000L, 238.0, 'OK'),
NumRecord(1362752681000000000L, 224.0, 'OK'), …]

Minimum power calculation (testbed):
Calculation of the minimum power consumption of the node-group recs1.
[user@recs1 MetricCalc]$./metricCalc.py minimum_power testbed/psnc/hpc/hw/rack1/recs1
1362752604 1362755664

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 107 /123

[user@recs1 MetricCalc]$ coolemall_getLastMetricByMetricName
testbed/psnc/hpc/hw/rack1/recs1/ MinPower-From:1362752604-To:1362755664

host = testbed/psnc/hpc/hw/rack1/recs1

name = MinPower-From:1362752604-To:1362755664

output = OK

performance =

source = metricCalc

time = 1362755664

value = 215.0

Maximum power calculation (testbed):
Calculation of the maximum power consumption of the node-group recs1.
[user@recs1 MetricCalc]$./metricCalc.py maximum_power testbed/psnc/hpc/hw/rack1/recs1
1362752604 1362755664

[user@recs1 MetricCalc]$ coolemall_getLastMetricByMetricName
testbed/psnc/hpc/hw/rack1/recs1/ MaxPower-From:1362752604-To:1362755664

host = testbed/psnc/hpc/hw/rack1/recs1

name = MaxPower-From:1362752604-To:1362755664

output = OK

performance =

source = metricCalc

time = 1362755664

value = 275.0

Average power calculation (testbed):
Calculation of the average power consumption of the node-group recs1.
[user@recs1 MetricCalc]$./metricCalc.py average_power testbed/psnc/hpc/hw/rack1/recs1
1362752604 1362755664

[user@recs1 MetricCalc]$ coolemall_getLastMetricByMetricName
testbed/psnc/hpc/hw/rack1/recs1/ AvgPower-From:1362752604-To:1362755664

host = testbed/psnc/hpc/hw/rack1/recs1

name = AvgPower-From:1362752604-To:1362755664

output = OK

performance =

source = metricCalc

time = 1362755664

value = 236.233910486

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 108 /123

Energy consumption calculation (testbed):
Calculation of the energy consumption of the node-group recs1.
[user@recs1 MetricCalc]$./metricCalc.py energy testbed/psnc/hpc/hw/rack1/recs1 1362752604
1362755664

[user@recs1 MetricCalc]$ coolemall_getLastMetricByMetricName
testbed/psnc/hpc/hw/rack1/recs1/ Energy-From:1362752604-To:1362755664

host = testbed/psnc/hpc/hw/rack1/recs1

name = Energy-From:1362752604-To:1362755664

output = OK

performance =

source = metricCalc

time = 1362755664

value = 200.864444444

Power Usage Effectiveness (simulation):
Calculation of the average power consumption of the node-group recs1.
[user@recs1 MetricCalc]$./metricCalc.py pue
sim/CapacityManagement/LoadBalancing/DCWORMS/metrics/room1

[user@recs1 MetricCalc]$ coolemall_getLastMetricByMetricName
sim/CapacityManagement/LoadBalancing/DCWORMS/metrics/room1 MC_PUE-
From_1383904800000-To_1383919634000

host = sim/CapacityManagement/LoadBalancing/DCWORMS/metrics/room1

name = MC_PUE-From_1383904800000-To_1383919634000

output = ok

performance = ok

source = metricCalc

time = 1383919634000

value = 1.28280601679

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 109 /123

5 Summary
In scope of D2.4 we described realization of the 1st prototype of the SVD-Toolkit,
demonstrating its functionality and capability to simulate and assess efficiency of
various configurations of servers and data centres. However, the usage of the 1st
prototype required expert knowledge to apply its command line based interfaces
for data centre optimisation To overcome the high expertise required and to
simplify usage of the SVD-Toolkit, we developed in scope of the final prototype
web based Graphical User Interfaces to SVD-Toolkit, summarized as CoolEmAll-
Web-GUI, allowing interacting with the SVD-Toolkit and visualizing its results.
The CoolEmAll-Web-GUI comprises several GUIs integrated into the common
web based GUI environment each capable of interacting with the corresponding
SVD-Toolkit component through a web page in a guided manner. Such a web
based CoolEmAll-Web-GUI simplifies usage of the SVD-Toolkitand makes
installation of the SVD-Toolkitcomponents at user-side unnecessary, as it is
sufficient to install components at the provider sides and access them remotely
via web-interfaces.
In this deliverable we described realization, usage and test of the CoolEmAll-
Web-GUI (and its components), along with the components of the final prototype
of SVD-Toolkit. The test and usage described in this deliverable demonstrated
that SVD-Toolkit and its web based interfaces can be easily used even by a non-
skilled users: (i) to define parameters necessary for execution of simulation, (ii)
to design data centre building blocks (DEBBs) on various level of granularity, (iii)
to select application- and workload-profiles, execute workload simulation and find
the best scheduling strategy for energy-savings, (iv) to visualize results of the
workload simulation while comparing outcomes with real measurements, (v) to
setup and simulate heat-flow distribution within a server or a data centre and
visualize results, and finally (vi) to calculate power-consumption and assess
energy- and cooling-efficiency of various DEBB configurations, applications,
workload and environmental conditions.
Extending the SVD-Toolkit by CoolEmAll-Web-GUI completes CoolEmAll’s vision
and its holistic approach in the design and operation of data centres, enabling full
life-cycle optimisation of cooling- and energy-efficiency of data centres on various
scale level. The full life-cycle optimisation offered by SVD-Toolkit to the users is
achieved by enabling: (a) modular design, configuration and arrangement of data
centre components on various scale level (DEBB design) taking hardware and
facility characteristics into account, (b) capturing application profiles in real
environment and generating workload-profiles reflecting real demand of various
applications and use-groups, (c) evaluating various workload scheduling polices
for selected hardware configuration, applications profiles and workloads, to
optimize operation and increase energy-savings, (d) evaluating interactively heat-
flow distribution in various data centre configurations to optimize data centre
layout and improve cooling-efficiency, (e) assessing all above mentioned aspects
in a report, providing metrics on productivity, energy-efficiency, cooling-efficiency,
monetary- and CO2 costs of data centres configuration and operation. Such an

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 110 /123

approach and capabilities offered by SVD-Toolkit achieves the objective of the
CoolEmAll project to enable designers and operators of a data centre to reduce
its energy impact by combining the optimization of IT, cooling and workload
management.

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 111 /123

6 Annex A. Description of test implemented to assess
CoolEmAll methodology

Model a Data Centre using CoolEmAll Data Efficiency Building Blocks

Description:

Model a room with DEBB configurator using some pre-modeled nodes to
simplify the configuration process.

Test steps:
1) Access CoolEmAll WEB-GUI:

http://sf2.coolemall.eu
2) Login with credentials (username/password): test/test
3) Go to DEBB tab > From DEBB configurator tab we are able to setup

and configure different components for each of the levels (component,
node, node group, rack, room)

4) Navigate thought the DEBB configurator menu (left side) to get an
overview of the different components that we are able to model
(baseboards, processors, memories, heatsinks, power supplies,
nodes, etc.).

Figure 22: DEEB configurator menu

5) Go to NODE GROUPS sub-menu to start the creation of a node group,
in this step we are going to create a Resource Efficient Computing &
Storage (RECS) server hardware using pre-configured nodes. Click
“CREATE NODE GROUP” at the bottom and fill the form using the
following sample parameters:

Table 6-1: Node Groups parameters
Computer ID Manufacturer Product

MyRECS Chistmann RECS | Box Compute
MyRECS

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 112 /123

Label Hostname Instance name
(not mandatory) (not mandatory) (not mandatory)

Chassis (After selection
the nodes position have
been displayed)

Min allowed
temperature

Max allowed
temperature

Chirstman RECS |
Box Compute Unit

(not mandatory) (not mandatory)

Type Power usage profile Mesh resolution
Intel i7 (not mandatory) 0 0 0

Location in mesh XML name Costs [EUR]

0 0 0 myrecs (not mandatory)

Costs [CO2] Networks
(not mandatory) Generic 100Mbit

Populate the compute unit selecting “Kontron COMe-bSC2 - 3615QE”
or “Kontron COMe-bSC2 - 2715QE” (or any other supported node) at
your choice as nodes within the RECS, click ADOPT to add your unit.
When all the nodes are selected press SAVE button, afterwards you
will be able to use your new RECS in a RACK. At this stage you should
be able to download the archive that represents the compute node.

You can upload the new RECS to the common repository from the
NODE GROUPS menu, clicking Add to svn button.

Figure 23: SVN upload path

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 113 /123

6) Afterwards, go to RACKS sub-menu, you will be able to insert RECS
servers into the RU, clicking into the RACK figure displayed at top-left
in the main window.

Table 6-2: RACK parameters
Computer ID Manufacturer Product

MyRACK Chistmann Testbed_Rack

Label Costs [EUR] Costs [CO2]
(not mandatory) (not mandatory) (not mandatory)

Hostname XML Name Power usage profile

Chirstman RECS |
Box Compute Unit

myrack (not mandatory)

Type Instance name Witdh [m]
Intel i7 (not mandatory) (0.5)

Height [m] Depth [m] Gap bottom [m]

(1.7) (1.15) 0.2

Gap left [m] Rack size [RU] Flow direction
0.037 (choose the rack size.

i.e:20)

(not mandatory)

Mesh resolution Location in mesh Current power usage
0 0 0

0 0 0

(not mandatory)

Populate the rack unit selecting the node group created in the previous
step.

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 114 /123

Figure 24: Node Group break-down menu

When the rack units are populated press SAVE button, afterwards you
will be able to use your new RACK in a room. At this stage you should
be able to download the archive that represents the rack.

You can upload the new RACK to the common repository from the
RACK menu, clicking Add to svn button.

7) After the creation of the RACK, you should be able to populate a room
with your already created RACK composed by RECS. Go to Room
sub-menu and use your configured racks to populate the room:

Table 6-3: Room parameters
Computer ID Name Building

MyRoom MyLittleRoom PSNC

Height[m] XML name Mesh resolution
2.5 myroom 0 0 0

Location in mesh Costs [EUR] Costs [CO2]

0 0 0

(not mandatory)

(not mandatory)

Select the components of your room by clicking into them, the element
selected will appear into the graph window automatically, the graph
window can be resized dragging the right-bottom corner.

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 115 /123

Figure 25: Room graph window

When all the components are selected press SAVE button, afterwards
you will be able to use your new room. At this stage you should be able
to download the archive that represents the DEBB.

Results:

PLXML file describing the DEBB

Simulate a Data Centre Workload using DCworms to compare different resource
scheduling policies

Description:

DCworms is a simulation tool that can be used to verify power usage and
thermodynamic models based on selected scheduling algorithm, resource
allocation algorithm and resource management policy. The steps
described below will compare the simulation of OpenSSL workload using
a load balancing strategy versus a consolidation strategy in low-power
nodes. The DEBB input for this test is pre-charged in the system.

Test steps:

1) Access CoolEmAll-WEB-GUI:
http://sf2.coolemall.eu

2) Login with credentials (username/password): test/test
3) First all we need to decide which room will be used in our new

experiment:
Go to the DEBB configurator tab > ROOMS , and duplicate PSNC –
MyTestRoom. If it is needed, you can edit the room parameters before

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 116 /123

upload the model to the common repository or use the room already
created in the previous experiment.

4) Once we have the room, we can setup the configuration for a new
experiment. Go to the Experiments tab and click New from the up-
down menu.
Fill the form with the setup parameters for your new experiment and
save the experiment afterwards.

Table 6-4: Experiment parameters
Experiment ID Description Type

MyExperiments (not mandatory) DCworms

CO2 Emission Factor
[g/kWh]

Start End

(not mandatory) (mm/dd/yy)
(hh/mm/ss)

(mm/dd/yy)
(hh/mm/ss)

5) When the experiment is created, we can add trials associated with the

experiment definition. Edit the experiment and click Add Trial button in
the experiment view.
Table 6-5: Room parameters
Trial Name Timestamp Start

(d/m/y h:m:s)
Timestamp Start (d/m/y h:m:s)

MyNewTrial DCworms

Timestamp Start
(d/m/y h:m:s)

DEBB Level DEBB URL

 room https://svn.coolemall.eu/svn/
repository/common/

debbs/trunk/MyTestRoom
Application
Profile URL

Workload Profile
URL

Path PLXML

(not mandatory) (not mandatory) https://svn.coolemall.eu/svn/
repository/common/

debbs/trunk/MyTestRoom/
PLMXML_PSNCMyTestRoom_12.xml

Path WRL Path STL Object Path
(not mandatory) (not mandatory) (not mandatory)

Testbed
Instanace

Alpha Baseline Temperature

(not mandatory) (not mandatory) (not mandatory)

Ambient
Temperature

DataCentre
MassFlow

(not mandatory) (not mandatory)

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 117 /123

6) Once the experiment is saved and the associated trials created, next
step is set the trial configuration as a context variable in order to be
used by the simulation and visualization tools.
Go to Experiments tab > List > Click Trials button in MyExperiments
> Click Set Context button for the trial you want to simulate.
“The Trial information has been saved in the session on the variable:
context.” message should be displayed.

7) Go to DCWorms tab to create the Simulation arrangement. Select
the OpenSSL workload and automatically the profile associate will be
charged.

8) Select the policy used in the simulation (i.e.:
Room_FCFS_LoadBalancing or
Room_FCFS_ConsolidationLowPower_NodePowMan)

9) Go to Run Simulation within DCworms sub-menu and click Start
Simulation. The simulation results will be displayed in the simulation
window.

10) Next step is the visualization of results, it can be done in the Reports
tab > Metric Calculator or using MOP-GUI, go to MOP tab >
Standard Mode

11) In case of MOP visualization you have to add the properties of the
data series that you want to visualize. Navigate through the DEBB
hierarchy to select in example power measurements for each of the
compute nodes and add the series to display the power plot associated
to these measurements.

Figure 26: Adding data series to MOP

12) Analyze the results displayed as well as the measurements captured

by the MetricCalculator and repeat the steps from 9 to 13 with a
different scheduling policy.

Results:

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 118 /123

Table 6-6: DCWorms result comparison

Room_FCFS_LoadBalancing ROOM_FCFS_ConsolidationLowPower_

NodePowMan

Simulation finished with status: 0
===== Metrics =====
Total processors energy consumption: 727.36
[Wh]
Total IT energy consumption: 727.36 [Wh]
Total node group fans energy consumption:
452.826 [Wh]
Total rack energy consumption: 1356.536 [Wh]
Total data centre fans energy consumption:
240.135 [Wh]
Total cooling device energy consumption: 6.57
[Wh]
Total other devices energy consumption:
271.307 [Wh]
Total energy consumption: 1874.548 [Wh]
Mean rack power: 1067.671 [W]
Mean power: 1475.377 [W]
Max rack power: 1172.092 [W]
Max power: 1601.245 [W]
PUE: 1.382 []
PUE Level 4: 2.577 []
Energy waste rate: 59.436 [%]
Useful Work: 512475783 [UW units]
Productivity: 377782.79 [UW units/Wh]
===== Performance statistics =====
Makespan: 4574 [s]
Task completion time - min: 518 [s]; max: 4574
[s]
Mean task execution time: 513.108 [s]
System occupancy: 37.393 [%]
System load: 33.394 [%]

Simulation finished with status: 0
===== Metrics =====
Total processors energy consumption:
206.175 [Wh]
Total IT energy consumption: 206.175 [Wh]
Total node group fans energy consumption:
211.118 [Wh]
Total rack energy consumption: 479.647 [Wh]
Total data centre fans energy consumption:
110.631 [Wh]
Total cooling device energy consumption:
2.211 [Wh]
Total other devices energy consumption:
95.929 [Wh]
Total energy consumption: 688.418 [Wh]
Mean rack power: 377.592 [W]
Mean power: 541.943 [W]
Max rack power: 1124.598 [W]
Max power: 1543.995 [W]
PUE: 1.435 []
PUE Level 4: 3.339 []
Energy waste rate: 3.699 [%]
Useful Work: 146348530 [UW units]
Productivity: 305117.244 [UW units/Wh]
===== Performance statistics =====
Makespan: 4573 [s]
Task completion time - min: 517 [s]; max:
4573 [s]
Mean task execution time: 512.558 [s]
System occupancy: 37.361 [%]
System load: 44.458 [%]

Simulation of Computational Fluid Dynamics (CFD) with re-arrangement of racks

Description:

In this test we describe sever-room optimization using CFD simulations
from the COVISE-GUI included within the CoolEmAll-WEB-GUI. The heat
and air flow simulations will help data centre operators to detect and avoid
hot-spots; afterwards they can try to resolve them re-arranging the racks
within the room. The end-users will be able to identify problems and find a
better placement of the racks in the rooms avoiding these problems.

Test steps:
1) Access CoolEmAll-WEB-GUI:

http://sf2.coolemall.eu
2) Login with credentials (username/password): test/test

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 119 /123

3) First all we need to decide which room will be used in our CFD
simulation. To set a trial on the session variable (context) you have to
go to Experiments > List > trials > Set Context

4) After the selection of the trial to simulate there is another configuration
step that need to be set before run the simulation. Go to MOP >
Standard Mode and select a time point in the time-line displayed on
top of the MOP window, afterwards you have to select Set time for
CFD from the up-down menu.

Figure 27: MOP - setting time for CFD simulation

5) Once the time point is selected you can go to COVISE tab to execute

the air and heat flow simulations after the re-arrangement of racks
within the room. The COVISE GUI has been displayed in a dual view
mode, on one hand at the left you can select the parameters that
configure the simulations, and on the other hand at the right window
you can visualize the results of the simulation.

6) Next step is to re-arrange some of the servers displayed at bottom-left
in the room view. After the re-arrangement you should click Execute
COVISE and automatically you will see how the heat and airflow
distribution change with the new position of the racks.

7) Before and after the simulation change the Isosurface parameter on
top-left to visualize the heat distribution at different surface levels.

Results:

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 120 /123

Figure 28: CFD heat and air flow simulations

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 121 /123

7 References
[SVD-Toolkit] download link for SVD Toolkit:

http://www.coolemall.eu/web/guest/download/-
/document_library_display/g2Kj/view/57456

[SF2] High Performance PHP Framework for Web Development –

Symfony. http://symfony.com/

[ApSu] Apache Subversion. http://subversion.apache.org/

[PaVi] ParaView - Open Source Scientific Visualization.

http://www.paraview.org/

[OpMPI] Open MPI: Open Source High Performance Computing.

http://www.open-mpi.org/

[D2.2] CoolEmAll Deliverable D2.2 Design of the CoolEmAll simulation

and visualisation environment, 2012

[D2.3] CoolEmAll Deliverable D2.3 First definition of the hardware and

software models, 2013

[D2.3.1] CoolEmAll Deliverable D2.3.1 Update on definition of the

hardware and software models, 2013

[D2.4] First release of the simulation and visualisation toolkit, 2013

[D2.5] Second release of the simulation and visualisation toolkit, 2014

[D3.2] CoolEmAll Deliverable D3.2 First definition of the modular

compute box with integrated cooling, 2013

[D3.6] CoolEmAll Deliverable D3.6 Final release of the rack-level and

the modular compute boxes, 2014

[D4.3] CoolEmAll Deliverable D4.3 First set of resource management

and scheduling policies, 2013

[D4.7] CoolEmAll Deliverable D4.7 - Second prototype of Module

Operation Platform GUI, 2014

[D4.6] CoolEmAll Deliverable D4.6 Second set of resource

management and scheduling policies, 2014

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 122 /123

[D6.1] CoolEmAll Deliverable D6.1 - Validation Scenarios,
Methodology and Metrics, 2012

[DCworms2012] Kurowski, K., Oleksiak, A., Piatek, W., Piontek, T.,

Przybyszewski, A., Weglarz, J. (2013) DCworms - a tool for
simulation of energy efficiency in distributed computing
infrastructures, Simulation Modelling Practice and Theory, in
revision.

[CoolEmAll_RECS]
 Da Costa G., Jarus, M., Oleksiak, A., Piatek, W., Volk, E., vor

dem Berge, M., Modeling Data Centre Building Blocks for
Energy-efficiency and Thermal Simulations, 2012

[CoolEmAll-SVN] CoolEmAll project subversion repository,

https://svn.coolemall.eu/svn/repository

[SWF] Parallel Workload Archive,

http://www.cs.huji.ac.il/labs/parallel/workload/

[SLURM] https://computing.llnl.gov/linux/slurm/

[SVN] Apache Subversion software versioning and revision control

system, http://subversion.apache.org

[TORQUE] TORQUE Resource Manager,

http://www.adaptivecomputing.com/products/open-
source/torque

[OpenFOAM] OpenFOAM User Guide Version 2.1.1,

http://www.openfoam.org/docs/user/
[GPL] GNU General Public License http://www.gnu.org

[LGPL] GNU Lesser General Public License http://www.gnu.org

[MPL2] Mozilla Public License Version 2.0
 http://www.mozilla.org/MPL/2.0

[MIT] The MIT License http://www.opensource.org/licenses/MIT

Collaborative project Grant agreement: 288701

 Version: 1.11

Authors: E. Volk et al.
Date: 31/03/2014 Page 123 /123

[EurPar] Directive 2009/125/EC. Retrieved from
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?
uri=OJ:L:2009:285:0010:01:EN:HTML. 2009

