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In this paper, we numerically study the water wave model with a nonlocal

viscous term

ut + ux + 𝛽uxxx +
√
𝜈D1∕2u(t) + 𝛾uux = 𝛼uxx,

where D1∕2u(t) =
1√
𝜋

𝜕

𝜕t
∫ t

0
u(s)√
t−s
ds is the Riemann-Liouville half-order deriva-

tive in time.We propose and compare different numerical schemes based on the

diffusive realizations of fractional operators.

KEYWORDS

decay rate, diffusive realization, fractional derivatives, nonlocal viscous model, time splitting, water

waves

1 INTRODUCTION

1.1 State of the art

Modeling the effects of viscosity in the propagation of long waves is a challenging issue. In the last decade, Liu-Orfila1

and Dutykh-Dias2 have independently derivedmathematical models in 2D and in 3Dwhere the viscosity is modeled with

nonlocal in time operators. In the case of a mono-dimension wave, the model is reduced as follows:

ut + ux + 𝛽uxxx +

√
𝜈√
𝜋 ∫

t

0

ut(s)√
t − s

ds + uux = 𝛼uxx, (1)

where 1√
𝜋
∫ t

0
ut(s)√
t−s
ds represents the Caputo half derivative in time. Here, u is the horizontal velocity of the fluid, −𝛼uxx is

the usual diffusion, 𝛽uxxx is the geometric dispersion, and
1√
𝜋
∫ t

0
ut(s)√
t−s
ds stands for the nonlocal diffusive-dispersive term.

We denote as 𝛽, 𝜈, and 𝛼 the parameters dedicated to balance or unbalance the effects of viscosity and dispersion against

nonlinear effects. Some numerical results of the decay rate of a solution of (1) are performed in Chen et al3 and Dumont

and Duval.4 Also, in the recent work,5 the author has considered the model (1) where she used the Riemann-Liouville

half derivative instead of that of Caputo, namely,

ut + ux + 𝛽uxxx +

√
𝜈√
𝜋

𝜕

𝜕t ∫
t

0

u(s)√
t − s

ds + uux = 𝛼uxx. (2)
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Comparing with the problem (1), she improved the estimates on the decay rates of the solution. Particularly, she proved

that the local and global existence result and decay estimates for the integro-differential equation 2 when 𝛽 = 0, 𝜈 = 𝛼 = 1

supplemented with the initial condition u0 ∈ L1(R) ∩ L2(R). Precisely, she stated the following theorem.

Theorem 1. Let u0 ∈ L2(R),5 then there exists a unique local solution u ∈ C([0,T);L2x(R)) of (2). Moreover, for u0 ∈

L1(R) ∩ L2(R), there exists a positive constant C0 > 0 that depends on u0 such that if ||u0||L1(R) is small enough, there

exists a unique global solution u ∈ C(R+;L
2
x(R)) ∩ C

1∕2(R+;H
−2
x (R)) of (2) given by

u(t, x) = [KRL(t, ·) ⋆ u0](x) − N ⊛ u2(t, x), (3)

where KRL and N are given by

KRL(t, x) =
1

2
√
𝜋t
e−

x2

4t e−x
−

(
1 −

1

2 ∫
+∞

0

e−
𝜇2

4t
−

𝜇|x|
2t

−
𝜇

2 d𝜇

)

and

N(t, x) =
1

4
√
𝜋t

𝜕x

(
e−

x2

4t e−x
−

(
1 −

1

2 ∫
+∞

0

e−
𝜇2

4t
−

𝜇|x|
2
−

𝜇

2 d𝜇

))

with x− =
|x|−x
2

= max(−x, 0); ⋆ represents the usual convolution product and⊛ is the time-space convolution product

defined by

v⊛ w(t, x) = ∫
t

0 ∫
R

v(t − s, x − 𝑦)w(s, 𝑦)dsd𝑦

whenever the integrals make sense. In addition, we have the following estimate:

max(t1∕4, t3∕4)||u(t, ·)||L2x (R) +max(t1∕2, t)||u(t, ·)||L∞x (R) ≤ C0. (4)

The proof of this theorem is presented in Manoubi.5 The approximation of time-fractional operators has received a lot

of interest during last decades for their wide application in fluid and solidmechanics and visco-elasticity. The formulation

of a numerical stable scheme is crucial but also a difficult question because of the nonlocal feature of such operators. The

classical methods used in the literature6-11 consist on the approximation of these fractional operators using either con-

volution integrals or the so-called Gear scheme for fractional operators. However, these methods are expensive in terms

of run time evaluations and of the memory required to store the function values, especially for large time simulations.

Also, Zang and Xu proposed in Zhang and Xu12 numerical schemes based on finite difference/spectral approximations

to a water wave model. In particular, they used the known (2 − 𝛼) order scheme for the 𝛼-order fractional derivative

and a mixed linearization for the nonlinear term. They proved the unconditionally stability and some convergence rates

for the schemes. Moreover, in their work,13 Liu et al constructed finite difference/finite element method for a nonlin-

ear time-fractional fourth-order reaction-diffusion problem. They proved unconditionally stability of the schemes and

some a priori estimates of L2 norm with optimal order of convergence. Independently, a number of authors suggested a

method for the direct approximation of the fractional operators. This method, called diffusive representation,14 is an oper-

ator theory approach and is devoted to sech pseudo-differential equations and time nonlocal problems. This approach

was developed by Montseny,15 Montseny et al,16,17 and Staffans.18 Different applications of this approach can be found in

other studies.19-22 The main idea of this method is to replace the nonlocal operator by a linear differential equation. The

resulting diffusive model is infinite dimensional, but local in time, which has many advantages from the mathematical

and numerical points of view.

1.2 Diffusive formulation of the model

In the literature, there are several diffusive realizations of the Riemann-Liouville half-order derivative D1/2u(t). We recall

in the following some of these formulations. First, the diagonal form of the diffusive realization of D1/2u(t) is given for all

t > 0 by

⎧⎪⎨⎪⎩

𝜕t𝜓(t, 𝜎) = −𝜎𝜓(t, 𝜎) + u(t), 𝜓(0, 𝜎) = 0, 𝜎 ≥ 0,

D1∕2u(t) = ∫
+∞

0

1

𝜋
√
𝜎
𝜕t𝜓(t, 𝜎)d𝜎.

(5)
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Second, the partial differential equation (PDE) form of the diffusive realization of D1/2u(t) is given for all t > 0 by

⎧
⎪⎨⎪⎩

𝜕tΦ(t, 𝑦) = Φ𝑦𝑦(t, 𝑦) + u(t)⊗ 𝛿𝑦=0, Φ(0, 𝑦) = 0, 𝑦 ∈ R,

D1∕2u(t) = 2 < 𝛿𝑦=0, 𝜕tΦ(t, 𝑦)>′, = 2
d

dt
Φ(t, 0),

(6)

where 𝛿y=0 is the Dirac delta function at y = 0 and u(t) ⊗ 𝛿y=0 is the tensorial product in the distributions sense of the

applications t → u(t) and y → 𝛿y=0. Finally the diffusive realization ofD
1/2u(t) used in the remaining of this article is given

for all t > 0 by

⎧
⎪⎨⎪⎩

𝜕t𝜙(t, 𝜎) = −𝜎2𝜙(t, 𝜎) +
2

𝜋
u(t), 𝜙(0, 𝜎) = 0, 𝜎 ≥ 0,

D1∕2u(t) = ∫
+∞

0

(
2

𝜋
u(t) − 𝜎2𝜙(t, 𝜎)

)
d𝜎.

(7)

We note that the author has used the diffusive realizations (6) and (7) in her PhD thesis to study mathematically the

integro-differential equation 2 when 𝛽 = 0, 𝜈 = 𝛼 = 1 using 2 different methods. For more details, we refer the readers to

Manoubi.25 In this paper, we study numerically the integro-differential equation 2 using the diffusive approach. Hence,

we extend the diffusive realization (7) of the Riemann-Liouville half-order derivative as follows:

⎧⎪⎨⎪⎩

𝜕t𝜓(t, x, 𝜎) = −𝜎2𝜓(t, x, 𝜎) +
2

𝜋
u(t, x), 𝜓(0, x, 𝜎) = 0, ∀𝜎 ≥ 0,

D1∕2u(t, x) = ∫
+∞

0

(
2

𝜋
u(t, x) − 𝜎2𝜓(t, x, 𝜎)

)
d𝜎.

(8)

Then, the integro-differential equation 2 can be written as a PDE–ordinary differential equation (ODE) coupled system

as follows:

⎧⎪⎨⎪⎩

ut(t, x) +
√
𝜈 ∫ +∞

0

(
2

𝜋
u(t, x) − 𝜎2𝜓(t, x, 𝜎)

)
d𝜎 = 𝛼uxx(t, x)

−ux(t, x) − 𝛽uxxx(t, x) − 𝛾u(t, x)ux(t, x), t > 0, x ∈ R,
𝜕t𝜓(t, x, 𝜎) = −𝜎2𝜓(t, x, 𝜎) + 2

𝜋
u(t, x), t > 0, x ∈ R, 𝜎 ≥ 0,

(9)

supplemented with the initial conditions

∀x ∈ R, ∀𝜎 ≥ 𝜓(0, x, 𝜎) = 0,

∀x ∈ R, u(0, x) = u0(x).

The remaining of this article is as follows. Different quadrature methods are presented in Section 2 to approximate the

Riemann-Liouville half-order derivative. In Section 3, we present a first numerical scheme associated to the system (9)

whereweused the quadraturemethods followed by several numerical simulations anddiscussion. In Section 4,we present

a second numerical scheme for (9) using a splitting procedure. Numerical results are proposed in order to check the

efficiency of the numerical scheme. A dispersion analysis is presented in Section 5.

2 QUADRATURE METHODS

To approximate the Riemann-Liouville half-order derivative in (2), we need to approximate the generalized integral in (9).

To this end, we use a quadrature formula with N points. We note by wi the weights and by 𝜎i the nodes (or abscissae) of

the appropriate quadrature method used in the approximation. We get

D1∕2u(t, x) ≃

N∑
i=1

wi

(
2

𝜋
u(t, x) − 𝜎2i 𝜓(t, x, 𝜎i)

)

=

N∑
i=1

wi

(
2

𝜋
u(t, x) − 𝜎2i 𝜓i(t, x)

)
,
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where 𝜓 i verifies the ODE (8). Hence, system (9) is approximated as follows:

⎧
⎪⎪⎨⎪⎪⎩

ut(t, x) +
√
𝜈

N∑
i=1

wi

(
2

𝜋
u(t, x) − 𝜎2

i
𝜓i(t, x)

)
= 𝛼uxx(t, x)

−ux(t, x) − 𝛽uxxx(t, x) − 𝛾u(t, x)ux(t, x), t > 0, x ∈ R,
𝜕t𝜓i(t, x) = −𝜎2

i
𝜓i(t, x) +

2

𝜋
u(t, x), t > 0, x ∈ R, i = 0, · · · ,N,

(10)

supplemented with the initial conditions

∀x ∈ R, ∀i = 0, · · · ,N 𝜓i(0, x) = 0,

∀x ∈ R, u(0, x) = u0(x).

In the sequel, we are interested in the choice of the 2N coefficients wi and 𝜎i of the diffusive representation given in (10).

These coefficients aim to approach the improper integrals in the form

∫
+∞

0

𝜓(𝜎)d𝜎 ≃

N∑
i=1

wi𝜓(𝜎i). (11)

For seek of convenience, we drop here the variables t and x. The choice of the coefficients wi and 𝜎i is an important issue,

because it effects directly the accuracy of themethod and the efficiency of the approximation.We note thatmanymethods

developed in the literature are especially based on the Gauss quadrature. In the sequel, we present some quadrature

methods that will be used in the remaining of this article.

2.1 The Gauss-Laguerre quadrature

A first method consists in approximating the generalized integral (11) using the standardGauss-Laguerre quadrature over

the interval [0,+∞[ with the weight function w(𝜎) = e−𝜎 (see Abramowitz and Stegun23)

∫
+∞

0

e−𝜎𝜓(𝜎)d𝜎 ≃

N∑
i=0

𝜇i𝜓(zi). (12)

Particularly, this method is more suitable in the case of an integrand with an exponential decay. The coefficients 𝜇i (resp

zi) are the weights (resp the nodes) of the Gauss-Laguerre quadrature formula. Hence, (12) implies

∫
+∞

0

𝜓(𝜎)d𝜎 ≃

N∑
i=0

𝜇ie
zi𝜓(zi),

As a consequence, the coefficients in (11) are given by

wi = 𝜇ie
zi , 𝜎i = zi.

For illustrative purposes, we present in Table 1 the weights and the nodes of this quadrature method when N = 8. We

note that this quadrature method was proposed by Yuan and Agrawal24 in order to approximate the Caputo fractional

derivative of order 𝛼 where 0 < 𝛼 < 1.

2.2 The Gauss-Jacobi quadrature method

In this paragraph, a secondmethod is proposed, approximating the generalized integral (11)with theGauss-Jacobi quadra-

turemethod. For that purpose, it is necessary to transform the domain of integration from [0,+∞[ to [−1, 1], then to apply

the Gauss-Jacobi quadrature to the resulting integral. Hence, we choose the following change of variables:

𝜎 =
1 − z

1 + z
then

d𝜎

dz
=

−2

(1 + z)2
.

It follows that

∫
+∞

0

𝜓(𝜎)d𝜎 = ∫
1

−1

2

(1 + z)2
𝜓

(
1 − z

1 + z

)
dz.
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TABLE 1 Weights and abscissae of the Gauss-Laguerre

and Gauss-Jacobi quadrature formulas for N = 8

Gauss-Laguerre Gauss-Jacobi

wi 𝜎i wi zi 𝜎i

0.4377 0.1703 128.3897 −0.9603 49.3650

1.0339 0.9037 10.7575 −0.7967 8.8361

1.6697 2.2511 2.7870 −0.5255 3.2153

2.3769 4.2667 1.0879 −0.1834 1.4493

3.2085 7.0459 0.5179 0.1834 0.6899

4.2686 10.7585 0.2696 0.5255 0.3110

5.8181 15.7407 0.1378 0.7967 0.1132

8.9062 22.8631 0.0527 0.9603 0.0203

Moreover, letting

𝜓̃(z) =
2

(1 + z)2
𝜓

(
1 − z

1 + z

)
,

we get

∫
+∞

0

𝜓(𝜎)d𝜎 = ∫
1

−1

𝜓̃(z)dz ≃

N∑
i=0

𝜇i𝜓̃(zi),

where 𝜇i (resp zi) are the weights (resp the nodes) of the standard Gauss-Jacobi quadrature formula over [−1, 1]. For

illustrative purposes, we present in the Table 1 the weights and the nodes of this quadrature formula for N = 8. By

identification, we deduce that the quadrature coefficients in (11) are given by

wi =
2

(1 + zi)2
𝜇i , 𝜎i =

1 − zi
1 + zi

.

We note that this strategy was proposed by Diethelm26 for the approximation of Caputo fractional-order derivative.

3 A FIRST NUMERICAL SCHEME

In this section, we first present the numerical scheme. After that, we present different numerical simulations with both

Gauss-Laguerre and Gauss-Jacobi quadrature methods. Finally, we compare these results in order to choose the appro-

priate quadrature that will be used in the second numerical scheme. In the sequel, we take t ∈ [0,T], x ∈ [0,A] and we

consider periodic boundary conditions, ie, u|x=0 = u|x=A. Since we run the numerics with an initial data that provides a
wave that moves from the left to the right, we expect our computations to be physically relevant until this wave reaches

the right boundary.

3.1 Presentation of the model

Let Δt > 0 be a fixed time step and h > 0 be a fixed space step. We set for all m = 0, · · · ,Np, tm = mΔt and for all

j = 1, · · · ,K, xj = jh. We use the following notations:

∀ i = 1, · · · ,N, um(x) ≈ u(mΔt, x), 𝜓m
i (x) ≈ 𝜓(mΔt, x, 𝜎i).

For the PDE in (10), we suggest a semi-implicit scheme, where the half derivative and the nonlinear term are explicitly

approximated. We use the Crank-Nicolson approximation in time. Thus, the semi-discretized scheme associated to (10)

is given by

5



um+1 − um

Δt
+
√
𝜈

N∑
i=1

wi

(
2

𝜋
um − 𝜎2i 𝜓

m
i

)
= 𝛼

(
um+1 + um

2

)

xx

−

(
um+1 + um

2

)

x

− 𝛽

(
um+1 + um

2

)

xxx

− 𝛾

(
(um)2

2

)

x

.

(13)

For the ODE in (10), we use the following implicit-explicit scheme

𝜓m+1
i

− 𝜓m
i

Δt
= −𝜎2i 𝜓

m+1
i

+
2

𝜋
um. (14)

Then, we apply the Fourier transform in space to (13) and (14). We get

ûm+1(1 +
Δt

2
(𝛼𝜉2 + i𝜉 − i𝜉3𝛽)) = ûm(1 −

Δt

2
(𝛼𝜉2 + i𝜉 − i𝜉3𝛽))

−
√
𝜈Δt

N∑
i=1

wi(
2

𝜋
ûm − 𝜎2i 𝜓

m
i
) − i𝛾Δt𝜉

(̂um)2

2

(15)

and

𝜓̂m+1
i

(1 + 𝜎2i Δt) = 𝜓m
i
+
2

𝜋
Δt ûm, (16)

where the initial conditions are approximated as follows:

∀ i = 1, · · · ,N, 𝜓0
i
= 0, û0 ≈ û0.

Hence, our scheme is a 2-step scheme: Let the approximated solution (um, 𝜓m) be given, we first calculate an approximate

solution 𝜓m+1 of (16). Then, we use this solution to approximate the solution um+1 of (15), and so on.

3.2 Numerical results and discussion

Similar to Chen et al3 and Manoubi,5 we choose an initial datum u0, which provides a small amplitude and long-wave

Korteweg-de Vries (KdV) soliton for 𝛼 = 𝜈 = 0, 𝛽 = 1, and 𝛾 = 6. We denote by x0 the middle of the space interval, then

the initial datum reads

u0(x) = 0.32 ∗ sech2(0.4 ∗ (x − x0)). (17)

All numerical simulations are realized with the time step Δt = 0.1, the space step h = 0.1, and on the space interval

[0,A] = [0, 500]. In a first step, we study the convergence of the numerical schemes (15) and (16) using the quadrature

coefficients of Gauss-Laguerre and Gauss-Jacobi. In a second step, we compare these numerical solutions with those

constructed using the scheme (68) developed in Manoubi.5 In this paragraph, we take the following parameters values

𝛼 = 𝜈 = 1, 𝛾 = 𝛽 = 0, and T = 100, which correspond to the nonlinear case without geometric dispersion. In Figure 1,

we present the numerical solution associated to the schemes (15) and (16) increasing the number of Gauss-Laguerre

quadrature nodes; more precisely, we take N = 30, N = 40, N = 50, N = 60, and N = 80. Moreover, we present the L2 and

L∞ decay rates of the solutionwithN = 40,N = 50,N = 60, andN = 80.We observe that the numerical solutions converge

for N ≥ 60. However, we do not observe the qualitative convergence of the decay rates even for N = 80, which represents

an important number of points. Also, we observed this slow convergence using other parameters values of the scheme.

Thismay be due to the poor quality of the algorithmof theGauss-Laguerre quadrature; this fact has been observed by other

authors.27,28 Later, this method was mathematically analyzed by Diethelm.26 Diethelm identified that this unsatisfactory

behavior is due to the asymptotic characteristics of the integrand function at the end points of the interval [0,+∞). On

the basis of this result, Diethelm proposed an alternative quadrature formula, namely, the Gauss-Jacobi quadrature, that

gives rise to a much better overall performance of the scheme and that is more promising for integrands with an algebraic

decay.

In Figure 2, we present the approximate solution of the schemes (15) and (16) with the Gauss-Jacobi quadrature coef-

ficients and the L2 and L∞ decay rates of the solution. We observe that the numerical solutions and the decay rates

converge for a number of nodes greater thanN = 15.We have constructed different numerical simulations using different

parameters values, and we get the same observation.
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FIGURE 1 Numerical solution and decay rates using Gauss-Laguerre rule for different N when 𝛼 = 𝜈 = 1, 𝛽 = 𝛾 = 0 [Colour figure can be

viewed at wileyonlinelibrary.com]

In Figure 3, we compare the numerical solutions and decay rates resulting from the schemes (15) and (16) using the

Gauss-Laguerre and Gauss-Jacobi rules with those arising from the numerical scheme (68) developed in Manoubi.5 We

use 80 points for Gauss-Laguerre quadrature and 15 points for Gauss-Jacobi quadrature. We observe that the 3 numerical

solutions overlap each other. Moreover, it is sufficient to use only N = 15 points with the Gauss-Jacobi rule to obtain

satisfyingnumerical results for the numerical solution.However, usingGauss-Laguerre quadrature,weneed to useN = 50

points or more if we need to get more precise results. Moreover, using Gauss-Jacobi rule, we observe that the decay rates

of the solution are smoother than both numerical decay rates resulting from the scheme (68) developed in Manoubi5 and

from Gauss-Laguerre rule. Taking in account these observations, we choose in the sequel the Gauss-Jacobi quadrature to

all numerical simulations. Now, we simulate the numerical schemes (15) and (16) in the nonlinear case. To this end, we

take the following parameters values: 𝛼 = 2, 𝜈 = 0.2, 𝛾 = 1, 𝛽 = 0.5, and T = 100.

In Figure 4, we present the numerical solution and L2 and L∞ decay rates of the schemes (15)and (16) using N =

15 points in the Gauss-Jacobi rule. We compare these results with those constructed from the numerical scheme (68)

developed in Manoubi.5 We observe that the numerical solutions overlap each other. Moreover, the decay rates in L2 and

L∞ norms are very close. Then, we can deduce that both schemes converge. Also, in Table 2, we compare the computation

time of solutions in linear and nonlinear cases (in seconds) between the numerical schemes (15) and (16) for different
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FIGURE 2 Numerical solution and decay rates using the Gauss-Jacobi for different N with 𝛼 = 𝜈 = 1, 𝛽 = 𝛾 = 0 [Colour figure can be

viewed at wileyonlinelibrary.com]

Gauss quadrature rules and the numerical scheme (68) developed in Manoubi.5 We observe that the numerical scheme

(68) developed in Manoubi5 is relatively expensive in computation time. This is due to the numerical method used to

approximate the half-order derivative.

4 A SECOND NUMERICAL SCHEME

To improve the precision and the efficiency of the numerical scheme used before, we construct in this subsection a second

numerical scheme associated to (8) following the method proposed in Lombard and Mercier.29
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FIGURE 3 Comparing solutions and decay rates for different quadrature rule with the scheme (68) of Manoubi5 when 𝛼 = 𝜈 = 1,

𝛼 = 𝛽 = 0 [Colour figure can be viewed at wileyonlinelibrary.com]

4.1 Presentation of the model

The PDE-ODE system given by (9) can be written as

⎧⎪⎨⎪⎩

𝜕tu(t, x) + 𝜕x(u +
𝛾

2
u2) = −

√
𝜈 ∫ ∞

0

(
2

𝜋
u(t, x) − 𝜎2𝜓(t, x, 𝜎)

)
d𝜎

+𝛼uxx(t, x) − 𝛽uxxx(t, x), t > 0, x ∈ R

𝜕t𝜓(t, x, 𝜎) = −𝜎2𝜓(t, x, 𝜎) + 2

𝜋
u(t, x), t > 0, x ∈ R, 𝜎 ≥ 0,

(18)

supplemented with the initial conditions

∀x ∈ R,∀𝜎 ≥ 0, 𝜓(0, x, 𝜎) = 0,

∀x ∈ R, u(0, x) = u0(x).
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FIGURE 4 Comparing solutions and decay rates using Gauss-Jacobi quadrature with the scheme (68) of Manoubi5 when 𝛼 = 2, 𝜈 = 0.5,

𝛾 = 0.5, 𝛽 = 0.1 [Colour figure can be viewed at wileyonlinelibrary.com]

To approximate the integral in (18), we use the Gauss-Jacobi quadrature with N nodes. We denote by wi and 𝜎i for i =

1, · · · ,N the weights and abscissas, respectively. Hence, the system (18) is written as a first-order system as follows:

⎧⎪⎪⎨⎪⎪⎩

𝜕tu(t, x) +𝜕x(u +
𝛾

2
u2) = −

√
𝜈

N∑
i=1

wi

(
2

𝜋
u(t, x) − 𝜎2

i
𝜓i(t, x)

)

+𝛼uxx(t, x) − 𝛽uxxx(t, x), t > 0, x ∈ R,
𝜕t𝜓i(t, x) = −𝜎2

i
𝜓i(t, x) +

2

𝜋
u(t, x), t > 0, x ∈ R, i = 1, · · · ,N,

(19)

endowed with the initial conditions

∀x ∈ R,∀i = 1, · · · ,N, 𝜓i(0, x) = 0,

∀x ∈ R, u(0, x) = u0(x).
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TABLE 2 Computation time of the numerical solution

Linear case Nonlinear case

Scheme (68) in Manoubi5 104.26 125.81

Gauss-Laguerre (N = 80) 61.195 61.45

Gauss-Jacobi (N = 15) 40.44 40.24

Now, we note by

U = (u, 𝜓1, · · · , 𝜓N)
T ,

the vector of (N + 1) unknowns, by

 (U) = (u +
𝛾

2
u2, 0, · · · , 0)T ,

and finally

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−
√
𝜈

N∑
i=1

wi

√
𝜈w1𝜎21 · · · · · ·

√
𝜈wN𝜎2N

2

𝜋
−𝜎21 0 · · · 0

2

𝜋
0 −𝜎2

2
⋱ 0

⋮ ⋮ ⋱
2

𝜋
0 · · · · · · −𝜎2

N

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Thus, the problem (19) is written in the following form:

𝜕tU + 𝜕x (U) = S(U) + G1𝜕
2
xU + G2𝜕

3
xU, (20)

where G1 and G2 are diagonal matrices of order N + 1. In the sequel, we introduce the so-called splitting scheme.

4.2 The splitting method

Let Δt > 0, for allm = 0, · · · ,Np, we note by tm = mΔt and

Um(x) ≈ U(mΔt, x).

From Equation 20, we consider the propagation equation

𝜕tU + 𝜕x (U) = G1𝜕
2
xU + G2𝜕

3
xU, (21)

and the diffusive equation

𝜕tU = S(U). (22)

We note by Ha (respectively, Hb) the discrete operator of the solution of (21) (respectively, the solution of Equation 22).

Then, a Strang splitting method30,31 of order 2 between tn and tn+1 is used to solve respectively (21) and (22) as follows:

U (1) = Hb(
Δt

2
)Um,

U (2) = Ha(Δt)U
(1),

Um+1 = Hb(
Δ

2
)U (2).

(23)

Here, the constructed operators Ha and Hb are stable and of order 2. Then, the scheme (23) provides an approximation

of order 2 in time to the problem (21). In the sequel, we present the discretization of (21) and (22).

4.2.1 Propagation equation 21
Here, u is a solution of the KdV equation. The discretization in time of this equation is provided by a semi-discrete in time

scheme, using the Crank-Nicolson scheme for the linear part and Adams-Bashforth scheme (see Kalisch and Bona32) for

11



the nonlinear part. The space approximation of the solutions are performed by standard Fourier methods. First, we note

that the approximate solution û1 is provided by a fixed-point method that verifies the semi-discrete scheme (of order 2):

û1 − û0

Δt
=
û1 + û0

2
(−𝛼𝜉2 − i𝜉 + i𝛽𝜉3) −

i𝛾𝜉

2

(̂u1)2 + (̂u0)2

4
. (24)

Then, form = 1, · · · ,Np, we consider the following semi-discrete scheme:

ûm+1 − ûm

Δt
=
ûm+1 + ûm

2
(−𝛼𝜉2 − i𝜉 + i𝛽𝜉3) −

i𝛾𝜉

2

3(̂um)2 − ̂(um−1)2

4
. (25)

This scheme has local truncation error of order (Δt)2, and a second-order convergence is observed (for more details, see

Kalisch and Bona32).

4.2.2 Diffusion equation 22
We can solve mathematically (22) as follows:

Hb(
Δt

2
)U = eS

Δt

2 U. (26)

In addition, for all N > 0, the exponential of the matrix SΔt

2
is calculated numerically using the “scaling and squaring”

method with a (6, 6) Padé approximation33 that corresponds, with Matlab, to the function “expm(SΔt

2
).” We recall that the

(p, q) Padé approximation of eA is given by

R𝑝q(A) = (D𝑝q(A))
−1N𝑝q(A),

where

N𝑝q(A) =

𝑝∑
𝑗=0

(𝑝 + q − 𝑗)!𝑝!

(𝑝 + q)!𝑗!(𝑝 − 𝑗)!
A𝑗 ,

D𝑝q(A) =

𝑝∑
𝑗=0

(𝑝 + q − 𝑗)!q!

(𝑝 + q)!𝑗!(q − 𝑗)!
(−A)𝑗 .

Hence, the numerical scheme (23) is a 3-step scheme. Since the scheme (25) as well as the Strang splitting method are of

order 2 in time, it follows that (23) is of order 2 in time.

4.3 Numerical results and discussion

In this paragraph, we present some numerical results from the numerical scheme (23) with similar parameters and initial

datum as in the case of the first schemes 15 and (16). We analyze the convergence in time, and we study the effects of the

number of quadrature points on the numerical solution. To this end, we choose 𝛼 = 2, 𝜈 = 1, 𝛾 = 3, 𝛽 = 1, T = 100 and

h = 0.05.

4.3.1 Convergence in time
To study the convergence in time of the numerical solution of (23), we take N = 40 Gauss-Jacobi quadrature points. In

Figure 5, we present different numerical solutions for Δt = 0.05, Δt = 0.1, Δt = 0.2, Δt = 0.3, and Δt = 0.4, as well as the

decay rates in norms L2 and L∞ in this case. We observe that the difference between different numerical solutions and

decay rates are negligible.

To evaluate the error due to the time discretization of the scheme (23), we denote by um
Ref

the reference solution, which

is the numerical solution for N = 40 and Δt = 0.025. We denote by Em(Δt) = ||um
Ref

− um||2 the L2 error due to the time
discretization of the solution in norm L2. We denote by um the numerical solution for different time steps Δt. In Figure 6,

12



200 250 300 350
−1

0

1

2

3

4
x 10

−3

x
u

(T
=

1
0

0
,x

)

∆ t = 0.05

∆ t = 0.1

∆ t = 0.2

∆ t = 0.3

∆ t = 0.4

20 40 60 80 100

−0.94

−0.9

−0.86

−0.82

−0.78

−0.74

Time t

D
e

c
a

y
 o

f 
th

e
 s

o
lu

ti
o

n
 i
n

 n
o

rm
 L

∞

∆ t = 0.05

∆ t = 0.1

∆ t = 0.2

∆ t = 0.3

∆ t = 0.4

20 40 60 80 100

−0.71

−0.69

−0.67

−0.65

−0.63

−0.61

D
e

c
a

y
 o

f 
th

e
 s

o
lu

ti
o

n
 i
n

 n
o

rm
 L

2

∆ t = 0.05

∆ t = 0.1

∆ t = 0.2

∆ t = 0.3

∆ t = 0.4

FIGURE 5 Comparison of the splitting scheme solutions and decay rates in L∞ and L2 norms where 𝛼 = 2, 𝜈 = 1, 𝛾 = 3, 𝛽 = 1 for different

time steps Δt [Colour figure can be viewed at wileyonlinelibrary.com]

we illustrate the L2-error Em in terms of the time step Δt in the log-log scale. We observe that the measured values are

close to a straight line with slope 2. This numerically confirms that the numerical scheme (23) is of order 2 in time.

4.3.2 Influence of the number of Gauss-Jacobi quadrature points
To analyze the influence of the number of the grid points N on the numerical solution of (23), we denote by um

Ref
the

reference solution, which is the numerical solution for Δt = 0.05 and N = 40. We denote by um
N
the numerical solution

for different values of N. We define the error Em
S𝑝
(N) = ||um

Ref
− um

N
||2 in norm L2. In Figure 7, we present Em

S𝑝
in terms of

N. We observe that as expected the error decreases as the number of N increases. Also, the measured values are close to a

straight line with slope −5, which let us conclude that Em
S𝑝

≈ C( 1
N
)5 where C is a constant.
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5 DISPERSION ANALYSIS

We recall the definition of the half-order derivative of Riemann-Liouville

D1∕2u(t) =
1√
𝜋
𝜕t ∫

+∞

0

u(s)√
t − s

ds. (27)

In this section, we present the dispersion analysis of the model (2) in the linear case (𝛾 = 0) using 2 methods. First, let us

define the Laplace and Fourier transforms in time and space, respectively.

t(𝑓 )(𝜏) = 𝑓 (𝜏) = ∫
+∞

0

𝑓 (t)e−𝜏tdt,

x(𝑓 )(k) = 𝑓 (k) = ∫
+∞

−∞

𝑓 (x)e−ikxdx,

where 𝜏 is the angular frequency and k is the wavenumber.

The Laplace-Fourier transform of a function f reads

𝑓 (𝜏, k) = ∫
+∞

0

e−t𝜏
(
∫

+∞

−∞

e−ixk 𝑓 (t, x)dx

)
dt.

The first method consists in applying Laplace-Fourier transform to (2) in order to derive the dispersion relation between

𝜏 and k. Then, we define the symbol of the half-order derivative (27)

14



𝜒(𝜏) =
√
i𝜏 =

√
𝜏

(
1√
2
+ i

1√
2

)
.

We get from (2) the following identity:

(i𝜏 +
√
𝜈
√
i𝜏)û + (ik − i𝛽k3)û = −𝛼k2û.

We set

𝛼(𝜏, k) = −i𝛽k3 + 𝛼k2 + ik + i𝜏.

Hence, the dispersion relation is given by

𝛼(𝜏, k) +
√
𝜈𝜒(𝜏) = 0. (28)

We note that we get the same dispersion relation as in Chen et al3 where the authors studied the linear dispersion of (2)

when the nonlocal diffusive-dispersive term is described by the Caputo half-order derivative with an initial condition

u(0) = 0.

The second method is devoted to the linear dispersion relation of the system (20) (we take 𝛾 = 0). To this end, we apply

Fourier transforms in time and space to (20), we get a set of (N + 1) equations whose determinant must be vanishing.

Then, the matrix form of the resulting system is given by

AÛ = 0,

where

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝛼(𝜏, k) + 2

𝜋

√
𝜈

N∑
i=1

wi −
√
𝜈w1𝜎

2
1 · · · · · · −

√
𝜈wN𝜎

2
N

2

𝜋
−𝜎21 − i𝜏 0 · · · 0

2

𝜋
0 −𝜎2

2
− i𝜏 ⋱ 0

⋮ ⋮ ⋱

2

𝜋
0 · · · · · · −𝜎2

N
− i𝜏

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Thus, the dispersion relation between 𝜏 and k is given by

𝛼(𝜏, k) +
2

𝜋

√
𝜈

(
N∑
𝑗=1

w𝑗 −

N∑
𝑗=1

w𝑗𝜎
2
𝑗

𝜎2𝑗 + i𝜏

)
= 0. (29)

We denote by

𝜒(𝜏) =
2

𝜋

(
N∑
𝑗=1

w𝑗 −

N∑
𝑗=1

w𝑗𝜎
2
𝑗

𝜎2𝑗 + i𝜏

)
,

then the dispersion relation (29) can be written in a similar way as (28)

𝛼(𝜏, k) +
√
𝜈𝜒(𝜏) = 0. (30)

It is worth to note that when we consider the main Equation 2 without nonlocal diffusive-dispersive term, ie, when 𝜈 = 0,

the dispersion relations (28) and (30) reduced to the KdV-dispersion relation, namely, 𝛼(𝜏, k) = 0.

6 CONCLUSION

In this article, we propose different numerical schemes to approximate the solution to an asymptotical water wave model

where the nonlocal viscosity is described by the Riemann-Liouville half-order derivative.We compare different numerical

results of different numerical schemes where the half derivative is described by a diffusive representation. Moreover, we

compare our numerical results with those given in Minoubi.5
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