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Abstract

In this paper, we study the effects of both the amount of open cell walls and their aperture sizes

on solid foams permeability. FEM flow simulations are performed at both pore and macroscopic

scales. For foams with fully interconnected pores, we obtain a robust power-law relationship

between permeability and membrane aperture size. This result owns to the local pressure drop

mechanism through the membrane aperture as described by Sampson for fluid flow through a

circular orifice in a thin plate. Based on this local law, pore-network simulation of simple flow is

used and is shown to reproduce successfully FEM results. This low computational cost method

allowed to study in detail the effects of the open wall amount on percolation, percolating porosity

and permeability. A model of effective permeability is proposed and shows ability to reproduce

the results of network simulations. Finally, an experimental validation of the theoretical model on

well controlled solid foam is presented.
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I. INTRODUCTION

Foams are dispersions of gas in liquid or solid matrices. In liquid foams, the structure of

foams is made of membranes (liquid films separating neighbor bubbles, also called walls),

ligaments or Plateau’s borders (junction of three membranes) and vertex (junction of four

ligaments). Contrary to liquid foam, in which membranes are necessary to ensure the sta-

bility of the foam, membranes can be partially or totally open in solid foams.

Permeability is a physical parameter that is used in many domains, such as geophysics,

soil mechanics, petroleum engineering, civil engineering and acoustics of noise absorbing

materials (e.g. polymeric foams). As viscous dissipation is the most dissipative mechanism

in the sound propagation through porous materials, permeability (or flow resistivity) is

a key parameter governing the acoustical properties of such materials [3, 12]. Different

works have focused on the effects of foams geometry on permeability: amount of closed

walls [5], aperture of walls [8], solid volume fraction and ligament shapes [16, 18]. Authors

deduce some relations between permeability and studied parameters: solid volume fraction,

size of aperture,... These relations take into account mechanisms acting at the scale of a

bubble without taking into account percolation. Indeed, in porous media, below a critical

concentration of bonds between pores inside a sample, the size of the interconnected porosity

is smaller than the sample height and no flow through sample is possible. The classical

Kozeny-Carman equation has to be modified to take into account such percolation, e.g. in

substituting the porosity by the difference between the porosity and the critical porosity

leading to percolation [20]. Similary in foamy porous materials, beyond a critical proportion

of open walls, percolation has to occur. Moreover, in the vicinity of the percolation, a

small part of pores is interconnected and the geometry of the pore network is complex. To

study more precisely the mesoscopic effect of the pore network on permeability, numerical

simulations should use large samples involving a few hundred bubbles. However, as the

size of samples increases, the computational costs in FEM simulations become prohibitive.

To overcome similar difficulties in simulations of flow through porous media, multi-scale

approaches have been proposed [11, 15, 19, 27–29]: at the scale of a throat between two linked

pores, the relationship between the flow rate passing through the throat linking pores and

the difference of pressure between pores is determined by numerical simulations or analytical

solutions (e.g. Hagen-Poiseuille equation); at the macro-scale, pore-network simulations are
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performed to determine the macroscopic permeability from local permeabilities found at the

local scale [6]. In this paper, we have attempted to use a similar multi-scale approach to

study the permeability of foamy media.

Different numerical simulations are performed at different scales to study the effect of

aperture size and amount of closed walls. The effect of the aperture size on partially open

cell foam is studied by using FEM simulations on periodic unit cells (PUC) involving the

Kelvin partition of space and containing two pores. To study the effect of the proportion

of closed walls, FEM simulations on larger samples containing 256 pores are carried out in

order to produce a flow at the macroscopic scale and to simulate the complex flow through

the porous network. The mesoscopic effects induced by the structure of the pore network

are studied by pore-network simulations on large (up to 2000 pores) lattice networks of

interconnected pores interacting via local permeabilities. A model of effective permeability

based on a calculation of the mean local permeability as in Kirkpatrick [15] is used to

describe the percolation threshold and the effect of mixing local permeabilities. Finally,

experimental measurements of permeability performed on polymeric foams are compared to

the model predictions.

II. NUMERICAL SIMULATIONS OF FOAM PERMEABILITY

A. FEM Simulations of fluid flow

At the pore scale:

As shown on Fig. 1, a periodic unit cell containing two pores of size Db is used to represent

the pore structure in foam samples [22]. The cell is based on the Kelvin paving and is a

14-sided polyhedron corresponding to 8 hexagons and 6 squares. The cell skeleton is made of

idealized ligaments having length L = Db/(2
√
2) and an equilateral triangular cross section

of edge side r = 0.58Db(1 − φ)0.521, where φ is the gas volume fraction [4]. In the reference

configuration (Fig. 1a), the 14 cell windows are fully open (i.e. without wall). As we are

interested in the effect of partial closure of the cell walls, we partially close the windows by

adding walls characterized with distinct circular aperture sizes. Two kinds of simulations

have been performed: (i) identical aperture size on all windows (Fig. 1b), (ii) identical rate

of aperture δow = to/tw (Fig. 1c) where tw and to are respectively the window size and
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the size of the wall aperture as defined in Fig. 1d. The static viscous permeability K is

computed from the solution of Stokes problem [2] for various porosity. The boundary value

problem is solved by using the finite element method (at convergence, the mesh contains

214 412 tetrahedral elements) and the commercial software COMSOL Multiphysics.

Figure 1: PUC without walls (a), with identical aperture size inside walls (b), with identical

aperture rate (c), definitions of the aperture size to and the window size tw (d).

At the macroscopic scale:

In order to study the flow properties on a larger scale, we have performed numerical

simulation for the flow of a Newtonian fluid through a periodic network of Kelvins cells

having a size L × L × H = 4
√
2 × 4

√
2 × 4 in Db units (i.e. containing 256 pores), and

a porosityφ equal to 0.9. Figure 2 shows an open cell foam sample made of 32 pores (i.e.

all the windows between adjacent cells are open). The macroscopic intrinsic permeablity is

computed from the averaging of the solution of a Stokes problem set on the foam sample.

In this study, the cell windows are either closed or open with random spatial distribution

over the foam sample. For each value of the proportion of open windows, the macroscopic
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intrinsic permeability is the average of numerical simulations for 6 different samples. The

resolution of the boundary value problem is achieved through the Finite Element Method

using FreeFem++ Software. Typical discrete problem contains 1 400 000 Tetrahedra and

8 000 000 degrees of freedom and is solved using a Message passing Interface (MPI) on 4

processors.

(a) (b)

Figure 2: FEM macro-scale samples: skeleton mesh (a) and porosity mesh (b). For sake of visibility,

a mesh of size 2
√
2× 2

√
2× 2 (Db units) is depicted in this figure.

B. Pore-network simulations:

Effects of pore network features on permeability are studied on several lattices of size L×
L×H = 10×10×10 (Db units) having different maximal numbers of neighbor pores Nv (Fig.

3). In the case Nv = 14, samples contain 2000 pores and the structure of pores corresponds to

Kelvin’s structure. Boundary effects are avoided by resorting to periodic conditions imposed

in the directions perpendicular to the macroscopic flow. In this simple model, we consider,

for each pore, a unique value of pressure without calculating the fluctuations of pressure and

fluid velocity inside the pore. At the local scale, the flow rate qj→i from pore j to pore i is

governed by the differential pressure between the pores ∆Pij = Pj − Pi:

qj→i =
Db

µ
kij∆Pij

where the coefficient kij is the local permeability between the pores i and j.

At steady state and by considering incompressible fluid, the volume of fluid inside pore i

is constant and the sum of flow rates coming from neighbor bubbles is equal to zero, leading
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Figure 3: Network structures used in network simulations.

to:
∑Nv

j=1 kij (Pj − Pi) = 0. To generate a flow through the sample, a pressure difference is

imposed between top and bottom faces of the sample (Ptop = ∆Psp, Pbot = 0). By considering

these boundary conditions, this previous equation can take a matrix form:

K [Pi] = [Si] (1)

where [Pi] is a vector containing the pressure of inner pores (pores located on top and

bottom faces are excluded); K is the matrix defined from local permeabilities (−∑ kij along

diagonal and kij elsewhere) and [Si] is a vector containing zeros except for inner pores having

top pores as neighbors where Si = −∑jtop kijtop∆Psp.

As soon as the pore network links top to bottom and by considering only the intercon-

nected pores, K can be inverted and the fluid pressure in each pore can be calculated from

Eq.1. Therefore, the macroscopic flow Q and the macro permeability K can be calculated

as follows:

Q =
∑

ibot

∑

jv qjv→ibot =
Db

µ

∑

ibot,jvi kibotjvi∆Pibot,jvi

K = µQH/L2∆Psp

Different materials having different kinds of local permeability distribution have been

studied: two local permeabilities (binary mixture), a local permeability mixed with zero

permeability (closed walls) and two local permeabilities mixed with closed walls. For each

kind of local permeability distribution, calculations are repeated from 200 to 400 times

on different random draws in order to calculate an average. For each random draw, local

permeabilities are randomly distributed over the network.
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C. Results and discussion

Effect of the aperture size

FEM simulations on PUC at the pore scale for various aperture sizes reveal a power-law

relationship between permeability and aperture size (Fig.4a). Similarly the numerical results

for the dimensionless permeability of porous materials with same aperture rate are well

fitted by a power law when plotted in a (δow, K/D2
b ) diagram (Fig.4b). Note that, for high

aperture rates, the condition of identical aperture rate is not observed due to the fact that the

apertures should overlap the ligaments, which is not allowed in our calculations. This artifact

leads to an artificial permeability plateau corresponding to the “no wall” permeability. Apart

from this artifact, FEM results show that relationship between permeability and mean wall

aperture is almost unaffected by the porosity (i.e. the width of ligaments).

This power-law relationship is in agreement with a local interpretation based on the

pressure drop of the fluid passing through the wall aperture. Indeed, Sampson [24] solves

analytically the problem of the pressure drop ∆P occurring for an incompressible fluid flow

passing through a circular hole of diameter do in a thin plate:

Q

∆P
=

d3o
24µ

(2)

where Q is the volume fluid flow rate passing through the hole and µ is the fluid dynamic

viscosity.

This relation arises from the fact that, at low Reynolds number, the coefficient of fluid

resistance ζ = 2∆P/(ρV 2
o ) is in general, proportional to the inverse of Reynolds number

Re = Vodoρ/µ [10], where Vo is the mean stream velocity in the narrowest section of the

orifice (Vo = 4Q/πd2o).

After [26], the pressure drop through a hole of circular shape is very close to the one

obtained with a hole of squared shape having the same area. We can deduce that the

Sampson formula can be extended to squared and hexagonal shape of aperture by taken

into account an equivalent diameter to,eq defined from the surface area of the aperture So:

to,eq = 2(So/π)
0.5. By using such a definition for the aperture size and calculating a window

average of the aperture size, we can plot all FEM results on a same graph. Fig. 4c shows

that all data, including the ones obtained without wall, follow the same trend. Therefore,
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Figure 4: (a) FEM results at identical aperture size with φ = 0.98, (b) FEM results at identical

aperture rate for various φ, (c) Permeability as a function of the mean wall apertures: FEM results

(blue dot for identical aperture, green dot for identical rate, red cross for “no wall” foam with

φ varying from 0.8 to 0.99), network simulation with Sampson local permeabilities and Nv = 14

(blue line for identical aperture, green line for identical rate). Note that the mean wall aperture is

calculated without including the four square windows which are parallel to the macroscopic flow

direction 〈to,eq〉 /Db = (2to,sq + 8to,hex)/10Db.

due to the peculiar pore geometry of foams, the pressure drop inside such porous materials is

governed by a local mechanism which is not described by the usual Hagen-Poiseuille equation

as it is done in classical porous media [6, 11, 27, 28].

To check the ability of pore-network model to predict the permeability, network calcula-

tions have been performed using local permeabilities given by a Sampson equation:

k = t30/24Db (3)

In such simple simulated configurations (i.e. identical aperture size or identical aper-

ture rate), the network problem exposed in the previous section can be solved analytically.
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Therefore, macroscopic permeability is given by K = 2ksq + 2khex, leading to K
D2

b

= 1
6

(

t0
Db

)3

for identical aperture size and K
D2

b

= 1+31.5

12

(

5
1+480.5

〈to,eq〉
Db

)3 ≈ 0.13
(

〈to,eq〉
Db

)3
for identical aper-

ture rate. Fig. 4c shows that network simulation results compare very well to FEM results.

This good agreement supports both the interpretation of the permeability by using local

permeabilities and the relevance of pore-network simulations.

Effect of closed walls

Fig. 5 shows the permeabilities calculated by FEM simulations on large samples having

random positions of closed walls and various open walls fractions xow (defined as the number

of open wall over the total number of walls in the porous sample). For xow > 0.3, perme-

ability exhibits a quasi-affine dependence on the open walls fraction xow. Below a critical

concentration xow < 0.2, the fluid flow vanishes.

K
(x

o
w
)/
K
(1
)

0

0.2

0.4

0.6

0.8

1

xow

0 0.2 0.4 0.6 0.8 1

khex/ksq = 1

khex/ksq = 33

Figure 5: Dimensioless permeability K(xow)/K(1) as a function of open walls fraction xow for FEM

simulations (black square) and network simulations on samples mixing two local permeabilities with

various ratios khex/ksq and having a Kelvin structure (Nv = 14).

Network simulations have been performed by considering two local permeabilities, khex

and ksq, given by Sampson equation and associated to squared and hexagonal windows

as in Kelvin’s structure (Nv = 14). For φ = 0.9, the hexagonal/square aperture ratio in

FEM simulations is close to 3.2. The ratio between local permeabilities is therefore close to

khex/ksq = 33(≈ 3.23). As shown in Fig. 5 and considering the margin of error, network
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simulations and FEM simulations lead to the same results. Moreover, network simulations

reveal that the slope of the affine part of the function K(xow) depends on ratio between

local permeabilities.
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max(Hip)
= Hsp

max(Hip)Hsp

Figure 6: Network simulations: (a) Maximal height of the interconnected porosity (black line:

median values - grey band: 1st and 99th percentile) and interconnected porosity (red line: mean

values) as a function of the open walls fraction xow for Nv = 14, (b) Dimensioless permeability

K(xow)/K(1) as a function of open walls fraction xow for various neighbor bubbles number Nv

(arrows point to the abscissa xow = x⋆ow), inset: same data with another abscissa (xow −x⋆ow)/(1−

x⋆ow).

Network simulations performed on different structures (Fig. 3) are helpful to study in

details percolation effects for such foam structures and to calculate both the heights of

interconnected pores Hip and the fraction of percolating porosity Rop (Fig. 6a). In the case

Nv = 14, the maximal height of interconnected pores is equal in average to the sample height

Hsp for xow > 0.1, and connected porosity percolates throughout the sample. Regarding the

permeability (Fig. 6b), simulations performed with homogeneous local permeabilities show

that the slope of the affine part of K(xow) depends on the number of neighbor bubbles

Nv. The affine part of K(xow) intercepts the abscissa to a critical concentration given by

x⋆
ow = 2/Nv. Inset of Fig. 6b shows that the ratio K (xow) /K (1) in porous material having

homogeneous local permeability is linearly dependent on a single parameter (xow−x⋆
ow)/(1−

x⋆
ow) except in the vicinity of percolation.

A deeper analysis of results shows that percolation occurs on average when xow is in
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Figure 7: Excess fraction of open walls within the percolating porosity as a function of the reduced

fraction of open walls for various neighbor numbers Nv.

the range [0.55x⋆
ow; 0.65x

⋆
ow], and that the fraction of open walls within the percolating

porosity x′
ow is larger than the global value xow. As shown in Fig. 7, the relative gap

between both fractions of open walls is exponentially dependent on the reduced fraction

(xow − x⋆
ow)/(1− x⋆

ow). The fraction x′
ow and the fraction of percolating porosity Rop can be

approximated by the following equations:

x′
ow

xow
= 1 + β exp

(

−α
xow − x⋆

ow

1− x⋆
ow

)

(4)

Rop = 1−min

(

1, exp

(

−1.25− α
xow − x⋆

ow

1− x⋆
ow

))

(5)

with α = 2.56
(

Nv

2
− 1

)

+ 3 and β = 0.123
(

Nv

2
− 1

)0.23

From a practical point of view, these previous formulas might be useful to estimate the

percolating porosity and the open walls fraction inside the percolating porosity by measuring

for a real foam, the fraction of open walls and the number of neighbor pores.

III. EFFECTIVE MEDIUM MODEL FOR PERMEABILITY

A. Description

In this section, we present an effective permeability model of pores network connected by

local permeabilities ki. This model is based on a self-consistent calculation of the mean local
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permeability and a calculation of the macroscopic permeability. Details leading to Eqs. 6-7

are given in Appendix.

The mean local permeability k̄ is calculated iteratively from [2, 15]:

1

k + nk
=
∑

i

xi

ki + nk
(6)

with xi the fraction of local permeability ki and n = Nv

2
− 1.

In a few simple cases, this equation possesses analytical solutions (e.g. binary mixture of

local permeabilities, see Appendix).

The macroscopic effective permeability is then deduced from the mean local permeability

k̄,

K ≈ n

2
k (7)

In the next section, the present model is referred as EM model.

B. Comparison between network simulations and EM model predictions

In this part, we compare the predictions of EM model to the network simulations. We

consider successively three cases: (i) mixing of two local permeabilities in a fully open

material, (ii) mixing of closed and open walls characterized by a single local permeability,

(iii) mixing of closed walls and two local permeabilities.

(i) As shown in Fig. 8, EM model predictions are in good agreement with the network

calculation results for various ratios k1/k2.

(ii) Mixing closed walls with identicaly open walls is a peculiar case of the latter config-

uration: the local permeability associated to the close walls is equal to zero. In this case,

Eqs. 6 and 7 have an analytical solution leading to:

K

K1
=

x1 − x⋆
ow

1− x⋆
ow

(8)

As shown in Fig. 9, this solution “EM0” reproduces correctly the linear relationship

between the permeability and the parameter (xow−x⋆
ow)/(1−x⋆

ow). However, the permeability

evolution is not accurately reproduced in the vicinity of the percolation threshold. This

discrepancy can be significantly reduced if the fraction of open walls inside the percolating

13



K
/
K

1

0

0.2

0.4

0.6

0.8

1

x1

0 0.2 0.4 0.6 0.8 1

k1/k2:

5

10

60

Figure 8: Comparison of self-consistent model predictions (full line) to network simulations (cross)

with Nv = 14.

porosity is used instead of the global open walls fraction (“EM1” in fig.9), leading to the

following equation:

K

K1
=

x′
1 − x⋆

ow

1− x⋆
ow

Rop (9)

The fraction of open walls inside the percolating porosity can be estimated from the

global open walls fraction by using Eq. 4.

For generalization purpose, one can write:

1

k′ + nk′
=
∑

i

x′
i

ki + nk′
(10)

K ≈ Rop
n

2
k′ (11)

where x′
i is the fraction of walls inside the percolating porosity having a local permeability

equal to ki.

After Eq.9, the physical meaning of the critical concentration x⋆
ow = 2/Nv is now clarify:

at least two open walls per bubble located in the percolating porosity are required to start

a sufficient interconnection of pores.

(iii) This configuration corresponds to the latter case but with two local permeabilities

having the same fraction x1 = x2, so that Eqs. 10 and 11 can be used. Comparison with

pore-network simulations is shown in Fig. 10 for various ratios of local permeabilities k2/k1

14



K
(x

o
w
)/
K
(1
)

0

0.2

0.4

0.6

0.8

1

(xow − x⋆

ow
)/(1− x⋆

ow
)

-0.2 0 0.2 0.4 0.6 0.8 1

(a) Nv = 6

K
(x

o
w
)/
K
(1
)

0

0.2

0.4

0.6

0.8

1

(xow − x⋆

ow
)/(1− x⋆

ow
)

-0.2 0 0.2 0.4 0.6 0.8 1

(b) Nv = 14

Figure 9: Comparison between EM model and network simulations (black diamond) for various

neighbor pores numbers. “EM0” (dashed blue line) is based on the global open walls fraction (Eq.

(8)), and “EM1” (red line) is based on the open walls fraction within the percolating porosity (Eq.

(9)).

with Nv = 14. As already mentionned, EM model reproduces correctly results from pore-

network simulations (fig. 5). However, for low ratio k2/k1, deviations are observed in the

vicinity of the percolation threshold.

IV. COMPARISON WITH EXPERIMENTS

In the next section, we detail experiments conducted on real solid foams: foaming pro-

cess, microstructural characterization, permeability measurements, etc. Finally, we compare

experimental results with predictions of EM model.
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Figure 10: Comparison of “EM1” model predictions (red line) to network simulations (black cross)

with Nv = 14. Insets are the relative error of the EM model prediction.

A. Elaboration of controlled polymer foams

We elaborate solid polymer foam samples having fixed values for both gas volume fraction

and monodisperse bubble diameter Db, but a tunable membrane content. The experimental

procedure can be described as follows (see Fig. 11): (1) monodisperse precursor aqueous

foam is generated. Foaming liquid, i.e. TTAB (TetradecylTrimethylAmonium Bromide) at 3
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Figure 11: Foaming process

g/L in water, and nitrogen are pushed through a T-junction allowing the bubble size control

by adjusting the flow rate of each fluid. Produced bubbles are collected in a glass column and

a constant gas fraction over the foam column is set at 0.99 by imbibition from the top with

foaming solution [17]. (2) An aqueous gelatin solution is prepared at a mass concentration

Cgel within the range 12-18%. The temperature of this solution is maintained at T ≈ 60°C

in order to remain above the sol/gel transition (T(s/g) ≈ 30°C). (3) The precursor foam and

the hot gelatin solution are mixed in a continuous process thanks to a mixing device based

on flow-focusing method [13, 14]. By tuning the flow rates of both the foam and the solution

during the mixing step, the gas volume fraction can be set, φ0 = 0.8. Note also that the

bubble size is conserved during the mixing step. The resulting foamy gelatin is continuously

poured into a cylindrical cell (diameter: 40 mm and height: 40 mm) which is rotating around

its axis of symmetry at approximately 50 rpm. This process allows for gravity effects to be

compensated until the temperature decreases below T(s/g). (4) The cell is let one hour at

5°C, then one week in a climatic chamber (T = 20°C and RH = 30%). During this stage,

water evaporates from the samples and the gas volume fraction increases significantly. (5)

After unmolding, a slice (thickness: 20 mm and diameter: 40 mm) is cut.
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Figure 12: Characterization of foam samples

B. Characterization of the foam samples

Pore volume fraction:

As the density of dried gelatin was measured to be 1.36, volume and weight measurements

of the dried foam samples give the pore volume fraction. For the gelatin concentrations used

in this study, the pore volume fraction is found to vary between 0.977 and 0.983, so that in

the following we will consider that this parameter is approximately constant and equal to

0.980±0.003.

Pore size:

Through a preliminary calibration, observation of the sample surface (see Fig. 12a) allows

for the pore (bubble) size to be measured. The calibration procedure can be described as

follows: bubbles collected in the glass column (precursor in the Fig. 11) are sampled and

squeezed between two glass plates separated from 100 µm. Then the surface exposed with

a microscope is measured, and using volume conservation, bubble gas volume is determined

and the mean bubble diameter Db is obtained with a precision better than 3%. Moreover, we

measure the mean length Lp that characterized the Plateau borders of the precursor foam

at the column wall. We obtain the following relationship, Db = (1.68± 0.06)Lp, that can be

used afterwards for measuring the pore size in the dried gelatin samples. We measure Db =

810 µm (the absolute error on Db is ± 30 µm) for all the samples.
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Figure 13: Distribution function of aperture factors δ′′ow

Cell wall characteristics:

We characterize cell walls in our samples through observation with a microscope on both

top and bottom sample surfaces (see Fig. 12). For each sample, a large number of cell walls,

Nw¿100, were observed in order to determine the following parameters: the number of open

walls, Now, and the proportion of open walls:

xow = Now/Nw (12)

The proportion of closed walls is therefore xcl = 1 − xow . Note that those open walls

exhibit various aperture sizes, so the aperture ratio of walls is measured:

δ′′ow = (So⁄Sw)
1/2 (13)

where So is the aperture area and Sw is the total area of the window (see Fig. 12).

The structural characterization is completed by a measurement of the membrane thickness

through SEM images. From nine micrographs the average thickness has been measured to

be equal to 1.5±0.25 µm, which is close to thicknesses measured for similar polymer foams

[7, 9, 30].

Fig. 13 shows the distribution function of aperture factor for the samples, and Table I

gives their corresponding mean value < δ′′ow > and their proportion of open walls xow.
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Table I: Characteristics of foam samples

Sample S1 S2 S3 S4 S5 S6 S7 S8 S9

Cgel (%) 12 13 16 16 16 17 18 18 18

< δ′′ow > 0.72 0.68 0.67 0.62 0.59 0.50 0.54 0.42 0.46

xow 0.93 0.83 0.79 0.69 0.60 0.54 0.32 0.22 0.15

103 ∗K/D2
b

direct meas. 17.63 9.10 6.99 3.83 out of range

acoustic meas. 16.89 8.02 7.58 2.79 2.33 1.43 0.579 0.140 0.017

C. Foam permeability

Permeability measurement:

We determined the permeability by acoustic measurements performed in a three-

microphone impedance tube [23, 25]. Permeability value is deduced from the imaginary

part of the low frequency behavior of the effective density [21]: K = −µ/ limω→0[ℑ(ωρ)].
Note that the diameter of the samples is slightly larger than 40 mm so that air leakage

issue and sample vibration were successfully avoided. The air permeability is determined on

frequencies ranging from 200 Hz to 400 Hz.

Samples showing high permeability, i.e. K > 10−9m2, were characterized by a direct

measurement of the pressure drop ∆Psp as a function of air flow rate Q within steady

laminar conditions, and the Darcy permeability was determined as follows[standard]:

K = µQH/A∆Psp (14)

with the thickness of sample H≈ 20 mm and the circular cross-sectional area A≈1.25

cm2.

Comparison to theoretical predictions:

Theoretical calculations are performed by assuming the Sampson local permeability (ki =

d3i /24Db) in Eq. 10 and by using Eq. 11. The size of aperture di is calculated from the

aperture factor δ′′ow and the mean size of bubbles Db:

di = δ′′ow 〈tw/Db〉Db
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The ratio 〈tw/Db〉 as well as the pore neighbor number are assumed to be given by Kelvin

cell structure: ( 8
14

√
3L+ 6

14
L)/2

√
2L ≈ 0.54 and Nv = 14. Moreover, aperture distributions

shown in Fig.13 allows to calculate the fraction xi of walls having an aperture size equal to

di. Fig. 14 shows that the theoretical predictions are in good agreement with experimental

measurements. Various reasons can be mentioned to explain the discrepancy observed at

high permeability: error caused by assuming the real foam structure like a Kelvin structure,

error in measurement of aperture size (a theoritical calculation of permeability with walls

apertures 30% greater is enough to delete the gap), error in permeability measurement due

to air leak around the sample.
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Figure 14: Comparison of direct (dot) and acoustical (square) measurements of foam permeability

to theoretical predictions.

V. CONCLUSION

We have studied the static permeability of solid foams by combining different approaches:

(i) Numerical approach: FEM simulations computing Stokes problem both at the pore

scale and at the macro-scale, a simulation of simplified flow performed on a network of

interconnected pores interacting by Sampson local permeabilities, (ii) Theoretical approach:

a model of effective permeability based on the same theoretical framework than network

simulations has been developed, (iii) Experimental approach: controlled samples of gelatin

foams have been prepared, dried and fully characterized (bubble size, wall aperture, air

permeability). FEM simulations allowed us to validate the use of network simulations to
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predict the effects on permeability of both the wall aperture size and the amount of closed

walls. Compared to FEM simulations, networks simulations are low computational cost and

can be widely used to test the predictions of the EM model, and to study the percolation

effect of the pore network. These different approaches made it possible to develop and

validate a model of effective foam permeability (Eqs. 3, 4, 5, 10 and 11).

For future studies, network simulations could be useful to study permeability of various

porous foamy materials (topologically disordered foams or containing double porosity,...)

and to check the ability of EM model to predict permeability of such materials.
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Appendix

Here, we detail the calculation of the mean local permeability. We consider a cross-

section of foam (fig. 15a) and calculate the mean local permeability k̄ of a foam containing

different local permeabilities {ki}. To represent a pore inside the cross-section, we consider

a half pore connected to Nv/2 effective pores such as n = Nv

2
− 1 membranes have a local

permeability equal to the mean local permeability k̄ and the last one located at the pth

position has a permeability equal to ki (fig. 15b). Due to the heterogeneity induced by the

local permeability ki, the pressure inside the central pore Pi,p is different from the mean

pressure P̄ . Pressures inside neighbor effective pores are supposed equal to the effective

pressure expected for each peculiar position of the neighbor pore: P̄+αr∆P̄ with αr = zr/Db.

The total flow rate passing through the central half pore is equal to:

qi,p =
Db

µ

∑n+1
r=1 qr =

Db

µ

∑n+1
r=1 kr

(

P̄ + αr∆P̄ − Pi,p

)

where kr = k̄ for r 6= p, and ki for r = p.

The total flow rate can be written in a more useful way as:

qi,p =
Db

µ

[

∑n+1
r=1 k̄

(

P̄ − Pi,p + αr∆P̄
)

+
(

ki − k̄
) (

P̄ − Pi,p + αp∆P̄
)]

.

The effective flow rate q̄ passing through the effective pore is obtained by considering

ki = k̄ and Pi,p = P̄ in the previous equation:
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q̄ = Db

µ

∑n+1
r=1 k̄αr∆P̄ .

Therefore, the flow rate qi,p can be expressed in function of q̄:

qi,p = q̄ + Db

µ

[

(n + 1) k̄
(

P̄ − Pi,p

)

+
(

ki − k̄
) (

P̄ − Pi,p + αp∆P̄
)]

.

In the following, we suppose that the total flow rate passing through the central half pore

qi,p is equal to the effective flow rate q̄ leading to:

0 = (n + 1) k̄
(

P̄ − Pi,p

)

+
(

ki − k̄
) (

P̄ − Pi,p + αp∆P̄
)

.

This hypothesis leads to the pressure inside the central pore:

Pi,p = P̄ +

(

ki − k̄
)

nk̄ + ki
αp∆P̄

Now, we may impose the self-consistency condition, requiring that the average 〈Pi,p〉p,i =
〈

〈Pi,p〉p
〉

i
is equal to the effective pressure P̄ leading to:

〈

ki − k̄

nk̄ + ki

〉

i

〈αp〉p ∆P̄ = 0

The previous equation can be rewritten in an alternative form:

〈

1

nk̄ + ki

〉

i

=
1

(n + 1) k̄

Figure 15: (a) Cross-section of foam, (b) Geometry of a half pore representative of pores contained

inside the foam cross-section. Note that we have to consider n+ 1 configurations for the position

p of the membrane associated with the permeability ki. Figure depicts the case p = 2.
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To determine the macroscopic effective permeability, we calculate the macroscopic flow

rate Q passing through the whole cross-section A containing Nw walls having a local perme-

ability equal to k̄. Moreover, we suppose that the effective gradient of pressure around the

cross-section ∆P̄
Db

is equal to the mean pressure gradient ∆Psp

H
. Then the macroscopic flow

rate is given by:

Q =
Db

µ

[

Nw
∑

w=1

αw

]

k̄∆P̄ =
Db

µ
∗Nw 〈α〉p ∗ k̄ ∗ ∆Psp

H
Db

leading to the macroscopic effective permeability:

K =
Nw

A
〈α〉p D2

b k̄

In considering the continuous limit for the calculation of 〈α〉p, we obtain: 〈α〉p =

1
2π

´ 2π

0

´ π/2

0
sin(θ)cos(θ)dθdϕ = 1

2
. And in the case of a Kelvin structure, the surface wall

density Nw/A is equal to n/D2
b .

In the case of a binary mixture of local permeabilities (e.g. fully open foam), the mean

local permeability k̄ is given by the following equation:

k̄
k∞

= 1
2

[

α +
(

α2 + 4 (1− α) k0
k∞

)0.5
]

with

α = 1− k1k2
nk0k∞

k∞ = kV oigt = x1k1 + x2k2

k0 = kReuss =
(

x1

k1
+ x2

k2

)−1

k∞ and k0 correspond respectively to the permeability of an infinitely interconnected

network (Nv → ∞) and this one of a poorly interconnected network (Nv = 2).
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