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In this paper, we numerically investigate the BBM-Burgers

equation with a nonlocal viscous term

ut + ux − βutxx +
√

ν
√

π

∂

∂t

∫

t

0

u(s)
√

t − s
ds + γuux = αuxx,

where 1√
π

∂

∂t

∫

t

0

u(s)√
t−s

ds is the Riemann-Liouville half deriva-

tive. In particular, we implement different numerical

schemes to approximate the solution and its asymptotical

behavior. Also, we compare our numerical results with those

given in [1, 2] for similar models.

K E Y W O R D S

BBM-Burgers equation, decay rate, fractional derivatives, Gear scheme,

nonlocal viscous model, quadrature methods, water waves

1 INTRODUCTION

The mathematical modeling and analysis of water wave propagation are challenging topics. In their

work, J. Bona et al. have derived a family of Boussinesq systems from the two-dimensional Euler

equations for free-surface flow in [3]. Modeling the effects of viscosity on the propagation of long

waves is an important challenge that has been investigated since the time of Stokes and has received

a lot of interest in the last decade (see [4, 5] and references therein). Besides, P. Liu and T. Orfila

[6], D. Dutykh, and F. Dias [7] have independently derived viscous asymptotic models for transient

long-wave propagation including viscous effects. These effects appear as nonlocal terms in the form

of convolution integrals. The derivation of this model holds in 3 D and 2 D cases. Using a one-way

wave reduction (see [3, 8] for details), the authors in [9] investigated a reduced nonlinear model that

reads
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ut + ux + βuxxx +
√

ν
√

π

∫ t

0

ut(s)√
t − s

ds + γuux = αuxx, (1)

where 1√
π

∫ t

0

ut (s)√
t−s

ds is the Caputo half-derivative. Here u is the horizontal velocity of the fluid, −αuxx

is the usual diffusion, βuxxx is the geometric dispersion,
√

ν√
π

∫ t

0

ut (s)√
t−s

ds stands for the nonlocal diffusive-

dispersive term. The parameters β, ν, γ, and α are dedicated to balance the effects of viscosity and

dispersion against nonlinear effects. Moreover, in the recent work [2], one of the authors has considered

the following water wave model

ut + ux + βuxxx +
√

ν
√

π

∂

∂t

∫ t

0

u(s)
√

t − s
ds + γuux = αuxx, (2)

where 1√
π

∂

∂t

∫ t

0

u(s)√
t−s

ds is the Riemann-Liouville half derivative.

Particularly, it is proved the local and the global existence result and decay estimates for the

integro-differential equation (2) when β = 0, ν = α = γ = 1 supplemented with the initial condition

u0 ∈ L1(R) ∩ L2(R). Precisely, the following theorem is stated

Theorem 1.1 (I. Manoubi, [2]) Let u0 ∈ L2(R), then there exists a unique local solution

u ∈ C([0, T); L2
x (R)) of (2).

Moreover for u0 ∈ L1(R) ∩ L2(R), there exists a positive constant C0 > 0 that

depends on u0 such that if �u0�L1(R) is small enough, there exists a unique global solution

u ∈ C(R+; L2
x (R)) ∩ C1/2(R+; H−2

x (R)) of (2) given by

u(t, x) = [KRL(t, ·) � u0](x) − N ⊛ u2(t, x), (3)

where KRL and N are given by

KRL(t, x) =
1

2
√

πt
e− x2

4t e−x−
(

1 −
1

2

∫ +∞

0

e− µ2

4t
− µ|x|

2t
− µ

2 dµ

)

,

and

N(t, x) =
1

4
√

πt
∂x

(

e− x2

4t e−x−
(

1 −
1

2

∫ +∞

0

e− µ2

4t
− µ|x|

2
− µ

2 dµ

))

.

with x− = |x|−x

2
= max(−x, 0), � represents the usual convolution product and ⊛ is the

time-space convolution product defined by

v ⊛ w(t, x) =
∫ t

0

∫

R

v(t − s, x − y)w(s, y)dsdy.

whenever the integrals make sense. In addition, we have the following estimate

max(t1/4, t3/4)�u(t, ·)�L2
x (R) + max(t1/2, t)�u(t, ·)�L∞

x (R) ≤ C0. (4)

The proof of this theorem is presented in [2].

In addition, in the recent work [10], the authors succeeded to remove the smallness condition on

the initial data in Theorem 1.1. Moreover, they proved the weak convergence to zero of the solution.
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Furthermore, in their recent work [1], S. Dumont and J.-B Duval investigated numerically the decay

rate for solutions to the following water wave model

ut + ux − βutxx +
√

ν
√

π

∫ t

0

ut(s)√
t − s

ds + γuux = αuxx, (5)

The approximation of time fractional operators has received a lot of interest during last decades for their

wide application in fluid, in solid mechanics and in visco-elasticity. The formulation of a numerical

stable scheme is crucial but also a difficult issue because of the nonlocal feature of such operators.

The classical methods used in the literature [11–17] consist in the approximation of these fractional

operators using either convolution integrals or the so-called Gear scheme for fractional operators.

Recently, number of authors in the automatic community developed an alternative method, called

the diffusive realization, which is devoted to causal pseudodifferential operators [18–21]. Different

applications of this approach can be found in [22–25]. The main idea of this method is to replace the

nonlocal operator by a linear differential equation. The resulting diffusive model is infinite dimensional,

but local in time. Hence, the new model is more easy to solve for both analytical and numerical points

of view.

In this paper, we are interested in the following equivalent Benjamin-Bona-Mahony (BBM) model

of (2)

ut + ux − βutxx +
√

ν
√

π

∂

∂t

∫

t

0

u(s)
√

t − s
ds + γuux = αuxx. (6)

We implement two numerical schemes to approximate the solution of (6). The first one is detailed

in [1, 2, 13] and is based on the Gear scheme for the approximation of the Riemann-Liouville

half-derivative. The second method is based on the diffusive realization of the nonlocal operator

supplemented with a splitting scheme (see [8, 26] and references therein). We perform numerical sim-

ulations on the solutions and on the decay rates for different values of the parameters β, ν, γ, and α. We

compare between these schemes. Furthermore, we compare our numerical results with those given in

[1, 2, 10].

Remark 1 We note that the well-posedness of the model (6) may be proved mathemati-

cally for initial data u0 ∈ L
2(R) using the diffusive realization of the half-order derivative

and following the same steps as presented at [10].

The outline of this article is as follows: in Section 2, we develop the dispersion relation of the model

(6). Then, in Section 3, we present a first numerical scheme of (6) and numerical results using the Gear

scheme to approximate the nonlocal term. In Section 4, we perform a second numerical scheme based

on the diffusive realization of the nonlocal term followed by several numerical simulations for model

(6). A comparison between the two schemes is also performed.

2 DISPERSION RELATION

We discuss, in this section, the dispersion relation for the linearized asymptotic model. Similarly to

[9], we take β = 1, γ = 0, α = ν and we consider a Laplace-Fourier analysis due to the presence of

the nonlocal term.

Consider the linear BBM-Burgers equation

ut + ux − utxx = νuxx. (7)
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We seek a plane wave solution of the form u(t, x) = v(t)eikx with v(0) = 0. Substituting this solution

into (7), we get

(1 + k
2)vt + (νk

2 + ik)v = 0. (8)

We now apply the Laplace transform to (8). We recall that the Laplace transform in time of a function

v of exponential order α is defined by

L(v)(τ) = ṽ(s) =
∫ +∞

0

v(t)e−tτ
dt,

for all τ such that Re(τ) > α. Hence, we get

(1 + k
2)τ + (νk

2 + ik) = 0. (9)

The real part of τ namely, �(τ) = − νk2

1+k2 represents the dissipation relation. The imaginary part,

denoted by ω = −Im (τ) = k

1+k2 , represents the dispersion relation. In the sequel, we linearize (2).

Thus, we get

ut + ux − utxx +
√

ν

√
π

∂

∂t

∫

t

0

u(s)
√

t − s
ds = νuxx. (10)

Substituting the plane wave solution into (10), we get

(1 + k
2)vt +

√
ν

√
π

∂

∂t

∫

t

0

v(s)
√

t − s
ds + (νk

2 + ik)v = 0. (11)

We now apply the Laplace transform to (11). Since v(0) = 0, we get

(1 + k
2)τ +

√
ντ + νk

2 + ik = 0. (12)

In order to solve equation (12), we consider the change of variables: τ = z2 using the principal

determination of the logarithm, such that �(z) > 0. Hence

(1 + k
2)z2 +

√
νz + νk

2 + ik = 0. (13)

Equation 13 has two solutions. We consider the solution z such that �(z) > 0, namely

z =
−

√
ν +

√

ν − 4(1 + k2)(νk2 + ik)

2(1 + k2)

Then

− z
2 = −τ =

−ν

2(1 + k2)
2

+
√

ν

2(1 + k2)
2

√

ν − 4(1 + k2)(νk2 + ik) +
νk2 + ik

1 + k2
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By restricting to the regime ν << k << 1, we obtain

√

ν − 4(1 + k2)(νk2 + ik) =
√

−4ik

√

1 + o(1)

= 2e
−i sgn(k)π/4

√

|k| + o(
√

|k|). (14)

Therefore,

−τ =
−ν

2(1 + k2)
2

+
√

ν

(1 + k2)
2

(

1
√

2
− i

sgn (k)
√

2

)

√

|k|

+
νk

2 + ik

1 + k2
+ o

(
√

ν|k|
(1 + k2)

2

)

. (15)

This implies

−τ =
(

−ν

2(1 + k2)
2

+
√

ν|k|
√

2(1 + k2)
2

+
νk

2

1 + k2

)

+ i

(

k

1 + k2
− sgn(k)

√
ν|k|

√
2(1 + k2)

2

)

+ o

(
√

ν|k|
(1 + k2)

2

)

. (16)

After simplifications

Im (−τ) =
(

k − sgn(k)

√
ν|k|
√

2

)

+ o

(
√

ν|k|
(1 + k2)

2

)

. (17)

We observe that −Im (τ) has only one nonlinear term: −sgn(k)
√

ν|k|√
2

which represents the nonlocal

dispersion. This term is coming from the nonlocal viscous effect. We would like to point out, as in [9]

for the KdV equivalent model (2), that if ν << k << 1 the viscous dispersion is dominant with respect

to the geometric dispersion coming from the term utxx. Actually, the viscosity provides dissipation that

is of importance. Nevertheless, it depends on parameters. We will see in examples below (Table 2)

that the term −utxx also plays a role.

3 A FIRST NUMERICAL SCHEME

This section deals with the numerical solution of the nonlinear equation

ut − βutxx +
√

ν
√

π

∂

∂t

∫

t

0

u(s)
√

t − s
ds = αuxx − ux − γuux, (18)

supplemented with an initial condition u0. Here, β, ν, α, and γ are non-negative parameters.

3.1 Presentation of the scheme

We develop here a first numerical scheme using the Gear scheme. For that purpose, we follow the

approach proposed in [1, 2]. First, we present the outline of the Gear scheme developed by A.-C Galucio

et al. in [13]. Let u be a time dependent function known only in its discretized values u
n at each time

t
n, where n is a positive integer. The function u

n is approximated by u(tn) with t
n = n∆t, where ∆t,

5



TABLE 1 The first five coefficients gn+1 of the formal

power series (22)

j α = 1/3 α = 1/2 α = 3/4

0 1 1 1

1 − 4
9

− 2
3

−1

2 − 7
81

− 1
18

1
12

3 − 104
2187

− 1
27

− 1
108

4 − 643
19683

− 17
648

− 1
96

5 − 4348
177147

− 19
972

− 7
846

which is supposed to be fixed, is the time step. Furthermore, let us introduce a delay operator given by

(δ−u)
n = un−1. Let G be the Gear operator defined by

G =
1

∆t

[

3

2
I − 2δ

− +
1

2
(δ−)

2

]

, (19)

that approximates the first derivative of u with respect to time. Then the fractional differential operator

Gα is given by

Gα =
1

∆tα

(

3

2

)α[

I −
4

3
δ

− +
1

3
(δ−)

2

]α

,

which is directly obtained by evaluating the α-power of (19). Then, using Newton binomial formula

to compute the term in brackets, we get

Gα =
1

∆tα

(

3

2

)α ∞
∑

j=0

j
∑

l=0

(

4

3

)j(
1

4

)l

(−1)
jCj

α
(−1)

lCl
j (δ

−)
j+l

, (20)

where (−1)
jCj

α
is given in terms of the Gamma function

(−1)
jCj

α
=

Γ(j − α)

Γ(−α)Γ(j + 1)
.

Then the α-derivative of u at each time tn can be approximated by

(Gαu)
n =

1

∆tα

(

3

2

)α ∞
∑

j=0

gj+1un−j, (21)

where gj+1 are rational numbers. For illustrative purposes, we present the first five Gα-coefficients in

Table 1 for three values of α : 1

3
, 1

2
, and 3

4
.

As it was mentioned in [12], the Gear operator (19) leads to a three-level step algorithm, backward in

time and second order accurate, for the approximation of classical time derivatives. As a consequence,

it is a first-order accurate for the approximation of the half derivative. It is worth to note that numerical

tests on the convergence of the Gear scheme have been performed in [13], that confirm this property.
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Let us notice that since we consider functions u that are vanishing for t < 0, the infinite sum in (21)

becomes finite

(Gαu)
n =

1

∆tα

(

3

2

)α n
∑

j=0

gj+1un−j. (22)

To write the numerical scheme associated to (18) we follow [1, 2]. For the first iteration, namely for

n = 0, we use a Crank-Nicolson discretization in time for the linear terms and a fixed-point method

for the nonlinear term. To this end, we rewrite the nonlinear term as uux = 1

4
(u2)x + 1

4
(u2)x. Then we

approximate the first term of the right-hand side explicitly and the second one implicitly. Hence the

approximate solution u1 verifies the semidiscret scheme

(1 − β∂xx)
u1 − u0

∆t
+

1

2

√

3ν

2∆t
((g2 + g1)u

0 + g1u1)

= α
u1

xx + u0
xx

2
−

u1
x + u0

x

2
−

γ

2

(u0)
2

x + (u1)
2

x

4
. (23)

Then, for n ≥ 1, we discretize the right-hand side of (18) as in [27]. We use a Crank-Nicolson

discretization in time for linear terms and Adams-Bashforth discretization for the nonlinear term.

Hence, the proposed discretized equation in time of (18) reads: for all n ≥ 1

(1 − β∂xx)
un+1 − un

∆t
+

√
ν(G1/2u)

n = α
un+1

xx + un
xx

2
− un+1

x + un
x

2
− γ

2

(3un)2
x − (un−1)

2

x

4
, (24)

where

(G1/2u)
n = 1

2
G1/2(un+1 + un)

= 1

2

√

3

2∆t

(

n+1
∑

j=0

gn+2−ju
j +

n
∑

j=0

gn+1−ju
j

)

.

In the case ν = 0, this scheme has local truncation error of order (∆t)2 and a second-order convergence

is observed (for more details, see [27]).

Applying the Fourier transform in space to (23)–(24) provides the scheme:

(1 + βξ2)(û1 − û0) + 1

2

√

3ν∆t

2
((g2 + g1)û

0 + g1û1)

= −∆t(αξ2 + iξ)

2
(û1 + û0) − iγ∆tξ

8

( ˆ
(u0)

2 + ˆ
(u1)

2
)

. (25)

for all n ≥ 1

(1 + βξ2)(ûn+1 − ûn) + 1

2

√

3ν∆t

2

(

n+1
∑

j=0

gn+2−jû
j +

n
∑

j=0

gn+1−jû
j

)

= −∆t(αξ2 + iξ)

2
(ûn+1 + ûn) − iγ∆tξ

8

(

3 ˆ(un)2 − ˆ
(un−1)

2
)

. (26)

We note that this first numerical scheme is of order 1 in time. Moreover, this scheme has local truncation

error of order ∆t (see [7, 28], so that first order convergence is expected.
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FIGURE 1 Error of the time discretization using the Gear scheme [Color figure can be viewed at wileyonlineli-

brary.com]

3.2 Numerical results and discussion

Similarly to [1], we choose an initial datum u0 which provides an exact BBM soliton for α = ν = 0

and β = γ = 1.

u0(x) = 3(p − 1)sech2

(

1

2

√

p − 1

p
(x − x0)

)

. (27)

We take x0 = 100 and p = 2. For the numerics, we consider periodic boundary conditions in space

over an interval [0, L] with L large enough. In all the simulations hereinafter, we take L = 800, the

space step size h = 0.1 and the time step size ∆t = 0.1. We note that we expect the decay rate of the

solution to be as �u(t, ·)�L2
x

≈ Cta or �u(t, ·)�L∞
x

≈ Cta�
for t large with a, a� < 0. Thus, we have the

following estimates on the ratios

lim
t→∞

R2 = lim
t→∞

log

(

�u(t + ∆t, .)�L2
x

�u(t, .)�L2
x

)

(

log

(

t + ∆t

t

))−1

= a,

lim
t→∞

R∞ = lim
t→∞

log

(

�u(t + ∆t, .)�L∞
x

�u(t, .)�L∞
x

) (

log

(

t + ∆t

t

))−1

= a�.

In Figure 1, we justify the convergence in time of the numerical scheme (25)–(26). To this end, we

fix the parameters values to α = β = 1, γ = 0.5, and ν = 0.1. Since we do not know the analytical

solution, we denote by un
Ref the reference solution when ∆t = 0.04. Let un be the numerical solution

when increasing the time step ∆t from 0.05 to 0.2. Then, we denote by En(∆t) = �un
Ref − un�2 the

L2-norm of the error in time. We recall that the solutions are calculated up to time T = 100. We plot

En with respect to ∆t. We observe that the error En is decreasing when the time step ∆t is decreasing.

Besides, this figure deals with the order in time of the scheme (25)–(26) which is given by the slope

of the curve. We see that the measured values are close to a straight line with slope 1.5. This means

that the convergence with respect to the time step of discretization is faster for this example than the

expected one, equal to O(∆t).
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In Figure 2, we simulate the scheme (25)–(26) with parameters values ν = 1, β, α and γ = 0 or

1. We present the solution at time T = 500 and the ratios R2 and R∞. We observe that the shapes

of the numerical solutions are very close. We conclude that the influence of the parameters α, γ, and

β is less significant than the nonlocal term on the values of the solution. However, these parameters

influence the decay rates. Moreover, in the case β = 0, the decay rates of the numerical solution match

the theoretical results, presented in [2], very well. In addition, when comparing with the equivalent

Caputo model (5) investigated in [1], we see that in our case the solution decreases significantly. In

fact, in Figure 7 of [1], the maximum values of the numerical solutions are between 0.35 and 0.45.

However, in our case, the maximum values of the numerical solutions are between 0.01 and 0.015.

A similar observation was done when considering the K.d.V-like equation with the Caputo and the

Riemann-Liouville nonlocal terms. For more details, see [2, 9]. Also, we observe that the velocity of

the wave (defined e.g., by the evolution of the maximum of the solution) when using Caputo term

is greater than that with the Riemann-Liouville term. In fact, in Figure 7 of [1], we observe that the

solutions with Caputo term are centered at x = 255. However, in our case, the solutions are centered

at x = 130.

In Figure 3, we simulate the solutions and the ratios R2 and R∞ when ν = 0 for different values

of the parameters β, α, and γ. We observe that the wave moves faster than the case ν = 1 (see Figure

4). Moreover, the amplitude of the solutions in Figure 3 is greater than in the case ν = 1 in Figure 4.

Also, we observe that in the absence of the nonlocal term, the parameter γ describing the nonlinear

term plays an important role in this simulation.

However, the parameter β affects weakly the amplitude of the solution. In addition, numerical

results of decay rates in Figure 3 match very well the theoretical ones for this case. For more details,

we refer the reader to [9, 29] and references therein.

In Figure 4, we study the influence of different parameters on the solution and on the decay rates

in L
2 and in L

∞ norms. We observe that when the ν = 0.1, the wave moves faster than the case ν = 1.

Similarly to the Figure 3, the parameter β does not play an important role in this simulation. In addition,

comparing to the results given in [1], we observe that the solution with the Caputo half-derivative moves

faster than that with the Riemann-Liouville half-derivative.

In Table 2, we display the values of the decay rates in L
2 and in L

∞ norms for different values of

the parameters when ∆t = h = 0.1. We observe that when β = 0, the numerical results match well

the mathematical results established in [2] for Equation 2. In addition, when β �= 0 the decay rate in

L
2 norm is about −0.75 and is around −1 for the L

∞-norm. Hence, we deduce that the decay rates of

(18) is close to that of (2) but it is different. This difference is due to the dispersion term.

Finally, we calculate the computational time elapsed to simulate the numerical scheme when

varying the parameters values. Results are displayed in Table 2. We see that using the Gear scheme

is relatively expensive in computation time. This is expected due to the nonlocal feature of the half-

derivative term. We note that this point will be addressed more precisely in the next section.

4 A SECOND NUMERICAL SCHEME

In order to improve the precision and the efficiency of the numerical scheme used before, we construct in

this section a second numerical scheme associated to (6) based on a splitting method as described in [26].

In order to construct this scheme, we use the so-called diffusive realization of the half-order derivative.

We refer the interested readers to [20, 30, 31]. To this end, we denote by I
1/2

u(t) = 1√
π

∫

t

0

u(s)√
t−s

ds,

the Riemann-Liouville half-order integral and by D
1/2

u(t) = 1√
π

d

dt

∫

t

0

u(s)√
t−s

ds, the Riemann-Liouville

half-order derivative. We recall that a diffusive realization of I
1/2

u is described as follows

9



FIGURE 2 Numerical solutions and the ratios R2 and R∞ using the Gear scheme when ν = 1 and ∆t = 0.1 [Color

figure can be viewed at wileyonlinelibrary.com]

10



FIGURE 3 Numerical solutions and the ratios R2 and R∞ using the Gear scheme when ν = 0 and ∆t = 0.1 [Color

figure can be viewed at wileyonlinelibrary.com]
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FIGURE 4 Numerical solutions and the ratios R2 and R∞ using the Gear scheme when ν = 1 ou 0.1 and ∆t = 0.1

[Color figure can be viewed at wileyonlinelibrary.com]
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TABLE 2 Decay rates of the solutions when varying the parameters of the Gear scheme with ∆t = h = 0.1

Viscosity Dispersive Nonlinear Diffusive L2 L∞ Computational

ν term β term γ term α decay rate decay rate time (sec)

1 1 0 1 −0.73 −0.98 2214.46

1 1 1 1 −0.72 −0.96 2215.47

1 0 0 0 −0.76 −1.03 2258.77

0 1 1 1 −0.25 −0.52 190.12

0 1 0 1 −0.25 −0.5 193.49

0 0 1 1 −0.25 −0.5 191.24

1 0.1 1 1 −0.72 −0.95 2142.32

0.1 1 0 1 −0.79 −1.12 2181.37

1 0 0.1 0.1 −0.75 −1.02 2158.70

�

∂tψ(t, σ) = −σ2ψ(t, σ) +
2

π
u(t), ψ(0, σ) = 0, ∀σ ≥ 0,

I
1/2

u(t) =
� +∞

0
ψ(t, σ)dσ.

(28)

where σ is a new variable not physically relevant. Hence, a diffusive realization of the half-order

derivative D
1/2

u(t) can be deduced by derivation as follows:

�

∂tψ(t, σ) = −σ2ψ(t, σ) +
2

π
u(t), ψ(0, σ) = 0, ∀σ ≥ 0,

D
1/2

u(t) =
� +∞

0

�

2

π
u(t) − σ2ψ(t, σ)

�

dσ.
(29)

Then we extend the diffusive realization (29) for the functions u depending on time and space as

follows.

�

∂tψ(t, x, σ) = −σ2ψ(t, x, σ) +
2

π
u(t, x), ψ(0, x, σ) = 0, ∀σ ≥ 0,

D
1/2

u(t, x) =
� +∞

0
( 2

π
u(t, x) − σ2ψ(t, x, σ))dσ.

(30)

4.1 Presentation of the model

The nonlocal model (6) can be written as a PDE-ODE coupled system, using (30), as follows

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∂tu(t, x) + ∂x(u +
γ

2
u

2) = −
√

ν
� ∞

0
( 2

π
u(t, x) − σ2ψ(t, x, σ))dσ

+αuxx(t, x) + βutxx(t, x), t > 0, x ∈ R

∂tψ(t, x, σ) = −σ2ψ(t, x, σ) +
2

π
u(t, x), t > 0, x ∈ R, σ ≥ 0,

(31)

supplemented with the initial conditions

∀x ∈ R, ∀σ ≥ 0, ψ(0, x, σ) = 0,

∀x ∈ R, u(0, x) = u0(x).

In order to approximate the Riemann-Liouville half-order derivative in (6), we need to approximate

the generalized integral in (31). To this end, we use a quadrature formula with Nm points. We note

13



by wi the weights and by σi the nodes (or abscissae) of the appropriate quadrature method used in the

approximation. We get

D
1/2

u(t, x) �
Nm
�

i=1

wi

�

2

π
u(t, x) − σ2

i
ψ(t, x, σi)

�

=
Nm
�

i=1

wi

�

2

π
u(t, x) − σ2

i
ψi(t, x)

�

,

Hence, the system (31) is written as a first order system as follows

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

∂tu(t, x) + ∂x(u + γ

2
u

2) = −
√

ν
�

Nm

i=1 wi(
2

π
u(t, x) − σ2

i
ψi(t, x))

+αuxx(t, x) + βutxx(t, x), t > 0, x ∈ R,

∀i = 1, · · · , Nm,

∂tψi(t, x) = −σ2
i
ψi(t, x) + 2

π
u(t, x), t > 0, x ∈ R,

(32)

endowed with the initial conditions

∀x ∈ R, ∀i = 1, · · · , Nm, ψi(0, x) = 0,

∀x ∈ R, u(0, x) = u0(x).

Now, we note by

U = (u, ψ1, · · · , ψNm
)T ,

the vector of (Nm + 1) unknowns, by

F(U) = (u +
γ

2
u

2, 0, · · · , 0)
T

,

and finally

S =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−
√

ν
�

Nm

i=1 wi

√
νw1σ

2
1 · · · · · ·

√
νwNm

σ2
Nm

2

π
−σ2

1 0 · · · 0

2

π
0 −σ2

2

. . . 0

...
...

. . .

2

π
0 · · · · · · −σ2

Nm

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Thus, the problem (32) is written in the following form

∂tU + ∂xF(U) = S(U) + G1∂
2
x
U − G2∂t∂

2
x
U, (33)

where G1 and G2 are diagonal matrices of order Nm + 1. In the sequel, we introduce the so-called

splitting scheme.
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4.2 The splitting method

Let ∆t > 0, for all n ≥ 0, we recall that t
n = n∆t and

U
n(x) ≈ U(n∆t, x).

From Equation 33, we consider the propagation equation

∂tU + ∂xF(U) = G1∂
2
x
U − G2∂t∂

2
x
U, (34)

and the diffusive equation

∂tU = S(U). (35)

We note by Ha (respectively, Hb) the discrete operator of the solution of (34) (respectively, the solution

of (35)). Then a Strang Splitting method of order 2 ([32, 33]) between tn and tn+1 is used to solve

respectively (34) and (35) as follows

U
(1) = Hb

(

∆t

2

)

U
n,

U
(2) = Ha(∆t)U (1),

U
n+1 = Hb

(

∆

2

)

U
(2). (36)

Here, the constructed operators Ha and Hb are stable and of order 2. Then, the scheme (36) provides

an approximation of order 2 in time to the problem (33).

In the sequel, we present the discretization of (34) and (35).

The propagation equation (34). Here u is a solution of the BBM equation. We perform a semidis-

crete in time scheme: we use a Crank-Nicolson scheme for the linear part and Adams-Bashforth scheme

(see [27]) for the nonlinear part. For the space discretization, we use standard Fourier methods.

First, we note that the first approximate solution û
1 is performed using a fixed-point method that

verifies the semidiscrete scheme (of order 2).

(1 + βξ2)
û

1 − û
0

∆t
=

û
1 + û

0

2
(−αξ2 − iξ) −

iγξ

8

(

ˆ
(u0)

2
+

ˆ
(u1)

2
)

. (37)

Then for n ≥ 1, the discret scheme is given by

(1 + βξ2)
û

n+1 − û
n

∆t
=

û
n+1 + û

n

2
(−αξ2 − iξ)

−
iγξ

8
(3 ˆ(un)

2
−

ˆ
(un−1)

2
). (38)

Diffusion equation (35). We can solve mathematically (35) as follows

Hb

(

∆t

2

)

U = e
S ∆t

2 U. (39)
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In addition, for all Nm > 0, the exponential of the matrix S
∆t

2
is calculated numerically using the

“scaling and squaring” method with a (6, 6) Padé approximation [34] (corresponding with Matlab® to

the function “expm(S ∆t

2
)”). We recall that the (p, q) Padé approximation of eA is given by

Rpq(A) = (Dpq(A))
−1Npq(A),

where

Npq(A) =

p
�

j=0

(p + q − j)!p!

(p + q)!j!(p − j)!
Aj,

Dpq(A) =

p
�

j=0

(p + q − j)!q!

(p + q)!j!(q − j)!
(−A)

j.

Hence, the numerical scheme (36) is a three-step scheme.

We note that the scheme (38) as well as the Strang Splitting method are of order two. It follows

that (36) is of order 2. This will be numerically verified in the sequel.

4.3 Quadrature method

In this subsection, we are interested in the choice of the 2Nm coefficients wi and σi of the diffusive

representation given in (32). These coefficients aim to approach the improper integrals in the form

∫ +∞

0

ψ(σ)dσ �

Nm
�

i=1

wiψ(σi). (40)

For seek of convenience, we drop here the variables t and x. The choice of these coefficients is

an important issue, because it affects directly the accuracy of the method and the efficiency of the

approximation. We note that many methods developed in the literature are especially based on the Gauss

quadrature. The choice of the quadrature method was thoroughly discussed in [30] when considering

the KdV equation with the Riemann-Liouville half-derivative. Based on this work, we present the

quadrature method that will be used in the remaining of this article.

Gauss-Jacobi quadrature method. Here, we aim to approximate the generalized integral (40)

with the Gauss-Jacobi quadrature method. It consists in transforming the domain of integration from

[0, +∞[ to [−1, 1] then applying the Gauss-Jacobi quadrature to the resulting integral. Hence, we

choose the following change of variables

σ =
1 − z

1 + z
then

dσ

dz
=

−2

(1 + z)2
.

It follows that

∫ +∞

0

ψ(σ)dσ =

∫ 1

−1

2

(1 + z)2
ψ

(

1 − z

1 + z

)

dz.

Moreover, letting

ψ̃(z) =
2

(1 + z)2
ψ

(

1 − z

1 + z

)

,
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TABLE 3 Weights and abscissae of the Gauss-Laguerre and

Gauss-Jacobi quadrature formulas for Nm = 8

Gauss-Jacobi

wi zi σi

128.3897 −0.9603 49.3650

10.7575 −0.7967 8.8361

2.7870 −0.5255 3.2153

1.0879 −0.1834 1.4493

0.5179 0.1834 0.6899

0.2696 0.5255 0.3110

0.1378 0.7967 0.1132

0.0527 0.9603 0.0203

we get

∫ +∞

0

ψ(σ)dσ =

∫ 1

−1

ψ̃(z)dz �

Nm
∑

i=0

µiψ̃(zi),

where µi (resp. zi) are the weights (resp. the nodes) of the standard Gauss-Jacobi quadrature formula

over [−1, 1]. For illustrative purposes, we present in Table 3 the weights and the nodes of this quadrature

formula for Nm = 8. By identification, we deduce that the quadrature coefficients in (40) are given by

wi =
2

(1 + zi)
2
µi, σi =

1 − zi

1 + zi

.

We note that this strategy was proposed by Diethelm in [8] for the approximation of Caputo

fractional-order derivative.

4.4 Numerical results and discussion.

We begin with justifying the convergence in time of the splitting scheme (37)–(38). To this end, we

choose h = 0.1, L = 800, Nm = 20, T = 100, and α = β = γ = ν = 1. We denote by un

Ref the

reference solution when ∆t = 0.05 and un the numerical solution for different time steps ∆t. Also, we

denote by En(∆t) = �un

Ref −un�2 the L2-error in terms of ∆t. The results are presented in Figure 5. We

see that the error En decreases when the time step ∆t decreases. Also, we may determine numerically

the order of the scheme (37)–(38). In fact, the measured values are close to a straight line with slope

2 which means that En(∆t) ≈ C∆t2 where C is a constant. We conclude that the numerical scheme

(37)–(38) is of order 2 in time.

Then, we aim to study numerically the convergence of the splitting scheme (37)–(38) with respect

to the number of Gauss-Jacobi quadrature points. To this end, we consider the parameters ∆t =

h = 0.1, L = 800, T = 100 and ν = α = β = γ = 1. We denote by un

Ref the reference solution

for Nm = 20 and by un the numerical solution for different values of Nm. Some other numerical

tests show that convergence is obtained with Nm = 20 (see also [26]). Moreover, we denote by

En(Nm) = �un

Ref − un�2 the L2− error in terms of quadrature points. We plot, in Figure 6, the Error En

with respect to Nm. We see that the measured values are close to a straight line with slope −11, which

means that En(Nm) ≈ C

(

1

Nm

)11

where C is a constant.
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FIGURE 5 Error of the time discretization using the splitting scheme [Color figure can be viewed at wileyonlineli-

brary.com]

Besides, since the error is less than 10−5 from Nm = 15, we choose this number of points to realize

the simulations in the sequel.

Now, we examine the convergence of the decay rates of the Gear scheme (25)–(26) and the splitting

scheme (37)–(38). To this end, we take the parameters values L = 800, ∆t = h = 0.1, α = β = 1,

ν = 0.1, and γ = 0.5. We calculate the solutions up to time T = 100. We denote by RGr
p the ratio in

norm Lp of the Gear scheme (25)–(26) and by RSp
p the ratio in norm Lp of the splitting scheme (37)–(38)

where p = 2 or ∞. Also, we denote by Errp = RSp
p − RGr

p the difference with respect to the time of the

decay rate obtained by the two approximations. In Figure 7, we plot Err2 and Err∞ with respect to time

t. We observe that both errors Err2 and Err∞ are decreasing to zero especially for large times for all

the time step ∆t chosen, that is the main part of interest of our study. We conclude that the numerical

schemes converges for large time.

FIGURE 6 Error in terms of Nm using the Splitting scheme [Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE 7 Differences of the decay rates between the splitting and the Gear schemes when Nm = 15, α = β = 1,

ν = 0.1, γ = 0.5, and ∆t = 0.1 [Color figure can be viewed at wileyonlinelibrary.com]

In the sequel, we study the time convergence of the decay rates R2 and R∞ of the splitting scheme

(37)–(38). To this end, we fix the parameters values to h = 0.1, L = 800, T = 100, α = 2, β = γ = 1,

ν = 0.5. We denote by RRef
p the ratio in norm Lp when the time step ∆t = 0.05 and by Rn

p the ratio in

norm Lp for different values of ∆t when p = 2 or ∞. Also, we denote by Errn
p = RRef

p − Rn
p the error

in time of the decay rates. In Figure 8, we present the errors Errn
2 and Errn

∞ when increasing the time

step ∆t from 0.05 to 0.25. We observe that both errors decreases when increasing the time step ∆t.

Moreover, we observe that the errors are less than 10−3 for large times when ∆t = 0.1. Hence, we

conclude that this time step is suffisant to get accurate numerical results.

Finally, we determine the computation time of solutions (in seconds) using the splitting scheme

(37)–(38) for different parameters values when ∆t = h = 0.1. Results are displayed in Table 4. As it is

expected, the time elapsed to calculate the numerical solution using the splitting scheme is reduced. It

represents 1/5 of the time necessary to calculate solutions with the Gear scheme (25)–(26). We deduce

that the use of the splitting scheme performs a numerical solution more accurate and in a relatively

shorter time of computation.
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FIGURE 8 Differences of the decay rates between a solution of reference with ∆t = 0.05s and solutions obtained

with larger time steps, using splitting scheme where Nm = 15, α = 2, ν = 0.5, and γ = β = 1 [Color figure can be

viewed at wileyonlinelibrary.com]

TABLE 4 Decay rates of the solutions when varying parameters of the Splitting scheme with ∆t = h = 0.1

Viscosity Dispersive Nonlinear Diffusive L2 L∞ Computational

ν term β term γ term α decay rate decay rate time (sec)

1 1 0 1 −0.74 −0.98 400.95

1 1 1 1 −0.73 −0.97 401.8

1 0 0 0 −0.76 −1.03 408.67

0 1 1 1 −0.25 −0.52 190.12

0 1 0 1 −0.25 −0.5 193.49

0 0 1 1 −0.25 −0.5 191.24

1 0.1 1 1 −0.73 −0.96 399.78

0.1 1 0 1 −0.84 −1.16 394.59

1 0 0.1 0.1 −0.76 −1.02 393.23
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5 CONCLUSION

In this article, we have constructed two numerical schemes to approximate the solutions and the

decay rates to an asymptotical water wave model where the nonlocal viscous term is described by the

Riemann-Liouville half derivative. We compare our numerical results to those given in [1, 2, 10]. We

show that using the diffusive realization of the nonlocal operator supplemented with a splitting scheme

leads to a very interesting gain of time computing of the numerical solution. This numerical scheme

enables us to approximate nonlocal models in a shorter time when comparing with classical methods

as the Gear scheme. A challenging issue is to address analytically the asymptotical behavior of the

initial value problem. This question will be the subject of a future work.
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