Keywords: SVD-Toolkit, CFD, Workload simulator, DCworms, database, deployment, Repository, Simulation, Visualization, COVISE, OpenFOAM

This deliverable describes the realisation of the final prototype of the Simulation, Visualisation and Decision (SVD) support toolkit and the interaction of its components. It further describes the usage and the tests of the components of the final prototype of the SVD-Toolkit, via the CoolEmAll-Web-GUI interface. Another focus of this deliverable is describing the heterogeneous deployment architecture of the SVD-Toolkit and the use of the different components for performing an automatic simulation.

Special focus is put on the distributed deployment architecture, realization, usage and tests of this final prototype of SVD-Toolkit via the CoolEmAll-Web-GUI interface.

Table of Contents

Version: 1.11 Authors: E. Volk et al.

Date: 31/03/2014 Table 2-

List of Figures

List of Tables

Introduction

In scope of "D2.5 Second Release of the SVD-Toolkit" [D2.5] the realization of the 2 nd prototype of the Visualization and Decision Support Toolkit (SVD-Toolkit) was described and delivered in PM 28. Within the last two project months, the focus within the WP2 was on the refinement of the implementation of the SVD-Toolkit, removing bugs to make it more stable and simplifying usage of the SVD-Toolkit. In this deliverable the realization of the final prototype of SVD-Toolkit is described, updating D2.5 final description and interaction of its components and CoolEmAll-Web-GUI interfaces. Another focus of this deliverable is to describe the heterogeneous deployment architecture of the SVD-Toolkit and the use of the different components for performing an automatic simulation with and without web based interfaces. It further describes the usage and the tests of the components of the final Prototype of the SVD-Toolkit via CoolEmAll-Web-GUI interfaces.

As noted in D2.4, the SVD-Toolkit is a tool to help design more energy efficient data centres and optimize existing data centres to operate in a more energy efficient manner. It allows assessment of energy-& cooling efficiency and facilitates optimization of data centre building blocks, reflecting various configurations of a data centre and its components on various scale levels, by means of coupled workload and thermal-airflow simulation. This is done in several different consecutive steps. First, different application profiles are calculated. These application profiles resemble the requirements normal applications usually have. With these application profiles synthetic workloads are generated and used by the workload simulator to evaluate various scheduling policies and determine power usage of the individual hardware components reflected in configuration of the data centre. These results are used as inputs for CFD (Computational Fluid Dynamics) simulation to calculate thermal-airflow distribution within compute-room, in order to identify hot spots and assess cooling efficiency. Furthermore, thermal-heat provided by CFD simulation is used to calculate power-usage of the cooling-devices. All results are stored in a central database to be used for calculation of the assessment metrics. Additional results are obtained by conducting several characteristic trials, so that all results can be verified.

In order to simplify the usage of the SVD-Toolkit, in scope of the final prototype a web based GUI interface was developed, allowing users to interact with each component of the SVD-Toolkit to execute and evaluate trials with various configurations in a single web based environment guided by corresponding WEB-GUI pages. Using CoolEmAll-Web-GUI users are capable easily of: (i) defining experiment configuration parameters, (ii) designing data centre efficiency building blocks (reflecting design of data centre components and layout), (iii) selecting application-profiles, workload-profiles and simulating various scheduling policies, (iv) getting visualisation of the workload simulation results and compare these against real measurements, (v) evaluating interactively various data-centre layouts and visualizing heat-flow distribution within the server-room for various arrangements, and (vi) getting report assessing energy-efficiency and cooling-efficiency of experiment-trials. Furthermore, all components of the SVD-Toolkit have been improved and refined, adding: (i) new scheduling policies on room level, (ii) integrating DEBBs with COVISE and CFD simulation enabling interactive arrangement, and, (iii) adding new assessment metrics on room level. Overview of new components and extended functionality is presented in section 2.

The SVD-Toolkit components along with the CoolEmAll-Web-GUI described in this deliverable can be downloaded from the project-website [SVD-Toolkit].

This deliverable is split into five major parts. Special focus is put on the distributed deployment architecture, realization, usage and tests of this final prototype of SVD-Toolkit via CoolEmAll-Web-GUI interfaces. After the short introduction presented in this section, this deliverable describes the architecture and properties of the individual components of the final prototype of SVD-Toolkit presented in section 2, usage of these components in section 3, and their tests in section 4. Finally, section 5 summarizes this deliverable.

Realisation of the final Prototype of SVD-Toolkit

The final prototype of SVD-Toolkit consists of several different components including the web based GUI, called CoolEmAll-Web-GUI, allowing the interaction with the SVD-Toolkit and its components. The development of each component was done individually, while the interaction between all components in a seamless workflow is controlled via scripts and web based GUIs, integrated into a single environment -a portal solution based on Symfony2™ [START_REF]High Performance PHP Framework for Web Development -Symfony[END_REF]. This approach grants the user the possibility of: (i) using each of the components of SVD-Toolkit on its own in expert mode using command line interfaces, and (ii) interacting seamlessly with all components integrated in the SVD-Toolkit via the web based GUI interfaces, allowing changing interactively simulation parameters, executing workload-and CFD-simulations, and visualising simulation results and assessment metrics.

This section is structured as follows: in Section 2.1 we describe the deployment architecture of the SVD-Toolkit, Section 2.2 provides detailed description of the core components of the SVD-Toolkit and Section 2.3 provides detailed description of the CoolEmAll-Web-GUI, consisting of several GUIs enabling interaction with the components.

Deployment architecture

In this section we describe deployment architecture of the 1 st prototype of SVD-Toolkit, based on D2.4, and present architecture of the final prototype of SVD-Toolkit, extending the 1 st prototype by integrating CFD simulation with COVISE and development of the CoolEmAll-Web-GUI.

The deployment of the SVD-Toolkit components and interaction between components of the 1 st prototype is shown in Figure 2

Application Profiler

For simulations in CoolEmAll, the focus is on power-, energy-and thermal-impact of decisions on the system. In order to have realistic simulations, a precise evaluation of resource consumption is necessary.

Repository

The repository is the central point in the SVD system architecture. It allows storing, editing and accessing files used by SVD-Toolkit components remotely, while ensuring their consistency. The repository contains:

• Application-profiles, describing resource usage of applications at different application phase The DEBBS top-folder contains for each test bed site dedicated folder <location>, named according to location of the test bed: PSNC, HLRS, IRIT. The <location> folder contains DEBBs that are characteristic for particular test beds located at PSNC, HLRS and IRIT. Within the <location folder>, there is "objects" folder which contains geometrical objects of DEBB, in STL and VRML format.

The main PLMXML file and DEBBComponent.xml files are located within the location folder.

Database

For saving simulations data a MySQL database has been designed. In this first version, the database contains the table "metric" with all collected information related to experiments and trials. In Figure 2-3 we can observe the fields of the table . For communication with the database we have created the following component:

• Python Wrapper: to insert and access the data in the MySQL database. Methods defined on the wrapper can be executed, both locally and remotely. For remote executing we have to use the stand-alone Remote Procedure Call (RPC) client available. The following table provides an overview on software and libraries used for implementation of the developed component. characteristics as well as to the detailed resource parameters. Based on these models and taking into account applied resource management policy, DCworms is able to provide data including a distribution of power usage and air throughput for the models specified within the SVD-Toolkit. These values may be then analysed directly (using MOP-GUI) and/or provided as an input to the CFDsolver.

Referring to the functionality and characteristics presented in the aforementioned papers and reports ([D2.2], [D2.4] and [DCworms2012]), DCworms has been extended with several new features. They aim is to support the user performing more comprehensive studies on energy-usage optimization.

Firstly, resource description can now be extended with load calendars that describe general load distribution for particular resources. For each resource, user can specify its utilisation levels within different periods of time. This information is then passed to DCworms and can be used by the user to estimate power consumption of the system. By these means, real-world statistics/measurements defining, for instance, background or initial load levels can be easily applied.

Moreover, resource description schema was modified in order to support definition of other, non-IT resources. In this way devices, like fans, cooling system, power supplies, etc. can be described. For each of them, the user can specify their detailed characteristics, including power profiles and power consumption models. These data can be then easily accessed by the user within the DCworms plugins and used, for instance in a scheduling process. DCworms provides also the implementation of power consumption models for cooling equipment following the ones presented in D2. Finally, the outcome of the workload simulation phase was extended. Apart from a set of performance stats and a distribution of power usage and air throughput, a collection of energy efficiency metrics including PUE, productivity and energy waste level is calculated at the end of each simulation.

With respect to the information provided by D2.4, some new software dependencies come with the recent update of DCworms. Table 2-5 presents dependencies added since the ones specified in D2.4.

Open-FOAM based CFD-Solver

In this section we describe Open-FOAM based CFD-Solver, used to simulate heat-flow simulation within the servers (RECS). The description provided here is originated from D2.4 [D2.4].

The CFD-Solver does the CFD-simulation and creates the flow field and values on which other components rely on. For its work it needs input from various other components. First it needs the geometry input from the DEBB in .PLMXMLformat, retrieved from the DEBB repository. This is then transformed in a simulation region. Additionally there are boundary conditions and initial conditions needed. These values are supplied by the DCworms workload simulator and automatically retrieved from the MOP database. With these starting values the CFD-toolkit performs the flow and temperature simulation automatically. Therefore it first reads the relevant geometry files. These files are then meshed automatically and supplied to the CFD-calculation tool, which performs the CFD-calculation automatically. After the simulation has finished links to the flow and temperature field are stored in the central database and mean values for all relevant values, e.g. velocity and temperature for the interesting geometry, which are especially inlet and outlet are created and stored to the database.

To perform these calculations different tools of OpenFOAM and specifically developed software is used. The following table summarizes software used by CFD solver. At the beginning, the setup of the case is done by a script. Then the simulation environment is set up for "blockMesh". This is done by parsing a XML-file and the rest of the setup for blockMesh is then done automatically. BlockMesh then creates a rectangular mesh. This is the basis for the work of "snappyHexMesh". But before snappyHexMesh can start its work the .PLMXML-file needs to be parsed and the necessary transformations for the .STL-files, which are the mandatory geometry representations are made. These .STL-files have to be supplied to the toolkit by the user and need to represent all used geometry, especially inlets and outlets, individually. These geometry files are then used by snappyHexMesh to create the computational mesh. After the geometry is transformed into a computational mesh the boundary conditions are set up automatically by invoking the governing scripts and specially developed programs. For all different geometry representations this setup is performed individually. After these introducing steps the decomposition of the mesh is done and the actual calculation is performed in parallel mode to speed up the process. The solver to perform the calculation is "bouyantBoussinesqSimpleFoam". It is capable of calculating incompressible flow for stationary conditions in conjunction with heat transfer. After the parallel solver has finished the decomposed computational mesh is reassembled and converted to EnSight and VTK format.

RapidXML

The MIT License Fast XML-Parser written in C++ programming language space inside the database. The utility to perform the final calculation is "swak4foam" and the governing script invokes it automatically.

Dependencies exist especially on the input site of the CFD-Solver. Here are to name the geometry files, which have to be .STL-files. These .STL-files need to be referenced correctly by the .PLMXML-file which represents the DEBB. To ensure consistency between all the invoked applications a naming convention was made.

A second very important convention is set up to find the data stored in the database. This is done by a convention for the data storage path in the database.

Another dependency is on the site of the boundary conditions. To create the correct boundary conditions the CFD-solver needs the output of the DCworms workload simulator in the units and for the correct values. The values monitored for this stage power and airflow is used.

For the output only one dependency is obvious. The data, which has to be stored in the database, needs to be put on the right place. Therefore the path where the input data is located is reused and the according data is added.

As noted, each functional surface, e.g. inlet and outlet has their own .STL-files and need to be referenced in .PLMXML-file. This is necessary for setting up the boundary conditions for CFD-simulation. For this purpose the next sections describe naming conventions used in .PLMXML-file and path.

Naming convention for PLMXML-file

For now this convention needs to be applied for the "ProductInstances", as these are the parts, which matter for the CFD-simulation. This naming convention is used for the name of the ProductInstance, e.g. the name specified in the first line of the product instance.

As pointed out, the generation of the geometry data is extracted from the DEBB (main PLMXLM file), containing references to geometric objects specified in .stl files, as described in D3.2 ([D3.2]). The geometric objects are composed of faces 1 . There are four (4) significant faces for CFD, hat are handled in simulation in different way:

• inlet (source of airflow)

• outlet (exhausting airflow)

• heatsink (source of heat)

• wall (surface reflecting the airflow)

1 Sides of a geometric object are called faces.

For specification of the boundary patch, an inlet, name of ProductInstance-Element within the PLMXML file should consist of the keyword, specifying facetype (for inlet this keyword is "inlet"). Next there is a" §" as a separator followed by the name of the corresponding geometry-object the according boundary patch belongs to.

< face-type> §<object-name >

• <face-type> is element of {"inlet", "outlet", "heatsink"}, in case of absence of face-type, "wall" face-type is presumed.

• <object-name> is the name of the geometry-object and might contain "@", that is converted to '/' path-separator used to access object-path.

An example for this is: inlet §RackNECWC_01@inlet_01, specifying face-type inlet, object RackNECWC_01 and its part inlet_01.

Path to data stored in database

The database stores different input parameters for CFD simulations (such as power and airflow), that belongs to particular surfaces of objects, used within simulation. In order to setup simulation with right parameters (boundary conditions) belonging to corresponding geometry-object, such as airspeed at "inlet" of a rack, these parameters are queried from the database using full object-path to particular geometrical object. The full object-path is built as a concatenation of all object-names in the hierarchy of PLMXML file:

<object-name of level1>/<object-name of level2>/<object-name of level3>/...

We always start out with the configuration of whole setup. We start which the name of the server room (level 1), followed by "/". Next is the name of the rack (level 2), etc. This makes up the path to the important data stored for the CFD.

Inside this path there is the necessary data stored:

• Pressure p • Temperature T • Velocity U Example: HLRSServerroom/RackNECWC_01/inlet_1

Orientation of velocity at inlet

The .STL-files used to define the geometry for CFD-simulation input need the following orientation convention.

The tessellation of .STL-file has to be done according to the right-hand-rule. The face normal vector, which results from this rule, has to point in direction of flow for the inlet.

COVISE and CFX based CFD Solver

For simulation of the heat-flow on room level, COVISE and Ansys CFX have been selected, as OpenFOAM based CFD calculation required too long time, making interactive usage of the CFD simulation impossible -a key-feature of the SVD-Toolkit.

As noted in D2. The Computational Fluid Dynamics (CFD) Solver is directly integrated into the COVISE workflow and enables to simulate and analyse complex heat flow and dissipation processes, and their consequences on flow guiding structures, such as compute-building blocks (DEBBs) in data centres. For this purpose a heat flow model defined by partial differential equations is defined. CFD solvers are using this model to calculate and simulate the interaction of liquids and gases with surfaces defined by boundary conditions of DEBB's geometry and other parameters. The results of a simulation, a heat-flow distribution map, are passed over to Simulation Workflow/COVISE and can be visualised using COVISE GUI integrated into CoolEmAll-Web-GUI. In addition, the temperature and airflow on inlet/outlets of the building blocks are extracted from the heat-flow distribution map and stored in the Database, ready to be used by metrics calculator to calculate assessment metrics.

The COVISE licence and its modules are described on the corresponding webpage http://www.hlrs.de/organization/av/vis/covise/ and can be downloaded from http://www.hlrs.de/covise/support/download. COVISE is available for various platforms including: Linux (Fedora, SUSE; Red Hat, Ubuntu), Mac OS, and Windows (ia 32 and x64). Since version 4.5 COVISE will not run without a license anymore. To get a permanent license please contact your project partner or Uwe Wössner (woessner@hlrs.de). COVISE with a demo license can be downloaded also from the CoolEmAll web-site [SVD-Toolkit].

ANSYS CFX software is a product of ANSYS and is a high-performance, general-purpose fluid dynamics program solver capable to solve CFD problems very fast. The ANSYS CFX solver can be obtained from the http://www.ansys.com product page.

Metric Calculator

As described in D2.2, the Metric Calculator is responsible for the assessment of the simulation results. Based on metrics identified and defined in D5.1, it assesses energy-efficiency and heat-efficiency of building blocks (DEBBs). The calculation itself is based on data/metrics that are retrieved from the Database.

Results of the calculation are written back into the Database, to be retrieved and visualized by MOP GUI and the Report GUI.

The Metric Calculator is a Python command line application that can be called with many different parameters depending of the calculations performed. The calculation is based on metrics retrieved from the database.

The focus here is on hardware metrics available at node, node-group, rack and room level.

While the first prototype was able to calculate 6 metrics, the current implementation of the metric calculator for the final prototype allows us to calculate these 22 following metrics:

Hardware level metrics:

• CPU usage (minimum, maximum, average) • When calculating metrics for a real world experiment, data will be read from and stored into the TIMaCS database. • When calculating metrics for a simulation, data will be read from and stored into the SVD database. • When generating a report, previously calculated metrics will be read from the TIMaCS or SVD database depending of the type of experiment and transferred into the Web-GUI database.

•

Detailed description of the CoolEmAll-Web-GUI

The CoolEmAll-WEB-GUI provides integrated web based graphical user interface allowing interacting with the SVD-Toolkit and visualizing its results. It comprises several GUIs integrated into common web based GUI environment each of them capable of interacting with the corresponding SVD-Toolkit components through the tab-page.

After entering user-name and password via login page (as shown in Figure 2-4 below) user is redirected to the welcome-page Figure 2-5, which shortly describes the components of the SVD-Toolkit. The interaction with the SVD-Toolkit is done via this CoolEmAll-Web-GUI that provides a web based user interface allowing interacting with the SVD-Toolkit and visualizing its results. It comprises several GUIs integrated into the common web based GUI environment.

Software name

License / Website Description

Stand

• Experiment configuration GUI guiding users in specifying parameters required for simulations.

• The DEBB configuration GUI allows defining, selecting and configuring data centre building blocks (DEBBs) on various granularity levels (node, node-group, rack and room level). DEBBs reflect components of the data centre and contain models necessary for workload and heat-flow simulation.

• DCworms (Data Center Workload and Resource Management Simulator) GUI is used for experimental studies of various resource management and scheduling policies. DCworms GUI allows selecting applications, workloads and scheduling policies, and presenting the results of the workload scheduling in a GUI.

• COVISE GUI presents entire simulation results of the heat-flow (CFD) simulation, visualizing air and heat flow across all building blocks (DEBBs). It allows interacting with the CFD-Simulation and change particular parameters such as the position of racks within the room, and visualizing CFD simulation results using one of the COVISE Renderers. Such an approach allows interactive evaluation of various room layout configurations to find the optimal one preventing hot spots.

• MOP GUI allows retrieving, visualising and comparing testbed (real measurements) and simulation-based results (from CFD and DCworms) against each other to validate models. Both real data obtained from measurements (e.g. temperatures, system load) and simulated data from CFD and Workload Simulation are stored in the database, both of them will be displayed in the MOP GUI to compare results and validate models.

• Report page provides assessment metrics that evaluate energy-and cooling efficiency on various granularity levels of the simulation results, applying metrics calculated by the metric calculator to assess efficiency of various configurations.

• User: additionally to the SVD-Toolkit GUIs there is also the menu User interface where there are options to register users on the CoolEmAll-Web-GUI, edit the profile of a particular user and the option to logout of the system when the user is logged in.

These are explained in the following sub-sections.

ExperimentConfigurator GUI

This is the main entry page for definition and selection of the experiment that will be executed on the SVD-Toolkit, controlled by the GUIs of the CoolEmAll-Web-GUI. On the CoolEmAll-Web-GUI the user has to select the option "Experiments" on the top menu where he/she can choose the list of all the experiments or create a new experiment, as we can see on -Experiment ID: identifier of the experiment.

-Type: type of experiment, which can be DCworms, CFD, Testbed or All.

-Start: the timestamp when the experiment starts.

Additionally, as optional information, the user can provide:

-Description: short description for the experiment.

-End: the timestamp when the experiment finishes. All the optional fields, both for experiment and trial, can be updated for the other GUIs or as result of the simulation process.

DEBBConfigurator GUI

The DEBBConfigurator GUI makes it possible for the hardware vendor and the end-user to easily create a valid DEBB without using complex XML Editors. The DEBB can then be exported to the SVN repository for other CoolEmAll-tools to be used, or downloaded as a ZIP File that contains different files:

In the CoolEmAll-Web-GUI the DEBBConfigurator is integrated as a Symfony2 "plugin".

With the DEBBConfigurator the hardware vendor can define the hardware that is available for purchase. The process has a hierarchy-like structure. Meaning you first define the components, then build nodes with these components. And put these nodes in node groups, which are then put in racks, which are placed in a room in the end of the process. This can be done by adding the components (baseboard, processor, memory, heatsink, chassis, etc.) on the component level of the process. Infrastructure components such as cooling devices, power profiles, networks and flow pumps can also be defined on this level by the vendor. Several boundary conditions for the hardware can be set. This is important for later simulation processes or to determine the overall power usage. Therefore the vendor just clicks on the plus symbol next to the processors menu for example, fills the form with a product name, manufacture, clock speed, power usage, costs and other information and saves the component part. In addition it is possible to set several power usages for different workloads of the CPU for heat dissipation over the heatsink with a defined transfer rate (as set in the heatsink part) in a simulation. From node groups creation over racks to rooms, the end-user can then choose from a variety of hardware, chassis and racks he wants to have in his/her server room. At the end the costs are displayed, and the configuration can then be downloaded as a ZIP file or can be directly exported to SVN repository to be used for simulation or a visual impression of the server room.

Fist the user can select a chassis in the node groups tab (node group level) and set which and where the nodes should be located in the chassis. This is done by selecting a predefined node-slot and then adopting a proper node to that slot.

This information can be entered in the node creation tab:

-Component id -Manufacturer (mandatory) -Product (mandatory) -Label -Hostname -Instance name -Chassis (dropdown menu with the created chassis) -Type -Maximum power usage [W] -Power usage profile (dropdown menu with the created power profiles) -Mesh resolution (parameter for simulation) -Location in mesh (parameter for simulation) -XML name -Costs [EUR] -Costs (emission of CO 2 during the production and transportation of the part) [kg CO 2] -Networks (more than one can be chosen) -Select node In the node selection only the proper type for the selected node can be chosen, e.g. only COM Express modules for a CXP2 type node. The unavailable options are disabled (see below). After that the user can choose his/her preferred rack (rack level) and place the created node groups in the cabinet by clicking an appropriate rack-unit and picking a node group. The Node Group dropdown menu is used to select the node group that will be in the selected rack unit. It also shows the remaining free rack units.

With the DEBB-GUI it is possible to create a unique server room (room level) with a user-defined combination of nodes in a chassis, different chassis with different node configurations in a rack, and with different racks in a room. Racks or flow pumps can be added by clicking on the corresponding button. The user can determine how a rack is orientated and positioned in the room, just via drag'n'drop. Scaling the blueprint of the room with the mouse can change the room size. For customization any room layout can be uploaded as 3D model file. In the main folder the validated XML files are stored. The Costs.xml contains a list of the cost of every component in the room. In the PLMXML file in the main folder, the coordinates for the 3D models in the room are stored for assembling the whole room with all components. The component XML files holds information that was supplied by the hardware vendor and which STL and WRL models belong to the node.

The STL files stored in the "objects" folder are used for CFD simulation in the room. While the WRL files are used to display the objects in the room with colors in COVISE or any other capable program. Reference to these files is given in the PLMXML and the components XML file in the main folder.

When uploaded during the node-creation the pictures showing the nodes are saved in the "pic" folder by their node name.

The exported ZIP file and its content can also be used by other tools described in this deliverable. Hence it is possible for the user to optimize a room by just dragging the racks to another position in the room and simulate the new array to see what has improved.

A more detailed description of the features of the DEBBConfigurator can be found in the deliverable 3.5.

DCworms GUI

DCworms is provided as a part of SVD-Toolkit. For this reason it accepts and generates files in appropriate formats understood by other SVD-Toolkit components. In general, performing experiments with the DCworms requires establishing the simulation environment properties first. They include specification of input files, such as resource and workload/application models as well as a definition of workload and resource management policy. DCworms offers an intuitive GUI, which guides user through this stage. It provides means to navigate through workload and application profiles repositories and to choose the ones that will be used during the simulation phase. Moreover, DCworms GUI allows browsing a list of available workload and resource management policies that can easily be exchanged between different experiments. The following policies can be applied: Room Tasks are scheduled in FCFS order and assigned to Nodes, starting from high performance CPUs, to consolidate the load on Racks and then on Nodes. For racks exceeding the power limit, a power capping strategy is applied.

Room_ConsolidationL owPower_ PowerCapping

Room Tasks are scheduled in FCFS order and assigned to Nodes, starting from low power CPUs, to consolidate the load on the Racks and then on Nodes. For racks exceeding the power limit, a power capping strategy is applied.

More details concerning available policies can be found in [D4.3] and [D4.6].

Each selection panel is supplemented by a short characteristic of the selected model. Figure 2-16 shows the main window of DCworms GUI. Additionally, DCworms GUI supports definition of load calendars (described also in Section 2.2.4) that determine the initial utilization of resources. For the given DEBB level, the user is able to specify the load distribution according to various statistical parameters.

The output of each simulation consists of a set of statistics that are written into the database and can be later viewed using the MOP GUI (where they can be seen in a graphical way), processed by the Metric Calculator or used for the purpose of CFD analysis. Moreover, in order to enable quick insight into an effectiveness of the selected policy, DCworms GUI also displays a set of energy efficiency metrics.

COVISE GUI

As noted, the COVISE GUI provides user web based access to COVISE, allowing interacting with the simulation by changing parameters such as rearranging positions of racks represented by shapes within the room and visualizing results of the simulation. Figure 2-17 provides overview of the web based GUI to COVISE. MOP GUI involves following parameters.

• Selection of the DEBB to be visualized

Metric Calculator and report-GUI

The Metric calculator GUI is in charge of assessing experiments by calculating a selection of efficiency metrics. As an outcome, it generates an assessment report of the experiment.

In order to obtain such a report, the Metric Calculator requires an access to the monitoring infrastructure database (when calculating metrics for an experiment made on a real data-centre) or the SVD database (for a simulated experiment) to retrieve the measurements data necessary to calculate metrics, which will then be stored back into their respective databases. Finally these data will be transferred to the web-GUI database in order for the metric calculator GUI to be able to access them.

The Report-GUI will then display a summary table of metrics calculated for each components at different level.

Each of the metric named in the following lists are described in the deliverable D5.1 ([D5.1]).

For a simulation experiment the report will contain the following metrics:

•

User interface

This is the interface where the user account can be created. The user can also edit his/her profile, as we can see on Figure 2-20. On the CoolEmAll-Web-GUI the user has to select the option "User" on the top menu where he/she can choose from the options "Register", "Edit Profile" or "Logout". Additionally, as optional information, the user can provide:

Role: there are two roles on the system: (i) Designer who has access to the GUIs ExperimentConfigurator, DEBBConfigurator, COVISE and ReportGUI; and (ii) Operator who has access to all the components GUIs of the SVD-Toolkit. The user can have none, one or both roles.

The second option is "Edit Profile" where the user can change the information saved during the registration process and additional information needed to execute the COVISE-GUI. These fields, as presented on Figure 2-22, are:

-Covise Server: server name in which Covise is running.

-Covise Port: port that is using Covise on the server name.

Addressing the EcoDesign Directive

As described in [D3.6] in the year 2009 the European Union has released a directive regarding the energy efficient production and operation of energy consumption relevant products [EurPar]. The main goal is to improve the efficiency of those products and to form a fair platform for trading these products within the EU without any disadvantages in competing countries. The following section gives an insight of how the concept of the EcoDesign Directive is reflected in the SVD-Toolkit.

When designing a product or a facility with the SVD-Toolkit, there are several metrics that can be processed, calculated and finally analysed. The most important metric in the scope of the EcoDesign directive is surely CO 2 , thus the costs in CO 2 can be entered into the DEBBconfigurator, from a single component up to the CO 2 costs to provide a modelled facility. These CO 2 costs contain an estimation of the produced CO 2 in tons that will be emitted into the air, water and ground in case of the production of the specific component. The following factors could be included in this calculation:

• CO 2 equivalent to the energy needed to produce the component taking into account the respective environmental impact of various used materials • CO 2 emitted through transportation • CO 2 equivalent to the used electric power over the estimated lifetime • CO 2 equivalent to the expected environmental stress trough noise, electromagnetic radiation, etc. over the estimated lifetime • CO 2 equivalent to the amount of created waste after the lifetime • CO 2 savings when recycling or reusing the component At higher levels of the DEBBconfigurator, these CO 2 costs get automatically summed up and displayed to the user so that he is easy able to compare the "greenness" of his specific configuration. Analogue the CO 2 costs, the maximum power usage of each component can be entered, summed up and compared. With these indicators it is easy for a user to see which components and configurations fit best into its company philosophy -e.g. to have a very green configuration with a low CO2 footprint which on the other side might cost a little more.

When using the SVD-Toolkit to generate a report and calculate metrics related to an experiment, these metrics, defined by the DEBBconfigurator, will be extracted and integrated into the metric report. In this way the end-user is able to visualize all the metrics in one place and can easily take decisions by taking all these costs data into consideration.

In the trial interface of the ExperimentConfigurator the CO 2 Emission Factor was also included. So, this factor can be updated for the other components of the SVDtoolkit during the execution of the experiments.

ExperimentConfigurator selection dialogue

To start an experiment the user must select the TAB of the ExperimentConfigurator GUI and execute the following steps, see Figure 3-1: 1. Create a new experiment. The user must select the type of experiment to be executed (DCworms, CFD, Testbed or All).

2. The user provides the Experiment Id.

3. The user has to select the option "create a new trial" and provide both the timestamp and the DEBB level in which the experiment is performed. The trial status is updated.

4. The user receives a message that the operation was successful.

5. The user provides additional information (optional), such as SVN version, DEBB URL, application profile URL and workload Profile URL. This information is saved on the database.

6. It shows to the user a message about the result of the trial configuration.

7. When the user selects the option "Next", a query is done on the database in order to know what is the next component that the user can access is. The GUI of the next component is activated. In case the user has already created an experiment and trial in the past, then after logging into the Symfony2, all trials, which are not finished, will be shown. The user selects then the trial that he/she wants to check / modify / execute:

• User log ins into the Symfony2

DEBBConfigurator GUI

To start a DEBB specification the user must select the TAB of the DEBB configuration GUI and execute the following steps, see Figure 3-2: 1. Create a DEBB specification. The DEBBConfigurator GUI must get the value of the necessary variables to execute the DEBB configuration GUI.

2. The user has to provide the information to create the DEBB model (as described in section 2.3.2 of this deliverable). The output of the process is saved on the SVN repository when the corresponding button in the node groups, racks or rooms TAB is clicked. The necessary variables, such as the SVN path to the DEBB files, are saved in the database. A default SVN path is suggested and can be changed to store the same DEBB under different names for different experiments.

3. When the exportation to the SVN repository is finished the user will be prompted a "Next" button. When the user selects the option "Next", a query is done on the session variable "context" in order to know which the next component that the user can access is. This depends on the type of experiment (DCworms, CFD, Testbed or all) the user has chosen while creating the experiment. The GUI of the next component is called. If no experiment is selected the "Next" button will not show up.

DCworms GUI

To start a DCworms simulation the user must select the TAB of the DCworms GUI and execute the following steps, see Figure 3-3: 1. Create DCworms simulation. The DCworms GUI must get the value of the necessary variables to execute it. 5. When the user selects the option "Next", a query is done on the database in order to know which the next component that the user can access is. The GUI of the next component is activated. To start a COVISE simulation the user must select the TAB of the COVISE GUI and execute the following steps, see Figure 341. Create COVISE simulation. The COVISE GUI must get the value of the necessary variables to execute it.

2. The user could provide additional information to execute the COVISE component -including arrangement of racks within the room.

3. The user starts the execution of the simulation, when all the requirements are reached.

4. The output of the process is visualised in the GUI, while essential metrics as extracted from the simulation results and are saved to the database.

5. When the user selects the option "Next", a query is done on the database in order to know which the next component that the user can access is. The GUI of the next component is activated.

MOP GUI

To start MOP GUI the user must select the TAB of the MOP-GUI and execute the following steps, see Figure 341. View metrics in 3D view and 2D line charts. The MOP-GUI must get the value of the necessary variables to present the appropriate model and metrics.

2. When the user selects the option "Next", a query is done on the database in order to know which the next component that the user can access is. The GUI of the next component is activated.

Metric Calculator and Report-GUI

The report-GUI provides access to report created by the metrics calculator.

In order to use the metric calculator report-GUI, the user must execute the following steps:

1. Select an already existing experiment and trial using the "List" sub menu from the "Experiments" TAB.

2. Select the "Reports" TAB and the "Metric Calculator" sub-menu.

3. If the report is not yet generated the user has to follow on-screen instructions to start the calculation.

4. The output of the process is stored in the web-GUI database.

5. If the report has already been generated the user will be able to navigate through all the data-centre levels (from the data-centre itself to the node) and see resulting metrics. Once the user is on a report page she/he is able to navigate through the metrics using the links included in the Reports level table.

Lists of the following elements will progressively appear when clicking elements containing them:

• Key metrics (default selected level) o Rooms  Racks • Nodes-groups o Nodes
Each of these elements is a link to the corresponding report.

Expert usage of SVD-Toolkit components

In this section we describe how SVD-Toolkit components are used to enable execution of experiments (simulation) by advanced users, applying command line options. The description in this section is mostly originated from [D2.4].

Application Profiler

As stated in D2.4, the Application Profiler is quite simple to use. Each time an application is run on the test-bed, the application is run afterwards to produce its profile using monitored information available in TIMaCS. The resulting XML file is stored in the SVN hierarchy following the official CoolEmAll architecture. DCworms can then read these files for simulation purposes.

SVN Repository

As stated in D2.4, the SVN repository provides access to: application profiles, workload-profiles, DEBBs, and experiment configurations, used by SVD-Toolkit components for execution of experiments/simulations. In order to interact with the repository, on the client side, the user runs an Apache Subversion client application -typically a command line client, but possibly a GUI client as well.

There exist a number of SVN clients, capable to access SVN server (repository). The most used command line options by SVN clients are:

• svn checkout -to checkout a working directory from the svn server

• svn add -to add a new file or directory to repository

• svn update/up -to update local copy with files from SVN server.

• svn commit/ci -to recursively sends local changes to the SVN server The usage of repository is done according to structure and conventions described in section 2.2.2.

Database

As stated in D2.4, the database includes several methods via RPC that can be called to insert and to retrieve data. To simplify query of the database, we implemented a script based API:

• coolemall_getExperimentsList -Return a list of all the experiments saved on the database.

• coolemall_getLastMetricByMetricName object_path metric_name [experiment_ID trial_ID]

-Return the last metric specified by metric_name, object_path, experiment_ID and trial_ID. Experiment_ID and trial_ID are optional. The metric contains the last time and value recorded.

• coolemall_getLastMetricsByHostName object_path [experiment_ID trial_ID]

-Return the last metrics of a specified object_path, for a given experiment_ID and trial_ID. Experiment_ID and trial_ID are optional.

• coolemall_getMetricNames object_path [experiment_ID trial_ID]

-Return all the metrics saved for a particular object_path on a specified experiment_ID and trial_ID. Experiment_ID and trial_ID are optional.

• coolemall_getHostNames [experiment_ID trial_ID]

-Return all object_path for which metrics are saved from a given experiment_ID and trial_ID. Experiment_ID and trial_ID are optional.

• coolemall_getRecordsByMetricName object_path metric_name [experiment_ID trial_ID start_time, end_time]

-Return a list of metrics that contains record objects. Each record has three attributes: time, value and output. The arguments experiment_ID, trial_ID, start_time and end_time are optional. The argument start_s in seconds specifies the earliest record to be returned. No records newer than end_s (in seconds) are returned.

• coolemall_getSelectedMetric object_path metric_name t_start t_selected -Return the value of the metric_name given the timestamp start and the timestamp selected.

• coolemall_getTrialsList experiment_ID -Retrieve all trial_ids for a specified experiment_ID • coolemall_putMetricDB "metric_attribute" [,metric attribute ...] -Insert into the database the parameters specified in the string by command line. Each attribute is a set of tuples key:value separated by comma (,) that represent the metric. For example: "experiment_id:id_2,time:139893248,..."

DCworms

As stated in [D2.2] and presented in 2.1 the input to the workload simulation phase consists of workload and application profiles as well as DEBB model. In general, in DCworms all of this information is included within the single configuration file that is passed as an input parameter. This file has a typical, Java resource bundle format. List of all available parameters is presented below.

workload=workload.swf resdesc=serverRoom.xml workload parameter specifies the path and name of the file containing the workload profile. For the purposes of the workload description within the SVD-Toolkit we adopted Standard Workload Format (SWF) [SWF]. In addition to the predefined labels in the header comments, we introduce support of a new one that is used to provide information about types of applications used within the given set of tasks. In this way, a workload profile contains the references to the corresponding application profiles that will be loaded and linked during the simulation. More details of the workload and application profiles and the format of the particular descriptions can be found in [D2.3].

resdesc parameter points to the path and name of file with the resource characteristics. DCworms is also able to read DEBB files (the format of such files was described in [D3.2]) by translating them to its own resource description file. This file also contains reference to workload and resource management policy used for particular experiment (within the SVD-Toolkit this information is provided by DCworms GUI).

There are a number of management policies provided with DCworms and available from the DCworms GUI perspective. They include various approaches starting from load balancing strategy, through consolidation methodology up to energy usage optimization one, that take into account both application and resource profiles. Moreover, most of them come in a version with node power management approach for both ComputeBox levels or with power capping strategy on the room level. More details concerning the policies can be found in [D4.3] and [D4.6].

To perform experiments using DCworms, the user needs to execute the following command, passing the path to the configuration file as a program argument:

sbatch --partition=aux runDCworms.sh experiment1/RECSexperiment1.properties

The simulation is controlled by the testbed queuing system (SLURM) and it is requested to be started on aux partition. The partition is designed for running computations outside the main monitored part of the testbed to not influence the measurements. It consists of two worker nodes that have their own dedicated power lines and are physically separated from rest of the testbed.

CFD using OpenFOAM

As stated in D2.4, the interaction with the CFD-solution within 1 st prototype was done via a command line based script.

Before the invoking of the script can be done a simulation environment needs to be set up. This consists foremost of a working installation of OpenFOAM and a setup of OpenMPI [OpMPI]. This is supposed to be done before you start with the setup of the bespoke CFD-solution.

For setting up an automated simulation based on this first prototype it is most convenient to do so in a dedicated directory. In our case this directory is called "auto_OpenFOAM". In this working directory it is supposed to have the following subdirectories set up: One directory should be called "DEBB". In this directory the governing .PLMXML-file and the geometry representing .STL-files are stored.

Then there is another important directory, which is called "control_files". This directory is particularly important when it is of interest to run several different simulations. In this directory simulation independent solver parameter are stored. These variables are editable but it is not necessary and not recommended to do so. These variables are reused for each independent simulation and therefore these variables are copied to the corresponding files of the simulation case. Another important directory is called "TIMaCS". In this directory are the scripts for invoking the database for automatic creation of boundary and initial conditions stored, as well as the scripts for putting back the simulation results to the database. Then there is directory called "SRC". In this directory the source code and the executables for the automated setup of the simulation case is stored. So there should be no necessity for the user to interact with this directory.

Then there are some more .TXT and .XML-files. These files are described in the order the setup script invokes them. First there is a file called Definition_Quader.xml. In this file the definitions are made for invoking blockMesh. blockMesh sets up the surrounding region in which the geometry to simulate is meshed. Here it is necessary to make sure that the geometry fits into the surrounding region created by blockMesh and therefore the size of this region can be adjusted accordingly in this file called "Definition_Quader.xml. Next the user finds a file called locationInMesh.txt. This file is important for snappyHexMesh. To enable snappyHexMesh to automatically create a mesh based on the region created by blockMesh and the .STL-files transformed by the PLMXML-parser it is necessary to specify a point inside the mesh, in a region where the mesh should be kept. The point inside the mesh region to keep is stated in the file called "locationInMesh.txt"

In the file called temperature.txt temperature values for boundaries, which are not referenced in the database, are stored. This is necessary as there are no temperature sensors available on these boundaries, which are for example sidewalls. These values should be submitted in degrees Celsius in the format found in the file and are editable by the user. After a simulation was done a new directory called "case1" appears. In this directory the data for the whole simulation can be found. And this directory is deleted and remade every time a simulation is started automatically. So if the user desires to keep the whole simulation case it is best to move this directory to a different location before another automatic simulation is started.

When all this setup is complete, the simulation can be started automatically just by calling the script called Autorun with submitting the path to the location on the .PLMXML-file and the name of the host for which the metrics are stored. The retrieving of all relevant data and the calculation is then performed automatically.

CFD using COVISE with Ansys CFX

In version 2 of the Toolkit, simulation of the server-room is done using COVISE with Ansys CFX. As noted, the Simulation Workflow COVISE (Collaborative Visualisation and Simulation Environment) is an extensible distributed software environment capable to integrate simulations, post-processing and visualization functionalities in a seamless manner. The CFD Solver performing CFD simulation is directly integrated into the COVISE workflow, including all necessary pre-and post-processing tasks.

Metric Calculator

The Metric Calculator is a Python command line application that can be called with many different parameters depending of the calculation.

Measurements and calculations can be done at each level of the data-centre.

Starting at the data-centre level itself, the room level, the rack level, the nodegroup level and finally the node level.

In order to be able to compare simulation and real world experiments the Metric Calculator can be executed on both environments.

Each metric can be calculated individually (as shown in the following listing) at the desired level. Depending of the provided parameters the Metric Calculator is able to determine if the calculation has to be done on real or simulated data and adapt the calculation.

Listing of available commands:

./metricCalc.py cpu_usage[_min, _avg, _max, _mma] <path> <start_s> <end_s> Calculate the minimum, average and maximum cpu usage of the hardware element identified by its path between two timestamps.

./metricCalc.py server_usage[_min, _avg, _max, _mma] <path> <start_s> <end_s> Calculate the minimum, average and maximum server usage of the hardware element identified by its path between two timestamps.

./metricCalc.py network_usage[_min, _avg, _max, _mma] <path> <start_s> <end_s> Calculate the minimum, average and maximum network usage of the hardware element identified by its path between two timestamps.

./metricCalc.py memory_usage[_min, _avg, _max, _mma] <path> <start_s> <end_s> Calculate the minimum, average and maximum memory usage of the hardware element identified by its path between two timestamps.

./metricCalc.py power_usage[_min, _avg, _max, _mma] <path> <start_s> <end_s> Calculate the minimum, average and maximum power usage of the hardware element identified by its path between two timestamps.

./metricCalc.py power[_min, _avg, _max, _mma] <path> <start_s> <end_s> Calculate the minimum, average and maximum power consumption of the hardware element identified by its path between two timestamps. Calculate the minimum, average and maximum imbalance of temperature of the hardware element identified by its path between two timestamps (the calculation can optionally be done only considering a set of used nodes).

./metricCalc.py imbalance_of_temperature_of_cpu <path> <start_s> <end_s> [usedNodes] Calculate the imbalance of temperature of CPU of the hardware element identified by its path between two timestamps (the calculation can optionally be done only considering a set of used nodes).

./metricCalc.py imbalance_of_temperature_of_cpu_ts[_min, _avg, _max, _mma] <path> <start_s> <end_s> [usedNodes] Calculate the minimum, average and maximum imbalance of temperature of CPU of the hardware element identified by its path between two timestamps (the calculation can optionally be done only considering a set of used nodes).

./metricCalc.py imbalance_of_heat_generation <path> <start_s> <end_s> [usedNodes] Calculate the imbalance of heat generation of the hardware element identified by its path between two timestamps (the calculation can optionally be done only considering a set of used nodes).

./metricCalc.py imbalance_of_heat_generation_ts[_min, _avg, _max, _mma] <path> <start_s> <end_s> [usedNodes] Calculate the minimum, average and maximum imbalance of heat generation of the hardware element identified by its path between two timestamps (the calculation can optionally be done only considering a set of used nodes).

./metricCalc.py pue <path> <start_s> <end_s> Calculate the power usage effectiveness of the hardware element identified by its path between two timestamps.

./metricCalc.py dcie <path> <start_s> <end_s>

Calculate the data centre infrastructure efficiency (dcie) of the hardware element identified by its path between two timestamps.

./metricCalc.py electricity_cost <path> <start_s> <end_s>

Calculate the electricity cost of the hardware element identified by its path between two timestamps.

./metricCalc.py carbon_emissions <path> <start_s> <end_s>

Calculate the carbon emission of the hardware element identified by its path between two timestamps. Some of the metrics can be calculated in two different ways. They are differentiated in the previous listing by the _ts suffix meaning that the metric can be calculated for each timestamp of the defined interval (with the _ts suffix) or over the whole interval (without the suffix). In order to simplify the usage of this tool, the Metric Calculator also includes some scripts that automatically calculate a predefined set of metrics. Theses scripts are used by the Report-GUI to start the calculation for a selected experiment and trial and store the results in the simulation or real world experiments database and finally transfer them into the web-GUI database in order to be able to access these data. In addition to the previously seen parameters these scripts accept an additional one, a link to the DEBB's files describing the specifications of the hardware used for the simulation or the real world experiment.

Computing and storing metrics for a simulation experiment is done using the following command:

./simulationMetrics.py <exp> <trial> <start> <end> [debb url]

4 Test of the CoolEmAll-Web-GUI and SVD-Toolkit

In this section we describe tests of the CoolEmAll-Web-GUI and its interaction with the SVD-Toolkit components in section 4.1 (new in final release of SVD-Toolkit. In Annex A we present the execution of the complete flow), and command line based tests of the SVD-Toolkit components described in section 4.2.

Test of the CoolEmAll-Web-GUI

In this section we describe test of the CoolEmAll-Web-GUIs. In this interface the user can select the options:

-"Show" () to see more information of the experiment; In order to have the information available of a particular trial for the other GUIs, the user has to set the trial information on the session. In this way all components can read/update the information of a particular trial. The user chooses an experiment (on the options Experiments -> List) and then he/she selects the option trials. A list with the trials of the experiment will be shown, see). In this interface we have also the options to "Show" (), "Edit" () and "Delete" () a trial of the list. The First one, "Update Context" (), allows the user to change the value of the variable on the session and the other, "Save Context" (), saves the value of the session variable on the database.

DEBBConfigurator GUI

In this test a predefined node (Kontron COMe-bSC2 -3615QE + Kontron COM Express Passive Heatsink i7) was put into a node group (test_D2.5), and into a rack (test_D2.5), which was placed in a room. The resulting room was exported as a ZIP file, which was named with the current time stamp.

This ZIP must then contain the following files: The transform coordinates for the heatsink included the following gaps:

-The rack stands at x: 1,5m; y: 1,5m; z: 0m -It has a gap of x: 0,037m; y: 0m; z: 0,2m -The chassis is at RU 10 in the rack. 1RU = 0,04445m -The node in the chassis is at this position: x: 0.25634m; y: 0.29995m; z: 0.01739m -The node is 0,01m high These offsets are listed in the exported PMLXML file. This results in the following position for the heatsink: X = 1,5m + 0,037m + 0.25634m = 1,79334m Y = 1,5m + 0m + 0,29995m = 1,79995m Z = 0m + 0,2m + (10 * 0,04445m) + 0,01739m + 0,01m = 0.67189m

The following steps have been done to create the ZIP archive: As seen below the "Transform id" in line 30 shows the correct distances (X; Y; Z) in [m] for the Intel node in relation to the chassis. The last four numbers in a "Transform id" line give the X, Y, Z, coordinates followed by a 1 at the end of the transformation, which is a scale factor for the whole object. These transformations are given for every part in the PMLXML and are added as shown at the beginning of the test by the software that uses them. The heatpipe for example is listed with a 1cm Z-axis offset (line 15 below) in relation to the node it belongs to. This 1cm gap is listed as 0.01, because the standard scale unit for the DEBBconfigurator is in Meter.

1 <ProductRevisionView id="iview14_1" name="Heatsink_1"> 2 <UserData id="iview14_1_1"> 3 <UserValue value="Heatsink" title="DEBBLevel"></UserValue> 4 <UserValue value="KontronCOMExpressPassiveHeatsinki7_14" title="DEBBComponentId"></UserValue> 5 <UserValue value="Heatsink_KontronCOMExpressPassiveHeatsinki7_14.xml" title="DEBBComponentFile"></UserValue> 6 </UserData> 7 <Representation id="iview14_1_objects_X142_Intel_I7_heatsink_00_stl" format="STL" location="./objects/X142_Intel_I7_heatsink_00.stl"></Representation> 8 <Representation id="iview14_1_objects_X184_Intel_I7_heatsink_00_m_90_wrl" format="VRML" location="./objects/X184_Intel_I7_heatsink_00_[m]-90.wrl"></Representation> 9 </ProductRevisionView> 10 <ProductInstance id="inst14_1" name="Heatsink_1" partRef="iview14_1"> 11 <UserData id="inst14_1_1"> 12 <UserValue title="power-sensor" value="power"></UserValue> 13 <UserValue value="Heatsink_inst14_1" title="label"></UserValue> 14 </UserData> 15 <Transform id="id14_01">1 0 0 0 0 1 0 0 0 0 1 0 0 0 0.01 1</Transform> 16 </ProductInstance> 17 <ProductRevisionView id="iview06_2" name="i7_0_01" instanceRefs="inst14_1"> 18 <UserData id="iview06_2_1"> 19 <UserValue value="Node" title="DEBBLevel"></UserValue> 20 <UserValue value="KontronCOMebSC23615QE_6" title="DEBBComponentId"></UserValue> 21 <UserValue value="Node_KontronCOMebSC23615QE_6.xml" title="DEBBComponentFile"></UserValue> 22 </UserData> 23 <Representation id="iview06_2_objects_X128_Intel_I7_00_stl" format="STL" location="./objects/X128_Intel_I7_00.stl"></Representation> 24 <Representation id="iview06_2_objects_X190_Intel_I7_00_m_90_wrl" format="VRML" location="./objects/X190_Intel_I7_00_[m]-90.wrl"></Representation> 25 </ProductRevisionView> 26 <ProductInstance id="inst06_2" name="i7_0_01" partRef="iview06_2"> 27 <UserData id="inst06_2_1"> 28 <UserValue value="i7_0__inst06_1" title="label"></UserValue> 29 </UserData> 30 <Transform id="id06_02">-1 0 0 0 -0 -1 0 0 0 0 1 0 0.25634 0.29995 0.01739 1 </Transform> 31 </ProductInstance>

In Figure 4-7 the summed up results can be seen in COVISE as a correct positioned node, heatsink and chassis in the rack.

DCworms GUI

After setting up the simulation parameters with the experiment configurator, the user can proceed to the DCworms GUI window that provides the means to complete the workload simulation process. As mentioned in Section 2.3.3, DCworms GUI allows users to update DCworms with workload specification and information about management policy. Left panel allows users to browse the list of all the workloads uploaded to the repository, with respect to the hierarchy of created directories. Each selected workload is complemented with brief description of its main characteristics. They include number of jobs, their average runtime, arrival rate, etc. Furthermore, selection of workload results in displaying a list of application that constitutes the workload. Browsing that list allows users to view the details of their profiles (as presented in Figure 45678). The "Start Simulation" button placed on the "Run Simulation" tab in DCworms GUI invokes simulation process. It also triggers the update of database with the information coming from DCworms GUI. Available console allows the user to follow the progress of the simulation. After the simulation is completed, all the gathered and calculated data are written into the database. Later on they can be analysed by Metric calculator or viewed in MOP GUI. Apart from that, an overview of energy efficiency metrics is also presented by DCworms GUI, in additional dialog window (as shown in Figure 4-10). In order to test the Report-GUI and its interaction with the Metric Calculator we tried many different usage scenarios.

When a trial has not been correctly selected the following error will be displayed: -k|--kill|--stop Stop coolemalldb.

-s|--start Start coolemalldb.

-i|--status Show status of coolemalldb.

Example invocation: coolemall --start

The test of the collemall DB using script based API (described in Section 3.

DCworms

Apart from simulation of complex distributed computing systems, DCworms has been also used to simulate execution of workloads on resources defined by DEBBs for RECS. Results of this work have been presented in [DCworms2012] and in [CoolEmAll_RECS].

In [CoolEmAll_RECS] the impact of resource allocation policies on power draw and outlet temperatures of RECS system was studied. Based on DEBB a description of RECS unit containing 18 Intel i7 nodes was built. The evaluated workload had the given characteristics (Table 4-1):

CFD simulation using OpenFOAM

For test purposes to main test cases on RECS level are considered and in this stage executed. First there is the flow through a compute node, in this case the RECS-design of project partner Christmann is used for a reference case. Second the test was done on a random compute room. These test cases were considered most viable because these cases are most likely to be used by end users.

Flow through RECS

CFD simulation using COVISE with Ansys CFX

As described in scope of section 3.2.6, the simulation of heat-flow in server-room was done using COVISE with Ansys CFX solver. Figure 3-6 presented in section 3.2.6 visualized configuration of the workflow within the COVISE environment used (i) to integrate input parameters coming from various sources necessary to setup simulation, (ii) execute simulation remotely using corresponding (CFX) solver, (iii) post-process and visualize results using renderer (presented in the Figure 3-6 on the right).

Another configuration of the server-room and visualisation of the simulation results using COVISE and its render is presented in Figure 4-21.

Metric Calculator

In this section we present tests of the Metric Calculator. The Metric Calculator has been used to calculate metrics on a wide variety of experiments made both in a real and simulated environment. The output has been compared to results

Summary

In scope of D2.4 we described realization of the 1 st prototype of the SVD-Toolkit, demonstrating its functionality and capability to simulate and assess efficiency of various configurations of servers and data centres. However, the usage of the 1 st prototype required expert knowledge to apply its command line based interfaces for data centre optimisation To overcome the high expertise required and to simplify usage of the SVD-Toolkit, we developed in scope of the final prototype web based Graphical User Interfaces to SVD-Toolkit, summarized as CoolEmAll-Web-GUI, allowing interacting with the SVD-Toolkit and visualizing its results. The CoolEmAll-Web-GUI comprises several GUIs integrated into the common web based GUI environment each capable of interacting with the corresponding SVD-Toolkit component through a web page in a guided manner. Such a web based CoolEmAll-Web-GUI simplifies usage of the SVD-Toolkitand makes installation of the SVD-Toolkitcomponents at user-side unnecessary, as it is sufficient to install components at the provider sides and access them remotely via web-interfaces.

In this deliverable we described realization, usage and test of the CoolEmAll-Web-GUI (and its components), along with the components of the final prototype of SVD-Toolkit. The test and usage described in this deliverable demonstrated that SVD-Toolkit and its web based interfaces can be easily used even by a nonskilled users: (i) to define parameters necessary for execution of simulation, (ii) to design data centre building blocks (DEBBs) on various level of granularity, (iii) to select application-and workload-profiles, execute workload simulation and find the best scheduling strategy for energy-savings, (iv) to visualize results of the workload simulation while comparing outcomes with real measurements, (v) to setup and simulate heat-flow distribution within a server or a data centre and visualize results, and finally (vi) to calculate power-consumption and assess energy-and cooling-efficiency of various DEBB configurations, applications, workload and environmental conditions. Results:

Figure 2 - 1 :Figure 2 - 2 :

 2122 Figure 2-1: SVD-Toolkit Architecture overview -1 st Prototype 15 Figure 2-2: SVD-Toolkit final prototype ... 17

Figure 2 - 3 :Figure 2 - 4 :Figure 2 - 5 :Figure 2 - 6 :Figure 2 - 7 :Figure 2 - 8 :Figure 2 -Figure 2 -Figure 2 -Figure 2 -Figure 2 -Figure 2 -Figure 2 -Figure 2 -Figure 2 -Figure 2 -Figure 2 -Figure 2 - 21 :Figure 2 -Figure 3 - 1 :Figure 3 - 2 :Figure 3 - 3 :Figure 3 - 4 :Figure 3 - 5 :Figure 3 - 6 :Figure 4 - 1 :Figure 4 - 2 :Figure 4 - 3 :Figure 4 - 4 :Figure 4 - 5 :Figure 4 - 6 :Figure 4 - 7 :Figure 4 - 8 :Figure 4 - 9 :Figure 4 -Figure 4 -Figure 4 -Figure 4 -Figure 4 -Figure 4 -Figure 4 -Figure 4 -Figure 4 -Figure 4 -Figure 4 -Figure 4 - 21 :Figure 25 :Figure 26 :

 232425262728222222222222212313233343536414243444546474849444444444444212526 Figure 2-3: Database Table Structure ... 23 Figure 2-4: Login page .. 33 Figure 2-5: Welcome page .. 33 Figure 2-6: ExperimentConfigurator-GUI Menu ... 35 Figure 2-7: Experiment configuration GUI .. 35 Figure 2-8: New experiment interface ... 36 Figure 2-9: Trial information .. 37 Figure 2-10: DEBB-menu .. 39 Figure 2-11: DEBBConfigurator GUI -Processor tab (components level) 40 Figure 2-12: DEBBConfigurator GUI -Node creation .. 43 Figure 2-13: DEBB configuration GUI -Node group creation 45 Figure 2-14: DEBBConfigurator GUI -Rack view with costs 46 Figure 2-15: DEBB configuration GUI -server room .. 47 Figure 2-16: DCworms GUI ... 51 Figure 2-17: Covise-GUI parameters and visualisation 52 Figure 2-18: MOP GUI Visualization ... 54 Figure 2-19: Simulation Report from Metric Calculator report GUI 57 Figure 2-20: User menu .. 58 Figure 2-21: Register interface ... 58 Figure 2-22: Register interface ... 59 Figure 3-1: Sequence diagram of ExperimentConfigurator GUI. 63 Figure 3-2: Sequence diagram of DEBBConfigurator GUI. 65 Figure 3-3: Sequence diagram of DCworms GUI ... 67 Figure 3-4: Sequence diagram of COVISE GUI. .. 69 Figure 3-5: Sequence diagram of MOP GUI. .. 70 Figure 3-6: COVISE visualisation environment and outcome of the heat-flow simulation .. 75 Figure 4-1: Overview of Experiments .. 80 Figure 4-2: Experiment with two trials. .. 82

1 :

 1 Components overview 1 st Prototype .. 15 Table 2-2: Components of the final prototype of SVD Toolkit 18 Table 2-3: Software dependency list for SVN ... 22 Version: 1.11 Authors: E. Volk et al. Date: 31/03/2014 Page 10 /123 Table 2-4: Software dependency list for Python Wrapper 24 Table 2-5: Software dependency list for DCworms ... 25 Table 2-6: Software dependency list for OpenFOAM based CFD 26 Table 2-7: Software dependency list for Metric Calculator 32 Table 2-8: Workload and resource management policies available within DCworms .. 49

- 1 ,

 1 presented in D2.4. At the beginning of the experiment DEBB-files are created. In DEBBs (Data centre Efficiency Building Blocks) all information, which is relevant for the individual simulation or trial, is stored. This is especially true for the underlying geometry. The DEBBs are stored in Apache Subversion™ (SVN) [ApSu] repository [CoolEmAll-SVN], along with the experiment description file specifying experiment setting, containing references to DEBB and workload (along with application-profile) used within the experiment. Workload specified in the experiment configuration file is used by the workload simulator DCworms, being executed on hardware represented by power-profiles stored in DEBB. The results, represented by several workload cases with specific power consumption, are then stored into the database. The CFD-simulator then retrieves the data from the database to perform its simulation on it and write the results again to the database where it is the input for the metric calculator. The metric calculator writes back into the database, after the calculation of metrics, where the MOP GUI can retrieve it. With this workflow the experiment conductor has the full feedback about his conducted experiment [D2.4]. Version: 1.11 Authors: E. Volk et al. Date: 31/03/2014 Page 15 /123 For the physical deployment of the individual components the following was implemented in scope of the 1 st prototype: Repository, Data Center Workload and Resource Management Simulator (DCworms), and Database are deployed at PSNC location. The Application Profiler and Metric calculator are located at IRIT. The CFD Solver is located at HLRS on a cluster environment. The detailed interaction between SVD-Toolkit components was explained in D2.2.

Figure 2 - 1 :

 21 Figure 2-1: SVD-Toolkit Architecture overview -1 st Prototype

Figure 2 -

 2 Figure 2-2 provides an overview of the architecture of the final SVD-Toolkit prototype, extending 1 st Prototype by integrating CFD with COVISE and especially implementing CoolEmAll-WEB-GUI, allowing easy interaction with the SVD-Toolkit and its components.

Figure 2 - 2 :

 22 Figure 2-2: SVD-Toolkit final prototype

Figure 2 - 3 :

 23 Figure 2-3: Database Table Structure

3 . 1 [

 31 D2.3.1].

 EnSight-format is the preferred format for COVISE and VTK is the preferred format for Open Source applications such as ParaView [PaVi]. The next step is to calculate the mean values for the relevant geometry and store the data directly to the database. For the flow fields, only links are stored to the database to save Version 2algebra operation written in C++ programming language

 2 [D2.2], the Simulation Workflow COVISE (Collaborative Visualisation and Simulation Environment) is an extensible distributed software environment capable to integrate simulations, post-processing and visualization functionalities in a seamless manner. The CFD Solver performing CFD simulation is directly integrated into the COVISE workflow, including all necessary pre-and post-processing tasks. COVISE offers a networked SOAP based API and is accessible by all components that can make use of Web Service based components. In CoolEmAll, COVISE firstly retrieves simulation relevant data (step 4 presented in Figure2-2) from the DEBB repository (containing geometry data and position of objects) and from the Database (containing results from DCworms, i.e., power usage and air throughput), passes over these data to the CFD Solver, receives results from the CFD Solver, post processes and visualizes simulation results allowing at the same time modification of certain parameters such as the arrangement of objects. Results of the simulation are written back into the Database (step 8), while modified geometrical parameters and arrangement of objects are used to update DEBBs (step 8), to be stored in the DEBB repository (step 12). Using COVISE, users can analyse their datasets intuitively and interactively in a fully immersive environment through state of the art visualization techniques, including volume and fast sphere rendering.

 Server usage (minimum, maximum, average) • Memory usage (minimum, maximum, average) • Power usage (minimum, maximum, average) • Power consumption (minimum, maximum, average) • Power IT consumption (minimum, maximum, average) • Temperature (minimum, maximum, average) • CPU Temperature (minimum, maximum, average) • Energy consumption • Productivity • SWAP • Cooling index low and high (minimum, maximum, average) • Heat generation (minimum, maximum, average) • DH-UR • Imbalance of temperature (minimum, maximum, average) • Imbalance of heat generation (minimum, maximum, average) • Power Usage Effectiveness (3 and 4) • Data Centre Infrastructure Efficiency • Electricity cost • Carbon emissions • CAPEX • Energy Wasted Ratio Depending of the situation, the Metric Calculator will use one of the following databases:

Figure 2 - 4 :Figure 2 - 5 :

 2425 Figure 2-4: Login page

 Figure 2-6. The Version: 1.11 Authors: E. Volk et al. Date: 31/03/2014 Page 35 /123 ExperimentConfigurator allows the user to specify parameters required to execute the simulation through the definition of experiments and trials. The others GUIs can access the information saved on the ExperimentConfigurator via session variable.

Figure 2 - 6 :

 26 Figure 2-6: ExperimentConfigurator-GUI Menu

Figure 2 - 7 :

 27 Figure 2-7: Experiment configuration GUI

Figure 2 - 8 :

 28 Figure 2-8: New experiment interface

Figure 2 -

 2 Figure 2-9: Trial information

 Furthermore sensors can be specified to give input during simulation, or afterwards. These Sensors can capture several data values like temperature, voltage, throughput, etc. Version: 1.11 Authors: E. Volk et al. Date: 31/03/2014 Page 39 /123

Figure 2 -Figure 2 -

 22 Figure 2-10: DEBB-menu

Figure 2 -

 2 Figure 2-12: DEBBConfigurator GUI -Node creation

Figure 2 -

 2 Figure 2-13: DEBB configuration GUI -Node group creation

Figure 2 -

 2 Figure 2-14: DEBBConfigurator GUI -Rack view with costs

Figure 2 -

 2 Figure 2-15: DEBB configuration GUI -server room

Figure 2

 2 Figure 2-16: DCworms GUI

Figure 2 -

 2 Figure 2-17: Covise-GUI parameters and visualisation

Figure 2 -

 2 Figure 2-18: MOP GUI Visualization

Figure 2 -

 2 Figure 2-19: Simulation Report from Metric Calculator report GUI

Figure 2 -

 2 Figure 2-20: User menu

Figure 2 - 21 :

 221 Figure 2-21: Register interface

Figure 2 -

 2 Figure 2-22: Register interface

Version

Figure 3 - 1 :

 31 Figure 3-1: Sequence diagram of ExperimentConfigurator GUI.

 • A request is send to the database DB to get for particular User-Name o All the trials that are "active" or last modified o User selects the appropriate trial. o Context belonging to this trial is loaded from the DB and passed to the server (and its variables) o User is now able to check the status of the experiment (when simulation is finished, a corresponding flag is stored in DB for particular trial) o Based on the status, the corresponding tab is automatically marked as active -i.e. view results of the simulation. Version: 1.11 Authors: E. Volk et al. Date: 31/03/2014 Page 64 /123

Figure 3 - 2 :

 32 Figure 3-2: Sequence diagram of DEBBConfigurator GUI.

2 . 3 .

 23 The user has to provide additional information to execute the DCworms component: 1) workload with workload and resource management policy; or 2) utilization levels of resources; or 3) workload with workload and resource management policy and utilization levels of resources. The user starts the execution of the simulation, when all the requirements are reached. Version: 1.11 Authors: E. Volk et al. Date: 31/03/2014 Page 66 /123 4. The output of the process is saved on the SVN repository. The necessary variables are saved on the database.

Figure 3

 3 Figure 3-3: Sequence diagram of DCworms GUI

Figure 3 - 4 :

 34 Figure 3-4: Sequence diagram of COVISE GUI.

Figure 3 - 5 :

 35 Figure 3-5: Sequence diagram of MOP GUI.

Version: 1

 1

•

 svn list -to display files in a directory for any given revision • svn update -r <revision-number> -to check out specific revision Version: 1.11 Authors: E. Volk et al. Date: 31/03/2014 Page 72 /123

Version: 1

 1

Figure 3 -

 3 6 visualizes workflow (presented in the figure on the left) within the COVISE used (i) to integrate input parameters coming from various sources necessary to setup simulation, (ii) execute simulation remotely using corresponding (CFX) solver, (iii) post-process and visualize results using renderer (presented in the figure on the right).

Figure 3 - 6 :

 36 Figure 3-6: COVISE visualisation environment and outcome of the heat-flow simulation

4. 1 . 1

 11 ExperimentConfigurator GUIIn section 2.3.1 we described the experiment configurator GUI, capable of reading parameters, entered by the users, necessary to configure and setup the SVD-Toolkit and its components to perform experiments. The overview of the experiments is shown in the figure below and allows definition and selection of experiments. In the Experiment Configurator section the user can list all the experiments saved, choosing the option "Experiments" and then "List" on the top menu. Then the listing of the experiments will be shown, as we can see on Figure4-1.

Figure 4 - 1 :

 41 Figure 4-1: Overview of Experiments

Figure 4 - 2 :

 42 Figure 4-2: Experiment with two trials.

Figure 4 - 3 .

 43 In this interface the user has to select the last option "Set Context" (Version: 1.11 Authors: E. Volk et al. Date: 31/03/2014 Page 83 /123

Figure 4 - 3 :

 43 Figure 4-3: List of trials of a particular experiment.

Figure 4 - 4 :

 44 Figure 4-4: Trail on the context.

1 . 2 .Figure 4 - 5 :

 1245 Figure 4-5: node group creation tab with adopted node

Figure 4 - 6 :

 46 Figure 4-6: Exported room as ZIP file

Figure 4 - 7 :

 47 Figure 4-7: Positioned heatsink in the chassis

Figure 4 - 8 :

 48 Figure 4-8: Preview of application profile within DCworms GUI

Figure 4 -

 4 Figure 4-9: DCworms GUI -load specification window

Figure 4 -

 4 Figure 4-10: DCworms GUI -energy efficiency metrics

Figure 4 -Figure 4 -

 44 Figure 4-11: MOP-GUI -Standard mode view

Figure 4 -

 4 Figure 4-13: COVISE GUI

Figure 4 - 4 . 2 . 3 Database

 4423 Figure 4-17: Report-GUI normal report

3 in D2. 4)

 4 are show below: [timacs@recs1 coolemall]$./coolemall_getRecordsByMetricName testbed/hlrs/hpc/hw/rack1/recs1/i7_0_05 mem_usage [(1361574545L, 42356.230000000003, 'ok-low')] Version: 1.11 Authors: E. Volk et al. Date: 31/03/2014 Page 101 /123 #Including data onto database [timacs@recs1 coolemall]./coolemall_putMetricDB "experimentID: exp_1, trialID:trial_1,name:cpu_usage,time:1361574539,value:12356.21,object_path:tes tbed/hlrs/hpc/hw/rack1/recs1/i7_0_05,source:nagios,performance:ok-2.5,output:ok-low" [timacs@recs1~]$ coolemall_getSelectedMetric sim/expSelected/tSelected/cfd/hw/hlrs/rack1/recs1/inlet_01 test_selected 1393842120 1393843981 ('499.683',)

Figure 4 -

 4 18) shows the power consumption chart generated based on the data gathered during the DCworms simulation.

Figure 4 -

 4 Figure 4-18: Power usage chart generated for the DCworms simulation

Figure 4 -

 4 Figure 4-19: velocity and temperature distribution inside RECS

Figure 4 - 21 :

 421 Figure 4-21: Visualisation of the heat-flow distribution within a room using COVISE renderer

 Extending the SVD-Toolkit by CoolEmAll-Web-GUI completes CoolEmAll's vision and its holistic approach in the design and operation of data centres, enabling full life-cycle optimisation of cooling-and energy-efficiency of data centres on various scale level. The full life-cycle optimisation offered by SVD-Toolkit to the users is achieved by enabling: (a) modular design, configuration and arrangement of data centre components on various scale level (DEBB design) taking hardware and facility characteristics into account, (b) capturing application profiles in real environment and generating workload-profiles reflecting real demand of various applications and use-groups, (c) evaluating various workload scheduling polices for selected hardware configuration, applications profiles and workloads, to optimize operation and increase energy-savings, (d) evaluating interactively heatflow distribution in various data centre configurations to optimize data centre layout and improve cooling-efficiency, (e) assessing all above mentioned aspects in a report, providing metrics on productivity, energy-efficiency, cooling-efficiency, monetary-and CO2 costs of data centres configuration and operation. Such an approach and capabilities offered by SVD-Toolkit achieves the objective of the CoolEmAll project to enable designers and operators of a data centre to reduce its energy impact by combining the optimization of IT, cooling and workload management. the compute unit selecting "Kontron COMe-bSC2 -3615QE"or "Kontron COMe-bSC2 -2715QE" (or any other supported node) at your choice as nodes within the RECS, click ADOPT to add your unit. When all the nodes are selected press SAVE button, afterwards you will be able to use your new RECS in a RACK. At this stage you should be able to download the archive that represents the compute node.You can upload the new RECS to the common repository from the NODE GROUPS menu, clicking Add to svn button.

Figure 23 : SVN upload path 6)

 236 Figure 23: SVN upload path

Figure 24 : 7)

 247 Figure 24: Node Group break-down menu

 the components of your room by clicking into them, the element selected will appear into the graph window automatically, the graph window can be resized dragging the right-bottom corner. Version: 1.11 Authors: E. Volk et al. Date: 31/03/2014 Page 117 /123 6) Once the experiment is saved and the associated trials created, next step is set the trial configuration as a context variable in order to be used by the simulation and visualization tools. Go to Experiments tab > List > Click Trials button in MyExperiments > Click Set Context button for the trial you want to simulate. "The Trial information has been saved in the session on the variable: context." message should be displayed. 7) Go to DCWorms tab to create the Simulation arrangement. Select the OpenSSL workload and automatically the profile associate will be charged. to Run Simulation within DCworms sub-menu and click Start Simulation. The simulation results will be displayed in the simulation window. 10) Next step is the visualization of results, it can be done in the Reports tab > Metric Calculator or using MOP-GUI, go to MOP tab > Standard Mode 11) In case of MOP visualization you have to add the properties of the data series that you want to visualize. Navigate through the DEBB hierarchy to select in example power measurements for each of the compute nodes and add the series to display the power plot associated to these measurements.

Figure 26 : 3)

 263 Figure 26: Adding data series to MOP

Figure 27 :

 27 Figure 27: MOP -setting time for CFD simulation

Figure 28 :

 28 Figure 28: CFD heat and air flow simulations

Table 2 -

 2 9: Frameworks, libraries and licenses used for implementation of the COVISE-GUI ... 53

Table 4 -

 4 1: Workload characteristics .. 101

Table 6 -

 6 1: Node Groups parameters .. 111

Table 6 -

 6 2: RACK parameters .. 113

Table 6 -

 6

	API	Application Programming Interface
	CFD	Computational Fluid Dynamics
	COVISE	Collaborative Visualisation and Simulation Environment
	DCworms	Data Center Workload and Resource Management Simulator
	DEBB	Data Centre Efficiency Building Block
	GPL	General Public License
	LGPL	GNU Lesser General Public License
	GSSIM	Grid Scheduling Simulator
	GUI	Graphical User Interface
	GWF	Grid Workload Format
	IP	Internet Protocol
	MOP	Module Operation Platform
	PLMXML	eXtensible Markup Language for Product Lifecycle Management
	RPC	Remote Procedure Call
	SVD	Simulation Visualisation and Decision support toolkit
	SVN	Apache Subversion software versioning and revision control system
	SWF	Standard Workload Format
	STL	Surface Tesselation Language
	TDP	Thermal Design Power
	TIMaCS	Tools for Intelligent System Management of Very Large Computing
		Systems
	URL	Uniform Resource Locator
	VRML	Virtual Reality Modelling Language

3: Room parameters .. 114 Table 6-4: Experiment parameters ... 116 Table 6-5: Room parameters .. 116 Table 6-6: DCWorms result comparison ... 118

List of abbreviations

Table 2 -

 2

1 summarizes components of the SVD-Toolkit, specifying components' license, description and functionality.

Table 2 -1: Components overview 1 st Prototype Component name License / Website Description Provided functionality for CoolEmAll

 2

	MySQL	Storing dynamic
	Database for	data,
	storing	interconnection
	experimental	

Database

GPL License. Version 2

LGPL License for RPC client and RPC server

DEBB Airthroughput Powerusage CFD Solver (OpenFOAM) Data Center Workload and Resource Management Simulator DCWoRMS Sample points histogram Data (1) (2) (3) Airthroughput Powerusage (4)

Table 2 -

 2 2 provides overview of the components developed and integrated within the final SVD-Toolkit prototype. As noted, all components of the 1 st prototype have been refined, and new components were added, highlighted by bold/italic font style.

Table 2 -2: Components of the final prototype of SVD Toolkit Component name

 2

		License / Website	Description	Provided
				functionality for
				CoolEmAll
	Database	GPL License Version	MySQL Database	Storing dynamic
		2.0	for storing	data,
		LGPL License for RPC client and RPC server	experimental data and outcome	interconnection point
		Download: [SVD Toolkit]		
	CFD-simulator	GNU General Public	Automated CFD-	Performing flow
	(OpenFOAM)	License Version 2.0	calculation	and temperature
		MPL2	decision making environment for	calculations
		The MIT License	in thermal	
			management	
		Download: [SVD Toolkit]	questions	
	COVISE	Dual license:	Scientific	Steering of CFD
		-Academic license -Commercial license	Simulation and Visualisation program	simulation and visualisation of results
	CFD solver	Commercial Licence of	CFD solver for	Calculating heat-
	(Ansys CFX)	ANSYS (www.ansys.com)	calculating heat-flow distribution	flow distribution to identify hot-spots
			field	

Version:

1.11

Authors: E. Volk et al. Version: 1.11 Authors: E. Volk et al. Version: 1.11 Authors: E. Volk et al. Date: 31/03/2014 Page 21 /

123 2.2 Detailed description of the components This

 chapter gives a description of the individual components of SVD-Toolkit, based on the description provided in D2.2 [D2.2] and D2.4 [D2.4].

 The Application Profiler is used to create profiles of applications that can be read by DCworms for simulation purpose. It uses data obtained during runtime and stored in TIMaCS by the monitoring infrastructure. Using these data, it creates a description of applications based on their phases. For instance, an application following two phases (one CPU-intensive and one Network intensive) would have the following description:

	<resourceConsumptionProfile>
	<resourceConsumption>
	<referenceHardware>Intel_i7</referenceHardware>
	<duration>PT4S</duration>
	<behaviour name="cpu">
	<value>98</value>
	</behaviour>
	<behaviour name="network">
	<value>2</value>
	</behaviour>
	</resourceConsumption>
	<resourceConsumption>
	<referenceHardware>Intel_i7</referenceHardware>
	<duration>PT93S</duration>
	<behaviour name="cpu">
	<value>77</value>
	</behaviour>
	<behaviour name="network">
	<value>96</value>
	</behaviour>
	</resourceConsumption>
	</resourceConsumptionProfile>
	A more detail explanation is available in D2.3 [D2.3] and D5.4 [D5.4].

Workload-profiles, workload

 characteristics in terms of used applicationprofiles and resource requirements used for workload simulation For the realization of the repository we use Apache Subversion, short SVN [SVN]. The project repository is located at [CoolEmAll-SVN].

• DEBBs, describing data centre building blocks and models used by SVD-Toolkit Version: 1.11 Authors: E. Volk et al. Date: 31/03/2014 Page 22 /123 •

Table 2 -3: Software dependency list for SVN

 2

	Software name	License /	Description
				Website
	Apache		http://subversion.	Subversion is an open source version
	Subversion	apache.org/	control system.
				Apache License.
				Version 2.0
	The repository is structured in common and user spaces. Common space
	contains well-defined application-profiles, DEBBs and workload-profiles, each of
	them stored in a dedicated repository folder. User space contains files
	changed/added by each user. Files (particularly PLMXML files of DEBB) in user
	space can contain "links" to files in both spaces. Files in common space can
	contain links only to files in common space. The structure of repository is shown
	below:	
	repository
	├── common
	│ ├── applications
	│ ├── workloads
	│ └── debbs
	└── users
	The structure of DEBBS repository-folder is defined as follow:
	debbs	
	├── <location> (PSNC, HLRS, IRIT)
	│	├── [objects]
	│	│	├── <STL files>
	│	│	├── <VRML files>
	│	├── <mainPLMXML>.xml
	│	├── <DEBBBComponent_X>.xml

Version: 1.11 Authors: E. Volk et al. Date: 31/03/2014 Page 23 /123

Table Structure

Version: 1.11 Authors: E. Volk et al. Date: 31/03/2014 Page 24 /123

Table 2 -4: Software dependency list for Python Wrapper 2.2.4 DCworms

 2

	Data Center Workload and Resource Management Simulator (DCworms)
	supports studies of dynamic states of IT infrastructures, like power consumption
	and air throughput distribution, with respect to the various workload and
	application profiles, resource models and energy-aware resource management
	policies. Details concerning DCworms can be found in D2.2 [D2.2] and in
	[DCworms2012].

As described in D2.2 and in D2.4 [D2.4], DCworms is the main component of workload simulation phase, which refers to the specific workload and application Version: 1.11 Authors: E. Volk et al.

Table 2 -5: Software dependency list for DCworms

 2

Table 2 -6: Software dependency list for OpenFOAM based CFD Software name License / Website Description

 2

	Apache Xalan	Apache License,	
		Version 2.0 /	
	Guava	Apache License,	Google's core libraries related to:
		Version 2.0 /	collections, caching, primitives support,
		http://code.google .com/p/guava-	concurrency annotations, string processing, I/O, etc. libraries, common
		libraries/	

http://xml.apache. org/xalan-j/ An XSLT processor for transforming XML documents into HTML, text, or other XML document types Automated CFD-calculation environment for decision making in Version: 1.11 Authors: E. Volk et al.

Table 2 -7: Software dependency list for Metric Calculator

 2

Table 2 -8: Workload and resource management policies available within DCworms

 2

	Name	Level	Description
	Rack_FCFS_LoadBal	Rack	Tasks are scheduled in FCFS order and
	ancing		assigned to Nodes in the way that balance
			the load
	Rack_FCFS_Consolid		
	ationHighPerf		

Rack

Tasks are scheduled in FCFS order and assigned to Nodes, starting from high performance CPUs, to consolidate the load on the Nodes exceeding the power limit, a power capping strategy is applied.

 /metricCalc.py temperature[_min, _avg, _max, _mma] <path> <start_s> <end_s> Calculate the minimum, average and maximum temperature of the hardware element identified by its path between two timestamps../metricCalc.py cpu_temperature[_min, _avg, _max, _mma] <path> <start_s> <end_s> Calculate the minimum, average and maximum cpu temperature of the hardware element identified by its path between two timestamps.Calculate the minimum, average and maximum heat generation of the hardware element identified by its path between two timestamps../metricCalc.py dh-ur <path> <start_s> <end_s> Calculate the deployed hardware utilisation ratio (DH-UR) of the hardware element identified by its path between two timestamps.

	./metricCalc.py dh-ur(cpu) <path> <start_s> <end_s>
	Calculate the deployment hardware utilisation ratio considering CPU (DH-UR CPU)
	./metricCalc.py energy <path> <start_s> <end_s> of the hardware element identified by its path between two timestamps.
	Calculate the energy consumed of the hardware element identified by its path
	between two timestamps. ./metricCalc.py imbalance_of_temperature <path> <start_s> <end_s> [usedNodes]
	Calculate the imbalance of temperature of the hardware element identified by its
	./metricCalc.py productivity <path> <start_s> <end_s> <useful work> path between two timestamps (the calculation can optionally be done only
	Calculate the productivity of the hardware element identified by its path between considering a set of used nodes).
	two timestamps.
	./metricCalc.py imbalance_of_temperature_ts[_min, _avg, _max, _mma] <path> <start_s> <end_s>
	[usedNodes]
	./metricCalc.py swap <path> <start_s> <end_s> <useful work>
	Calculate the space, watts and performance metric (SWaP) of the hardware
	element identified by its path between two timestamps.
	./metricCalc.py cooling_index_low <path> <start_s> <end_s>
	Calculate the cooling index low of the hardware element identified by its path
	between two timestamps.
	./metricCalc.py cooling_index_low_ts[_min, _avg, _max, _mma] <path> <start_s> <end_s>
	Calculate the minimum, average and maximum cooling index low of the
	hardware element identified by its path between two timestamps.
	./metricCalc.py cooling_index_high <path> <start_s> <end_s>
	Calculate the cooling index high of the hardware element identified by its path
	between two timestamps.
	./metricCalc.py cooling_index_high_ts[_min, _avg, _max, _mma] <path> <start_s> <end_s>
	Calculate the minimum, average and maximum cooling index high of the
	hardware element identified by its path between two timestamps.

Version:

1.11

Authors: E. Volk et al. Date: 31/03/2014 Page 77 /123 ../metricCalc.py heat_generation[_min, _avg, _max, _mma, _tot] <path> <start_s> <end_s> Version: 1.11 Authors: E. Volk et al. Date: 31/03/2014 Page 78 /123

Table 4 -1: Workload characteristics

 4

	load intensity	70%
	number of tasks	1000
	tasks interval [s]	560
	Application classes	scalable CPU-intensive -34%
		single threaded -33%
		IO-intensive -33%
	As a workload management policy simple FCFS with Relaxed Backfilling
	approach strategy assigning tasks to nodes in Random manner was used.
	Power estimations were based on power measurements made for each
	application type.	
	The following figure (

Table 6 -2: RACK parameters

 6 Populate the rack unit selecting the node group created in the previous step.

	Computer ID	Manufacturer	Product
	MyRACK	Chistmann	Testbed_Rack
	Label	Costs [EUR]	Costs [CO2]
	(not mandatory)	(not mandatory)	(not mandatory)
	Hostname	XML Name	Power usage profile
	Chirstman RECS |	myrack	(not mandatory)
	Box Compute Unit		
	Type	Instance name	Witdh [m]
	Intel i7	(not mandatory)	(0.5)
	Height [m]	Depth [m]	Gap bottom [m]
	(1.7)	(1.15)	0.2
	Gap left [m]	Rack size [RU]	Flow direction
	0.037	(choose the rack size.	(not mandatory)
		i.e:20)	
	Mesh resolution	Location in mesh	Current power usage
	0 0 0	0 0 0	(not mandatory)

Version: 1.11 Authors: E. Volk et al. Date: 31/03/2014 Page 114 /123

Table 6 -3: Room parameters

 6

	Computer ID	Name	Building
	MyRoom	MyLittleRoom	PSNC
	Height[m]	XML name	Mesh resolution
	2.5	myroom	0 0 0
	Location in mesh	Costs [EUR]	Costs [CO2]

Rack_FCFS_Consolid ationHighPerf_NodeP owMan

Rack

Tasks are scheduled in FCFS order and assigned to Nodes, starting from high performance CPUs, to consolidate the load on the Nodes.

MOP GUI

MOP GUI is used in the SVD-Toolkit to visualize 3D textured geometries from DEBB models along with data from the MOP Database. As both, real data obtained from measurements (e.g. temperatures, system load) and simulated data from CFD and Workload Simulation, are stored in the database, both of

Usage of the CoolEmAll-Web-GUI and SVD-Toolkit

In this section we describe usage of the CoolEmAll-Web-GUI, new in version 2 of the Toolkit, presented in section 3.1, and of the SVD-Toolkit components, using command-line options by advanced users, in section 3.2.

Usage of the CoolEmAll-Web-GUI

In this section we present usage of the CoolEmAll-Web-GUI by explaining interaction of user with each of the GUIs of the CoolEmAll-Web-GUI, along with the interaction of the GUIs with other SVD-Toolkit components.

General Flow

The purpose of the CoolEmAll-Web-GUI is to provide a graphical user interface to SVD-Toolkit, which simplifies for users the interaction with the toolkit and between the components. In this section we briefly describe how to work with the CoolEmAll-Web-GUI. The general flow is as follows:

There are three options when you access the GUI:

1. Create and execute a new Experiment: a. The user selects the ExperimentConfigurator GUI, inserts the information related to the experiment and trial. If the user doesn't provide the DEBB-URL he/she will be redirected to the DEBBConfigurator GUI in order to configure a DEBB specification. b. Depending on the type of experiment that the user provides he/she will be redirected to the respective GUI: i. If the experiment type is "DCworms" then the DCworms GUI is active. ii. If the experiment type is "CFD", then the next GUI will be COVISE-GUI. iii. If the experiment type is "Testbed", then the next GUI will be MOP-GUI. iv. In the case that experiment type is "All", the user will be redirect first to the DCworms GUI, then to the COVISE-GUI and finally to the MOP-GUI in order to supply the necessary information for the execution of the component. 2. Go direct to a particular GUI component, in order to get the current status and/or continue with the execution of a given experiment. In this case the user has to select an experiment and a started trial. 3. View reports. In this option the user is able to select either the MOP-GUI or the Metric-Calculator GUI. When a report has not yet been calculated the following error will be displayed: When a report is currently being generated the following error will be displayed: When everything is set and computed, the Report-GUI component will display the resulting metrics:

Test of the SVD-Toolkit components

In this section we describe tests of SVD-Toolkit components that are accessed by the command line and are similar to v1 of the Toolkit, including Application profiler, Repository, Database, Data Centre workload simulator, CFD solver, COVISE and metric calculator. The content in this section is originated mostly from D2.4, extended by section 4.2.6.

Application Profiler

The application profiler was tested by creating the profile of one the HPC benchmark EP with different frequencies. The faster the processor, the lower the number of phases that are detected because some slight behaviour changes do not have enough impact at faster speed to be detected as new phases.

SVN Repository

As noted, the interaction with SVN repository is done via svn-client (svn command). The following example shows interaction with the svn:

Power calculation (testbed):

Calculation of the power consumption of the node-group recs1.

[

Maximum power calculation (testbed):

Calculation of the maximum power consumption of the node-group recs1.

[user@recs1 MetricCalc]$./metricCalc.py maximum_power testbed/psnc/hpc/hw/rack1/recs1 1362752604 1362755664 DCworms is a simulation tool that can be used to verify power usage and thermodynamic models based on selected scheduling algorithm, resource allocation algorithm and resource policy. The steps described below will compare the simulation of OpenSSL workload using a load balancing strategy versus a consolidation strategy in low-power nodes. The DEBB input for this test is pre-charged in the system. Simulation of Computational Fluid Dynamics (CFD) with re-arrangement of racks Description:

In this test we describe sever-room optimization using CFD simulations from the COVISE-GUI included within the CoolEmAll-WEB-GUI. The heat and air flow simulations will help data centre operators to detect and avoid hot-spots; afterwards they can try to resolve them re-arranging the racks within the room. The end-users will be able to identify problems and find a better placement of the racks in the rooms avoiding these problems.

Test steps: 1) Access CoolEmAll-WEB-GUI: http://sf2.coolemall.eu 2) Login with credentials (username/password): test/test